Some Congestion Experienced

```
draft-morton-tsvwg-sce-0|
draft-morton-tsvwg-codel-approx-fair-00
draft-morton-tsvwg-lightweight-fair-queueing-00
draft-morton-tsvwg-cheap-nasty-queuing-0|
```

Jonathan Morton
Pete Heist
Rodney W Grimes

Overview

- Problem Statement and Goals
- SCE Signaling
- Co-existence with non-SCE Traffic
- Prague Requirements
- Difficult Environments

SCE Problem Statement

Existing congestion control signals and responses are safe, but can lead to under-utilization and spikes in queue depth

SCE Goals

- Define a high fidelity congestion signal, which can be used to:
 - Decrease latency and jitter
 - Increase utilization

- Safety
 - Existing signal compatibility
 - No signaling ambiguity
 - Seamless bottleneck shifts
 - Safety enables innovation
- Simplicity
 - Ease of implementation
 - Robust failure modes

The SCE Signal

SCE adds a third signal:

Signal	Status	Response	Notes
Drop	Existing, Jacobson88	50% mult. decrease	Reliable, imprecise
CE	Existing, RFC 3168	ABE mult. decrease	Reliable, imprecise, avoids drop
SCE	Proposed use of ECT(1)	Small backoff	Unreliable, precise, avoids CE

Why a separate signal?

- Compatibility with millions of existing RFC 3168 ECN AQM instances
 - CE's MD without drop still useful for sudden capacity reductions

The SCE Signal Compared

SCE mark is essentially similar to L4S CE mark, but non-ambiguous

Request	RFC-3168	SCE	L4S
Large decrease	Single CE	Single CE	O(cwnd) CEs
Small decrease		Single SCE	Single CE
Steady state	<1 CE per RTT	>1 SCE per RTT	>1 CE per RTT
Growth permit	ECT(0)	ECT(0)	ECT(1)

RFC 3168 ECN and RFC 8511 ABE

ECN: Reliable, imprecise, max 1 per RTT, avoids drop

Sender:

Standard response: $\beta_{ECN} = 0.5$

ABE response: $\beta_{ECN} = 0.7-0.85$

ABE response useful in SCE context

Why retain CE semantics?

- 1) Safety, compatibility
- 2) For sudden capacity reductions
- 3) As a "backstop" signal for SCE

SCE Signaling- Many Signals / RTT

- Respond to ESCE w/ small cwnd reduction:
 - DCTCP: ½ ESCE-flagged data
 - ELR: sqrt(cwnd segs) * ESCE-flagged data
- Non-SCE senders do nothing

- Echo SCE to ESCE
- Up to 100% relative error tolerated
- Non-SCE receivers do nothing

Test Scenario: Bottleneck Shift

Shift to RFC 3168 bottleneck

Shift back to SCE bottleneck

Test Scenario: Bottleneck Shift

Capacity reduction **50-45Mbit**

Capacity return to 50Mbit

Capacity reduction **50-5Mbit**

Capacity return to 50Mbit

01:20:40

01;21:00

Time

01:21:20

01:21:40

Capacity reduction **50-5Mbit**

Capacity return to 50Mbit

- > SCE marks
- > CE marks
- > CWR

Co-existence with non-SCE Traffic

SCE needs help from the network in a single SCE AQM queue Full FQ is good, but not required, options include:

Fair Queueing (FQ)

- Cake
- LFQ
- fq_codel

Approximate Fairness (AF)

CNQ-CodelAF

Rate-Based Congestion Control

Ongoing research

Lightweight Fair Queueing

- FQ for low cost or high speed hardware
- Flow fairness similar to DRR++
- Flow isolation and sparse flow optimization
- Per-flow AQM
- Only 3 FIFO queues in hardware

Test Scenario: LFQ

<u>CNQ-CodelAF</u>

- Approximate Fairness (AF) is an alternative to FQ
- Deployed hardware with AF exists
- Usable in a single queue (but no flow isolation)
- CNQ-CodelAF combines AF and SCE signaling:
 - Bulk queue with per-flow differential signaling
 - Sparse queue for arrival rates < bulk sojourn

Test Scenario: CNQ-CodelAF

SCE and the Prague Requirements

Requirement	SCE Fulfillment
Packet identifier	Yes, ECT(0)
Accurate ECN feedback	Yes, ESCE feedback accurate, unreliable
Fallback to MD on loss	Yes
Fallback to MD on RFC-3168 mark	Yes, CE treated unambiguously
Reduce RTT dependence	Throughput inversely proportional to RTT
Scale down to fractional cwnd	Possible with pacing scale factors
Reordering tolerance on time basis	Yes, inherited from RACK
Scalable throughput	Yes, using CUBIC derivative

Difficult Environments: High BDP

- CUBIC scales well to high BDPs
- CUBIC-SCE adds SCE response:
 - Reset polynomial growth curve
 - Apply SCE's ELR to cwnd and cubic curve:

```
reno_accum -= acked_bytes * sqrt(cwnd);
if(reno_accum <= -(cwnd * mss)) {
    reno_accum += cwnd * mss;
    cwnd--;
}</pre>
```

Test Scenario: High BDP DCTCP

Test Scenario: High BDP CUBIC

Test Scenario: High BDP CUBIC-SCE

Difficult Environments: Burstiness

- Burstiness a challenge for high fidelity congestion control
- SCE marking with a second CoDel instance can improve this, as shown at Singapore Hackathon
- Research ongoing

SCE: Next Steps

- Continue towards WG adoption
- Continue RFC-5033 and other guided testing
- Research ways of meeting Prague requirement #5 (reduce RTT dependence)

Some Congestion Experienced

Any questions?