Work in progress towards

Key Update for OSCORE

draft-hoeoglund-core-oscore-key-limits-02

Rikard Höglund, RISE
Marco Tiloca, RISE

CoRE WG interim meeting, October 13th, 2021
Recap

› OSCORE (RFC8613) uses AEAD algorithms to provide security
 – Need to follow limits in key usage and number of failed decryptions, before rekeying
 – Otherwise, it is possible to break the security properties of the AEAD algorithm
 – Reference draft-irtf-cfrg-aead-limits-03

› (1) Study of AEAD limits and their impact on OSCORE
 – Defining appropriate limits for OSCORE
 – Defining counters for key usage; message processing details; steps when limits are reached
 – Taking into account John Mattsson's input at the April CoRE interim [1]

› (2) Defined a new method for rekeying OSCORE
 – Loosely inspired by Appendix B.2 of OSCORE
 – Goal: renew the Master Secret and Master Salt; derive new keys from those
 – Achieves Perfect Forward Secrecy

Key limits (1/3)

› Recap on AEAD limits
 – Discussed in draft-irtf-cfrg-aead-limits-03
 – Limits key encryption use (q) and invalid decryptions (v)
 – We have selected fixed values for ‘q’, ‘v’, and ‘l’ and from those calculated IA & CA probabilities
 › These probabilities must be acceptably low

› Explicitly limit the size of protected data to be sent in a new OSCORE message
 – The probabilities are influenced by ‘l’, i.e., maximum message size in cipher blocks
 – Implementations should not exceed 'l', and it has to be easy to do so
 – New text: the total size of the COSE plaintext, authentication Tag, and possible cipher padding for a message may not exceed the block size for the selected algorithm multiplied with 'l'
 – Does this limitation, and worded in this way, make sense?
Key limits (2/3)

Increased value of ‘l’ (message size in blocks) for algos except AES_128_CCM_8
- Increasing ‘l’ from 2^8 to 2^{10} seems to maintain secure CA and IA probabilities
- draft-irtf-cfrg-aead-limits mentions aiming for CA & IA lower than to 2^{-50}
 - They have added a table in that document with calculated ‘q’ and ‘v’ values

$q = 2^{20}, v = 2^{20}, \text{and } l = 2^{10}$

<table>
<thead>
<tr>
<th>Algorithm name</th>
<th>IA probability</th>
<th>CA probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEAD_AES_128_CCM</td>
<td>2^{-64}</td>
<td>2^{-66}</td>
</tr>
<tr>
<td>AEAD_AES_128_GCM</td>
<td>2^{-97}</td>
<td>2^{-89}</td>
</tr>
<tr>
<td>AEAD_AES_256_GCM</td>
<td>2^{-97}</td>
<td>2^{-89}</td>
</tr>
<tr>
<td>AEAD_CHACHA20_POLY1305</td>
<td>2^{-73}</td>
<td>-</td>
</tr>
</tbody>
</table>

It there a possibility to increase 'q', 'v' and/or 'l' further?
- Since we are well below 2^{-50} for CA & IA currently
Key limits (3/3)

- Updated table of ‘q’, ‘v’ and ‘l’ for AES_128_CCM_8
 - Added new value for ‘v’, still leaving CA and IA less than 2^{-50}
 - Ideal to stick to CA and IA as close to 2^{-50} as possible?

