Network Working Group S. Cheshire
Internet-Draft Apple Inc.
Intended status: Best Current Practice 14 August 2021
Expires: 15 February 2022

The Internet is a Shared Network
draft-cheshire-internet-is-shared-00b

Abstract

(Unpublished Internet Draft) In the 1980s the designers of the
Internet succeeded in creating a fast, efficient, inexpensive, shared
network, that provided satisfactory fair sharing of capacity in a
lightweight, decentralized fashion. One area that remains to be
improved is to provide this fast, inexpensive, shared service with
lower end-to-end round-trip delays for all traffic.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 February 2022.
Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Simplified BSD License text
as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Cheshire Expires 15 February 2022 [Page 1]

Internet-Draft Shared Internet August 2021

Table of Contents

1. Introduction . . . ¢ ¢ ¢ ¢ ¢ ¢ i 4 e e e e e e e e e e e e 2
2. Queueing Delays in the Internet« .« ¢ .« . . 5
3. Goals for Low-Delay Networking . . . « ¢ ¢ ¢ ¢ ¢« o o« o o o = 7
4. Explicit Congestion Notification Strategies 9
5. Queue Management Strategy ¢ ¢ ¢ o o o o o . .o . . . 10
6. Queue Protection . .« ¢ ¢ ¢« ¢ ¢ 4 e e e e e e e e e e e e o o 11
7. Network Equipment Vendor Choices « 12
8. End-System Choices . . . ¢ ¢ ¢« ¢ ¢ v ¢ o o« o o o o o o o o« o 12
9. Non-Queue-Building . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢ 4« ¢ + e & o o« & o o 13
10. UDP is not a Transport Protocol « ¢« « ¢« « « . . 14
11. ConcluSionsS .« « o o o ¢ & o o o o o o o o o e e e e e e e e . 17
12. Security Considerations ¢ ¢ ¢« ¢ ¢ ¢« ¢ ¢ ¢« o o« o« o o o 17
13. IANA Considerations . . . ¢ ¢ ¢ ¢« ¢ ¢ ¢« o ¢ o« o o o« o « o« « « 17
14. References . . ¢ v v ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o« o« o e e e « « . 18
Author's AdAresSsS . ¢ ¢ ¢ ¢ ¢« ¢ ¢ o« o o o o e e 4 e e e e e« o 19

1. Introduction

[This document is an unpublished initial version of an upcoming
Internet Draft. This is currently just the personal opinions of the
author. This document may contain errors which should be corrected.
Feedback is welcomed.]

In the 1980s there was much debate between proponents of circuit
switching and proponents of connectionless packet switching.

The circuit-switching proponents argued the benefits of reservations
and guarantees. Providing these capabilities made the network slow
and expensive (remember when international telephone calls cost
several dollars per minute, and for most people there were no
international video calls available at all) but it was argued that
these capabilities were necessary.

In contrast, connectionless packet-switched networks like Ethernet
provided much higher rates at lower costs, by declining any attempt
to provide reservations and guarantees. Instead, software running
over Ethernet had to be smart enough to adapt itself to the available
rate dynamically, rather than expecting a guaranteed rate and then
simply using that rate.

In summary, a circuit-switched network was a smart, expensive
network, into which you could connect simple devices like a $10
telephone handset. A packet-switched network was a simple, cheap
network, which relied on the end devices to be smart, which at the
time meant high-end computer workstations costing tens of thousands

Cheshire Expires 15 February 2022 [Page 2]

Internet-Draft Shared Internet August 2021

of dollars. Instead of building a smart network with simple devices,
packet switching moved the intelligence to the edges, making a simple
network with smart end-devices.

One often-overlooked aspect of reservations and guarantees is the
fact that, necessarily, a reservation request may sometimes be
denied. If the network has such extremely abundant capacity that it
always has the ability to serve all traffic that wants to use it,
then no reservation mechanism is needed, because the network will
always work. The very existence of a reservation mechanism admits
that sometimes there will not be enough capacity to serve every
request, in which case some requests will be denied -- a telephone
"busy signal".

