
Work in progress towards

Key Update for OSCORE

draft-hoeglund-core-oscore-key-limits-02

Rikard Höglund, RISE
Marco Tiloca, RISE

CoRE WG interim meeting, October 13th, 2021

CoRE Interim Meeting | 2021-10-13 | Page 2

› OSCORE (RFC8613) uses AEAD algorithms to provide security

– Need to follow limits in key usage and number of failed decryptions, before rekeying

– Otherwise, it is possible to break the security properties of the AEAD algorithm

– Reference draft-irtf-cfrg-aead-limits-03

› (1) Study of AEAD limits and their impact on OSCORE

– Defining appropriate limits for OSCORE

– Defining counters for key usage; message processing details; steps when limits are reached

– Taking into account John Mattsson's input at the April CoRE interim [1]

› (2) Defined a new method for rekeying OSCORE

– Loosely inspired by Appendix B.2 of OSCORE

– Goal: renew the Master Secret and Master Salt; derive new keys from those

– Achieves Perfect Forward Secrecy

Recap

[1] https://datatracker.ietf.org/meeting/110/materials/slides-110-

saag-analysis-of-usage-limits-of-aead-algorithms-00.pdf

https://datatracker.ietf.org/meeting/110/materials/slides-110-saag-analysis-of-usage-limits-of-aead-algorithms-00.pdf

CoRE Interim Meeting | 2021-10-13 | Page 3

› Recap on AEAD limits

– Discussed in draft-irtf-cfrg-aead-limits-03

– Limits key encryption use (q) and invalid decryptions (v)

– We have selected fixed values for ‘q’, ‘v’, and ‘l’ and from those calculated IA & CA probabilities

› These probabilities must be acceptably low

› Explicitly limit the size of protected data to be sent in a new OSCORE message

– The probabilities are influenced by ‘l’, i.e., maximum message size in cipher blocks

– Implementations should not exceed 'l', and it has to be easy to do so

– New text: the total size of the COSE plaintext, authentication Tag, and possible cipher padding

for a message may not exceed the block size for the selected algorithm multiplied with 'l‘

– Does this limitation, and worded in this way, make sense?

Key limits (1/3)
Integrity Advantage (IA):

Probability of breaking

integrity properties

Confidentiality Advantage (CA):

Probability of breaking

confidentiality properties

CoRE Interim Meeting | 2021-10-13 | Page 4

› Increased value of ‘l’ (message size in blocks) for algos except AES_128_CCM_8

– Increasing ‘l’ from 2^8 to 2^10 seems to maintain secure CA and IA probabilities

– draft-irtf-cfrg-aead-limits mentions aiming for CA & IA lower than to 2^-50

› They have added a table in that document with calculated ‘q’ and ‘v’ values

› It there a possibility to increase 'q', 'v' and/or 'l' further?

– Since we are well below 2^-50 for CA & IA currently

Key limits (2/3)

q = 2^20, v = 2^20, and l = 2^10

CoRE Interim Meeting | 2021-10-13 | Page 5

› Updated table of ‘q’, ‘v’ and ‘l’ for AES_128_CCM_8

– Added new value for ‘v’, still leaving CA and IA less than 2^-50

– Ideal to stick to CA and IA as close to 2^-50 as possible?

Key limits (3/3)

CoRE Interim Meeting | 2021-10-13 | Page 6

› Defined a new method for rekeying OSCORE

– Client and server exchange two nonces R1 and R2

– UpdateCtx() function for deriving new OSCORE Security

Context using the nonces

– Current Sec Ctx (to renew) => Intermediate Sec Ctx ==>

New Sec Ctx

› Properties
› Robust and secure against peer rebooting

› Completes in one round-trip (after that, the new

Security Context can be used)

