CBOR Encoded X.509 Certificates (C509)

draft-ietf-cose-cbor-encoded-cert-00

COSE WG interim 2021-05-12

C509 update

- Submitted as WG document
 - draft-ietf-cose-cbor-encoded-cert-00
- Repo migrated to https://github.com/cose-wg/
- Latest changes to github:
 - Deterministic CBOR
 - Changed name of C509Certificate and c509CertificateType
 - (Let's decide on C509 so we don't have to change again!)
 - COSE_C5 = [[+ C509Certificate]]
- Double signed certificates?
- We have requested time in TLS WG at IETF 111
 - Important to collaborate with TLS WG on the TLS certificate registration.
- Need to specify RPK by value
 - new type of C509 is one candidate (next slide)

RPK by value

- LAKE requirements include the case of RPK by value
 - i.e. transported in EDHOC
 - also requested by industrial partners interested in LAKE
- EDHOC relies on COSE header parameters to transport and identify credentials
 - 'kid', 'x5chain', 'x5bag', 'x5u', 'x5t', 'c5c', 'c5b', 'c5u', 'c5t'.
 - RPK by value should also use a COSE header parameter
- Two main options. Roughly same size, but with different properties:
 - 1. COSE_Key
 - 2. C509 without issuer signature

COSE_Key vs C509

- COSE_Key
 - available in COSE implementations
 - not designed for transport on the wire (but this can be fixed)
 - no header parameter for use by value
 - only supports limited key_ops
 - does not offer any additional functionality like validity, subject name
 - Subject name is needed to align with SIGMA.
 - Validity and KeyUsage seems useful also for RPK
- C509
 - supported by EDHOC, so using both C509 and COSE_Key causes:
 - different key formats
 - additional code
 - key_ops / EKU needs to be registered twice

Examples of RPK with point compression 1(3)

COSE_Key

```
{
    1: 1,
-1: 4,
-2: h'b1a3e89460e88d3a8d54211dc95f0b903ff205eb71912d6db8f4af980d2db83a',
-3: true,
}
```

Examples of RPK with point compression 2(3)

C509 w/o Issuer and Issuer Signature (type 2)

```
TBSCertificate = (
   c509CertificateType: int,
   validityNotBefore: Time,
   validityNotAfter: Time,
   subject: Name,
   subjectPublicKeyAlgorithm: AlgorithmIdentifier,
   subjectPublicKey: any,
   extensions: Extensions,
)
```

C509 Type 2 Example

```
2,
h'01f50d',
1577836800,
1612224000,
h'0123456789AB',
1,
h'02B1216AB96E5B3B3340F5BDF02E693F162
13A04525ED44450B1019C2DFD3838AB',
1
```

Examples of RPK with point compression 3(3)

C509 Type 2 Example 2

```
[
    2,
    h",
    [],
    null,
    null,
    [],
    1,
    h'02B1216AB96E5B3B3340F5BDF02E693F162
        13A04525ED44450B1019C2DFD3838AB',
    1
]
```

C509 Type 2 slimmed down variant

```
[ 2, 1, h'02B1216AB96E5B3B3340F5BDF02E693F162 13A04525ED44450B1019C2DFD3838AB' ]
```