When I first arrived at Stanford at the start of my Ph.D., I heard a
story from Professor David Cheriton. Professor Cheriton had been out
of California during the 1989 California earthquake, and when he
learned of the earthquake he tried to call to see if his family was
alive or dead. The California telephone system was so grossly
overloaded that it was unable to handle any incoming calls at all, so
all attempts to call California were met with a busy signal. For
some time Professor Cheriton was unable to find out the fate of his
family. As he commented later, the telephone system had only two
modes of operation: It could give him a fixed 64kb/s, or nothing at
all. Since it could not guarantee 64kb/s, it gave him nothing at
all. Professor Cheriton wasn't wanting 64,000 bits per second of
information, he was wanting one single bit of information, a service
the telephone system was utterly unable to provide.

The strong lesson Professor Cheriton learned from this experience,
and passed on to his students, was that a flexible network is better
than a rigid one. ©Not every application needs a fixed 64kb/s data
rate, and a given moment a network may not be able to provide that
rate. A rigid network offers reservations and guarantees, but the
Faustian bargain made there is that reservations and guarantees come
with a dark side -- the inevitable refusals. A flexible best-effort
network like the Internet doesn't offer reservations and guarantees,
but it also doesn't give refusals. If a flexible best-effort network
which never gives refusals sounds like a panacea, remember that it
also comes with a kind of Faustian bargain of its own: by moving the
intelligence out of the network and into the end devices, those
devices take on the solemn responsibility to dutifully carry out the
burden of being the intelligence of the network, taking care to adapt
their sending rates to what the network is able to carry at that
moment in time. When the end devices fail to perform those duties
correctly the result is congestion collapse of the entire Internet,
as happened several times during the 1980s until the TCP congestion
control algorithms were refined sufficiently to work correctly.

Cheshire Expires 15 February 2022 [Page 3]

Internet-Draft Shared Internet August 2021

By the 1990s it was clear that circuit-switching technologies like
ISDN, ATM (Asynchronous Transfer Mode) to the desktop, and Wireless
ATM were failures, and packet-switching technologies like the
Internet, Ethernet, and Wi-Fi were succeeding in a big way.

There were moves to add reservations and guarantees to IP, the
Internet Protocol, but none succeeded, and probably for good reason
-- the lack of guarantees (and the corresponding refusals that
necessarily go hand-in-hand with providing guarantees) are actually a
benefit of the Internet, not a drawback.

A consequence of using a network where there are no reservations,
guarantees, or service refusals is that all apps on such a
connectionless packet-switched network like the Internet need to play
their part in keeping the network operating smoothly by adapting
their usage to the capacity they find available. When you click
"send" on an email, the email program should transmit your email as
fast as the network is able to carry it, but no faster. When you
talk on a voice or video call, the app should scale its audio and
video quality to match the available capacity. Sending at a rate
lower than the available capacity results in an unnecessarily
degraded audio or video experience. Sending at a rate higher than
the available capacity results in the excess packets all being lost
due to queue overflow at the bottleneck, which also generally results
in an unnecessarily degraded audio or video experience, and also
degrades other traffic sharing the network by causing excessive
packet loss for those flows too. Of course there are limits to the
scaling range of a typical voice or video app. If the available
network capacity is multiple gigabits per second then a typical voice
or video app will not use that because such an app is usually unable
to make use of more than a few megabits per second. If the available
network capacity is under one kilobit per second then the app is
unlikely to be able to sustain any usable audio or video at all at
that rate, and it will either have to terminate the call entirely or
downgrade to text-based messaging.

Cheshire Expires 15 February 2022 [Page 4]

Internet-Draft Shared Internet August 2021

2. Queueing Delays in the Internet

We have built this shared network, and the adaptive apps that make
use of it. We achieved the satisfactory fair sharing of capacity by
having large, simple FIFO (First-In First-Out) buffers (queues) at
each hop in the network. When an app sends data at a rate faster
than the bottleneck link can carry it, packets arrive in the
bottleneck queue faster than they depart the queue, and the queue
fills up. When a packet arrives when the queue is already full to
capacity the packet is unavoidably lost, because there is no room to
store it. The sender reacts to this loss by realizing that it is
sending too fast, and reduces its rate. By having every device on
the Internet work according to these rules, the Internet remains
stable and adapts to varying traffic demands. This rate adaptation
in response to congestion loss is generally not done directly by most
network apps -- if they use a mature transport protocol like TCP
[RFC7414] or QUIC [RFC9000], then this rate adaptation is done for
them automatically. However, if an app embeds its own home-grown
transport protocol running directly over UDP [RFC8085] with no other
transport layer, then it is responsible for doing the necessary rate
adaptation itself (see "UDP is not a transport protocol" below).

