Work in progress towards

Key Update for OSCORE

draft-hoeglund-core-oscore-key-limits-02

Rikard Hoglund, RISE
Marco Tiloca, RISE

CoRE WG interim meeting, October 13th, 2021



Recap

» OSCORE (RFC8613) uses AEAD algorithms to provide security
— Need to follow limits in key usage and number of failed decryptions, before rekeying
— Otherwise, it is possible to break the security properties of the AEAD algorithm
— Reference draft-irtf-cfrg-aead-limits-03

» (1) Study of AEAD limits and their impact on OSCORE
— Defining appropriate limits for OSCORE
— Defining counters for key usage; message processing details; steps when limits are reached
— Taking into account John Mattsson's input at the April CoRE interim [1]

» (2) Defined a new method for rekeying OSCORE
— Loosely inspired by Appendix B.2 of OSCORE
— Goal: renew the Master Secret and Master Salt; derive new keys from those

— Achieves Perfect Forward Secrecy [1] https://datatracker.ietf.org/meeting/110/materials/slides-110-

CORE Interim Meeting | 2021-10-13 | Page 2 saag-analysis-of-usage-limits-of-aead-algorithms-00.pdf



https://datatracker.ietf.org/meeting/110/materials/slides-110-saag-analysis-of-usage-limits-of-aead-algorithms-00.pdf

Integrity Advantage (1A):

Key I | m ItS ( 1/3) Probability of breaking

integrity properties

> Recap on AEAD limits Confidentiality Advantage (CA):
— Discussed in draft-irtf-cfrg-aead-limits-03 Probability of breaking
— Limits key encryption use (q) and invalid decryptions (v) confidentiality properties

— We have selected fixed values for ‘q’, V', and ‘I’ and from those calculated IA & CA probabilities
These probabilities must be acceptably low

» Explicitly limit the size of protected data to be sent in a new OSCORE message
— The probabilities are influenced by I’ i.e., maximum message size in cipher blocks
— Implementations should not exceed 'I', and it has to be easy to do so

— New text: the total size of the COSE plaintext, authentication Tag, and possible cipher padding
for a message may not exceed the block size for the selected algorithm multiplied with I

— Does this limitation, and worded in this way, make sense?

CoRE Interim Meeting | 2021-10-13 | Page 3



Key limits (2/3)

» Increased value of ‘I’ (message size in blocks) for algos except AES 128 CCM_8
— Increasing ‘I from 28 to 210 seems to maintain secure CA and |IA probabilities
— draft-irtf-cfrg-aead-limits mentions aiming for CA & IA lower than to 2*-50

They have added a table in that document with calculated ‘g’ and ‘v’ values

q=2"20, v =2"20,and | = 2"10

e e e +
| Algorithm name | IA probability | CA probability |
R T e e e —e—iooooo S —— |
| AEAD_AES_128 CCM | 2~-64 | 2~-66 |
| AEAD_AES_128 GCM | 2~-97 | 2~-89 |
| AEAD_AES_256_GCM | 27-97 | 2~-89 |
| AEAD_CHACHA2@_POLY13@5 | 2~-73 | - |
R ettt R e el +

» It there a possibility to increase 'q’, 'v' and/or 'I' further?
— Since we are well below 27-50 for CA & IA currently

CoRE Interim Meeting | 2021-10-13 | Page 4



Key limits (3/3)

» Updated table of ‘q’, ‘v’ and ‘I for AES_128 CCM 8

— Added new value for ‘v, still leaving CA and IA less than 2*-50
— Ideal to stick to CA and IA as close to 27-50 as possible?

