
IETF 110, Prague
OAuth WG Virtual Interim
March 15, 2021

DPoP
OAuth 2.0 Demonstrating Proof-of-Possession at the Application Layer

draft-ietf-oauth-dpop

Brian Campbell
Daniel Fett
John Bradley
Michael Jones
David Waite
Torsten Lodderstedt

(Prague from IETF #93)

DPoP: what it is & what it isn't
l It is:

l Pragmatic application-level sender-constraining of
access and refresh tokens by binding to a key pair
(trust on first use style) controlled by the client

l It isn’t:
l An HTTP signature scheme
l A client to AS authentication mechanism
l A perfect or infallible solution

2

DPoP Overview
l DPoP Proof JWT sent as an

HTTP header
l Demonstrates a reasonable level of

proof-of-possession in the context
of the request

l Sent the same way with the same
syntax and semantics for both
l token requests to the AS
l protected resource requests

l AS uses the proof to bind tokens
l RS uses the proof to verify bound

tokens

3

DPoP Proof JWT sent in
DPoP HTTP Header

4

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik
VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR
nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE
QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj
oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia
WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg
4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

5

{
"typ":"dpop+jwt",
"alg":"ES256",
"jwk":
{
"kty":"EC", "crv":"P-256"
"x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
"y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA"
}

}.
{
"jti":"-BwC3ESc6acc2lTc",
"htm":"POST",
"htu":"https://server.example.com/token",
"iat":1562262616
}

Explicitly typed

The public key for
which proof-of-

possession is being
demonstrated

Unique identifier
for replay
checking

Minimal info
about the HTTP

request

Anatomy of a DPoP Proof JWT

Only valid for a
limited time

window relative to
creation time

Asymmetric
signature

algorithms only

Other stuff could
go here

(code) Access Token Request

6

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded;charset=UTF-8
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik
VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR
nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE
QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj
oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia
WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg
4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

grant_type=authorization_code
&code=SplxlOBeZQQYbYS6WxSbIA
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
&code_verifier=bEaL42izcC-o-xBk0K2vuJ6U-y1p9r_wW2dFWIWgjz-

DPoP proof JWT
in HTTP header

Access Token Response

7

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-cache, no-store

{
"access_token":" Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU",
"token_type":"DPoP",
"expires_in":3600,
"refresh_token":"Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g"

}

Token type
indicates that
the access

token is
bound to the
DPoP public

key

(refresh) Access Token Request

8

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded;charset=UTF-8
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik
VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR
nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE
QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj
oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia
WF0IjoxNTYyMjY1Mjk2fQ.pAqut2IRDm_De6PR93SYmGBPXpwrAk90e8cP2hjiaG5Qs
GSuKDYW7_X620BxqhvYC8ynrrvZLTk41mSRroapUA

grant_type=refresh_token
&refresh_token=Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g

DPoP proof JWT
in HTTP header

Authorization Server Metadata
l dpop_signing_alg_values_supported:

l A JSON array containing a list of the JWS alg
values supported by the authorization server for
DPoP proof JWTs.

9

DPoP Bound Access Token
JWT & Introspection Response

10

{
... other claims / members ...

"cnf":
{
"jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"

}
}

Confirmation claim carries
the SHA-256 JWK

Thumbprint of the DPoP
public key to which the
access token is bound

Protected Resource Request

11

GET /protectedresource HTTP/1.1
Host: resource.example.org
Authorization: DPoP Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik
VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR
nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE
QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiJlMWozVl9iS2ljOC1MQUVCIiwiaHRtIj
oiR0VUIiwiaHR1IjoiaHR0cHM6Ly9yZXNvdXJjZS5leGFtcGxlLm9yZy9wcm90ZWN0Z
WRyZXNvdXJjZSIsImlhdCI6MTU2MjI2MjYxOH0.lNhmpAX1WwmpBvwhok4E74kWCiGB
NdavjLAeevGy32H3dbF0Jbri69Nm2ukkwb-uyUI4AUg1JSskfWIyo4UCbQ

