
MASQUE
Using QUIC Datagrams

with HTTP/3
draft-ietf-masque-h3-datagram

IETF MASQUE Interim – Virtual – 2021-04

David Schinazi – dschinazi@google.com
Lucas Pardue – lucaspardue.24.7@gmail.com

1

https://www.ietf.org/archive/id/draft-ietf-masque-h3-datagram-00.html

draft-ietf-masque-h3-datagram – MASQUE Interim – Virtual – 2021-04

Let's start from the basics
QUIC DATAGRAM frame just has a Payload

HTTP/3 is a multiplexed protocol

If we have multiple CONNECT-UDP and CONNECT-IP requests on the same
connection, we need a way to associate each datagram with the right request

Solution: have the DATAGRAM frame Payload start with a varint

But wait, there's more! How do you associate a varint with a request?
2

HTTP/3 DATAGRAM Frame {
 Flow Identifier (i),
 HTTP/3 Datagram Payload
(..),
}

draft-ietf-masque-h3-datagram – MASQUE Interim – Virtual – 2021-04

Some requirements
False start: client may send a datagram before receiving the HTTP response

Intermediary support

Extensibility of CONNECT-UDP/IP (without changing intermediaries)

3

draft-ietf-masque-h3-datagram – MASQUE Interim – Virtual – 2021-04

Example: CONNECT-UDP without extensions
Every datagram payload maps to a UDP payload

You just need to associate the datagram varint with the request

 HTTP/3 Datagram Payload = {
 UDP Payload (..),
 }

4

draft-ietf-masque-h3-datagram – MASQUE Interim – Virtual – 2021-04

Example: CONNECT-UDP + timestamp extension
Every datagram payload maps to a timestamp followed by UDP payload

 HTTP/3 Datagram Payload = {
 Timestamp (64),
 UDP Payload (..),
 }

When receiving a datagram, how do you know whether to parse with this format or
with the original extension-less CONNECT-UDP format?

5

draft-ietf-masque-h3-datagram – MASQUE Interim – Virtual – 2021-04

Example: CONNECT-IP + compression extension
Start off with all traffic sent as: Datagram = IP Packet (uncompressed)

Realize that a 5-tuple is a lot of traffic, negotiate compression for that 5-tuple

Packets for that 5-tuple can now be sent as: Datagram = compressed format

Multiple formats coexist on a single request

Not possible to use separate HTTP requests here because different requests can
be routed to different backends

6

draft-ietf-masque-h3-datagram – MASQUE Interim – Virtual – 2021-04

Updated requirements
False start: client may send a datagram before receiving the HTTP response

Intermediary support

Extensibility of CONNECT-UDP/IP (without changing intermediaries)

Multiple datagram payload formats multiplexed in a single request

Negotiation of new datagram payload formats mid-stream

7

draft-ietf-masque-h3-datagram – MASQUE Interim – Virtual – 2021-04

And now for the design discussion!

8

draft-ietf-masque-connect-udp – IETF Interim – Virtual – 2021-01

How to associate datagrams with requests and
in-request context (e.g. compressed vs not)
Single-layer design (currently in draft)

Datagram payload contains one varint: flow ID

Flow ID is connection-wide, per-hop, maps to
request and additional in-request context

Downside: intermediaries need to be involved in
the in-request negotiation

9

Two-layer design

Datagram payload contains two varints:
stream ID and flow ID

Stream ID is connection-wide, per-hop, maps to
request

Flow ID is per-request, end-to-end, maps to
additional in-request context (e.g. compressed
vs uncompressed)

Downside: uses one more varint on the wire

draft-ietf-masque-connect-udp – IETF Interim – Virtual – 2021-01

Unidirectional design

Two namespaces, one per endpoint

Unilateral declaration, no negotiation

Downside: DoS vector by asking peer to save
infinite state

Downside: some extensions (e.g. QUIC-aware
CONNECT-UDP) want the ability to reject
registrations

Bidirectional design (currently in draft)

One single namespace,
even=client-initiated, odd=server-initiated

Inherently negotiated, peer echoes the
registration to indicate acceptance

Are flow IDs unidirectional or bidirectional? TODO

10

draft-ietf-masque-connect-udp – IETF Interim – Virtual – 2021-01

How to negotiate flow IDs

HTTP header design (currently in draft)

Creates mapping at start of stream

Datagram-Flow-Id = 2, 4; foo=bar

Downside: in the one-layer design, it's effectively
a hop-by-hop header which is frowned upon in
HTTP/3
Downside: it can't create an association
mid-stream
Downside: the header format as a list with
parameters didn't receive much love

11

"REGISTER_FLOW_ID message" design

Can create mapping mid-stream

Message carries the flow ID and a way to
convey format/semantics/extension-data

Can be implemented via an HTTP/3 frame
(or other options, but let's not bikeshed right
away)

draft-ietf-masque-h3-datagram – MASQUE Interim – Virtual – 2021-04

(Assuming two-layer design)
Is the flow ID layer optional?
Some HTTP extensions might not need flow IDs, and want to save one byte

Proposal (assuming REGISTER_FLOW_ID message):
add separate REGISTER_SINGLE_FLOW message which indicates that no flow
IDs are in use

12

draft-ietf-masque-connect-udp – IETF Interim – Virtual – 2021-01

REGISTER_FLOW_ID Message Design

Flow ID zero

Reserve flow ID 0 as a control channel

Means control messages can be sent unreliably,
requires a RELIABLE_DATAGRAM HTTP/3
frame

Intermediaries don't need to know that
REGISTER_FLOW_ID exists

13

Separate frame

New HTTP/3 REGISTER_FLOW_ID frame

Cleaner separation

Intermediaries need to understand the
REGISTER_FLOW_ID frame in addition to
understanding DATAGRAM (and potentially
RELIABLE_DATAGRAM)

draft-ietf-masque-connect-udp – IETF Interim – Virtual – 2021-01

REGISTER_FLOW_ID Message Design, part 2

No abstraction

The message (flow ID 0 | frame) means
REGISTER_FLOW_ID

Slightly less code

14

One layer of abstraction

The message (flow ID 0 | frame) means "control
message" which starts with a varint Message
Code, and code 0 = REGISTER_FLOW_ID

Requires IANA registry

Too much extensibility is reminiscent of SNI, an
extensibility joint that rusted shut

This extensibility would allow new messages to
be defined end-to-end without modifying
intermediaries

draft-ietf-masque-h3-datagram – MASQUE Interim – Virtual – 2021-04

REGISTER_FLOW_ID Message Design, part 3
The register message carries a flow ID, and associated information

Needed to know the format/semantics/extension-data of this flow ID

Examples:
Regular CONNECT-UDP
CONNECT-UDP with timestamp
CONNECT-IP but with compressed IP/port of 192.0.2.33:443

How do we encode this?

Proposal: list of text key-value pairs, e.g. "ip=192.0.2.42,port=443"

15

draft-ietf-masque-h3-datagram – MASQUE Interim – Virtual – 2021-04

RELIABLE_DATAGRAM frame
Required in the flow ID 0 control channel design

Nice to have in other designs

If not present, require a way to send datagrams reliably on the DATA stream

Requires intermediary support, which adds work now but also means that adding
this later might be harder

So, do we need this?

16

MASQUE
Using QUIC Datagrams

with HTTP/3
draft-ietf-masque-h3-datagram

IETF MASQUE Interim – Virtual – 2021-04

David Schinazi – dschinazi@google.com
Lucas Pardue – lucaspardue.24.7@gmail.com

17

https://www.ietf.org/archive/id/draft-ietf-masque-h3-datagram-00.html

