NDNts APl Design

Junxiao Shi, yoursunny.com
Presented at IRTF interim-2021-icnrg-01, 2021-12-10

(NDNts is a personal project; this talk reflects personal opinions)

https://yoursunny.com/p/NDNts/ 1

https://yoursunny.com/p/NDNts/

NDNts: NDN Libraries for the Modern Web

* Modern JavaScript libraries. Standalone without forwarder.

e Or connect to NFD / NDN-DPDK.
JS * Actively maintained.
* Works in Node.js and browsers. fillu 1. . s l.|||_|_|-l " F

@€

* >90% test coverage.

e Automated & manual browser
tests on desktop / Android / iOS.

* New features added regularly.
e Support latest NDN specs.

What this talk is about

* My personal thoughts on NDN low-level API design.
v'Low-level: packet decoding, fragmentation, "face", retransmission logic, etc.

o Not low-level: "data centric toolkit", "common name library", etc.

* The unique challenges in building an NDN library for the web.
* Code size is a primary concern.
* The browser is like an OS, but it differs from a traditional OS.

Low-Level APl is boring?

* Probably true.

* Application developers are encouraged to use the high-level APls, which
abstracts NDN complexity away from the applications.

* Interacting with low-level APl is unavoidable.
* Developers who build high-level APIs would have to use low-level API.
* High-level APIs do not cover all possible application needs.

* Therefore, it's still important to design a good low-level API.

Opportunities of NDNts

 NDNts is not the first library. I'm rarely the first to implement a
feature. Instead, | prefer to:
1. Write applications with the existing libraries.
2. Look at how other developers are using the existing libraries.

3. Feel the pain points of the existing libraries.
* Which APIs are cumbersome to use?
* Which code snippets are copy-pasted in multiple places because it's not in the library?

4. Improve those areas in NDNts.

* NDNts is a personal project, so | can have the freedom.
* | don't promise backwards compatibility.
| take my time to refactor, without worrying about deadlines.

* | ask people to watch my push-ups over NDN testbed and collect metrics to
improve NDNts congestion control implementation.

TLV Decoding

with TLV evolvability considerations

Example: NLSR Lsalnfo structure

LsaInfo = LSA-TYPE TLV-LENGTH
Name
SequenceNumber
ExpirationTime

NDN spec: considerations for evolvability of TLV-based encoding

* If the decoder encounters an unrecognized or out-of-order element,
the behavior should be as follows:
TLV-TYPE number expected behavior
0~31

least significant bit is 1

abort decoding and report error

least significant bit is O ignore TLV element and continue decoding

NDNts: semi-declarative

const EVD = new EvDecoder<Lsa>("LsaInfo", 0x80)
.add(TT.Name, (t, { value }) => t.originRouter = new Name(value))
.add(ox82, (t, { value }) => t.sequenceNum = NNI.decode(value, { big: true }))
.add(ox8B, (t, { text }) => t.expirationTime = text);

Evolvability-aware TLV decoder (EvDecoder)
1. Declare each sub-TLV via .add () function.

2. Decode each sub-TLV with a lambda function.
* It may include extra logic, such as saving signed portion boundary.

3. EvDecoder automatically handles evolvability considerations.

ndn-cxx: procedural

m_originRouter.clear();

m_segNo = O;

ndn::Block baseWire = wire;

baseWire.parse();

auto val = baseWire.elements_begin();

if (val != baseWire.elements end() &&
val->type() == tlv::Name) {

m_originRouter.wireDecode(*val++);
} else {

throw Error("OriginRouter: Missing required Name

field");
}

if (val != baseWire.elements end() &&
val->type() == tlv::SequenceNumber) {

m_segNo = readNonNegativelInteger(*val++);
} else {

throw Error("Missing required SequenceNumber field");

if (val != baseWire.elements_end() &&
val->type() == tlv::ExpirationTime) {

m_expirationTimePoint =
time: :fromString(readString(*val++));

} else {

throw Error("Missing required ExpirationTime field");

* This decoding function does not support TLV evolvability.

python-ndn: declarative, reflection-based

class ():
originRouter = ()
sequenceNum = (0x82)
expirationTime = (0x8B, is_string=True)

v'Shorter than NDNts.
* Less flexible: cannot easily add extra logic.

e Class structure must follow TLV structure:
* Application is exposed to encoding details.

Not yet in NDNts, but it's a direction to explore.

Endpoint, a better "tface”

Traditional "face" vs NDNts Endpoint

app

mgmt face

V

transport

4

{

handles manually:

* transport errors

* Interest retransmission
e signing & verification

* |InMemoryStorage

v’ Interest-Data matching
v’ prefix announcement

mgmt

app

endpoint

packet demultiplexer

N

transport

transport

{ s focus on application logic

Consumer:
v" Interest retransmission
v' Data verification

Producer:

v’ prefix announcement
v Data buffering

v’ Data signing

v" multiple uplinks

v' connect to other NDNts apps
4 v connect to forwarders

v connect to loT gadgets

v’ automatic reconnecting

Consumer: Interest retransmissions

 NDNts: enable Interest retransmissions with one option.

try {
const data = await endpoint.consume(interest, { retx: 2 });
/* use retrieved Data */

} catch { /* handle retrieval error */ }

* Other libraries: developer implements this flowchart manually.

repare express onData /
prep P » use Data
Interest Interest o \
A ,0,777,77
@out
exponential | retx limit ‘/ handle
back-off exceeded? K error

13

Producer: Data buffering

e Use case: prepare a multi-segment response to one Interest.
 Example: NFD management protocol dataset publisher.

