Trusted IoT Device Onboarding Taxonomy

IETF IoTOPS Working Group Interim Meeting

Paul Watrobski, NIST/NCCoE
Susan Symington, The MITRE Corporation/NCCoE
April 20, 2021

Agenda

- Background
- Drivers
- NIST Cybersecurity Paper: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management Paper (Draft)
- Onboarding overview and concepts
- National Cybersecurity Center of Excellence (NCCoE) IoT Onboarding Project

> Background

In support of the NCCoE project on trusted IoT device onboarding

Developed with input from stakeholders

Not a submission for adoption for the IETF, but....

- -If you find this work useful, please use it
- We want to be aligned, so please let us know if you perceive conflicts

Drivers

Trusted network layer onboarding is crucial for

- Protecting IoT devices from being taken over by unauthorized networks
- -Protecting networks from having unauthorized devices connect
- It can also enhance additional security capabilities that protect the IoT device on an ongoing basis throughout its lifecycle

Onboarding solutions have various characteristics and capabilities

A consistent taxonomy is needed to

- -Clearly describe and classify the properties of any particular onboarding solution
- -Express onboarding requirements and related responsibilities and processes
- -Assist with discussion, characterization, and development of onboarding solutions

NIST Cybersecurity Paper

- NIST Cybersecurity White Paper (Draft)

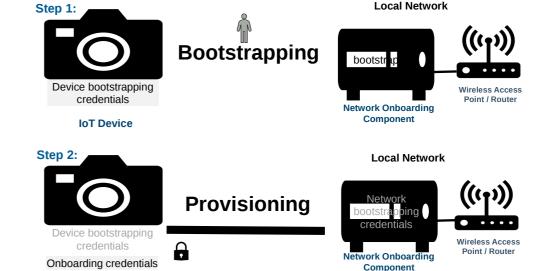
 csrc.nist.gov

 Trusted Internet of Things (IoT) Device
- 5 Network-Layer Onboarding and Lifecycle
- Management (Draft)
- 7 Susan Symington
 8 The MITRE Corporation
 9 McLean, VA
 10
 11 William Polk
 12 Applied Cybersecurity Division
 13 Information Technology Laboratory
 14
 15 Murugiah Souppaya
 16 Computer Security Division
 17 Information Technology Laboratory
 18
 19
 20
 21 September 8, 2020
- This publication is available free of charge from:
 https://doi.org/10.6028/NIST.CSWP.09082020-draft
 - National Institute of Standards and Technology U.S. Department of Commerce

25

- Describes a generic onboarding process and functional roles
- Onboarding lifecycle management
- Taxonomy of onboarding solution characteristics (product-agnostic)
 - User, manufacturer, and service provider perspectives
 - Consumer vs. enterprise
 - No sector-specific requirements
- Recommended security capabilities

<u>DRAFT NIST CSWP, Trusted Internet of Things (IoT) Device Network-Layer Onboarding and Lifecycle Management</u>


Onboarding Overview

Network-Layer Onboarding

- Provision a device with its network credentials
 - Bootstrapping: Establish trust, set up a secure channel with network onboarding component
 - Provisioning: Provide onboarding credentials to the device

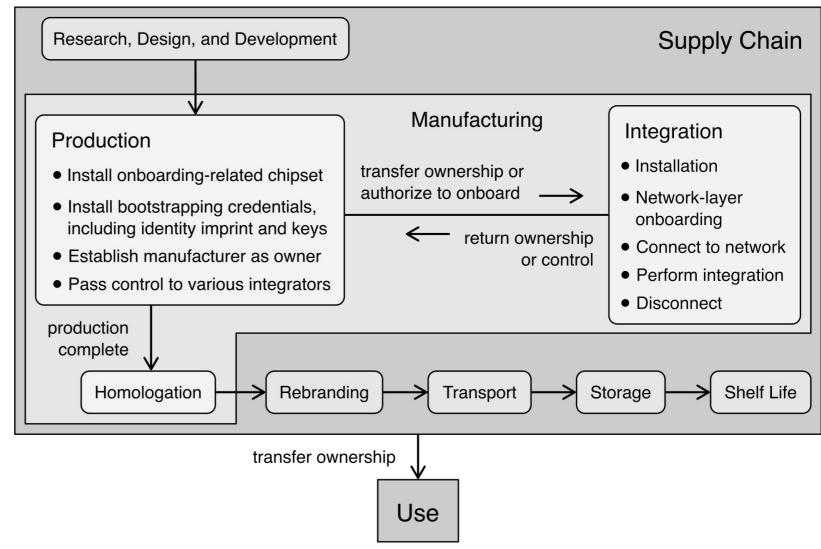
Application-Layer Onboarding

- Provision a device with application-layer components
 - Performed automatically after secure connection
- Analogous to network-layer onboarding
 - Bootstrapping: establish trust, set up a secure channel between with application servers
 - Provisioning: Securely download applications, updates, and configurations to the device