There are two consequences of this simple network buffering design.

The first consequence is that the buffers tend to be fairly large in
order to smooth out changes in traffic rate without the output link
going idle because the queue drained down to empty. As a result of
these large buffers the time a packet spends waiting can be several
times longer than the actual end-to-end signal transmission time.
The speed of light in fibre, and the speed of electrical signals in
copper wire, are both about 200 million metres per second. This
means that an IP packet can travel 200 km (125 miles) in one
millisecond, or 20,000 km (12,500 miles) in 100 ms. Were it not for
oversized network buffers, an IP packet should be able to go coast-
to-coast across the United States, and back again, in under 100 ms.
But in reality today, in many cases a packet may spend several
hundred milliseconds sitting in network buffers waiting to complete
its journey. These oversized buffers significantly increase the time
it takes to deliver a packet beyond what the speed-of-light 1limit
would indicate.

Cheshire Expires 15 February 2022 [Page 5]

Internet-Draft Shared Internet August 2021

The second consequence is that if the only way the network indicates
that a device is sending too fast for the bottleneck link is by
losing a packet, then the lost packet needs to be retransmitted.
Typically that is done by the receiver sending acknowledgements (or
negative acknowledgements) back to the sender, indicating the missing
packet, which causes the sender to retransmit the lost packet. This
adds an extra round-trip time before the desired data finally arrives
at the receiver, thereby doubling the already inflated packet
delivery time.

To reduce end-to-end round-trip delays on our packet-switched
connectionless Internet, three things need to improved. Firstly,
network bottlenecks should not allow large queues to become
excessively full before finally deciding to signal the sender to slow
down a little. Secondly, if the congestion signal comes sooner, the
end-system rate reduction should be less drastic. And finally, the
signal to slow down a little should not be resorting to drastic means
like completely destroying a packet, but should be something a little
less destructive.

In the original Internet design the only way to signal congestion was
by having the bottleneck link lose packets due to queue overflow.
There was a certain elegance in this: Since, for reliability, end
systems had to deal with the occasional unexplained packet loss
anyway, losing additional packets due to congestion was not fatal,
because the end systems would retransmit the lost data and recover.
Also, since congestion occurs when the network is busy, expecting
routers to do more work in this situation might not be ideal, and
simply losing the extra packets is arguably the "least work" solution
to handle an overload situation. Since random unexplained packet
loss was, and still is, relatively rare, and the dominant reason for
loss is congestion and queue overflow, it is prudent for end systems
to assume that any packet loss is probably an indicator of
congestion. Thus end systems respond to packet loss both by reducing
their sending rate and by retransmitting the lost data.

Thus packet loss is both a vital congestion signal (to keep the
shared network stable), and an impairment (lost data needs to be
retransmitted). A newer development, Explicit Congestion
Notification [RFC3168] allows the network to communicate the vital
congestion signal without the impairment caused by data loss.

Cheshire Expires 15 February 2022 [Page 6]

Internet-Draft Shared Internet August 2021

3. Goals for Low-Delay Networking

A familiar problem that many people have experienced is that using
the Internet sometimes feels "slow", despite Internet "speed tests"
reporting that the connection can carry hundreds of megabits per
second, or even gigabits per second. This slowness is obvious when
it impacts real-time gaming and video conferencing, but it affect all
applications. We are used to seeing simple network operations, like
getting weather forecasts, stock quotes, or driving directions, all
showing spinning animations while they wait for the network, even on
multi-megabit or even gigabit connections.

Some efforts to improve responsiveness for real-time gaming and video
conferencing have focused on prioritizing some traffic over other
traffic, but these efforts are unlikely to be fruitful. One problem
with traffic prioritization is that it implicitly assumes that
traffic management is a zero-sum game. For some traffic to get more
of the scarce bandwidth, some other traffic must get less. That
requires making value judgements about which traffic is more
deserving than other traffic. It is natural for engineers to assume
that whatever they work on is the most important traffic. It is
common to assume that voice and video traffic is automatically more
important than any other traffic. But when the children in the house
are having an eight-hour casual group video chat with their friends,
and the parents are trying to access files to get their work done, is
the video traffic really more important and more deserving than the
file transfer traffic? The notion of prioritizing traffic is
grounded in an assumption that scarcity of bandwidth is the root
cause of the problem. This may have been a valid analysis in the era
of 1Mb/s DSL connections, but when home users have gigabit
connections and the problems remain, something else must be causing
the problem.

