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NDNts: NDN Libraries for the Modern Web

• Modern JavaScript libraries.

• Works in Node.js and browsers.

• >90% test coverage.

• Automated & manual browser 
tests on desktop / Android / iOS.

• Standalone without forwarder.
• Or connect to NFD / NDN-DPDK.

• Actively maintained.

• New features added regularly.

• Support latest NDN specs.
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What this talk is about

• My personal thoughts on NDN low-level API design.
✓Low-level: packet decoding, fragmentation, "face", retransmission logic, etc.

oNot low-level: "data centric toolkit", "common name library", etc.

• The unique challenges in building an NDN library for the web.
• Code size is a primary concern.

• The browser is like an OS, but it differs from a traditional OS.
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Low-Level API is boring?

• Probably true.
• Application developers are encouraged to use the high-level APIs, which 

abstracts NDN complexity away from the applications.

• Interacting with low-level API is unavoidable.
• Developers who build high-level APIs would have to use low-level API.

• High-level APIs do not cover all possible application needs.

• Therefore, it's still important to design a good low-level API.
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Opportunities of NDNts

• NDNts is not the first library. I'm rarely the first to implement a 
feature. Instead, I prefer to:

1. Write applications with the existing libraries.

2. Look at how other developers are using the existing libraries.

3. Feel the pain points of the existing libraries.
• Which APIs are cumbersome to use?

• Which code snippets are copy-pasted in multiple places because it's not in the library?

4. Improve those areas in NDNts.

• NDNts is a personal project, so I can have the freedom.
• I don't promise backwards compatibility.

• I take my time to refactor, without worrying about deadlines.

• I ask people to watch my push-ups over NDN testbed and collect metrics to 
improve NDNts congestion control implementation.
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TLV Decoding
with TLV evolvability considerations
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Example: NLSR LsaInfo structure

LsaInfo = LSA-TYPE TLV-LENGTH
Name
SequenceNumber
ExpirationTime

NDN spec: considerations for evolvability of TLV-based encoding

• If the decoder encounters an unrecognized or out-of-order element, 
the behavior should be as follows:
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TLV-TYPE number expected behavior

0~31
abort decoding and report error

least significant bit is 1

least significant bit is 0 ignore TLV element and continue decoding



NDNts: semi-declarative

const EVD = new EvDecoder<Lsa>("LsaInfo", 0x80)

.add(TT.Name, (t, { value }) => t.originRouter = new Name(value))

.add(0x82, (t, { value }) => t.sequenceNum = NNI.decode(value, { big: true }))

.add(0x8B, (t, { text }) => t.expirationTime = text);

Evolvability-aware TLV decoder (EvDecoder)

1. Declare each sub-TLV via .add() function.

2. Decode each sub-TLV with a lambda function.
• It may include extra logic, such as saving signed portion boundary.

3. EvDecoder automatically handles evolvability considerations.
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ndn-cxx: procedural
m_originRouter.clear();

m_seqNo = 0;

ndn::Block baseWire = wire;

baseWire.parse();

auto val = baseWire.elements_begin();

if (val != baseWire.elements_end() &&
val->type() == tlv::Name) {

m_originRouter.wireDecode(*val++);

} else {

throw Error("OriginRouter: Missing required Name 
field");

}

if (val != baseWire.elements_end() &&
val->type() == tlv::SequenceNumber) {

m_seqNo = readNonNegativeInteger(*val++);

} else {

throw Error("Missing required SequenceNumber field");

}

if (val != baseWire.elements_end() &&
val->type() == tlv::ExpirationTime) {

m_expirationTimePoint =
time::fromString(readString(*val++));

} else {

throw Error("Missing required ExpirationTime field");

}

• This decoding function does not support TLV evolvability.
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python-ndn: declarative, reflection-based

class LsaInfo(TlvModel):

originRouter = NameField()

sequenceNum = UintField(0x82)

expirationTime = BytesField(0x8B, is_string=True)

✓Shorter than NDNts.

• Less flexible: cannot easily add extra logic.

• Class structure must follow TLV structure:
• Application is exposed to encoding details.

Not yet in NDNts, but it's a direction to explore.
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Endpoint, a better "face"
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Traditional "face" vs NDNts Endpoint
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transport transport transport

packet demultiplexer

face endpoint

Consumer:
✓ Interest retransmission
✓ Data verification

Producer:
✓ prefix announcement
✓ Data buffering
✓ Data signing

✓ multiple uplinks
✓ connect to other NDNts apps
✓ connect to forwarders
✓ connect to IoT gadgets
✓ automatic reconnecting

app app

mgmt

mgmt

handles manually:
• transport errors
• Interest retransmission
• signing & verification
• InMemoryStorage

❖ focus on application logic

✓ Interest-Data matching
✓ prefix announcement



Consumer: Interest retransmissions

• NDNts: enable Interest retransmissions with one option.
try {
const data = await endpoint.consume(interest, { retx: 2 });
/* use retrieved Data */

} catch { /* handle retrieval error */ }

• Other libraries: developer implements this flowchart manually.
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Producer: Data buffering

• Use case: prepare a multi-segment response to one Interest.
• Example: NFD management protocol dataset publisher.