e T e Fom e - B R R T +
I 'q', 'v' and 'L’ | IA probability | CA probability I! 'q", 'v' and '1l’ | IA probability | CA probability
----------------------- R et el [ I e e e
| g=2~20, v=2~20, 1=278 | 2~-44 | 2~-70 || g=27~20, v=2~20, 1=2"6 | 2~-44 | 2~-74
| g=2~15, v=2720, 1=278 | 2~-44 | 2~-80 || g=2~15, v=2~20, 1=2"6 | 2~-44 | 2~-84
| g=2~10, v=2720, 1=278 | 2~-44 | 2~-90 || g=2710, v=2720, 1=276 | 2~-44 27-94
9
| g=2~20, v=2~15, 1=28 | 2~-49 | 2~-70 || g=2720, v=2715, 1=2"6 | 2~-49 | 2~-74
| g=2~15, v=2~15, 1=2~8 | 2~-49 | 2~-80 || g=27~15, v=2~15, 1=2"6 | 2~-49 | 2~-84
| g=2~10, v=2~15, 1=278 | 2~-49 | 2~-90 || g=2~10, v=2715, 1=276 | 2~-49 | 2~-94
| [a=2*20, v=2~14, 1=2"8 | 2*-5@ [ 2~-70 || [a=2~20, v=27~14, 1=2"6 | 2"~-5@ | 2~-74
| |g=2~15, v=2714, 1=278 | 2~-50 | 2~-80 || |g=2715, v=2~14, 1=276 | 2~-50 | 2~-84
| lg=2~10@, v=2~14, 1=278 | 2~-5@ | 2~-90 || lg=2710, v=2714, 1=2"6 | 2"-58@ | 2~-94
| g=2~20, v=2~10, 1=278 | 2~-54 | 2~-70 || g=27~20, v=2~1e, 1=2"6 | 27-54 | 2~-74
| g=2~15, v=2~10, 1=278 | 2~-54 | 2~-80 || g=2~15, v=2~1@, 1=2"6 | 2~-54 | 2~-84
q
| g=2~10, v=2~10, 1=278 | 2~-54 | 2~-90 || g=2~10, v=2~1@, 1=276 | 2~-54 | 2~-94
[-mmmmm - Fomm e Fom e e e oo +

CORE Interim Meeting | 2021-10-13 | Page 5



Key update (1/6)

» Defined a new method for rekeying OSCORE
— Client and server exchange two nonces R1 and R2

— UpdateCtx() function for deriving new OSCORE Security
Context using the nonces

— Current Sec Ctx (to renew) => Intermediate Sec Ctx ==>

New Sec Ctx

» Properties

>
>

CoRE Interim Meeting | 2021-10-13 | Page 6

Robust and secure against peer rebooting
Completes in one round-trip (after that, the new
Security Context can be used)

Compatible with prior key establishment through the
EDHOC protocol

Only one intermediate Security Context is derived
The ID Context does not change

Can be initiated by either the client or server

Client-initiated rekeying

Client server
Generate R1 (initiator) (responder)
CTX 1 =
updatectx(R1,
CTX_OLD)
Request #1
Protect with CTX 1 |------------ommmmm- >
OSCORE Option: CTX 1 =
update(R1,

CTX_NEW =
updateCtx(R1|R2,

CTX_OLD)

Verify with CTX NEW

Discard CTX_OLD

d flag: 1

ID Detail: R1

Response #1
OSCORE Option:

d %lag: 1

ID Detail: R2

CTX_OLD)
verify with CTX_ 1
Generate R2
CTX_NEW =
update(R1|R2,
CTX_OLD)

Protect with CTX_NEW

// The actual key update procedure ends here.
// The two peers can use the new Security Context CTX NEW.

Protect with CTX_NEW

Verify with CTX NEW

Request #2

Verify with CTX NEW

Discard CTX_OLD

Protect with CTX_NEW



Key update (2/6)

> No more R1 in the Response #1 for the client-initiated rekeying
— Just like in OSCORE Appendix B.2
— Simply not needed: Response #1 correlates to Request #1 through the CoAP Token

Protect with CTX 1

CTX_NEW =
updateCtx(R1|R2,

CTX_OLD)

Verify with CTX_NEW

Discard CTX_OLD

Before

Request #1
OSCORE Option:
d flag: 1

ID Detail: R1

Res ponse #1
| OSCORE Option:

d flag: 1

|i6.Detail:R1|R4

CoRE Interim Meeting | 2021-10-13 | Page 7

CTX 1 =
update(R1,
CTX_OLD)
verify with CTX 1
Generate R2
CTX_NEW =

update(R1|R2,
CTX_OLD)

Protect with CTX NEW

Protect with CTX 1

CTX_NEW =
updateCtx(R1|R2,

CTX_OLD)

Verify with CTX_MNEW

Discard CTX OLD

After

Request #1
OSCORE Option:
d flag: 1

ID Detail: R1

Response #1
OSCORE Option:

d flag: 1

| ID Detail: R2

CTX 1 =
update(R1,
CTX_OLD)
Verify with CTX 1
Generate R2
CTX_MNEW =

update(R1|R2,
CTX_OLD)

Protect with CTX NEW



Key update (3/6)

» Clarification on the Request #2 processing
for the server-initiated rekeying
— Just like in OSCORE Appendix B.2