If a network has abundant capacity, sufficient to reasonably serve
all the traffic sharing it, and network operations still feel
sluggish, then the problem is not too little capacity; it's too much
queueing delay. One network connection could have 100Mb/s throughput
with 5ms queueing delay, while another network connection could have
100Mb/s throughput with 500ms queueing delay. An Internet speed test
would report the same throughput for both, but the user-experience
while using those network connections -- the responsiveness of
network applications -- would be very different.

Therefore, the solution we need to work on is not capacity allocation

of a presumed scarce resource, it is reducing unnecessary queueing
delays.

Cheshire Expires 15 February 2022 [Page 7]

Internet-Draft Shared Internet August 2021

The main goal of this work is to minimize the end-to-end round-trip
delay for all network traffic. The goal is to minimize the time
between when a client issues a request to a server and when the
client receives the corresponding reply in response, to as little as
possible above the unavoidable speed-of-light-in-fibre delay.

A consequence of this goal is that per-flow queueing, while useful,
is not itself an entire solution. Flow Queueing (FQ) seeks to
isolate one flow from the potential bad behaviours of other flows
sharing the same network link. The reason FQ alone is insufficient
is that FQ assumes the "good" flow that deserves low delay is, just
by chance, a source-limited flow with a very low-rate compared to the
actual capacity on this network at this moment in time, so it will
never build up queue, and the "bad" flow that is building up a queue
is a capacity-seeking flow, so it doesn't deserve low delay.

Our goal should be to have an Internet where all flows can be
capacity-seeking (to adapt to the network conditions, to provide the
best user experience that the network can support at that time) and
at the same time all flows also get low round-trip delays. An
example of this is video streaming. A viewer usually wants their
video streaming to provide the best visual quality that the video
source and/or the network can provide, so the flow should be
capacity-seeking. At the same time, if the viewer decides to skip to
a different point in the video, they also want to spend the least
time possible watching a "buffering... buffering... buffering..."
indicator waiting for the new video segment to load, so we want the
flow to experience low delay. This means that when a video streaming
client issues a new "GET" request for a different segment of video,
there should be the minimum amount of stale, now unwanted, old data
sitting in its network queue. Thus the goal is not just to provide
inter-flow protection (to isolate light flows with no queue from
other flows that have filled their queue) but also to keep each
individual queue short too.

To summarize: any given flow should be able to be capacity-seeking
(to give best possible user experience -- best video quality, best
map tile fidelity, etc.) without suffering excessive self-induced
queueing delay as a result.

Cheshire Expires 15 February 2022 [Page 8]

Internet-Draft Shared Internet August 2021

4. Explicit Congestion Notification Strategies

Classic ECN [RFC3168] treats a single packet marked CE (Congestion
Experienced) as equivalent to a packet dropped due to queue overflow.
This results in a drastic reduction by the sender in the number of
packets in flight, historically by half, and more recently a
reduction of 30%. This drastic reduction by the sender risks the
bottleneck queue draining to empty, resulting in wasted network
capacity, so network queues are typically quite large to avoid this.

These large oscillations in the number of packets in flight, and the
large queues to accommodate these large oscillations, mean that
queueing delays with AQM (Active Queue Management) and Classic ECN,
while still lower than a simple tail-drop FIFO, are still higher than
they could be.

Newer techniques, like L4S [L4S] and SCE [SCE], signal mild
congestion sooner, expecting a more restrained reaction from the
sender. This allows smaller oscillations in the number of packets in
flight, which requires less queueing, which allows even lower delays.

L4S uses an input signal to the network, indicating that the sender
and receiver understand L4S, and will interpret CE (Congestion
Experienced) marks in the more moderate manner dictated by L4S.

SCE uses only an output signal from the network. SCE does not know
whether the sender and receiver implement SCE or just Classic ECN.

It marks packets with the SCE mark when the low queue threshold is
reached, and it marks packets with the Classic CE mark when a higher
queue threshold is reached. If the sender and receiver understand
the SCE mark then they will respond to it; otherwise they will ignore
it and respond when they start seeing CE marks.

