Problems with existing DetNet bounded latency queuing mechanisms

draft-eckert-detnet-bounded-latency-problems-00

Toerless Eckert, Futurewei USA (tte@cs.fau.de)
Stewart Bryant, Stewart Bryant Ltd (sb@stewartbryant.com)
09/09/2021

Summary

- Various open issues in detnet related to queuing
- High level:
- Network / deployment
 - Can we/how-can-we support popular network designs: SR-MPLS/SRv6 (and futre ones: BIER/BIER-TE)
 - Can we/how-can-we support large-scale/wide-area networks with DetNet (MPLS WAN)
 - Including preference for DiffServ, no controller-plane to P-LSR per-flow signaling
 - How much can-we/should we have lower-cost DetNet options via no or reduced clock synchronization requirements?
- Application
 - Bounded latency not always enough!
 - Tightly bounded jitter can improve value of service
- Slides highlighting only subset of issues, draf more comprehensive

IntServ / TSN-ATS, DetNet model (issues)

Desirable DetNet QoS option

Per-Hop, Per-flow state issues

- Core of IntServ (RFC2212), quickly amended by DiffServ. No DiffServ deployed significantly in networks larger than campus.
 - Reduced IntServ, RSVP-Traffic-steering, NOT-per-hop-queuing was used until better technology was available (Segment Routing).
 - This is more expensive the faster the network is.
- Several issues with per-hop, per-flow state
 - QoS hardware cost limitation: Shaper IntServ -> Interleaved Regulators (UPS, TSN-ATS), still too expensive for large-scale, high-speed forwarders with many interfaces.
 - Churn through signaling updates. Per-Hop, Per-Flow state upates upon chage: new/dead flows, path changes. Update to hardware.
 - If state is driven by application, state on P nodes even more problematic (unplannable). Biggest experiences from IP multicast and evolution of IETF standards for that.
- Current standard or proposed standard for large-scale network models: no per-hop, perflow statee: Segment Routing (source routing), BIER(-TE) or multicast, simple DiffServ QoS
 - Need DetNet QoS option supporting SR, BIER...

Tightly bounded jitter - "In-time" vs. "On-time" (1)

- "In-time" delivers packets as soon as possible.
 - Under no congestion, no in-network queuing latency incurred
 - IETF IntServ/Guaranteed Service, TSN-ATS use this model
 - Queuing latency only because of
 - Temporary congestion / burst accumulation of packets from multiple interfaces arriving into same output queue
 - 2. Per-flow interleaved regulator / shaper to remove bursts introduced by 1.
- "In-time" creates worst-case jitter between no..max traffic load
- On-time eliminates this jitter
 - By networking buffering independ of traffic load

Tightly bounded jitter - "In-time" vs. "On-time" (2)

- Why/when in-time vs. on-time?
- Non-application reasons:
 - Current on-time (e.g.: CQF) requires clock synchronization. In-time can work without any clock synchronization. If applications do not benefit from on-time (tight jitter), then in-time can be a simpler solution
 - Curent in-time solutions (e.g.: TSN-AT IETF-GS) require per-hop, per-flow controller-plane instantiatd state this can be a challenge (see prior slides). If applications do not benefit from in-time (lower latency under lower network load), then on-time can be the better solution.

The application view:

- All deterministic application MUST be prepared for any packet to arrive as late as (guaranteed) bounded latency
- Only SOME deterministic applications can be built to operate opportunistically better with in-time
 - Network load low → lower latency/RTT → deterministic application may operate faster / more-accurate / "somewhat better"
 - But there is no GUARANTEE for any of this it is OPPORTUNISTIC! Network load can always change unexpectedly, burst collisions can happen stochastically!
- In-time often also shifts work from network into application/device!

Tightly bounded jitter - "In-time" vs. "On-time" (3)

- Application traffic profiles, e.g.: Industrial Internet Consortium (IIC)
 _Time Sensitive Networks for Flexible Manufacturing Testbed
 https://www.iiconsortium.org/white-papers.htm
 - Isochronous, Cyclic, Audio-Video, (on-time), Alarm and Events (in-time), ...
- Media playout and most control loops want on-time
 - Media: Synchronous playout
 - If network is in-time, packets must be buffered in application and consumed at maximum guaranteed latency time
- Playout buffer size requirement depend on network jitter == network size
 - Expensive war stories in industry when equipment was used in networks with higher jitter
- In-time also raises clock synchronization needs on devices
 - On-time delivered packets carry implicit timing information!
 - Dumb devices (actors) may not be able to support dejittering and/or accurate clock
 - Classical example: accurate PLC with periodic "polling" of dumb actors/sensor without accurate clock: on-time allows for isochronous operation.
 - In-time would require much more complex sensor/actor/control-loops

Comparison of TSN/DetNet options	IntServ/GS RFC2212	TSN-ATS Latest (2020) TSN standard, also prime target for Detnet	TSN-CQF (Qcr) Original/simplified TSN option (over Qbv)	Packet taged CQF draft-dang-queuing-with- multiple-cyclic-buffers	Packet tagged per-hop deadlines draft-stein-srtsn
DiffServ / SR-MPLS,v6 / BIER design goal compatible	NO	NO	YES	YES	YES
Per-hop-per-flow state Hardware-cost/scale Signalling-complexit/churn	YES	YES Interleaved regulators (simplified over GS)	NO	NO	NO
Clock synchronization required Additional PTP hardware and network operational requirements	NO	NO	YES High accuracy (nsec)	YES Low accuracy (usec)	TBD? Not considered to be a deployment cost by author?!
Tighly bounded jitter	No	No	Yes Usec jitter (cycle size)	Yes Usec jiter (cycle size)	No?
Target deployment scale	1990 th "Internet"	Building/ Campus?	Building/ Campus?	Campus/Metro/ Country (tested)	Metro ?
Arbitrary physical distance network / network links	YES	YES	NO Throughput deteriorating to 0 at ca. 2 km	YES	Yes?
Latency calculus (for PCE)	Complex, deterministic	Simple, deterministic	Trivial, deterministic	Trivial, deterministic	TBD – ongoing work to be published

Q & A