
Packet delivery time as a tie-breaker
for assessing Wi-Fi access points

François Michel

UCLouvain
francois.michel@uclouvain.be

Olivier Bonaventure

UCLouvain
olivier.bonaventure@uclouvain.be

I. Introduction

As the Internet becomes more accessible and
the connected devices more diverse we observe
a large variety of services proposed to the In-
ternet users. Starting with file exchange where
the connection throughput had the most im-
portant impact on the user’s perceived quality
of experience, Internet users can now perform
voice or video calls, access to a remote desk-
top or even play video games running in the
cloud. These services distinguish themselves
from file transfer by the fact that their quality
of experience does not evolve linearly with the
connection throughput. Video and voice trans-
fers need a sufficient amount of bandwidth
but won’t use more bandwidth than what is
required by the audio or video content. On the
other hand, these real-time services are sensi-
tive to delay. For instance, video-conferencing
applications will suffer from a large delay as
it reduces the interactivity of the video call.
These applications are also sensitive to the de-
lay jitter. Video-conferencing applications need
every video frame to arrive a few milliseconds
after the last played frame. A frame arriving
too late due to packet loss or delay won’t be
played on time and therefore deteriorate the
quality of experience. Applications sometimes
introduce playback buffers to cope with packet
loss and jitter. However, this solution intro-
duces an artificial latency between the two com-
municating peers as the video frames spend
some time in the playback buffer before they
are actually played. These playback buffers
thus need to be as small as possible to avoid

this introduced latency. Forward Erasure Cor-
rection (FEC) can be used to cope with packet
losses and therefore lower the latency induced
by playback buffers. However, FEC doesn’t
help with jitter as the redundancy packets will
arrive after the delayed video frame. In this
case, playback buffers appear as the only re-
maining solution. This solution is however not
suitable for applications with tight delay con-
straints such as cloud gaming services where
the delay between a button press and its im-
pact on screen must be as short as possible. De-
lay and jitter can come from different sources.
For instance, the bufferbloat problem is a well
known source of delay due to large buffers
on routers in the Internet [1, 2] and to net-
work access technologies having to deal with
numerous users and bursty traffic such as 3G
or 4G antennas [3]. Several techniques have
been developed to reduce bufferbloat and the
jitter it induces. Transport protocols use pac-
ing to avoid sending data in bursts and filling
the buffers. Some transport layer congestion
control algorithms also focus on emptying the
buffers and avoiding bufferbloat [4, 5].

Besides bufferbloat, some network access
technologies are more prone to high jitter than
other. This is the case for 802.11 Wi-Fi chan-
nels [6] that suffer from delay and jitter due to
their collision avoidance mechanisms.

802.11 allows devices to be connected to the
Internet using radios. Devices send data pack-
ets to an access point and the access point
relays them to the Internet. These wireless
communications are prone to interference be-
cause the medium is heavily shared, leading

1

mailto:francois.michel@uclouvain.be
mailto:olivier.bonaventure@uclouvain.be


to frames losses. 802.11 therefore defines a re-
transmission mechanism in order to retransmit
lost frames. The transmitter waits for a random
amount of time before retransmitting a data
frame when it does not receive an acknowl-
edgement. This mechanism is known as ran-
dom backoff and is used as a collision avoidance
mechanism: if the frame loss was due to two
hosts sending data at the same time, they avoid
subsequent collisions by both waiting a differ-
ent amount of time before retransmitting the
frame. By default, 802.11 hosts will attempt to
retransmit a lost frame several times before giv-
ing up, considering that the frame is definitely
lost and transmit subsequent frames. The ran-
dom backoff time ranges from a few microsec-
onds to more than 20 milliseconds, leading to
potentially large frame delivery times. Depend-
ing on the signal strength, 802.11 hosts may or
may not transmit more than one frame at a time
using Aggregated MAC Protocol Data Units
(A-MPDU). With lower signal strengths and
bitrates, A-MPDUs are barely used, meaning
that all subsequent frames will be delayed until
the current frame is transmitted successfully.
When they are enabled, Block Acknowledge-
ments signal which frames were lost. However,
while subsequent frames were successfully re-
ceived, some Wi-Fi drivers wait for some time
to recover the lost frames before delivering
the next packets to the upper layers [7]. All
this make 802.11 channels prone to jitter, being
unsuitable for real-time applications in some
cases.

