Local Address Management in IoT environments

Pat Thaler, Senior Technical Director, Broadcom 29 September 2014 3rd IEEE 802 and IETF Leadership Meeting

PROBLEM STATEMENT

MAC address consumption ramps up

- BROADCOM.
- When MAC addresses were created (~1980) network ports were used only on computers and large printers in enterprises.
- Approaching the 2nd decade (2000), MAC address usage was still on a pace to last centuries.
 - A typical user might have 3-5 devices with MAC addresses
- Now, it isn't unusual to have a dozen or more addresses per person
 - Cell phones, TVs, Blu-ray players, tablets, printers, network devices, laptops, media computer – and many of these have multiple addresses for multiple ports.
- With IoT network ports moving into smaller and smaller things
 - Sensors and actuators e.g. light switches and thermostats
 - Potentially dozens of ports per home, car or machine
 - Some may be disposable or short lived, e.g. medical sensors

Should all these things consume global MAC address space?

- With cell phones and tablets, the consumption rate of MAC addresses has increased dramatically
- The 48-bit MAC address space is supposed to last for at least 100 years
- An explosion of IoT devices could burn through the address space long before the target 100 years.
 - For example, Ethernet is moving into cars and by 2020 there may be 50 to 150 ports per car.

What about using Local Addresses?

- User configuration isn't reasonable often no local interface and too large a potential for error
- Existing automatic protocols configure addresses for virtual ports and rely existence of a physical port MAC address

We need to enable easy use of the Local Address Space without configuration.

Local Address Space

• The Local Address space is has been:

- A huge flat space: 2⁴⁶ addresses
- But lacking in organization to enable using it for anything but by a local administrator
- It has not been widely used
- The first step in enabling use is providing structure.
 - Leave a portion for local administration
 - Provide a portion with address blocks assignment to organizations
 - An organization can use such a block for an address acquisition protocol without conflicting with protocols using other blocks
 - Provide recommendations for use of the local address space

Define a standard generic protocol for address acquisition

- Some uses such as assignment of addresses to VMs are likely to use their own proprietary protocols
- Applications such as IoT in home or Smart Grid devices would benefit from a standard for interoperable acquisition of addresses.

STRUCTURING LOCAL ADDRESS USE

Providing Structure

IEEE RAC has defined Company IDs (CID)

- 24-bit values similar to Organizationally Unique Identifiers (OUI) except that the global/local bit is set to local
- One use of these is intended to be for local address blocks.
- Assigned out of one quadrant of the local address space

IEEE 802.1 has proposed a PAR for IEEE 802c

- An amendment to IEEE 802 Overview and Architecture to add guidance on using the local address space.
- Recommend using only one quadrant of the space for local administration
- Use the CID quadrant for default address blocks for protocol
- Forwarding the PAR will be considered at the November meeting

LOCAL ADDRESS ACQUISITION PROTOCOL

Status of work on a protocol

- IEEE 802.1 is currently considering a project to define an address acquisition protocol
 - Probably will decide whether to forward a PAR sometime next year.
- The following slides are some thoughts on a protocol

Transmitting before MAC address Acquisition

- There is currently no way to transmit without a MAC address
 - This is okay for obtaining an address for a virtual port because there is a physical port address that can be used.
 - That doesn't work for an IoT device with no physical address
- Define a Null address value to use as a source address for the address acquisition protocol
 - This address is never allowed as a destination address
 - New bridges can ignore it for learning when seen as a source address. For existing bridges, it will move around in learning, but since it never is a <u>destination</u> address, it won't matter where they think it is.
 - Could use well-known group addresses for the destination address
 - Possibly one for address servers and one for client nodes
 - Possibly existing LAN scoped addresses e.g. nearest non-TPMR

- With a multicast destination address, how does a client know which reply PDUs are for it?
- Client PDUs include a Client ID with identifier type and value; examples of identifier types:
 - EUI-64
 - ICC ID (from SIM card)
 - A random number for those devices that have no configured unique ID
- Response PDU includes the Client ID from the client's PDU
 - Client processes PDUs received with its Client ID and discards ones with other Client IDs

Claiming protocol without a server

- Client generates a proposed address and initiates a claim, waits for response and uses address if no conflict detected
- Proposed address might have a set value for the first 24 bits and a randomly generated value for the other 24.
- Most suited to small* networks which can operate without a server
- Requires that all nodes receive each other's traffic (or something in the network can proxy for nodes that don't receive the claim).
- Similar protocols exist for IPv6 (RFC 4862) and FCoE (FC-BB-6 VN2VN)

Address Server

- Address requests go to a server which responds with an address
- Default address range can be defined for operation without configuration
- Multiple servers can operate by each having an address range.

* Small could be ~ 1000 ports

Claiming and server protocols could coexist

- Claiming protocol and server protocol can operate on different address ranges
- Server could listen for Claims and reply with an address assignment
- Allows the network to have a server or not as dictated by its size and nature and clients to adapt to either without configuration.

Bridge Relay to reduce multicast

- Node transmits with Null Source Address
- Bridge encapsulates in a relay PDU with the bridge's address for source address
- Encapsulation may include a port identifier.
- Responses go to bridge which relays to send to the well-know client multicast address
- Bridge can use the port identifier to choose the output port for the relayed message.
- Reduces multicast traffic for responses but requires changes to bridges

- Client may store the last used address
- On re-initializing, client may request the same address
- For server-less, it sends that address in the first claim
 - If the claim fails, the client picks random address component as usual
- For server, the address request can have a field to carry a proposed address
 - The server assigns the proposed address if it is available and assigns another address if it isn't.

- Protocols should protect against duplicate addresses
- Servers should detect each other
 - Might partition the address space to avoid duplication
- On network merge there could be address duplication
 - Protocol should provide for periodic checks that addresses are still unique

- Some applications such as automotive networks have strict requirements on latency to start the network.
 - E.g. automotive network should work within on the order of 100 ms after power is applied
 - Changes to these networks would be rare
 - Potentially the learned address could be stored in non-volatile memory
 - If necessary, a message could be broadcast indicating that the existing addresses can still be used or a message can be sent to invalidate the existing address and restart address acquisition

Conclusion

- IoT devices should be able to operate without a global MAC address and without configuration
- A protocol for this could protect the 48-bit MAC address space from exhaustion
- May also simplify the production of small inexpensive devices
 - Removes need to configure with a global address at production time.
- It is desirable to standardize two mechanisms
 - Address server-based
 - Server-less claiming, and
 - Provide for coexistence of the two.
- Use of the Local Address space without configuration should be enabled by:
 - Structuring use of the address space
 - Providing an address acquisition protocol