› Compatible with prior key establishment through the

EDHOC protocol

› Only one intermediate Security Context is derived

› The ID Context does not change

› Can be initiated by either the client or server

Key update (1/6)
Client-initiated rekeying

CoRE Interim Meeting | 2021-10-13 | Page 7

› No more R1 in the Response #1 for the client-initiated rekeying

– Just like in OSCORE Appendix B.2

– Simply not needed: Response #1 correlates to Request #1 through the CoAP Token

Key update (2/6)

Before After

CoRE Interim Meeting | 2021-10-13 | Page 8

› Clarification on the Request #2 processing

for the server-initiated rekeying

– Just like in OSCORE Appendix B.2

– Recognize R1 as sent in a previous

Response #1

– Recognize R1 | R2 as never received in a

Request #2

– Also need to add further text on

generation/storage of R2 (similar to that in

OSCORE Appendix B.2)

Key update (3/6)
Server-initiated rekeying

CoRE Interim Meeting | 2021-10-13 | Page 9

› Recommendations on minimum length of R1 and R2 values

– R1 and R1 | R2 are used as nonces

– Motivation is based on similar considerations for Appendix B.2 in RFC8613

– We now recommend minimum 8 bytes, is this sufficient?

– Further text needs to be added as in Appendix B.2. e.g. mentioning the birthday paradox

› Now MUST terminate ongoing observations after rekeying (derived CTX_NEW)

– Possible to keep them ongoing by paying a price, i.e. admitting a sooner use of large Partial IVs

– Possible solution: after a rekeying, the client considers PIV* as the highest req_piv among all

the ongoing observations. Then, when the client starts the first new observation, the SSN jumps

to PIV*+1, thus every observation request has a PIV greater than PIV*.

– Drawback: Big jumps in PIV, i.e., faster consumption and larger communication overhead

– Is it worth keeping observations ongoing across a rekeying?

Key update (4/6)

CoRE Interim Meeting | 2021-10-13 | Page 10

› Align with EDHOC-Exporter interface, based on EDHOC v -11

– Used correct labels as text strings

– Empty CBOR byte string as context, i.e. h′ ′ (0x40)

– New usage:

› A peer using EDHOC and using this OSCORE rekeying procedure …

– … MUST support EDHOC-KeyUpdate() …

– Which otherwise SHOULD support as per the EDHOC draft

– OK with this?

Key update (5/6)

CoRE Interim Meeting | 2021-10-13 | Page 11

› Added and discussed 6TiSCH as use case

– 6TiSCH uses OSCORE Appendix B.2 to handle failure events

– If the 6TiSCH JRC severely fails, it can use Appendix B.2 with the pledges (RECOMMENDED)

– The new key update procedure is a good replacement, especially for 6TiSCH

– Among its intrinsic advantages compared to Appendix B.2, it preserves the ID Context across rekeying

› 6TiSCH uses ID Context as pledge identifier, meaning that:

› A key update would not change pledge identifier, which remains unchanged in the long run

› The JRC does not need anymore to do a remapping between new ID Context and pledge identifier

› ID Contexts and pledge identifiers can be used as intended at setup/deploy time

› The update to RFC8613 includes also “deprecating and replacing” its Appendix B.2

– OK with superseding OSCORE Appendix B.2 per se?

– OK with the wording “deprecating and replacing” ?

Key update (6/6)

CoRE Interim Meeting | 2021-10-13 | Page 12

› Improved Table of Content structure

– Key Limits

– Current rekeying methods

– New rekeying methods

› Building blocks

› Client-initiated procedure

› Server initiated procedure

› Policies

› Discussion

› Editorial improvements

– Terminology harmonization

– Use of RFC8126 terminology in IANA considerations

› Should the rekeying procedure have an actual name for easier reference?

More general updates

CoRE Interim Meeting | 2021-10-13 | Page 13

› Address open points

– Continued work on open issues tracked on GitLab repo

– Further refinement of limits

› Comments received during meeting or mailing list

› Submission of new draft version before the IETF 112 cut-off

Next steps

Thank you!

Comments/questions?

https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/

https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/

