
1© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.

Bob Briscoe, Independent <ietf@bobbriscoe.net>
Koen De Schepper, Nokia Bell Labs <koen.de_schepper@nokia.com>
Olivier Tilmans, N okia Bell Labs <olivier.tilmans@nokia-bell-labs.com>
Greg White, CableLabs <g.white@CableLabs.com>

TSVWG, IETF-106½ Interim, Feb 2020

Low Latency Low Loss Scalable Throughput
(L4S)
L4S Drafts Status
draft-ietf-tsvwg-l4s-arch-05
draft-ietf-tsvwg-ecn-l4s-id-09
draft-ietf-tsvwg-aqm-dualq-coupled-10

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.2

tsvwg L4S drafts status
● draft-ietf-tsvwg-...

● l4s-arch-05 just submitted
● ecn-l4s-id-09 just submitted
● coupled-dualq-aqm-10 in good shape, with minor ToDo list. Will update shortly

● Across drafts:
● Scalable Congestion Control definition expressed in terms of invariant recovery

time between congestion signals in steady-state
– previous definition based on response function was the means not the end

● “Classic”? see Greg's terminology slides later
● Turned 'hype' into precise statements – pls review again and suggest text

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.3

tsvwg L4S draft revisions
● l4s-arch-05 (intended INF)

● Explained how L4S works with FQ & DualQ better
● Fixed cross-refs to 'later'
● Loads of other minor edits

– Plans: Fixed abstract hype but still needs work – far too long (next few days). Then review pls

● ecn-l4s-id-09 (intended EXP)
● Loss recovery in time units: MUST → SHOULD
● MUST … mark ECT(0) packets under the same conditions as it would drop Not-ECT packets [RFC3168] →

need not mark ECT(0) packets, but if it does, it will do so under the same conditions as it would drop Not-ECT packets
[RFC3168]

● Added requirement and guidance for L4S experiments to monitor for harm to other traffic
● Loads of other minor edits

– Plans: (next few days)
● Not happy with “Recommended-standard-use” (DS) terminology for complementary identifiers (that might not be DS)
● MUST [SHOULD?] remain responsive to congestion [with fractional window] → will explain dilemma on list
● Otherwise done. Review pls

4© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.

Bob Briscoe, Independent <ietf@bobbriscoe.net>
and many others too numerous to list

TSVWG, IETF-106½ interim, Feb 2020

Low Latency Low Loss Scalable Throughput
(L4S)
L4S & TCP Prague Status
draft-ietf-tsvwg-ecn-l4s-id

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.5

L4S implementation status
● L4S AQMs

● DualPI2 & FQ_CoDel_Th Linux code stable
– continuing to test against TCP Prague updates

● Product/closed source implementations
– will gather update reports for IETF-107

● Scalable congestion controls
● Only discussing our reference implementation (TCP Prague) here
● Will gather update reports on others for IETF-107

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.6

Requirements

L4S-ECN Packet Identification: ECT(1)

Accurate ECN TCP feedback

Reno-friendly on loss

Reno-friendly if Classic ECN bottleneck

Reduce RTT dependence

Scale down to fractional window

Detecting loss in units of time

Optimizations

ECN-capable TCP control packets

Faster flow start

Faster than additive increase

● for scalable congestion ctrls over Internet
● Assuming only partial deployment of either FQ or DualQ

Coupled AQM isolation for L4S
● Jul 2015 Prague IETF,

ad hoc meeting of ~30 DCTCP folks
● categorized as safety (mandatory)

or performance (optional)

● not just for TCP
● behaviour for any wire protocol (TCP, QUIC, RTP, etc)

● evolved into draft IETF conditions for setting ECT(1)
in IP

● draft-ietf-tsvwg-ecn-l4s-id

● Linux TCP Prague as (a) reference implementation

The 'Prague L4S requirements'

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.7

Impl'n status against Prague L4S req's (Nov'19)

Requirements base TCP DCTCP TCP Prague

L4S-ECN Packet Identification: ECT(1) module option mandatory

Accurate ECN TCP feedback sysctl option ? mandatory

Reno-friendly on loss inherent inherent

Reno-friendly if classic ECN bottleneck evaluat'n in progress

Reduce RTT dependence research code

Scale down to fractional window research code research code research code

Detecting loss in units of time default RACK default RACK mandatory?

