SDWAN Edge Discovery

draft-dunbar-idr-sdwan-edge-discovery-03

Linda Dunbar
Sue Hares
Robert Raszuk
Kausik Majumdar
August 2021
SDWAN DRaft

• Use case: BESS/RTGWG drafts
• New Tunnel type (SDWAN-Hybrid)
 – Client routes: link to hybrid tunnel with IP-Sec (U1)
 – Tunnel next hop (SAFI-DSWAN Hybrid) – pass information regarding tunnel (IP-SEC SA, end point, Encaps)
• Purpose of Discussion: Answer questions
SDWAN topology (from IETF 109-110)

BGP Route Controller - RR

MP-NLRI: (AFI/Safi = 1/1)
Prefix: 10.1.1.x; 20.1.1.x
Nexthop: 2.2.2.2 /* C-PE-2 */
Encapsulation Extended Community: TunnelType = SDWAN-Hybrid
Color Extended Community: Color = RED

L3VPN path

- **C-PE 1**
 - lo: 1.1.1.1
 - ISP: 192.10.0.10
 - Client Route: 11.1.1.x

- **C-PE 2**
 - lo: 2.2.2.2
 - ISP1: 192.0.0.1
 - ISP2: 170.0.0.1
 - Client Route: 20.1.1.x

- **C-PE 3**
 - lo: 3.3.3.3
 - Client Route: 30.1.1.x

- **ISP3:** 192.10.0.10
 - Client Route: 20.1.1.x

To indicate multiple types of underlay networks: MPLS VPN, IPsec, etc.

BGP UPDATE 1

- Nexthop: x.x.x.x
- NLRI: SAFI = SDWAN
- Tunnel Encap Attr (SDWAN-Hybrid)
 - Tunnel-egress-endpoint SubTLV
 - GRE tunnel (via the L3VPN)
 - IPsec SA-ID Sub-TLVs

BGP UPDATE 2

- Nexthop: x.x.x.x
- NLRI: SAFI = SDWAN
- Tunnel Encap Attr (SDWAN-Hybrid)
 - Tunnel-egress-endpoint SubTLV
 - GRE tunnel (via the L3VPN)
 - IPsec SA-ID Sub-TLVs

Port 170.0.0.1 has multiple IPsec SAs
IPsec SA (RED) -> C-PE1
IPsec SA (Purple) -> C-PE3
Hybrid Tunnels: with Pre-configured IPsec SA IDs

Tunnel Type = SDWAN-Hybrid

- Site-Type = 1 (No GeoLoc SubTLV);
- Port-Local-ID = * (apply to all ports);
- Color (to correlate with client route UPDATE)

Node-ID

Tunnel Egress Endpoint Sub-TLV

GRE sub-TLV for (L3VPN Path)

IPsec-SA-ID sub-TLV #1

VxLAN sub-TLV

IPsec-SA-ID sub-TLV #2

multiple underlays tunnels
Hybrid Tunnels: with detailed IPsec SA sub-TLVs

- Tunnel Type = SDWAN-Hybrid
- Site-Type = 1 (No GeoLoc SubTLV)
- Port-Local-ID = # (apply to all ports)
- Color: to correlate with the client routes
- Node-ID

SDWAN NLRI

- Tunnel-Egress-Endpoint-SubTLV
- Extended Port Sub-TLV (Optional) or use Tunnel end point sub-TLV to describe the WAN Port Address
- IPsec SA Nonce Sub-TLV
- IPsec SA Public Key Sub-TLV
- IPsec SA Proposal Sub-TLV with Num Transforms
 {Transforms Substructure Sub-sub TLV}

multiple underlays tunnels
NLRI: SDWAN-Hybrid SAFI = 74

- **Site Type:**
 - Site-Type = 1: For simple deployment, with node ID to identify the precise geolocation.
 - Site-Type = 2: For large SDWAN heterogeneous deployment where a Geo-Loc Sub-TLV [LISP-GEOLoc] is used to identify the precise geolocation.

- **Port local ID:** SDWAN edge node Port identifier, which is locally significant. If the SDWAN NLRI applies to multiple ports, this field is NULL.

- **SDWAN-Color:** to correlate with the Color-Extended-community included in the client routes UPDATE.

- **Node-ID:** The node’s IPv4 or IPv6 address.
Backup slides
Tunnel Path Attributes and Sub-TLVs inside the SDWAN NLRI
Extended Port (NAT) Sub-TLV

Flags:
- I bit (CPE port address or Inner address scheme)
 - If set to 0, indicate the inner (private) address is IPv4.
 - If set to 1, it indicates the inner address is IPv6.
- O bit (Outer address scheme):
 - If set to 0, indicate the public (outer) address is IPv4.
 - If set to 1, it indicates the public (outer) address is IPv6.
- R bits: reserved for future use. Must be set to 0 now.

NAT Type:
- without NAT; 1:1 static NAT; Full Cone; Restricted Cone; Port Restricted Cone;
- Symmetric; or Unknown (i.e. no response from the STUN server).