Cheshire Expires 15 February 2022 [Page 9]

Internet-Draft Shared Internet August 2021

5. Queue Management Strategy

Flow Queueing (FQ) implements a separate queue for each flow
traversing that link. 1In routers close to the edge of the network,
where there are a small number of flows and per-flow queues are
feasible, this is useful, because if a particular flow behaves badly
it only affects that flow's private queue. Deeper in the the core of
the Internet, where there may be thousands or millions of flows
sharing a link, it has been argued that perfect per-flow queueing is
infeasible, so multiple flows will have to share a queue. When
multiple flows share a queue it is more important that they all
behave well.

Technologies like VPN also make flow segregation difficult, because
many independent flows may share the same VPN tunnel, and part of the
purpose of VPN is to obscure traffic details from outside observers.
Similarly, newer transport protocols like QUIC [RFC9000] provide
multiple independent streams on single QUIC connection, and use
encryption to obscure the flow details from outside observers.

A system that offers perfect flow segregation into a separate queue
per flow, can use SCE (Some Congestion Experienced -- an early
indicator of light queue buildup beginning to occur). The per-flow
private queue marks packets with SCE when light queue buildup begins
to occur. If the receiver and/or sender don't implement SCE then the
SCE marks are ignored. When a larger queue builds up, conventional
CE is generated, and the sender responds by slowing down. Older
senders and receivers that only support Classic ECN get reasonably
low queueing delay with little-to-no packet loss. SCE-aware senders
and receivers can get ultra-low queueing delay with little-to-no
packet loss. The queue management algorithm doesn't need to know in
advance whether the sender and receiver support just Classic ECN or
SCE -- the queue management algorithm does both and the sender and
receiver interpret the marks they understand. This makes SCE an
output signal from the network. The sender and receiver use ECT to
indicate they have some kind of ECN support, but they don't say
which. The SCE algorithm provides both SCE and CE marks, and lets
the sender and receiver decide which marks they want to respond to.
If the sender and receiver only support Classic ECN they get a longer
queue, but that doesn't matter because the bottleneck implements
perfect flow segregation so the longer queue doesn't impact any other
traffic.

In the core of the Internet where perfect per-flow queueing is
infeasible, different flows share a queue. Putting all traffic in a
single shared FIFO queue requires all traffic sharing that queue to
play by the same rules. If a thousand flows occupying space in the
same shared FIFO queue implement SCE, and one flow implements only

Cheshire Expires 15 February 2022 [Page 10]

Internet-Draft Shared Internet August 2021

Classic ECN, then all the SCE flows will slow down, leaving the
Classic ECN to fill the queue up to the Classic ECN CE marking
threshold, resulting in low throughput and high delay for all the
other flows. Consequently, when engineering constraints dictate that
perfect flow segregation into a separate queue per flow is not
feasible, and traffic needs to share a queue, the traffic needs to
signal its willingness to "play by the rules" of ultra-low-delay
queueing. L4S dual-queue assumes a signal that a flow is willing to
"play by the rules" of ultra-low-delay queueing, and other traffic
goes into the Classic ECN queue.

6. Queue Protection

Because of the vulnerability of an L4S-style shared ultra-low-delay
queue to being disrupted by a single misbehaving flow, a queue
protection function is required. If it were possible to perfectly
track the behaviour of every individual flow separately then
presumably it would be equally possible to queue every individual
flow separately, so we have to assume that in this scenario that is
not possible. Therefore queue protection, like road traffic
policing, is a statistical operation. Some small percentage of flows
are selected for monitoring, and if detected to be violating the
rules of the ultra-low-delay queue, they are penalized. Road traffic
police catch some drivers for infractions such as exceeding the speed
limit or illegally parking in a handicapped parking space, but not
every time. Thus the penalty for drivers who are caught violating
the rules has to be a sufficient disincentive to discourage drivers
from doing that. Similarly here, the penalty for being caught
abusing the ultra-low-delay queue has to be a sufficient disincentive
to discourage application developers from thinking they can get away
with using the ultra-low-delay queue without responding when it
generates congestion signals.