 NDNts: automatic Data buffering.
* Insert multiple Data packets to the buffer.
e Subsequent Interests are satisfied from the buffer automatically.

endpoint.produce("/prefix", async (interest, { dataBuffer }) {
if (interest.name.at(-1).as(Segment) === 0) {
/* generate all segments */
await dataBuffer.insert(segd, segl, segl);

}
});

e Other libraries: developer queries InMemoryStorage for every Interest.

Data signing & verification

 NDNts: automatically sign outgoing Data and verify incoming Data.
const endpoint = new Endpoint({
dataSigner: signer,
verifier: verifier,

})s

* Both signer and verifier can be either:
* a fixed key, or
 a trust schema that chooses a key based on Data packet name.

e Other libraries: developer calls KeyChain & Validator manually.

Code size is a primary concern on the Web

Every KB of code must be downloaded over the network.
* Visitors expect the webpage to load within 5 seconds "time to interactive".
* Code size budget: 170KB minified & gzipped.

How I'm solving this problem in NDNts?
* Reduce core features that are always loaded.

* |f an app needs an extra feature, import the module and pay the cost:

const endpoint = new Endpoint({
dataBuffer: new DataBuffer(new DataStore(memdown())),

})s

* Trade-off between APl simplicity and webpage performance.

Transport support matrix

® Dbuilt-in

% proxy or plugin

o planned
libraries forwarders and more
ndn-cxx python-ndn (I\Il\loDdl\(l;jss) (b'\rlfvtlst:r) SR NFD YaNFD NDN-DPDK es?|5852P6362n)dn
° ° ° Unix socket ° °
° memif °
Ethernet ° ° ° °
[UDP ° [° [
() [[TCP [[
° ° WebSocket * °
o ° HTTP/3 * o
o) o WebRTC
* ° Bluetooth °

17

KeyChain & Crypto

KeyChain: Web Crypto & IndexedDB

const keyChain = KeyChain.open("homecam"); open IndexedDB for storing keys and
certificates

const [pvt, pub] = await generateSigningKey(keyChain, subjectName);
generate non-extractable keys via Web

const cert = await requestCertificate({ Crypto APl and store in IndexedDB
profile: caProfile,

publicKey: pub,
request a certificate from a remote

privateKey: pvt, - e o ONGERT
. 1 . . 1 . certiticate authority, using
validity: ValidityPeriod.MAX, (NDN certificate management protocol)

challenges: [new ClientNopChallenge()],
1)s

save the received certificate
await keyChain.insertCert(cert);

19

Web Crypto requires Secure Context

 Webpage must be delivered over HTTPS to use Web Crypto.
* Required by Web Crypto spec.
* Enforced in Chrome.
* Not enforced in Firefox.

 Why bother with plain HTTP?

» "Coffee shop hotspots" are still popular in less developed countries.
* The locals are sharing files and chatting over those hotspot networks.
* No Internet, no DNS, cannot obtain trusted TLS certificates.

* NDNts security features will not work in this environment.

Web Crypto has limited algorithms

v'SHA-256

v'ECDSA, ECDH

v'RSA PKCS#1, RSA-OAEP

v AES-CBC, AES-GCM

v PBKDF2

oBLAKE2b, required in Pollere DCT

oEdDSA, required in Pollere DCT

oAES-CCM, an option of FLIC rev03 Despite being an option, if an existing

| application chooses an algorithm,

oChaCha20-Poly1305, an option of ndn-ind | NDNts needs to have the algorithm to
be able to interoperate with that app.

21

Alternatives to Web Crypto

e asmcrypto.js and other JavaScript crypto libraries
* Rust crypto compiled as WebAssembly module

e Drawbacks:
i Code Size concerns.

» Keys are unprotected (vs. non-extractable keys in Web Crypto).
* No effective way to cleanse memory.

* Drawbacks, when delivered over plain HTTP:

* Code can be modified by MITM attacker, completely compromising security.
* Lack of secure random number generator.

e So far, NDNts is limited to Web Crypto only.

Naming a Browser

"Name is the secret sauce of NDN"

23

Naming a browser for anonymous users

awalt generateSigningKey(keyChain, subjectName);

Where does this name come from?

* My current webapps use random names:
1. Generate a random identity name during the first visit.
2. Request a certificate and store it in the KeyChain.
3. Reuse the same identity name during subsequent visits.
4. Start over if the certificate expires or the KeyChain is deleted.

* This only works for anonymous users.

Naming a browser with user authentication

e Username+password / "Email me a magic link".
* Obtains a short-lived certificate from a server-controlled CA.

e OpenlD / OAuth / WebAuthn, but do it over NDN.

* Interacts with a downloadable or self-hosted "NDN authenticator" app, which
contains a user-controlled CA.

* User experience must be streamlined.
* Visitors do not care whether the webpage is using NDN.

Start Coding with NDNts

 NDNts homepage: https://yoursunny.com/p/NDNts/

* Getting Started tutorials on yoursunny.com blog
* APl documentation available in Visual Studio Code IDE

* NDN Play https://play.ndn.today
* Web simulator for NDN, built with NDNts

26

https://yoursunny.com/p/NDNts/
https://play.ndn.today/