II. Experimenting with 802.11

We study how interference can impact the pack-
ets delivery time with 802.11. Our experimen-
tal setup is composed of one laptop, one Wi-Fi
access point (1 meter away from the laptop)
and one QUIC server on the Internet. The lap-
top and access point are located in a residential
house, with several other Wi-Fi access points
operating at both 2.4GHz and 5GHz. The ac-
cess point is a Turris Omnia using OpenWrt
19.07 [8] and the ath9k Wi-Fi driver configured
for using 802.11n at 2.4GHz. The QUIC server

sends 25 video frames per second to the lap-
top at a fixed interval of one frame every 40
milliseconds during 5 minutes. We capture
the raw 802.11 frames exchanged between the
access point and the laptop by setting one of
the interfaces of the access point into Monitor
mode and study the amount of time needed
to successfully transmit each frame from the
access point to the laptop during the transfer.

We study two different configurations. In
the first one, the access point is configured to
use the first 2.4GHz Wi-Fi channel (2.412GHz),
while in the second one the access point uses
the channel 11 (2.462GHz). Everything else
stays unchanged. The signal strength is sim-
ilar and the bitrate chosen by the device is
144 Mb/s in both cases. Those two configura-
tions would thus be considered equivalent by
the end user. Figure 1 shows the CDF of the
frame delivery time for these two configura-
tions. We can see that while these two config-
urations would be considered similar by com-
mon systems (the signal strength and bitrate
are similar), the channel 11 was crowded with
other devices and thus more prone to inter-
ference in our experiments. There is a notice-
able difference in frame delivery time that can
significantly impact the quality of experience
perceived by delay-sensitive applications. For
instance, a cloud gaming service delivering
videos at a rate of 60 frames per second would
need at least one additional frame in its play-
back buffer to cope with jitters of more than 16
milliseconds, which happens in more than 1%
of the cases for the configuration using channel
11.

III. Exposing the frame delivery

time to end-users

We saw in the previous section that while the
bitrate and the signal strength are the common
metrics exposed to end-users in most systems,
they may not be sufficient to determine if a spe-
cific access points is suitable for real-time appli-
cations. With an increasing amount of tightly
delay-constrained services such as cloud gam-
ing, there is an interest in exposing the frame

2



0 10 20 30 40 50 60

frame delivery time (milliseconds)

0.900

0.925

0.950

0.975

1.000

C
D

F

Channel 1

Channel 11

Figure 1: Frame delivery time CDF for 802.11n on chan-
nels 1 and 11.

delivery time as a metric to determine the qual-
ity of Wi-Fi access points. The average, median
or a percentile of the frame delivery time could
be displayed to the user alongside the bitrate
and signal strength of the wireless connection.
As this raw metric and its impact on real-time
services may not be intuitive, operating sys-
tems such as Android or iOS could leverage
this metric to flag Wi-Fi access points that are
suitable for specific use-cases such as cloud
gaming in an intuitive manner for the user.

On the other side, access points could report
this metric to devices using beacon frames [9]
and to maintainers using standard monitoring
solutions such as SNMP [10].

IV. Exposing the frame delivery

time to applications

Besides users, applications may also benefit
from knowing the frame delivery time distribu-
tion of the available network interfaces. As this
metric could be available at the startup of the
application, the latter may leverage the metric
to choose the correct interface (e.g. cellular VS
Wi-Fi) to initiate the transfer instead of chang-
ing the used interface during the transfer, often
resulting in a change of IP address, potentially
breaking the current connection. Some trans-
port protocols such as Multipath TCP or QUIC
that feature connection migration may also de-
cide during the transfer to change the network
interface used to communicate with the peer
(e.g. fall over the cellular interface for smart-

phones) if the current one has a large frame
delivery time. Video or audio applications may
also use this information to start the service
with a tailored playback buffer in order to en-
sure a smooth playback from the beginning as
the buffer avoids the perturbations caused by
the Wi-Fi jitter.