DPoP
proof

DPoP-bound
(reference

style) access
token

Token is
bound to the
key in proof

401 W/ WWW-Authenticate
Challenge

12

Response To A Protected Resource Request Without A Token

HTTP/1.1 401 Unauthorized
WWW-Authenticate: DPoP realm="WallyWorld", algs="ES256 PS256”

Response To A Protected Resource Request With An Invalid Token

HTTP/1.1 401 Unauthorized
WWW-Authenticate: DPoP realm="WallyWorld", error="invalid_token",

error_description="Invalid DPoP key binding", algs="ES256"

https://www.ietf.org/archive/id/draft-ietf-oauth-dpop-02.html
https://www.ietf.org/archive/id/draft-ietf-oauth-dpop-02.html

Status Update
l Published changes since the

last interim:

13

Bangkok's abandoned Ghost Tower is representative of the amount of publishing on
the draft since the last meeting, which was one of a series of interims held in place of

the meeting that would have been in Bangkok, if not for the global pandemic.

No new draft?!

14

?

?

X

Consensus
has been
somewhat

elusive

Freshness & Signature Coverage
(for lack of a better name)

l Issue:
l Malicious XSS code executed in the context of the browser-

based client can create DPoP proofs with timestamp values
in the future and exfiltrate them (along with tokens)

l These stolen artifacts can later be used together to access
protected resources or acquire new access tokens
(independent of the client application)

l Future DPoP proofs could be created for tokens not yet
issued

l Current Situation:
l `iat` doesn’t prevent pre-computation by an adversary who

can use the private key but not steal it (e.g., via XSS)
l No server contribution to the DPoP proof
l Token not covered by the DPoP proof
l Not having a challenge/response (for the proof) was an

intentional design choice aimed at simplicity and less
overhead

l Some options/ideas … ?
l It’s sufficiently okay as is

l discussed in draft with key rotation
recommended as means to reduce
impact

l Attack vector allows for direct use anyway
(reductio ad XSS nihilism)

l Incorporate (a hash of) the access token
into the DPoP proof (and maybe
authorization code, refresh token, and
other grants too)

l Allow server to provide (maybe via
challenge) some nonce like contribution
to the proof
l Feels awkward within the current design

(including AS vs RS differences)
l A challenge per call seems untenable

(need to amortize but then how does that
work?)

l Others…

15

Proposed Path Forward

l Let XSS Nihilism Prevail
l “But if XSS is game over, let's not bother

with trying to patch one particular
scenario with a hash.”

l No protocol changes
l Some editorial changes in the

form of yet-to-be-published
considerations

16

Confirmation Bias
l Issue:

l It’s been suggested that, for resource access, having the JWK in the header of
the DPoP proof JWT makes it too easy to just use that key to validate the
signature and miss checking the binding to the AT’s cnf/jkt hash

l Compared to “alg”:“none” (which is the worst hyperbole in the history of time)
l But not entirely wrong…

l Current Situation:
l Full JWK in proof
l JWK hash in AT’s confirmation
l Foot gun?
l Only one person really advocating

l Options:
l It’s fine as is (AS/RS symmetry is nice, similar to MTLS/TB, & kinda fundamental)
l Put the full JWK in the AT’s confirmation and omit it from the proof for resource

access (less error prone & no hash function needed for confirmation)
17

A Decent Proposal
l Remove the foot gun

l full JWK in the access token confirmation and omit it from the proof on
resource access

18

{
"typ":"dpop+jwt",
"alg":"ES256"

}.
{
"jti":"-BwC3ESc6acc2lTc",
"htm":"POST",
"htu":"https://rs.example.io/stuff",
"iat":1562262616

}

{
[... other claims / members ...]

"cnf":
{
"jwk":
{
"kty":"EC",
"crv":"P-256"
"x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
"y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA"

}
}

}

access token proof

"jkt":"0ZcOCORZNYy[…]jZyJGHTN0d2HglBV3uiguA4I"

Gratuitous closing slide featuring the
city where will meet together next *

19

* “IETF 111 San Francisco … seems highly unlikely
that an in-person meeting can go ahead” - IETF

Executive Director