Encap Type:
- the supported encapsulation types for the port facing public network, such as
 - IPsec+GRE, IPsec+VxLAN, IPsec without GRE, GRE (when packets don’t need encryption)

Transport Network ID:
- Central Controller assign a global unique ID to each transport network;
- RD ID: Routing Domain ID. Need to be global unique.

Local IP:
- The local (or private) IP address of the port; If NAT is not used, this field is set to NULL.

Local Port:
- used by Remote SDWAN edge node for establishing IPsec to this specific port. If NAT is not used, this field is set to NULL.

Public IP:
- The IP address after the NAT.

Public Port:
- The Port after the NAT.
ISP of the Underlay Network Sub-TLV

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Flag</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Type</td>
<td>Port Type</td>
<td>Port Speed</td>
<td></td>
</tr>
</tbody>
</table>

- **Type**: To be assigned by IANA
- **Length**: 6 bytes.
- **Flag**: a 1 octet value.
- **Reserved**: 1 octet of reserved bits. It SHOULD be set to zero on transmission and MUST be ignored on receipt.

- **Connection Type**: There are two different types of WAN Connectivity. They are listed below as:
 - Wired – 1
 - Wireless – 2
 - LTE – 3
 - 5G – 4

- **Port Type**: There are different types of ports. They are listed below as:
 - Ethernet – 1
 - Fiber Cable – 2
 - Coax Cable – 3
 - Cellular – 4

- **Port Speed**: The port seed is defined as 2 octet value. The values are defined as Gigabit speed.
Two Types of IPsec SA attributes (only use one)
Sub-Sub-TLV

- Full Set: with multiple Sub-TLVs for full suite of IPsec SA attributes
 - Nonce Sub-TLV
 - Public Key Sub-TLV
 - Proposal Sub-TLV: to indicate the number of Transform subTLVs to be included
 - Transforms Substructure Sub-TLV
- Simple Set: Simple Deployment with limited number of parameters
 - One Sub-TLV to represent Public Key, Nonce, ReKey, Transform
Nonce Sub-TLV, Public Key Sub-TLV

- **Nonce Sub-TLV:**

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>ID Length</td>
</tr>
<tr>
<td>IPsec SA ID</td>
</tr>
<tr>
<td>Nonce Data</td>
</tr>
</tbody>
</table>

- **Public Sub-TLV:**

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffie-Hellman Group Num</td>
</tr>
<tr>
<td>Key Exchange Data</td>
</tr>
<tr>
<td>Duration</td>
</tr>
</tbody>
</table>

IPsec SA ID - The 2 bytes IPSec SA ID could 0 or non-zero values. It is cross referenced by client route's IPSec Tunnel Encap IPSec-SA-ID or IPSec-SA-Group Sub-TLV in Section 5 of the Draft. When there are multiple IPsec SAs terminated at one address, such as WAN port address or the node address, they are differentiated by the different IPsec SA IDs.
Simplified IPsec SA attributes advertisement

- **IPsec-simType**: to be assigned by IANA.
- **Flags**: for future usage.
- **Transform (1 Byte)**: the value can be AH, ESP, or AH+ESP.
- **Mode (1 byte)**: Indicate Tunnel Mode or Transport mode.
 - AH (1 byte): AH authentication algorithms supported, which can be md5 | sha1 | sha2-256 | sha2-384 | sha2-512 | sm3.
 - ESP (1 byte): ESP authentication algorithms supported, which can be md5 | sha1 | sha2-256 | sha2-384 | sha2-512 | sm3.
 - Each SDWAN edge node can have multiple authentication algorithms; send to its peers to negotiate the strongest one. Default algorithm is AES-256.
- **ReKey Counter (Security Parameter Index)**
- **Public Key**: IPsec public key
- **Nonce**: IPsec Nonce
- **Duration**: SA life span.

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPsec-simType</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Transform</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>ReKey Counter (SPI)</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>key1 length</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>key2 length</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Duration</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
</tbody>
</table>

- IPsec-simType: to be assigned by IANA.
- Flags: for future usage.
- Transform (1 Byte): the value can be AH, ESP, or AH+ESP.
- Mode (1 byte): Indicate Tunnel Mode or Transport mode.
 - AH (1 byte): AH authentication algorithms supported, which can be md5 | sha1 | sha2-256 | sha2-384 | sha2-512 | sm3.
 - ESP (1 byte): ESP authentication algorithms supported, which can be md5 | sha1 | sha2-256 | sha2-384 | sha2-512 | sm3.
 - Each SDWAN edge node can have multiple authentication algorithms; send to its peers to negotiate the strongest one. Default algorithm is AES-256.
- When node supports multiple authentication algorithms, the “Transform Sub-TLV” described by [SECURE-EVPN] can be used to describe the additional algorithms supported by the node.
- ReKey Counter (Security Parameter Index)
- Public Key: IPsec public key
- Nonce: IPsec Nonce
- Duration: SA life span.