Applications and transport protocols may
also decide to renounce to some throughput
in order to reduce the jitter. 802.11e allows to
use Traffic Identifiers (TID) to reduce the Wi-
Fi random backoff for frames tagged as video
or audio traffic. The Linux kernel supports a
mapping between Differentiated Service Code
Point (DSCP) field of the IP header and 802.11e
traffic identifiers [11]. This allows applications
to apply these tags on a per-socket basis. Re-
ducing the backoff will however increase the
contention on the channel and likely reduce
the throughput.

References

[1] Jim Gettys. Bufferbloat: Dark buffers
in the internet. IEEE Internet Computing,
15(3):96–96, 2011.

[2] CACM Staff. Bufferbloat: What’s wrong
with the internet? Communications of the
ACM, 55(2):40–47, 2012.

[3] Haiqing Jiang, Yaogong Wang, Kyunghan
Lee, and Injong Rhee. Tackling bufferbloat
in 3g/4g networks. In Proceedings of
the 2012 Internet Measurement Conference,
pages 329–342, 2012.

[4] Neal Cardwell, Yuchung Cheng, So-
heil Hassas Yeganeh, and Van Jacob-
son. BBR Congestion Control. Internet-
Draft draft-cardwell-iccrg-bbr-congestion-
control-00, Internet Engineering Task
Force, July 2017. Work in Progress.

[5] Lawrence S Brakmo, Sean W O’Malley,
and Larry L Peterson. Tcp vegas: New
techniques for congestion detection and
avoidance. In Proceedings of the conference
on Communications architectures, protocols
and applications, pages 24–35, 1994.

3



[6] IEEE Computer Society LAN/MAN Stan-
dards Committee et al. Ieee stan-
dard for information technology-
telecommunications and information
exchange between systems-local and
metropolitan area networks-specific re-
quirements part 11: Wireless lan medium
access control (mac) and physical layer
(phy) specifications. IEEE Std 802.11,
2007.

[7] Linux mac80211 driver. https:
//github.com/torvalds/linux/blob/
f8e6dfc64f6135d1b6c5215c14cd30b9b60a0008/
net/mac80211/rx.c#L1177, 2021.

[8] Openwrt. https://openwrt.org/, 2021.

[9] Ranveer Chandra, Jitendra Padhye, Lenin
Ravindranath, and Alec Wolman. Beacon-
stuffing: Wi-fi without associations. In
Eighth IEEE Workshop on Mobile Comput-
ing Systems and Applications, pages 53–57.
IEEE, 2007.

[10] Mark Fedor, Martin Lee Schoffstall,
James R. Davin, and Dr. Jeff D. Case.
Simple Network Management Protocol
(SNMP). RFC 1157, May 1990.

[11] Tim Szigeti, Jerome Henry, and Fred Baker.
Mapping Diffserv to IEEE 802.11. RFC
8325, February 2018.

4

https://github.com/torvalds/linux/blob/f8e6dfc64f6135d1b6c5215c14cd30b9b60a0008/net/mac80211/rx.c#L1177
https://github.com/torvalds/linux/blob/f8e6dfc64f6135d1b6c5215c14cd30b9b60a0008/net/mac80211/rx.c#L1177
https://github.com/torvalds/linux/blob/f8e6dfc64f6135d1b6c5215c14cd30b9b60a0008/net/mac80211/rx.c#L1177
https://github.com/torvalds/linux/blob/f8e6dfc64f6135d1b6c5215c14cd30b9b60a0008/net/mac80211/rx.c#L1177
https://openwrt.org/

	Introduction
	Experimenting with 802.11
	Exposing the frame delivery time to end-users
	Exposing the frame delivery time to applications