Cheshire Expires 15 February 2022 [Page 11]

Internet-Draft Shared Internet August 2021

7. Network Equipment Vendor Choices

Network equipment vendors have a choice of implementing Classic ECN
or something newer like L4S or SCE. Given that there are clients
today that implement Classic ECN but there are no widely used clients
that implement L4S or SCE, Classic ECN is attractive. Implementing
Classic ECN offers an immediate benefit today, whereas L4S or SCE
offer the promise of some benefit at an uncertain time in the future.

8. End-System Choices

Writers of apps on end systems have a choice of implementing Classic
ECN or something newer like L4S or SCE. Given that there are network
devices today that implement Classic ECN but there are no widely used
network devices that implement L4S or SCE, implementing Classic ECN
is attractive because if offers the potential of an immediate
benefit.

Furthermore, there are almost always multiple hops on an Internet
path, any of which could be the bottleneck link. In addition, the
bottleneck link on a given Internet path can change repeatedly during
the lifetime of a flow. Suppose a user has 100Mb/s cable modem
Internet service. When they are close to their Wi-Fi access point,
their Wi-Fi rate may be above 100Mb/s, so their bottleneck link is
from the cable CMTS to their cable modem. The CMTS may implement
L4S. TIf the user walks a little further from their Wi-Fi access
point, so that their Wi-Fi rate drops below 100Mb/s, then their Wi-Fi
access point becomes their bottleneck link. Their Wi-Fi access point
may only implement Classic ECN. Therefore an application writer
desiring low-delay networking would be wise to support both L4S and
Classic ECN. When the bottleneck link is the CMTS, which supports
L4S, that's great for ultra-low delay. When the user walks a few
feet and the bottleneck link becomes the Wi-Fi access point, which
only supports Classic ECN, that's still better than a simple tail-
drop FIFO.

Thus an application writer would be wise to support both Classic ECN
and one of the newer, even better, techniques, and use whichever is
available at any given moment. One difficulty is how an end system
knows which style of ECN is implemented on the current bottleneck
link for its path, especially when the bottleneck can change from
second to second during the lifetime of a communication.

Cheshire Expires 15 February 2022 [Page 12]

Internet-Draft Shared Internet August 2021

9. ©Non-Queue-Building

A recent development is the concept of Non-Queue-Building flows,
which can also benefit from ultra-low delay. A common example is DNS
[RFC1034][RFC1035] traffic, which typically generates only a single
query packet, and receives only a single response packet in reply,
and getting that response as quickly as possible results in an
improved user experience. When only one packet is in flight, it is
not clear today how to apply meaningful congestion control to that
single packet (though such technology could be developed in the
future). Consequently, it has been proposed that such traffic should
allowed to occupy the ultra-low delay queue without the
responsibility of responding to congestion signals.

It is recommended that this concept by applied with extreme caution,
and limited to traffic sources that generate at most one packet per
round-trip time. Otherwise, there is a risk that many application
developers will declare that their traffic fits this category, and
therefore is entitled to occupy the ultra-low delay queue without the
responsibility of responding to congestion signals.

For example, a DNS client that performs only one request at a time
may be a legitimate case of Non-Queue-Building traffic, but a DNS
client that is able to perform multiple queries concurrently would
not qualify for the exemption from responding to congestion signals.

Similarly, the designer of a home automation controller using CoOAP
[RFC7252] to control devices may believe they can claim their
software to be Non-Queue-Building and therefore they can ignore
congestion control, because CoAP sends only a single packet and waits
for a single reply packet. However, when their home automation
controller executes an "all lights on" command to turn on 50 light
bulbs, and then sends 50 concurrent CoAP requests into the network,
that can induce significant queue overflow and packet loss in that
network.

Consequently, we need to be very careful when deciding what traffic
can legitimately be declared as being Non-Queue-Building in all
possible scenarios, and therefore exempt from the responsibility of
implementing competent congestion control to protect the shared
packet-switched network.

Cheshire Expires 15 February 2022 [Page 13]

Internet-Draft Shared Internet August 2021

10. UDP is not a Transport Protocol

UDP is not a Transport Protocol. It is just a datagram header
format. Merely having "P" in the acronym is not enough to qualify as
a protocol.

We use the term "protocol" in computer networking by analogy with
diplomatic protocol. A protocol is a set of rules for behaviour.

The rules state what should happen and when it should happen. Such
rules may say something like, "If I do A then you should do B within
time period C. If you fail to do that, then after time D has elapsed
I will do E."

