
NDNts API Design
Junxiao Shi, yoursunny.com

Presented at IRTF interim-2021-icnrg-01, 2021-12-10

(NDNts is a personal project; this talk reflects personal opinions)

https://yoursunny.com/p/NDNts/ 1

https://yoursunny.com/p/NDNts/


NDNts: NDN Libraries for the Modern Web

• Modern JavaScript libraries.

• Works in Node.js and browsers.

• >90% test coverage.

• Automated & manual browser 
tests on desktop / Android / iOS.

• Standalone without forwarder.
• Or connect to NFD / NDN-DPDK.

• Actively maintained.

• New features added regularly.

• Support latest NDN specs.

2



What this talk is about

• My personal thoughts on NDN low-level API design.
✓Low-level: packet decoding, fragmentation, "face", retransmission logic, etc.

oNot low-level: "data centric toolkit", "common name library", etc.

• The unique challenges in building an NDN library for the web.
• Code size is a primary concern.

• The browser is like an OS, but it differs from a traditional OS.

3



Low-Level API is boring?

• Probably true.
• Application developers are encouraged to use the high-level APIs, which 

abstracts NDN complexity away from the applications.

• Interacting with low-level API is unavoidable.
• Developers who build high-level APIs would have to use low-level API.

• High-level APIs do not cover all possible application needs.

• Therefore, it's still important to design a good low-level API.

4



Opportunities of NDNts

• NDNts is not the first library. I'm rarely the first to implement a 
feature. Instead, I prefer to:

1. Write applications with the existing libraries.

2. Look at how other developers are using the existing libraries.

3. Feel the pain points of the existing libraries.
• Which APIs are cumbersome to use?

• Which code snippets are copy-pasted in multiple places because it's not in the library?

4. Improve those areas in NDNts.

• NDNts is a personal project, so I can have the freedom.
• I don't promise backwards compatibility.

• I take my time to refactor, without worrying about deadlines.

• I ask people to watch my push-ups over NDN testbed and collect metrics to 
improve NDNts congestion control implementation.

5



TLV Decoding
with TLV evolvability considerations

6



Example: NLSR LsaInfo structure

LsaInfo = LSA-TYPE TLV-LENGTH
Name
SequenceNumber
ExpirationTime

NDN spec: considerations for evolvability of TLV-based encoding

• If the decoder encounters an unrecognized or out-of-order element, 
the behavior should be as follows:

7

TLV-TYPE number expected behavior

0~31
abort decoding and report error

least significant bit is 1

least significant bit is 0 ignore TLV element and continue decoding



NDNts: semi-declarative

const EVD = new EvDecoder<Lsa>("LsaInfo", 0x80)

.add(TT.Name, (t, { value }) => t.originRouter = new Name(value))

.add(0x82, (t, { value }) => t.sequenceNum = NNI.decode(value, { big: true }))

.add(0x8B, (t, { text }) => t.expirationTime = text);

Evolvability-aware TLV decoder (EvDecoder)

1. Declare each sub-TLV via .add() function.

2. Decode each sub-TLV with a lambda function.
• It may include extra logic, such as saving signed portion boundary.

3. EvDecoder automatically handles evolvability considerations.

8



ndn-cxx: procedural
m_originRouter.clear();

m_seqNo = 0;

ndn::Block baseWire = wire;

baseWire.parse();

auto val = baseWire.elements_begin();

if (val != baseWire.elements_end() &&
val->type() == tlv::Name) {

m_originRouter.wireDecode(*val++);

} else {

throw Error("OriginRouter: Missing required Name 
field");

}

if (val != baseWire.elements_end() &&
val->type() == tlv::SequenceNumber) {

m_seqNo = readNonNegativeInteger(*val++);

} else {

throw Error("Missing required SequenceNumber field");

}

if (val != baseWire.elements_end() &&
val->type() == tlv::ExpirationTime) {

m_expirationTimePoint =
time::fromString(readString(*val++));

} else {

throw Error("Missing required ExpirationTime field");

}

• This decoding function does not support TLV evolvability.

9



python-ndn: declarative, reflection-based

class LsaInfo(TlvModel):

originRouter = NameField()

sequenceNum = UintField(0x82)

expirationTime = BytesField(0x8B, is_string=True)

✓Shorter than NDNts.

• Less flexible: cannot easily add extra logic.

• Class structure must follow TLV structure:
• Application is exposed to encoding details.

Not yet in NDNts, but it's a direction to explore.

10



Endpoint, a better "face"

11



Traditional "face" vs NDNts Endpoint

12

transport transport transport

packet demultiplexer

face endpoint

Consumer:
✓ Interest retransmission
✓ Data verification

Producer:
✓ prefix announcement
✓ Data buffering
✓ Data signing

✓ multiple uplinks
✓ connect to other NDNts apps
✓ connect to forwarders
✓ connect to IoT gadgets
✓ automatic reconnecting

app app

mgmt

mgmt

handles manually:
• transport errors
• Interest retransmission
• signing & verification
• InMemoryStorage

❖ focus on application logic

✓ Interest-Data matching
✓ prefix announcement



Consumer: Interest retransmissions

• NDNts: enable Interest retransmissions with one option.
try {
const data = await endpoint.consume(interest, { retx: 2 });
/* use retrieved Data */

} catch { /* handle retrieval error */ }

• Other libraries: developer implements this flowchart manually.