IoT Device

Application

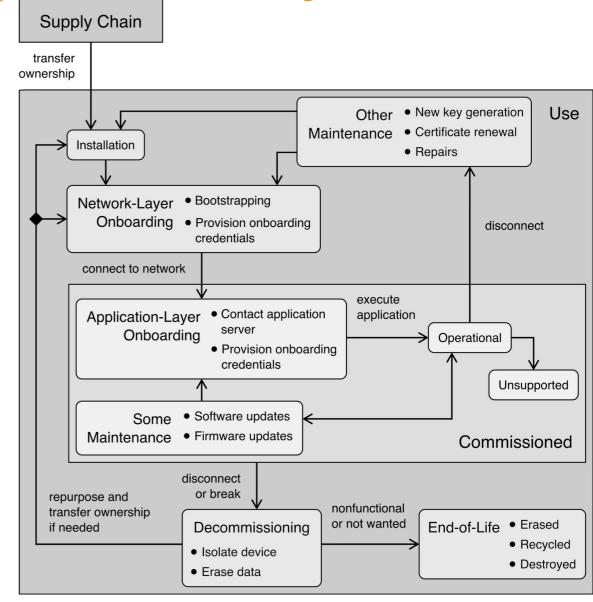
IoT Device



Lifecycle Management

Onboarding-Related Aspects of Lifecycle Management (Supply Chain Phase)

- Manufacturers perform tasks to make the device onboardingready
- Various integrators may have to connect the device to their own networks as part of the manufacturing process


Onboarding-Related Aspects of Lifecycle Management

Supply Chain

(Use Phase)

 Devices may have to be reonboarded repeatedly during their lifetime due to

- Refresh credentials periodically
- Network security breach
- Device maintenance
- Device repurposing
- Device resale

Onboarding Security Characteristics and Capabilities* *(not the complete list)

Characteristic	Definition	
Device Identity	Device should have a unique identifier that's privacy-preserving	
Device Authent.	The network can verify the device's asserted identity	
Network Selection	The network's identifier can be provisioned to the device	
Network Authent.	The device can verify the network's asserted identity	
Secure Local Credentialing	Locally-significant, device-specific credentials can be provisioned automatically, over a secure channel; late binding of credentials	
Encryption details	Crypto is configurable; public/private key pair support	
Privacy	Info added after manufacture can be deleted by authorized user	
Device Intent	Information (e.g., MUD URL) is conveyed over a secure channel	
Trusted Onboarder	Must the person performing the onboarding be trusted or not?	
Device Attestation	Onboard only after verification of some device elements	
Proof of ownership	Supports verification that a device has a specific owner	

> Enterprise vs. Home Use*

Characteristic	Home Use Case	Enterprise Use Case
Ease of use	Required	Desirable, but not required
Network technology	WiFi	Wired and WiFi
Ease of Integration	Required	Some effort is tolerable
Bulk onboarding	Manual operation ok	Hands-free operation required
Proof of Ownership	Probably not required	Desirable for strong security
Internet Access req'd?	Not required	Desirable; probably required
App-layer onboarding	Desirable	Desirable; probably required
Device accessible?	Yes	May be difficult to reach
Regulatory compliance	Not typically a concern	Mandatory for some sectors

> Observations on t2trg-secure-bootstrapping

The t2trg document surveys current options for what we define as network-layer onboarding