<table>
<thead>
<tr>
<th>'q', 'v' and 'l'</th>
<th>IA probability</th>
<th>CA probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{20}, $v=2^{20}$, $l=2^8$</td>
<td>2^{-44}</td>
<td>2^{-70}</td>
</tr>
<tr>
<td>2^{15}, $v=2^{20}$, $l=2^8$</td>
<td>2^{-44}</td>
<td>2^{-70}</td>
</tr>
<tr>
<td>2^{10}, $v=2^{20}$, $l=2^8$</td>
<td>2^{-44}</td>
<td>2^{-70}</td>
</tr>
<tr>
<td>2^{20}, $v=2^{15}$, $l=2^8$</td>
<td>2^{-49}</td>
<td>2^{-70}</td>
</tr>
<tr>
<td>2^{15}, $v=2^{15}$, $l=2^8$</td>
<td>2^{-49}</td>
<td>2^{-80}</td>
</tr>
<tr>
<td>2^{10}, $v=2^{15}$, $l=2^8$</td>
<td>2^{-49}</td>
<td>2^{-80}</td>
</tr>
<tr>
<td>2^{20}, $v=2^{14}$, $l=2^8$</td>
<td>2^{-50}</td>
<td>2^{-70}</td>
</tr>
<tr>
<td>2^{15}, $v=2^{14}$, $l=2^8$</td>
<td>2^{-50}</td>
<td>2^{-80}</td>
</tr>
<tr>
<td>2^{10}, $v=2^{14}$, $l=2^8$</td>
<td>2^{-50}</td>
<td>2^{-90}</td>
</tr>
<tr>
<td>2^{20}, $v=2^{10}$, $l=2^8$</td>
<td>2^{-54}</td>
<td>2^{-70}</td>
</tr>
<tr>
<td>2^{15}, $v=2^{10}$, $l=2^8$</td>
<td>2^{-54}</td>
<td>2^{-80}</td>
</tr>
<tr>
<td>2^{10}, $v=2^{10}$, $l=2^8$</td>
<td>2^{-54}</td>
<td>2^{-90}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>'q', 'v' and 'l'</th>
<th>IA probability</th>
<th>CA probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{20}, $v=2^{20}$, $l=2^6$</td>
<td>2^{-44}</td>
<td>2^{-74}</td>
</tr>
<tr>
<td>2^{15}, $v=2^{20}$, $l=2^6$</td>
<td>2^{-44}</td>
<td>2^{-74}</td>
</tr>
<tr>
<td>2^{10}, $v=2^{20}$, $l=2^6$</td>
<td>2^{-44}</td>
<td>2^{-74}</td>
</tr>
<tr>
<td>2^{20}, $v=2^{15}$, $l=2^6$</td>
<td>2^{-49}</td>
<td>2^{-74}</td>
</tr>
<tr>
<td>2^{15}, $v=2^{15}$, $l=2^6$</td>
<td>2^{-49}</td>
<td>2^{-84}</td>
</tr>
<tr>
<td>2^{10}, $v=2^{15}$, $l=2^6$</td>
<td>2^{-49}</td>
<td>2^{-84}</td>
</tr>
<tr>
<td>2^{20}, $v=2^{14}$, $l=2^6$</td>
<td>2^{-50}</td>
<td>2^{-74}</td>
</tr>
<tr>
<td>2^{15}, $v=2^{14}$, $l=2^6$</td>
<td>2^{-50}</td>
<td>2^{-84}</td>
</tr>
<tr>
<td>2^{10}, $v=2^{14}$, $l=2^6$</td>
<td>2^{-50}</td>
<td>2^{-94}</td>
</tr>
<tr>
<td>2^{20}, $v=2^{10}$, $l=2^6$</td>
<td>2^{-54}</td>
<td>2^{-74}</td>
</tr>
<tr>
<td>2^{15}, $v=2^{10}$, $l=2^6$</td>
<td>2^{-54}</td>
<td>2^{-84}</td>
</tr>
<tr>
<td>2^{10}, $v=2^{10}$, $l=2^6$</td>
<td>2^{-54}</td>
<td>2^{-94}</td>
</tr>
</tbody>
</table>
Key update (1/6)

- Defined a new method for rekeying OSCORE
 - Client and server exchange two nonces R1 and R2
 - `UpdateCtx()` function for deriving new OSCORE Security Context using the nonces
 - Current Sec Ctx (to renew) => Intermediate Sec Ctx ==> New Sec Ctx

- Properties
 - Robust and secure against peer rebooting
 - Completes in one round-trip (after that, the new Security Context can be used)
 - Compatible with prior key establishment through the EDHOC protocol
 - Only one intermediate Security Context is derived
 - The ID Context does not change
 - Can be initiated by either the client or server
Key update (2/6)

> No more R1 in the Response #1 for the **client-initiated** rekeying
> - Just like in OSCORE Appendix B.2
> - Simply not needed: Response #1 correlates to Request #1 through the CoAP Token

Before

- **Protect with CTX_1**
 - **Request #1**
 - OSCORE Option:
 - `... d flag: 1 ...
 - ID Detail: R1 ...
 - **CTX_NEW = updateCtx(R1|R2, CTX_OLD)**
 - **Verify with CTX_NEW**
 - **Discard CTX_OLD**

