
AEAD key usage limits in OSCORE

draft-hoeglund-core-oscore-key-limits

Rikard Höglund, RISE
Marco Tiloca, RISE

CoRE WG interim meeting, April 28th, 2021

IETF | CoRE WG interim meeting | 2021-04-28 | Page 2

› OSCORE uses AEAD algorithms to provide security

– Confidentiality and Integrity

› Forgery attack against AEAD algorithms

– Adversary may break the security properties of the AEAD algorithm

– Reference draft-irtf-cfrg-aead-limits-01

› AEAD limits and their impact on OSCORE

– Defining appropriate limits for OSCORE

– How the forgery attack and the limits affect OSCORE

– Necessary steps to take during message processing (e.g. counting)

– What actions to take if the limits are exceeded (e.g. rekeying)

Problem Recap (1/2)

IETF | CoRE WG interim meeting | 2021-04-28 | Page 3

› What you need to count

– ‘q’: the number of messages protected with specific key, i.e. the number of times

the key has been used to encrypt data

– ‘v’: the number of forgery attempts that have been made against a specific key, i.e.

the amount of failed decryptions for a key

› Relevant parameters for OSCORE, added to the OSCORE Security Context

– Counting number of times a Sender Key has been used for encryption (‘count_q’)

– Counting number of times a Recipient Key has been used for failed decryption

(‘count_v’)

– Both of these have associated limits ‘limit_q’ and ‘limit_v’

› If the limits are exceeded the context must be rekeyed

– The draft also offers an overview of methods for rekeying OSCORE

Problem Recap (2/2)

IETF | CoRE WG interim meeting | 2021-04-28 | Page 4

› Table with ‘q’ and ‘v’ limits for further algorithms

– These are based on the formulas in the CFRG document

› Extended section about methods for OSCORE rekeying

– Also added bootstrapping towards a LWM2M Bootstrap Server as an alternative

– That can provide a client with an updated Security Context (if the material on the

Bootstrap Server was updated)

– Both the LWM2M Client and the LWM2M Server can initiate bootstrapping

Updates since IETF 110 (1/2)

IETF | CoRE WG interim meeting | 2021-04-28 | Page 5

› State that messages detected as replays do not affect ‘count_v’

– As these are replays they should not be counted as failed decryptions/forgery

attempts

› 'exp' timestamp for OSCORE Security Context expiration

– Added this parameter to the Security Context

– Integer value similar to a Unix timestamp

– When this specific time is reached a peer MUST stop using this Security Context

to process any incoming or outgoing messages

› General editorial improvements

Updates since IETF 110 (2/2)

IETF | CoRE WG interim meeting | 2021-04-28 | Page 6

› Default lifetime of a Security Context

– ‘exp' has to be set when installing a Security Context (now + lifetime)

– A default lifetime should be defined (if not provided otherwise)

– Lifetimes and ‘exp’ on the peers do not have to match

› Periodic saving of ‘count_q’ and ‘count_v’ by constrained devices

– Allow safely continuing to use a Security Context after reboot

– Will reduce number of writes to nonvolatile memory

– Similar to solution outlined in OSCORE Appendix B.1 for storing SSN

– Considerations on storing rates vs rekeying rates

› If 'count_v' is saved with a too large rate, it will jump forward a lot on reboot

– Documenting this procedure – Just as B.1 but applied to these counters?

Open Points (1/2)

IETF | CoRE WG interim meeting | 2021-04-28 | Page 7

› Further explore optimizations to track ‘count_’q'

– (SSN+X), with X the outgoing messages without Partial IV

– Rely only on SSN, sacrificing accuracy and accepting more frequent rekeyings

› Can the limits be defined in a more general location like the COSE alg registry?

– If the limits are general per algorithm they could be placed there

› How do we adapt the limits to be OSCORE specific

– Possibly considering different probabilities p_q and p_v

– What authoritative and appropriate reference to use to produce those?

– Synchronizing with the work John Mattsson is doing on this

Open Points (2/2)

Thank you!

Comments/questions?

https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/

https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/
https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/
https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/
https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/
https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/
https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/
https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/
https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/
https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/
https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/
https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/

Backup Slides

IETF | CoRE WG interim meeting | 2021-04-28 | Page 10

› Pro: No need to keep an explicit ‘count_q’

› Con: Pessimistic overestimation; rekeying earlier than needed

› At any point in time, an endpoint has made at most ENC = (SSN + SSN*)

encryptions, where:

– SSN is its own Sender Sequence Number.

– SSN* is the other endpoint's Sender Sequence Number. That is, SSN* is an

overestimation of the responses without Partial IV that this endpoint has sent

Optimization for ‘count_q’ (1/2)

IETF | CoRE WG interim meeting | 2021-04-28 | Page 11

› Before performing an encryption, an endpoint stops and invalidates the Security

Context if (SSN + X) > ‘limit_q’, where X is determined as follows:

› If this endpoint is producing an outgoing response, X is the Partial IV in the

request it is responding to

› If this endpoint is producing an outgoing request, X is the highest Partial IV value

marked as received in its Replay Window, or (REPLAY_WINDOW_SIZE - 1) if it

has received no messages yet from the other endpoint

– That is, X is the highest Partial IV seen from the other point, i.e. its highest seen

Sender Sequence Number

Optimization for ‘count_q’ (2/2)