• NDNts: automatic Data buffering.
• Insert multiple Data packets to the buffer.
• Subsequent Interests are satisfied from the buffer automatically.

endpoint.produce("/prefix", async (interest, { dataBuffer }) {

if (interest.name.at(-1).as(Segment) === 0) {

/* generate all segments */

await dataBuffer.insert(seg0, seg1, seg2);

}

});

• Other libraries: developer queries InMemoryStorage for every Interest.
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Data signing & verification

• NDNts: automatically sign outgoing Data and verify incoming Data.
const endpoint = new Endpoint({

dataSigner: signer,

verifier: verifier,

});

• Both signer and verifier can be either:
• a fixed key, or

• a trust schema that chooses a key based on Data packet name.

• Other libraries: developer calls KeyChain & Validator manually.
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Code size is a primary concern on the Web

Every KB of code must be downloaded over the network.

• Visitors expect the webpage to load within 5 seconds "time to interactive".

• Code size budget: 170KB minified & gzipped.

How I'm solving this problem in NDNts?

• Reduce core features that are always loaded.

• If an app needs an extra feature, import the module and pay the cost:
const endpoint = new Endpoint({

dataBuffer: new DataBuffer(new DataStore(memdown())),
});

• Trade-off between API simplicity and webpage performance.
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Transport support matrix

libraries

protocol

forwarders and more

ndn-cxx python-ndn
NDNts

(Node.js)
NDNts

(browser)
NFD YaNFD NDN-DPDK

esp8266ndn 
(ESP32)

● ● ● Unix socket ● ●

● memif ●

Ethernet ● ● ● ●

● UDP ● ● ● ●

● ● ● TCP ● ●

● ● WebSocket ＊ ●

○ ● HTTP/3 ＊ ○

○ ○ WebRTC

＊ ● Bluetooth ●
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● built-in

＊ proxy or plugin

○ planned



KeyChain & Crypto
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KeyChain: Web Crypto & IndexedDB

const keyChain = KeyChain.open("homecam");

const [pvt, pub] = await generateSigningKey(keyChain, subjectName);

const cert = await requestCertificate({

profile: caProfile,

publicKey: pub,

privateKey: pvt,

validity: ValidityPeriod.MAX,

challenges: [new ClientNopChallenge()],

});

await keyChain.insertCert(cert);
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open IndexedDB for storing keys and 
certificates

generate non-extractable keys via Web 
Crypto API and store in IndexedDB

request a certificate from a remote 
certificate authority, using NDNCERT 
(NDN certificate management protocol)

save the received certificate



Web Crypto requires Secure Context

• Webpage must be delivered over HTTPS to use Web Crypto.
• Required by Web Crypto spec.

• Enforced in Chrome.

• Not enforced in Firefox.

• Why bother with plain HTTP?

• "Coffee shop hotspots" are still popular in less developed countries.
• The locals are sharing files and chatting over those hotspot networks.

• No Internet, no DNS, cannot obtain trusted TLS certificates.

• NDNts security features will not work in this environment.
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Web Crypto has limited algorithms

✓SHA-256

✓ECDSA, ECDH

✓RSA PKCS#1, RSA-OAEP

✓AES-CBC, AES-GCM

✓PBKDF2

oBLAKE2b, required in Pollere DCT

oEdDSA, required in Pollere DCT

oAES-CCM, an option of FLIC rev03

oChaCha20-Poly1305, an option of ndn-ind
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Despite being an option, if an existing
application chooses an algorithm,
NDNts needs to have the algorithm to
be able to interoperate with that app.



Alternatives to Web Crypto

• asmcrypto.js and other JavaScript crypto libraries

• Rust crypto compiled as WebAssembly module

• Drawbacks:
• Code size concerns.
• Keys are unprotected (vs. non-extractable keys in Web Crypto).
• No effective way to cleanse memory.

• Drawbacks, when delivered over plain HTTP:
• Code can be modified by MITM attacker, completely compromising security.
• Lack of secure random number generator.

• So far, NDNts is limited to Web Crypto only.
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Naming a Browser
"Name is the secret sauce of NDN"
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Naming a browser for anonymous users

await generateSigningKey(keyChain, subjectName);

• My current webapps use random names:
1. Generate a random identity name during the first visit.

2. Request a certificate and store it in the KeyChain.

3. Reuse the same identity name during subsequent visits.

4. Start over if the certificate expires or the KeyChain is deleted.

• This only works for anonymous users.
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Where does this name come from?



Naming a browser with user authentication

• Username+password / "Email me a magic link".
• Obtains a short-lived certificate from a server-controlled CA.

• OpenID / OAuth / WebAuthn, but do it over NDN.
• Interacts with a downloadable or self-hosted "NDN authenticator" app, which 

contains a user-controlled CA.

• User experience must be streamlined.
• Visitors do not care whether the webpage is using NDN.
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Start Coding with NDNts

• NDNts homepage: https://yoursunny.com/p/NDNts/

• Getting Started tutorials on yoursunny.com blog

• API documentation available in Visual Studio Code IDE

• NDN Play https://play.ndn.today
• Web simulator for NDN, built with NDNts
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