Work in progress towards

Key Update for OSCORE

draft-hoeglund-core-oscore-key-limits-02

Rikard Höglund, RISE Marco Tiloca, RISE

CoRE WG interim meeting, October 13th, 2021

Recap

- > OSCORE (RFC8613) uses AEAD algorithms to provide security
 - Need to follow limits in key usage and number of failed decryptions, before rekeying
 - Otherwise, it is possible to break the security properties of the AEAD algorithm
 - Reference draft-irtf-cfrg-aead-limits-03
- > (1) Study of AEAD limits and their impact on OSCORE
 - Defining appropriate limits for OSCORE
 - Defining counters for key usage; message processing details; steps when limits are reached
 - Taking into account John Mattsson's input at the April CoRE interim [1]
- > (2) Defined a new method for rekeying OSCORE
 - Loosely inspired by Appendix B.2 of OSCORE
 - Goal: renew the Master Secret and Master Salt; derive new keys from those
 - Achieves Perfect Forward Secrecy

CoRE Interim Meeting | 2021-10-13 | Page 2

[1] <u>https://datatracker.ietf.org/meeting/110/materials/slides-110-saag-analysis-of-usage-limits-of-aead-algorithms-00.pdf</u>

Key limits (1/3)

- > Recap on AEAD limits
 - Discussed in draft-irtf-cfrg-aead-limits-03
 - Limits key encryption use (q) and invalid decryptions (v)
 - We have selected fixed values for 'q', 'v', and 'l' and from those calculated IA & CA probabilities
 - > These probabilities must be acceptably low

Integrity Advantage (IA): Probability of breaking integrity properties

<u>Confidentiality Advantage (CA)</u>: Probability of breaking confidentiality properties

- > Explicitly limit the size of protected data to be sent in a new OSCORE message
 - The probabilities are influenced by 'l', i.e., maximum message size in cipher blocks
 - Implementations should not exceed 'I', and it has to be easy to do so
 - New text: the total size of the COSE plaintext, authentication Tag, and possible cipher padding for a message may not exceed the block size for the selected algorithm multiplied with 'l'
 - Does this limitation, and worded in this way, make sense?

Key limits (2/3)

> Increased value of 'l' (message size in blocks) for algos except AES_128_CCM_8

- Increasing 'I' from 2^8 to 2^10 seems to maintain secure CA and IA probabilities
- draft-irtf-cfrg-aead-limits mentions aiming for CA & IA lower than to 2^-50
 - > They have added a table in that document with calculated 'q' and 'v' values

$q = 2^{20}$, $v = 2^{20}$, and $l = 2^{10}$	0	+
Algorithm name	IA probability	CA probability
AEAD_AES_128_CCM AEAD_AES_128_GCM AEAD_AES_256_GCM AEAD_CHACHA20_POLY1305	2^-64 2^-97 2^-97 2^-73	2^-66 2^-89 2^-89 -

> It there a possibility to increase 'q', 'v' and/or 'l' further?

- Since we are well below 2^-50 for CA & IA currently

Key limits (3/3)

- > Updated table of 'q', 'v' and 'l' for AES_128_CCM_8
 - Added new value for 'v', still leaving CA and IA less than 2^-50
 - Ideal to stick to CA and IA as close to 2^-50 as possible?

'q', 'v' and 'l'	IA probability	CA probability	'q', 'v' and 'l'	IA probability	CA probability
<pre>q=2^20, v=2^20, l=2^8 q=2^15, v=2^20, l=2^8 q=2^10, v=2^20, l=2^8 q=2^20, v=2^15, l=2^8 q=2^15, v=2^15, l=2^8 q=2^10, v=2^15, l=2^8 q=2^20, v=2^14, l=2^8 q=2^15, v=2^14, l=2^8 q=2^20, v=2^14, l=2^8 q=2^20, v=2^10, l=2^8 q=2^15, v=2^10, l=2^8 q=2^10, v=2^10, l=2^8</pre>	2^-44 2^-44 2^-49 2^-49 2^-49 2^-50 2^-50 2^-50 2^-50 2^-54 2^-54 2^-54	2^-70 2^-80 2^-90 2^-70 2^-80 2^-90 2^-70 2^-80 2^-90 2^-70 2^-80 2^-90 2^-90	<pre>q=2^20, v=2^20, l=2^6 q=2^15, v=2^20, l=2^6 q=2^10, v=2^20, l=2^6 q=2^20, v=2^15, l=2^6 q=2^15, v=2^15, l=2^6 q=2^10, v=2^15, l=2^6 q=2^10, v=2^14, l=2^6 q=2^15, v=2^14, l=2^6 q=2^20, v=2^10, l=2^6 q=2^15, v=2^10, l=2^6 q=2^10, v=2^10, l=2^6</pre>	2^-44 2^-44 2^-49 2^-49 2^-49 2^-49 2^-50 2^-50 2^-50 2^-50 2^-54 2^-54 2^-54 2^-54	2^-74 2^-84 2^-94 2^-74 2^-84 2^-94 2^-74 2^-84 2^-94 2^-74 2^-74 2^-74 2^-84 2^-94