Optimizations

ECN-capable TCP control packets module option off on default off→on later

Faster flow start in progress

Faster than additive increase in progress

Linux code: none none (simulated) research private research opened RFC mainline

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.8

Impl'n status against Prague L4S req's (Feb'20)

Requirements base TCP DCTCP TCP Prague

L4S-ECN Packet Identification: ECT(1) module option mandatory

Accurate ECN TCP feedback sysctl option ? mandatory

Reno-friendly on loss inherent inherent

Reno-friendly if classic ECN bottleneck evaluat'n in progress

Reduce RTT dependence evaluat'n in progress

Scale down to fractional window research code research code research code

Detecting loss in units of time default RACK default RACK mandatory?

Optimizations

ECN-capable TCP control packets module option off on default off→on later

Faster flow start in progress

Faster than additive increase in progress

Linux code: none none (simulated) research private research opened RFC mainline

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.9

Issue #16: The Problem
RFC3168 ECN AQM in a single Q

 PI2 AQM

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.10

Score-Based, not Modal
● Detection algorithms – drive a classic ECN AQM score

1)Passive detection algorithm – primarily based on delay variation

2)Active detection technique (if passive raises suspicion) – detects different ECT(0/1) treatment

● Detection unlikely to be perfect, so...
● gradual behaviour change-over from scalable to classic,

e.g. TCP Prague becomes Reno
● hysteresis (sticky) at both ends of spectrum
● moves faster the more strongly classic is detected
● but designed to survive transient misleading readings

● Start as scalable (or use per-destination cache)
● start maintaining score (passively) from first CE mark

(but maintain underlying metrics from start of connection)
● suppresses calculations for short flows (large majority)
● assumption: classic fall-back only becomes important for longer flows

Detected
classic_ecn score

classic

transition

scalable

Classic
behaviour,
c

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.11

Example: transition from Prague to Reno

● See discussion paper on design:
● TCP Prague Fall-back on Detection of a Classic ECN AQM

● rationale for metrics, pseudocode & analysis

Detected
classic_ecn score

classic

transition

scalable

Classic
behaviour,
c

#define BETA_ABE 0.7 // ABE: Alternative Backoff with ECN [RFC8511]
#define ALPHA_ABE 2*(1-BETA_ABE) // 0.6

// On congestion event, reduce ssthresh
reduction = cwnd * max(alpha, c * ALPHA_ABE) / 2;

ABE

Prague

0

1

https://arxiv.org/abs/1911.00710

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.12

Issue #16:
Fall-back to Reno-Friendly on Classic ECN bottleneck

● Passive detection algorithm
● delayed start following first CE mark
● 3 weighted elements to detect classic queue

– v, mean deviation of the RTT (mdev in TCP)
– d, mean Q depth (solely positive factor – min RTT unreliable)
– s, degree of self-limiting (app-limited, rwnd-limited) (solely negative factor)

● Implemented & Working – see plots/demo
● in Linux TCP Prague by Asad Ahmed

● Full evaluation in progress – for wide range of conditions

v/V0

d/D0

s

1

1

01

RTT independence in
TCP Prague

Olivier Tilmans <olivier.tilmans@nokia-bell-labs.com>

Koen De Schepper <koen.de_schepper@nokia-bell-labs.com>

20-02-2020, TSVWG interim

Queuing delays act as cushion
The throughput of competing AIMD flows depends on their RTT ratio

qdelay Throughput imbalance

Taildrop 200ms 15 + 200

.5 + 200
∼ 1.1

PIE 15ms 15 + 15

.5 + 15
∼ 1.9

Codel 5ms 15 + 5

.5 + 5
∼ 3.6

L4S AQM 500us 15 + .5

.5 + .5
∼ 15.5

Assuming two flows with base RTT of 15ms and 0.5ms, and a constant marking probability

𝑟 ∼
1.22

𝑝⋅𝑟𝑡𝑡
or 𝑟 ∼

2

𝑝⋅𝑟𝑡𝑡

DualQ also gives a different Q per traffic class
The throughput of competing AIMD flows depends on their RTT ratio