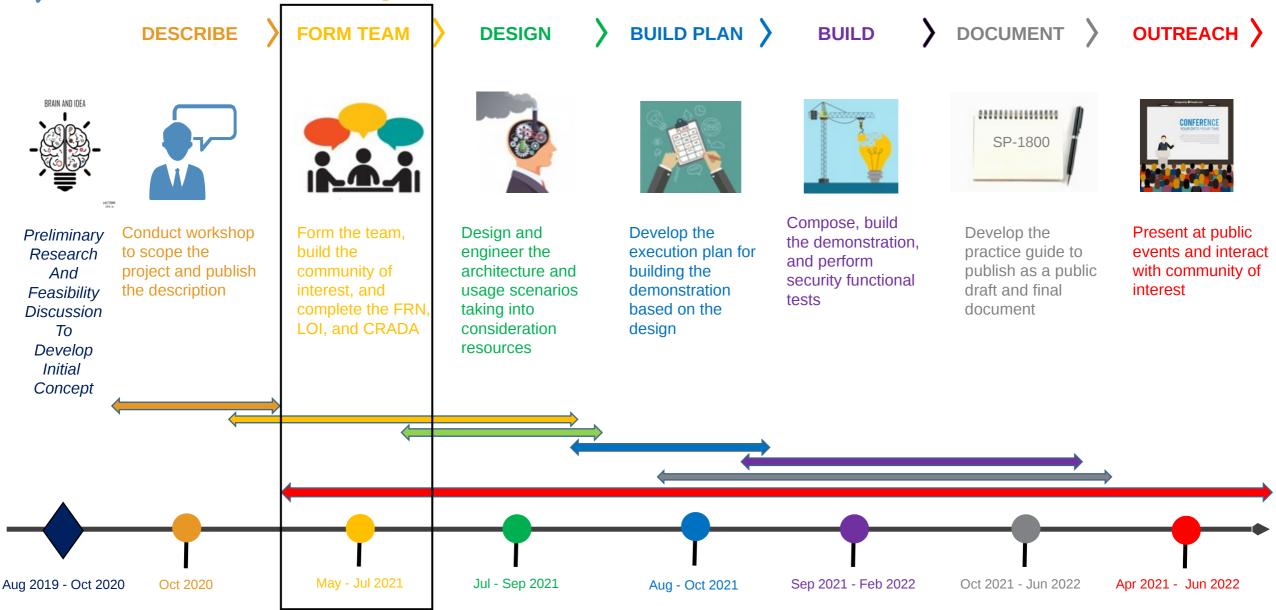
The t2trg recommendations for use of the terms "bootstrapping" and "provisioning/configuring" are reasonably consistent with our onboarding steps "bootstrapping" and "provisioning"

Document goals are different

- As a survey, t2trg is agnostic with respect to specific requirements for secure bootstrapping.
- NCCoE white paper defines minimum requirements for trusted onboarding

NCCoE whitepaper establishes a generic model with well-defined roles and a robust list of characteristics for the onboarding lifecycle

> NCCoE IoT Onboarding Project


Trusted IoT Device Onboarding and Lifecycle Management: Enhancing IP-Based IoT Device and Network Security

- Network-layer onboarding
- Integrate additional capabilities to secure the full device lifecycle
 - e.g., application-layer onboarding, MUD, attestation, lifecycle management

Opportunity for cross-pollination

Knowledge developed and learned form the project can help guide standards

Estimated Project Execution Timeline

Thank You!

Questions?

Please send follow-up email to: iot-onboarding@nist.gov

References

NIST Cybersecurity White Paper:

-https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.0908 2020-draft.pdf

NCCoE Virtual Workshop:

-https://www.nccoe.nist.gov/events/virtual-workshop-tru sted-iot-device-network-layer-onboarding-and-lifecycle-m anagement

NCCoE Project Page with Project Description:

-https://www.nccoe.nist.gov/projects/building-blocks/iot-

Backup Slides

What is Trusted Network Layer Onboarding?

Network-Layer Onboarding

- -Steps needed to provision a device with its network credentials
 - Performed when the device is deployed (not when it is manufactured)

Trusted Network-layer Onboarding

- Device is provisioned with unique credentials
- Device and network have the opportunity to authenticate each other
- Provisioning occurs over an encrypted channel
- -No humans are given access to the credentials
- —Can be performed throughout the device lifecycle

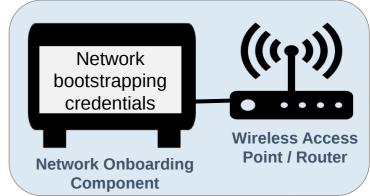
> Trusted Onboarding Basics

Network Onboarding Component

A logical component that acts on behalf of the network to onboard devices using the *network onboarding protocol*

Network bootstrapping credentials

Credentials the network needs so it can be authenticated by the device (e.g., unique ID and private key)


Device bootstrapping credentials


Credentials the device needs to establish communications with and be authenticated by the network onboarding component. Provisioned when the device is manufactured (e.g., unique ID, private key, Wi-Fi channel). May also include additional information such as MUD URL and application-layer bootstrapping credentials)

Device Information Declaration (optional)

Signed digital assertion of info about the device, such as its owner

Local Network

Device Information Declaration

Onboarding Characteristics of Interest to Manufacturers and Vendors*

- Specification Status
- Is it proprietary?
- Owning Body
- Implementation Status/Maturity
- Who Implements It?
- Manufacturing Complexity
- Regulatory Compliance
- Certification Program
- IoT Device Requirements
- Proof of ownership

- Type of secure storage required
- Memory, power, size, wired/wireless
- Bootstrapping information inserted by manufacturer (identity, private key, device intent info, applicationlayer bootstrapping info)