13

prepare
Interest

express 
Interest

retx limit
exceeded?

exponential 
back-off

use Data

handle 
error

onData



Producer: Data buffering

• Use case: prepare a multi-segment response to one Interest.
• Example: NFD management protocol dataset publisher.

• NDNts: automatic Data buffering.
• Insert multiple Data packets to the buffer.
• Subsequent Interests are satisfied from the buffer automatically.

endpoint.produce("/prefix", async (interest, { dataBuffer }) {

if (interest.name.at(-1).as(Segment) === 0) {

/* generate all segments */

await dataBuffer.insert(seg0, seg1, seg2);

}

});

• Other libraries: developer queries InMemoryStorage for every Interest.

14



Data signing & verification

• NDNts: automatically sign outgoing Data and verify incoming Data.
const endpoint = new Endpoint({

dataSigner: signer,

verifier: verifier,

});

• Both signer and verifier can be either:
• a fixed key, or

• a trust schema that chooses a key based on Data packet name.

• Other libraries: developer calls KeyChain & Validator manually.

15



Code size is a primary concern on the Web

Every KB of code must be downloaded over the network.

• Visitors expect the webpage to load within 5 seconds "time to interactive".

• Code size budget: 170KB minified & gzipped.

How I'm solving this problem in NDNts?

• Reduce core features that are always loaded.

• If an app needs an extra feature, import the module and pay the cost:
const endpoint = new Endpoint({

dataBuffer: new DataBuffer(new DataStore(memdown())),
});

• Trade-off between API simplicity and webpage performance.

16



Transport support matrix

libraries

protocol

forwarders and more

ndn-cxx python-ndn
NDNts

(Node.js)
NDNts

(browser)
NFD YaNFD NDN-DPDK

esp8266ndn 
(ESP32)

● ● ● Unix socket ● ●

● memif ●

Ethernet ● ● ● ●

● UDP ● ● ● ●

● ● ● TCP ● ●

● ● WebSocket ＊ ●

○ ● HTTP/3 ＊ ○

○ ○ WebRTC

＊ ● Bluetooth ●

17

● built-in

＊ proxy or plugin

○ planned



KeyChain & Crypto

18



KeyChain: Web Crypto & IndexedDB

const keyChain = KeyChain.open("homecam");

const [pvt, pub] = await generateSigningKey(keyChain, subjectName);

const cert = await requestCertificate({

profile: caProfile,

publicKey: pub,

privateKey: pvt,

validity: ValidityPeriod.MAX,

challenges: [new ClientNopChallenge()],

});

await keyChain.insertCert(cert);

19

open IndexedDB for storing keys and 
certificates

generate non-extractable keys via Web 
Crypto API and store in IndexedDB

request a certificate from a remote 
certificate authority, using NDNCERT 
(NDN certificate management protocol)

save the received certificate



Web Crypto requires Secure Context

• Webpage must be delivered over HTTPS to use Web Crypto.
• Required by Web Crypto spec.

• Enforced in Chrome.

• Not enforced in Firefox.

• Why bother with plain HTTP?

• "Coffee shop hotspots" are still popular in less developed countries.
• The locals are sharing files and chatting over those hotspot networks.

• No Internet, no DNS, cannot obtain trusted TLS certificates.

• NDNts security features will not work in this environment.

20



Web Crypto has limited algorithms

✓SHA-256

✓ECDSA, ECDH

✓RSA PKCS#1, RSA-OAEP

✓AES-CBC, AES-GCM

✓PBKDF2

oBLAKE2b, required in Pollere DCT

oEdDSA, required in Pollere DCT

oAES-CCM, an option of FLIC rev03

oChaCha20-Poly1305, an option of ndn-ind

21

Despite being an option, if an existing
application chooses an algorithm,
NDNts needs to have the algorithm to
be able to interoperate with that app.



Alternatives to Web Crypto

• asmcrypto.js and other JavaScript crypto libraries

• Rust crypto compiled as WebAssembly module

• Drawbacks:
• Code size concerns.
• Keys are unprotected (vs. non-extractable keys in Web Crypto).
• No effective way to cleanse memory.

• Drawbacks, when delivered over plain HTTP:
• Code can be modified by MITM attacker, completely compromising security.
• Lack of secure random number generator.

• So far, NDNts is limited to Web Crypto only.

22



Naming a Browser
"Name is the secret sauce of NDN"

23



Naming a browser for anonymous users

await generateSigningKey(keyChain, subjectName);

• My current webapps use random names:
1. Generate a random identity name during the first visit.

2. Request a certificate and store it in the KeyChain.

3. Reuse the same identity name during subsequent visits.

4. Start over if the certificate expires or the KeyChain is deleted.

• This only works for anonymous users.

24

Where does this name come from?



Naming a browser with user authentication

• Username+password / "Email me a magic link".
• Obtains a short-lived certificate from a server-controlled CA.

• OpenID / OAuth / WebAuthn, but do it over NDN.
• Interacts with a downloadable or self-hosted "NDN authenticator" app, which 

contains a user-controlled CA.

• User experience must be streamlined.
• Visitors do not care whether the webpage is using NDN.

25



Start Coding with NDNts

• NDNts homepage: https://yoursunny.com/p/NDNts/

• Getting Started tutorials on yoursunny.com blog

• API documentation available in Visual Studio Code IDE

• NDN Play https://play.ndn.today
• Web simulator for NDN, built with NDNts

26

https://yoursunny.com/p/NDNts/
https://play.ndn.today/