After

- **Protect with CTX_1**
 - **Request #1**
 - OSCORE Option:
 - `... d flag: 1 ...
 - ID Detail: R1 ...
 - **CTX_1 = update(R1, CTX_OLD)**
 - **Verify with CTX_1**
 - **Generate R2**
 - **CTX_NEW = update(R1|R2, CTX_OLD)**
 - **Protect with CTX_NEW**
 - **Response #1**
 - OSCORE Option:
 - `... d flag: 1 ...
 - ID Detail: R1|R2 ...
 - **Verify with CTX_NEW**
 - **Discard CTX_OLD**

CoRE Interim Meeting | 2021-10-13 | Page 7
Key update (3/6)

› Clarification on the Request #2 processing for the **server-initiated** rekeying
 - Just like in OSCORE Appendix B.2
 - Recognize R1 as sent in a previous Response #1
 - Recognize R1 | R2 as never received in a Request #2
 - Also need to add further text on generation/storage of R2 (similar to that in OSCORE Appendix B.2)
Key update (4/6)

- Recommendations on minimum length of R1 and R2 values
 - R1 and R1 | R2 are used as nonces
 - Motivation is based on similar considerations for Appendix B.2 in RFC8613
 - We now recommend minimum 8 bytes, is this sufficient?
 - Further text needs to be added as in Appendix B.2. e.g. mentioning the birthday paradox

- Now MUST terminate ongoing observations after rekeying (derived CTX_NEW)
 - Possible to keep them ongoing by paying a price, i.e. admitting a sooner use of large Partial IVs
 - Possible solution: after a rekeying, the client considers PIV* as the highest req_piv among all the ongoing observations. Then, when the client starts the first new observation, the SSN jumps to PIV*+1, thus every observation request has a PIV greater than PIV*.
 - Drawback: Big jumps in PIV, i.e., faster consumption and larger communication overhead
 - Is it worth keeping observations ongoing across a rekeying?
Key update (5/6)

- Align with EDHOC-Exporter interface, based on EDHOC v-11
 - Used correct labels as text strings
 - Empty CBOR byte string as context, i.e. h'' (0x40)
 - New usage:
    ```
    MSECRET_NEW = EDHOC-Exporter("OSCORE_Master_Secret", h'', key_length)
    MSALT_NEW = EDHOC-Exporter("OSCORE_Master_Salt", h'', salt_length)
    ```

- A peer using EDHOC and using this OSCORE rekeying procedure ...
 - ... MUST support EDHOC-KeyUpdate() ...
 - Which otherwise SHOULD support as per the EDHOC draft
 - OK with this?
Key update (6/6)

- Added and discussed 6TiSCH as use case
 - 6TiSCH uses OSCORE Appendix B.2 to handle failure events
 - If the 6TiSCH JRC severely fails, it can use Appendix B.2 with the pledges (RECOMMENDED)
 - The new key update procedure is a good replacement, especially for 6TiSCH
 - Among its intrinsic advantages compared to Appendix B.2, it preserves the ID Context across rekeying
 - 6TiSCH uses ID Context as pledge identifier, meaning that:
 - A key update would not change pledge identifier, which remains unchanged in the long run
 - The JRC does not need anymore to do a remapping between new ID Context and pledge identifier
 - ID Contexts and pledge identifiers can be used as intended at setup/deploy time

- The update to RFC8613 includes also “deprecating and replacing” its Appendix B.2
 - OK with superseding OSCORE Appendix B.2 per se?
 - OK with the wording “deprecating and replacing”?
More general updates

› Improved Table of Content structure
 – Key Limits
 – Current rekeying methods
 – New rekeying methods
 › Building blocks
 › Client-initiated procedure
 › Server initiated procedure
 › Policies
 › Discussion

› Editorial improvements
 – Terminology harmonization
 – Use of RFC8126 terminology in IANA considerations

› Should the rekeying procedure have an actual name for easier reference?
Next steps

› Address open points
 – Continued work on open issues tracked on GitLab repo
 – Further refinement of limits

› Comments received during meeting or mailing list

› Submission of new draft version before the IETF 112 cut-off
Thank you!

Comments/questions?