HTTP Message Signatures

Justin Richer
IETF HTTP WG Interim
June 17, 2021



: How HTTP Message Signing works

A S

Choose covered portions and crypto parameters
Normalize the HTTP message components
Generate a sighature input string

Sign the string creating a signature output

Add the signature output and parameters as
structured HTTP headers



Example HTTP Message

POST /foo?param=value&pet=dog HTTP/1.1

Host: example.com
Date: Tue, 20 Apr 2021 02:07:55 GMT

Content-Type: application/json
Content-Length: 18

{"hello": "world"}



Sign These Parts

POST /foo?param=value&pet=dog HTTP/1.1

Host: example.com
Date: Tue, 20 Apr 2021 02:07:55 GMT

Content-Type: application/json
Content-Length: 18

{"hello": "world"}



Signature Base

"@request-target": post /foo?param=value&pet=dog
"host": example.com

"date": Tue, 20 Apr 2021 02:07:55 GMT

"content-type": application/json

"@signature-params": ("@request-target" "host" "date"

"content-type");created=1618884475;keyid="test-key-rsa-pss"



Signature Bytes

Lu2cC2Ifw3hkpXt81C9g/78gppHzEUo/hPyeFmDNgkMe4AvPzhz8cRhIl+el
BisvM/ceDh40mORmKjASCULSTFsONuUHCOxuZZeiy5u/THTtAZZUGLEgWRYN
MuOZgJAYXYDsGBKTXRkKoGKVVEX11SG17/RVhY1l/EgWCJzulIbJ9mLeRxzaXRr
3pZXz5xRaXcsXItpsK3AnWYHoc6YATOhP5M30JPeb3KRHOLAN4nheCOkFoy
LzRAT6/BNb4I7JhwqVZMZB1lndnI/KTBXoTK7rzYFdpX/Cbtwv+XHg119QtH
KtWwIOhXC4Kv41p2fCGSPJPHKeyrZOrhCcfe++elJeOYkm3FIw==



Sighed Request

POST /foo?param=value&pet=dog HTTP/1.1
Host: example.com

Date: Tue, 20 Apr 2021 02:07:55 GMT
Content-Type: application/json

Content-Length: 18
Signature-Input: sigl=("@request-target" "host" "date" "content-

type") ;created=1618884475 ;keyid="test-key-rsa-pss"

Signhature:
sigl=:Lu2cC2Ifw3hkpXt8iC9g78qppHzEUo7hPyeFmDNgkMe4AvPzhz8cRhI1l+eIBisvM7ceDh40m@
RmKjASCULSTFsONuUHCOxuZZeiy5u7THftAZZU6LgWRYNMUuOZgJAYXYDsSGBKTfXRkoGKVVEX115SGi7RV

hYLl/EgWCJzulbJ9mLeRxzaXRr3pZXz5xRaXcsXItpsK3AnWYHoc6YATOhP5M30JPeb3KRHOLAn4nheC
OkFoyLzRAT6/BNb4I7JhwqVZMZB1lndnI/KTBXoTK7rzYFdpX/Cbtwv+XHgli9QtHktwOhXC4Kv41p2f

CGSPJPHKeyrZOrhCcfe++ele®OYKkm3FIw==:

{"hello": "world"}



- How HTTP Message Verification works

1.

LW

Read the Signhature-Input and Signature header
values

Validate covered portions and crypto parameters
Normalize the HTTP message components
Re-generate the signature input string

Verify the signature against the signature input
string



Some important aspects

Detached sighature, not encapsulation
Uses HTTP Structured Fields

Allows multiple sighatures on a message
Can sign most HTTP parts

Works for requests and responses
Relatively robust against common changes



Since Last We Met

Structured field values everywhere!

Signature parameters are now signed
Introduced “specialty identifiers” construct
Removed “message sighature” artifact structure
New process for selecting keys and algorithms
Strongly defined algorithm parameters
Removed list-prefix processing

Guidance for applications and profiles
Completely reworked/regenerated examples



Current Status

Core signature process is stable
Implementations in several languages

Starting to see feedback from implementors of
older specs (Cavage, OAuth PoP)

Proposed as basis for new OAuth PoP spec
— Not written/submitted yet



Algorithm Definitions

* Could use any crypto process that can sign the string
and spit out a stack of bytes

— Draft defines input and output to sign and verify functions

— If your application’s got a signature method you can just
use it within your sphere

— Ability to use JOSE Web Algorithms without copying the
registry itself

* Registry of interoperable algorithms and identifiers
— Thanks to Kathleen Moriarty and CFRG for feedback on text



Example algorithm definition

To sign using this algorithm, the signer applies the RSASSA-PSS-SIGN
(K, M) function [RFC8017] with the signer's private signing key (K)
and the signature input string (M) (Section 2.4). The mask generation
function is MGF1 as specified in [RFC8017] with a hash function of
SHA-512 [RFC6234]. The salt length (sLen) is 64 bytes. The hash
function (Hash) SHA-512 [RF(C6234] is applied to the signature input
string to create the digest content to which the digital signature 1is
applied. The resulting signed content byte array (S) is the HTTP

message signature output used in Section 3.1.



Selecting an Algorithm and Key

* External configuration or higher level protocol
— E.g, GNAP ties the key to the client

* Figuring out the “alg” from the “key”
— JWKs have their own “alg” field
— Behavior of old “hs2019” pseudo-algorithm
* (Optional) Explicit “alg” and “keyid” fields
— When you need to be able to switch at runtime



Time for Bikeshedding!




Algorithm ldentifiers

* Defined strings with strict interpretations:
— rsa-pss-sha512
— rsa-vl_5-sha256
— hmac-sha256
— ecdsa-p256-sha256

* No parsing, no taking parameters from the
name, no “bonus” definitions by swapping out



Proposed alternatives

* Date-based (from Manu)
— rsa-2003
— rsa-2005
— ecdsa-2013
— hmac-2006
— Aliases: recommended-signature-2015

 JWA
— RS256, PS512, ...



Other named parts

* Signature parameters

— alg, keyid, created, expires, nonce
e Specialty content identifiers
— @request-target

— @signature-params



Next Steps

Align with HTTP Semantics terminology
— “Covered Content” -> ??
— “Headers” -> Fields

Split “@request-target” into new specialty tag(s)?
More stuff with responses (@status-code?)

EADSA Sighing?

Special cases: Via headers, empty headers, others?
More examples! More code!



More Next Steps

Branding and framing
— Normalization is a bigger part than signing
— It’s also about verifying signatures

Guidance to developers on choosing security
parameters for their applications

Security Considerations
Privacy Considerations
IANA registry guidelines