— Recognize R1 as sent in a previous
Response #1

— Recognize R1 | R2 as never received in a
Request #2

— Also need to add further text on
generation/storage of R2 (similar to that in
OSCORE Appendix B.2)

CoRE Interim Meeting | 2021-10-13 | Page 8

Server-initiated rekeying

Client
(responder)

Protect with CTX OLD

CTX 1 =
updateCtx(R1,
CTX_OLD)
Verify with CTX_ 1
Generate R2
CTX_NEW =

updateCtx(R1|R2,
CTX_OLD)

Protect with CTX NEW

Request #1

Response #1
OSCORE Option:
d flag: 1

ID Detail: R1

Request #2
OSCORE Option:
d flag: 1

ID Detail: R1|R2

Server
(initiator)

Vverify with CTX OLD
Generate R1
CTX 1 =

updateCtx(R1,
CTX_OLD)

Protect with CTX 1

CTX_NEW =
updateCtx(R1|R2,

CTX_OLD)

Verify with CTX_MEW

Discard CTX_OLD

// The actual key update procedure ends here.
// The two peers can use the new Security Context CTX MNEW.

Verify with CTX_NEW

Discard CTX_OLD

Response #2

Protect with CTX_MNEW



Key update (4/6)

» Recommendations on minimum length of R1 and R2 values
— R1 and R1 | R2 are used as nonces
— Motivation is based on similar considerations for Appendix B.2 in RFC8613
— We now recommend minimum 8 bytes, is this sufficient?
— Further text needs to be added as in Appendix B.2. e.g. mentioning the birthday paradox

> Now MUST terminate ongoing observations after rekeying (derived CTX_NEW)
— Possible to keep them ongoing by paying a price, i.e. admitting a sooner use of large Partial IVs

— Possible solution: after a rekeying, the client considers PIV* as the highest req_piv among all
the ongoing observations. Then, when the client starts the first new observation, the SSN jumps
to PIV*+1, thus every observation request has a PIV greater than PIV*.

— Drawback: Big jumps in PIV, i.e., faster consumption and larger communication overhead
— Is it worth keeping observations ongoing across a rekeying?

CoRE Interim Meeting | 2021-10-13 | Page 9



Key update (5/6)

» Align with EDHOC-Exporter interface, based on EDHOC v -11
— Used correct labels as text strings
— Empty CBOR byte string as context, i.e. h' ' (0x40)

— New usage:
MSECRET_NEW = EDHOC-Exporter("OSCORE_Master_Secret”, h'', key length)
MSALT _NEW = EDHOC-Exporter("OSCORE_Master salt",h'', salt length)

» A peer using EDHOC and using this OSCORE rekeying procedure ...
— ... MUST support EDHOC-KeyUpdate() ...
— Which otherwise SHOULD support as per the EDHOC draft
— OK with this?

CoRE Interim Meeting | 2021-10-13 | Page 10



Key update (6/6)

> Added and discussed 6TiISCH as use case
— 6TISCH uses OSCORE Appendix B.2 to handle failure events
— If the 6TiISCH JRC severely fails, it can use Appendix B.2 with the pledges (RECOMMENDED)
— The new key update procedure is a good replacement, especially for 6TISCH

— Among its intrinsic advantages compared to Appendix B.2, it preserves the ID Context across rekeying
6TISCH uses ID Context as pledge identifier, meaning that:

- A key update would not change pledge identifier, which remains unchanged in the long run
- The JRC does not need anymore to do a remapping between new ID Context and pledge identifier
- ID Contexts and pledge identifiers can be used as intended at setup/deploy time

» The update to RFC8613 includes also “deprecating and replacing” its Appendix B.2
— OK with superseding OSCORE Appendix B.2 per se?
— OK with the wording “deprecating and replacing” ?

CoRE Interim Meeting | 2021-10-13 | Page 11



More general updates

» Improved Table of Content structure
— Key Limits
— Current rekeying methods
— New rekeying methods
Building blocks
Client-initiated procedure
Server initiated procedure
Policies
Discussion

» Editorial improvements
— Terminology harmonization
— Use of RFC8126 terminology in IANA considerations

» Should the rekeying procedure have an actual name for easier reference?

CoRE Interim Meeting | 2021-10-13 | Page 12



Next steps

» Address open points
— Continued work on open issues tracked on GitLab repo
— Further refinement of limits

» Comments received during meeting or mailing list

» Submission of new draft version before the IETF 112 cut-off

CoRE Interim Meeting | 2021-10-13 | Page 13



Thank you!

Comments/questions?

https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/



https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/