Base RTT Throughput imbalance

DualQ 200ms 15 + 200

.5 + 200
∼ 1.1

DualQ 15ms 15 + 15

.5 + 15
∼ 1.9

DualQ 5ms 15 + 5

.5 + 5
∼ 3.6

DualQ 500us 15 + .5

.5 + .5
∼ 15.5

Assuming DualQ with targets of 15ms and 0,5ms, equal base RTT and a window-fair coupling (k=2)

𝑟 ∼
1.22

𝑝⋅𝑟𝑡𝑡
or 𝑟 ∼

2

𝑝⋅𝑟𝑡𝑡

Code to be released soon (demo available)
New Prague add-on to steer RTT dependence

New Prague CC can have 𝑟 ∼
2

𝑝⋅𝑓()
with a target RTT function 𝑓() that can represent any constant or function of

flow state

For example 𝑓 𝑟𝑡𝑡 = (𝑟𝑡𝑡 + 14.5) resulting in:

Base RTT Throughput imbalance

DualQ 200ms 15 + 200

.5 + (200 + 14.5)
= 1

DualQ 15ms 15 + 15

.5 + (15 + 14.5)
= 1

DualQ 5ms 15 + 5

.5 + (5 + 14.5)
= 1

DualQ 500us 15 + .5

.5 + (.5 + 14.5)
= 1

Smart f()

(Long term) Throughput balance
with other RTT flows

Accelerate faster
at small RTTs

Handle
shorter flows

faster

IETF or applications
to decide?

Key changes to TCP Prague
Controlled RTT dependence in TCP Prague

1. We control Additive Increase to behave as a target RTT flow

Trigger the same amount/frequency of marks as a target RTT flow

2. We leave the Multiplicative Decrease unchanged

Preserve responsiveness as much as possible to preserve latency

3. Control the EWMA update frequency on the target RTT independently from the e2e RTT

Ensure that different RTT flows can converge to the same alpha, even on a step

Other changes to TCP Prague

1. Switch to unsaturated marking by default, i.e.,

cwnd growth is ∼
1−𝑝

𝑝
, regardless of the congestion state (TCP_CA_CWR, …)

2. Generalize fixed-point cwnd manipulation, e.g.,
carry over remainders from successive cwnd increases and reductions

Align to 𝑟 ∼
2(1−𝑝)

𝑝⋅𝑓()
to support unsaturated signal and smoother throughput

The marking probability is usually too low (e.g., 3%) to yield a single packet reduction

and the increments can become less than a packet per RTT

Demo/video
f(rtt)= (rtt + 15ms)

Code to be released soon

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.14

Accurate ECN feedback in TCP
● Implementation of full tcpm spec

● by Ilpo Järvinen
– based on Olivier Tilmans's, based on Mirja Kühlewind's

● See tcpm list for his design review comments
● some design tweaks as a result

Immediate Plans: upstreaming to Linux

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.15

Faster flow start &
faster than additive increase

● Paced Chirping merged into TCP Prague
● by Joakim Misund
● over latest Linux kernel
● default off
● see previous iccrg talks

Immediate Plans: (re-)engineer research code

1
6

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.

Low Latency Low Loss Scalable Throughput
(L4S)

Q&A

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.17

more info
● Resolving Tensions between Congestion Control Scaling

Requirements, Bob Briscoe (Simula) and Koen De
Schepper (Nokia Bell Labs), Simula Technical Report
TR-CS-2016-001; arXiv:1904.07605 [cs.NI] (Jul 2017)

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.18

Passive Classic ECN Bottleneck Detection Algorithm

● 3 weighted elements to detect classic queue
● v, mean deviation of the RTT (mdev in TCP)
● d, mean Q depth (srtt – srtt_min)

(solely positive factor – small srtt_min unreliable)
● s, degree of self-limiting (app-limited, rwnd-limited)

(solely negative factor)

● All metrics already maintained by Linux TCP
● (?) may need to tune their parameters

● Per-RTT change to classic_ecn score
● delta = V*lg(v/V0) + D*lg(max(d/D0, 1)) – S*s;

● Constant parameters
● V, D & S are the weights of each element
● V0 and D0 are reference values

v/V0

d/D0

s

1

1

01