UDP just says where a packet came from, where it is going to, and
nothing else. The source and destination ports in the UDP header are
just like the source and destination addresses in the IP header. 1In
fact, the source and destination ports should have been in the IP
header from the start, and then UDP wouldn't have even been needed.

As described earlier, the insight of the Internet was to build a
fast, cheap, simple network, instead of a slow, expensive, smart
network. A consequence of this is that the smarts of the Internet
lie in the end systems, not the network itself. To operate on the
Internet, end systems have to meet that responsibility to be smart.
If you use TCP or QUIC, that hard work is done for you. If you
invent your own protocol running directly over UDP with no other
transport layer, you have the responsibility to make it smart. UDP
will not do any of the important work for you.

It is common for people to talk about packet loss as something that
just happens on the Internet, and their home-grown protocol has to
send more packets to "power through" the packet loss. The reality is
the opposite. Packet loss is not something the Internet does to a
transport protocol. Excessive packet loss is something a home-grown
transport protocol inflicts on the Internet by sending too many
packets and not paying attention to congestion signals (packet loss
and/or explicit congestion marking) and implementing appropriate rate
reductions (congestion control) in response.

SUN Microsystems used to have the advertising slogan, "The network is
the computer". A more accurate slogan for the Internet might be,
"The computer is the network". The crucial intelligence that keeps
the Internet working smoothly exists in the transport protocols of
the end systems that connect to it, not in the Internet itself. This
is why it is so crucial that transport protocols are designed well.

Cheshire Expires 15 February 2022 [Page 14]

Internet-Draft Shared Internet August 2021

A transport protocol handles:
1. Corruption (via checksums)
2. Reordering / Duplication (via sequence numbers)
3. Loss (via acknowledgements and retransmission)

4. Security: SYN flood and DDoS protections, encryption (separate
layer, or combined like QUIC)

5. Flow control (for when receiver-limited rather than sender-
limited) (receive window)

6. Most important: Congestion control (driven by loss or ECN)
Congestion control has to cover a vast range of throughputs, from
kb/s to Gb/s. A Transport Protocol has to infer the correct
bottleneck rate, and transmit at that rate. A Transport Protocol
has to respect overrun signals from network by slowing down.

Transport protocols like TCP and QUIC do all of the above. From that
list, all UDP does is a modest corruption check (via a weak checksum)
and none of the rest.

UDP also does little extra demultiplexing (the 16-bit ports) that
arguably is a historical design mistake and should have been left in
the IP header when TCP was split off from IP.

If the IP design had left the source and destination ports in the IP
header along with the source and destination addresses, then there
would be no reason for UDP to exist just as a separate shim to carry
endpoint port identifiers. The Internet's "system datagram protocol"
(i.e., IP) has an 8-bit protocol field -- but that is not big enough
to fully demultiplex incoming packets to an individual software
endpoint on the hardware device. Thus every layer running on top of
IP has to reinvent its own 16-bit port space, just to identify which
software endpoint is receiving this traffic. When you see
duplication of functionality (16-bit ports) replicated across a whole
set of modules at the same layer in a protocol stack (the transport
layer), that's a pretty clear sign that this should be common
functionality implemented in the layer below (the IP datagram layer).

In an alternate history where the IP header included not just source
and destination addresses but also source and destination ports,
there would be no need for UDP to exist at all, and all transport
protocols would run directly over this expanded IP layer. With port
numbers in IP, both TCP and QUIC would run directly over IP, instead
of TCP (typically in the kernel) running over IP and QUIC (typically

Cheshire Expires 15 February 2022 [Page 15]

Internet-Draft Shared Internet August 2021

in user space) running over UDP. There would be no need for this
artificial distinction between the "system datagram protocol" and the
"user datagram protocol". (As a historical note, AppleTalk did not
have this design mistake. AppleTalk did not have a "system datagram
protocol" and a "user datagram protocol" that were different, just a
single AppleTalk datagram protocol that included source and
destination ports saying where the packet was coming from and going
to, and all transport protocols used that common AppleTalk datagram
protocol.)

