draft-ietf-dnsop-avoid-fragmentation-05

K. Fujiwara, P. Vixie dnsop WG Interim meeting 2021/9/15

Summary of draft-ietf-dnsop-avoid-fragmentation-05

- Introduction: Fragmented DNS UDP responses have systemic weaknesses
- Proposal
 - Recommendations for UDP responders
 - SHOULD send DNS responses with IP*_DONTFRAG options
 - MAY probe to discover the real MTU value per destination.
 - SHOULD compose UDP responses fit in path MTU (or good value)
 - Recommendations for UDP requestors
 - SHOULD send DNS responses with IP*_DONTFRAG options
 - SHOULD use the requestor's payload size as calculated or good value
 - good values: 1220, 1232, 1400, 1472/1452, or measured
- Additional texts (Minimal responses, IP_MTU getsockopt, tracepath)

2

Table 1 Default maximum DNS/UDP payload size

Source	IPv4	IPv6
RFC 4035 (MUST)	1220	1220
Software developers / DNSFlagDay2020 propose	1232	1232 (1280-40-8)
Authors' recommendation	1400	1400 (1500-40-8-some headers)
Maximum: Ethernet MTU 1500 [Huston2021]	1472 (1500-20-8)	1452 (1500-40-8)
Measured	MTU-20-8	MTU-40-8

DNS over TCP Considered Vulnerable

- Haya Shulman et al. published a new paper: "DNS over TCP Considered Vulnerable" at ANRW 2021 (July 28, 2021)
 - ICMP attack targets are intermediate routers between resolvers and authoritative servers.
 - They show that some routers accept ICMPv4 "Fragmentation Needed and DF set" to resolvers.
 - 496 of Alexa top-100K domains are vulnerable to fragmentation over TCP.
- How to measure ?
 - At IETF 111, there is a comment: 0.5% is small and they are bugs.
 - At ANRW, I cannot get clear answer about IPv6 and who is vulnerable.
 - Fragmentation does not happen on IPv6 at intermediate routers.
 - Recent TCP implementations support RFC 4821 "Packetization Layer Path MTU Discovery" and set IP_DF (Don't Fragment) bit on IPv4 TCP packets.

• The DF bit SHOULD be set on the (TCP) fragments (Quoted from Section 8 of RFC 4821).

4

 \rightarrow Add texts and reference to the paper at "Weaknesses of IP fragmentation"

Discussions at IETF 111

• Paul Hoffman mentioned he expected a single value in a BCP document, while Viktor Dukhovni is fine with a set of values.

Questions

- 1. Can we agree with a set of "good" UDP sizes, rather than a single value?
- 2. What are the good values?
 - 1220, 1232, 1400, 1472/1452 ?
- 3. Is it possible to probe good values per destination at UDP requestor ?
 - PLPMTUD (RFC 8899) or BIND 9's way
- Our concern is that when leaf sites are under tunnels and their MTU are small, standardizing a large value (with IP_DF) will prevent communications.
 - Some VPN appliances offer default MTU 1280
 - Leaf site case, software MAY probe MTU size to the Internet and generate good value

Probing good values

- If complexity (PMTU discovery) and insecurity (TCP vulnerability) are to be avoided above all else, then a small EDNS buffer size should be offered. (For example, 1220 or 1232)
- If network efficiency both now in the future is to be maximized, then adaptive retry after silent failure should be done, beginning with a large value and trying smaller values, similar to PLPMTUD (RFC 8899).
- In all cases, fragmentation either by an endpoint or gateway must be avoided; in a definite future something like PLPMTUD and its attendant complexity and state costs will be necessary to take advantage of vastly larger path MTUs of the future.