Key update (1/6)

- Defined a new method for rekeying OSCORE
 - Client and server exchange two nonces R1 and R2
 - UpdateCtx() function for deriving new OSCORE Security Context using the nonces
 - Current Sec Ctx (to renew) => Intermediate Sec Ctx ==>
 New Sec Ctx
- > Properties
 - > Robust and secure against peer rebooting
 - Completes in one round-trip (after that, the new Security Context can be used)
 - Compatible with prior key establishment through the EDHOC protocol
 - > Only one intermediate Security Context is derived
 - > The ID Context does not change
 - > Can be initiated by either the client or server

Key update (2/6)

> No more R1 in the Response #1 for the **client-initiated** rekeying

- Just like in OSCORE Appendix B.2
- Simply not needed: Response #1 correlates to Request #1 through the CoAP Token

Key update (3/6)

- Clarification on the Request #2 processing for the server-initiated rekeying
 - Just like in OSCORE Appendix B.2
 - Recognize R1 as sent in a previous Response #1
 - Recognize R1 | R2 as never received in a Request #2
 - Also need to add further text on generation/storage of R2 (similar to that in OSCORE Appendix B.2)

Key update (4/6)

- > Recommendations on minimum length of R1 and R2 values
 - R1 and R1 | R2 are used as nonces
 - Motivation is based on similar considerations for Appendix B.2 in RFC8613
 - We now recommend minimum 8 bytes, is this sufficient?
 - Further text needs to be added as in Appendix B.2. e.g. mentioning the birthday paradox

- > Now MUST terminate ongoing observations after rekeying (derived CTX_NEW)
 - Possible to keep them ongoing by paying a price, i.e. admitting a sooner use of large Partial IVs
 - Possible solution: after a rekeying, the client considers PIV* as the highest req_piv among all the ongoing observations. Then, when the client starts the first new observation, the SSN jumps to PIV*+1, thus every observation request has a PIV greater than PIV*.
 - Drawback: Big jumps in PIV, i.e., faster consumption and larger communication overhead
 - Is it worth keeping observations ongoing across a rekeying?

Key update (5/6)

> Align with EDHOC-Exporter interface, based on EDHOC v -11

- Used correct labels as text strings
- Empty CBOR byte string as context, i.e. h' ' (0x40)
- New usage: MSECRET_NEW = EDHOC-Exporter("OSCORE_Master_Secret", h'', key_length) MSALT_NEW = EDHOC-Exporter("OSCORE_Master_Salt", h'', salt_length)
- > A peer using EDHOC and using this OSCORE rekeying procedure ...
 - … MUST support EDHOC-KeyUpdate() …
 - Which otherwise SHOULD support as per the EDHOC draft
 - OK with this?

Key update (6/6)

- > Added and discussed 6TiSCH as use case
 - 6TiSCH uses OSCORE Appendix B.2 to handle failure events
 - If the 6TiSCH JRC severely fails, it can use Appendix B.2 with the pledges (RECOMMENDED)
 - The new key update procedure is a good replacement, especially for 6TiSCH
 - Among its intrinsic advantages compared to Appendix B.2, it preserves the ID Context across rekeying
 - > 6TiSCH uses ID Context as pledge identifier, meaning that:
 - \rightarrow A key update would not change pledge identifier, which remains unchanged in the long run
 - → The JRC does not need anymore to do a remapping between new ID Context and pledge identifier
 - \rightarrow ID Contexts and pledge identifiers can be used as intended at setup/deploy time
- > The update to RFC8613 includes also "deprecating and replacing" its Appendix B.2
 - OK with superseding OSCORE Appendix B.2 per se?
 - OK with the wording "deprecating and replacing" ?

More general updates

- > Improved Table of Content structure
 - Key Limits
 - Current rekeying methods
 - New rekeying methods
 - Building blocks
 - > Client-initiated procedure
 - > Server initiated procedure
 - > Policies
 - > Discussion
- > Editorial improvements
 - Terminology harmonization
 - Use of RFC8126 terminology in IANA considerations

> Should the rekeying procedure have an actual name for easier reference?

CoRE Interim Meeting | 2021-10-13 | Page 12

Next steps

- > Address open points
 - Continued work on open issues tracked on GitLab repo
 - Further refinement of limits
- > Comments received during meeting or mailing list
- > Submission of new draft version before the IETF 112 cut-off

Thank you! Comments/questions?

https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/