Aside: This lack of source and destination ports in the IP header
also hurts IP multicast. IP multicast routing protocols pay
attention to the IP multicast destination address, but not the IP
multicast destination UDP port. This results in anomalous scenarios
where a client is subscribed to a particular IP multicast address and
listening on a particular UDP port, and the IP multicast routing
infrastructure delivers packets to the host because the IP multicast
destination address matches, only to then have the kernel discard all
the packets because the UDP destination port in the packet does not
match the port the client application is listening on. This problem
would also not exist if, instead of being split across layers, the IP
addresses and transport-layer ports were combined into a single
header where the entire combined software endpoint address (what
today we artificially divide into "address" and "port") were visible
to the IP multicast routing infrastructure.

Cheshire Expires 15 February 2022 [Page 16]

Internet-Draft Shared Internet August 2021

11. Conclusions

1. All Internet applications need to be adaptive (i.e., capacity-
seeking). They should be able to scale up to give a better user
experience when more network capacity is available, and scale
down to continue working when less network capacity is available.
If that adaptable style doesn't suit your application, then
perhaps the Internet is not the right network for your
application. You can either update your application to be
adaptive, in the spirit of how a reservation-less network like
the Internet is supposed to work, or use something like ISDN or
ATM that can give you the guarantees you desire.

2. If you use TCP or QUIC, then you get this adaptive behaviour
automatically. If you build your own home-grown transport
protocol on top of UDP, you take on the responsibility of making
it be a good Internet citizen.

3. Capacity-seeking apps deserve low delay too.

4. Classic ECN, and newer technologies that offer even lower delay,
like L4S and SCE, will coexist for the foreseeable future, just
like IPv4 and IPv6 will coexist for the foreseeable future. Any
viable solution needs to accommodate this reality, and not assume
a swift "transition" to whatever new technology is being
imagined.

12. Security Considerations

Homegrown transport protocols often have security weaknesses. They
often lack safeguards against misuse, allowing them to be recruited
as an unwitting accomplice to conduct DDoS attacks. They often have
unsophisticated congestion control, that can risk destabilizing the
Internet if deployed on a large enough scale. Using mature,
thoroughly-scrutinized protocols, like TLS 1.3 over TCP, or QUIC,
reduces the risk of repeating these common mistakes.

13. IANA Considerations

This document has no IANA actions.

Cheshire Expires 15 February 2022 [Page 17]

Internet-Draft Shared Internet August 2021

14. References

[RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
<https://www.rfc-editor.org/info/rfcl034>.

[RFC1035] Mockapetris, P., "Domain names - implementation and
specification”, STD 13, RFC 1035, DOI 10.17487/RFC1035,
November 1987, <https://www.rfc-editor.org/info/rfcl035>.

[RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
of Explicit Congestion Notification (ECN) to IP",
RFC 3168, DOI 10.17487/RFC3168, September 2001,
<https://www.rfc-editor.org/info/rfc3168>.

[RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
Application Protocol (CoAP)", RFC 7252,
DOI 10.17487/RFC7252, June 2014,
<https://www.rfc-editor.org/info/rfc7252>.

[RFC7414] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
Zimmermann, "A Roadmap for Transmission Control Protocol
(TCP) Specification Documents", RFC 7414,
DOI 10.17487/RFC7414, February 2015,
<https://www.rfc-editor.org/info/rfc7414>.

[RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
March 2017, <https://www.rfc-editor.org/info/rfc8085>.

[RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,
DOI 10.17487/RFC9000, May 2021,
<https://www.rfc-editor.org/info/rfc9000>.

[L4S] Briscoe, B., Schepper, K. D., Bagnulo, M., and G. White,
"Low Latency, Low Loss, Scalable Throughput (L4S) Internet
Service: Architecture", Work in Progress, Internet-Draft,
draft-ietf-tsvwg-l4s-arch-10, 1 July 2021,
<https://tools.ietf.org/html/draft-ietf-tsvwg-l4ds-arch-
10>.

[SCE] Morton, J., Heist, P. G., and R. W. Grimes, "The Some
Congestion Experienced ECN Codepoint", Work in Progress,
Internet-Draft, draft-morton-tsvwg-sce-03, 17 May 2021,
<https://tools.ietf.org/html/draft-morton-tsvwg-sce-03>.

Cheshire Expires 15 February 2022 [Page 18]

Internet-Draft Shared Internet August 2021

Author's Address

Stuart Cheshire

Apple Inc.

One Apple Park Way
Cupertino, California 95014
United States of America

Phone: +1 (408) 996-1010
Email: cheshire@apple.com

Cheshire Expires 15 February 2022 [Page 19]

