
OAuth Working Group D. Hardt
Internet-Draft Hell
Intended status: Standards Track A. Parecki
Expires: 12 July 2024 Okta
 T. Lodderstedt
 yes.com
 9 January 2024

 The OAuth 2.1 Authorization Framework
 draft-ietf-oauth-v2-1-10

Abstract

 The OAuth 2.1 authorization framework enables an application to
 obtain limited access to a protected resource, either on behalf of a
 resource owner by orchestrating an approval interaction between the
 resource owner and an authorization service, or by allowing the
 application to obtain access on its own behalf. This specification
 replaces and obsoletes the OAuth 2.0 Authorization Framework
 described in RFC 6749 and the Bearer Token Usage in RFC 6750.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the OAuth Working Group
 mailing list (oauth@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/oauth/.

 Source for this draft and an issue tracker can be found at
 https://github.com/oauth-wg/oauth-v2-1.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Hardt, et al. Expires 12 July 2024 [Page 1]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 This Internet-Draft will expire on 12 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 5
 1.1. Roles . 7
 1.2. Protocol Flow . 8
 1.3. Authorization Grant 9
 1.3.1. Authorization Code 9
 1.3.2. Refresh Token . 10
 1.3.3. Client Credentials 11
 1.4. Access Token . 11
 1.4.1. Access Token Scope 13
 1.4.2. Bearer Tokens . 14
 1.4.3. Sender-Constrained Access Tokens 14
 1.5. Communication security 15
 1.6. HTTP Redirections . 15
 1.7. Interoperability . 15
 1.8. Compatibility with OAuth 2.0 16
 1.9. Notational Conventions 16
 2. Client Registration . 17
 2.1. Client Types . 17
 2.2. Client Identifier . 19
 2.3. Client Redirection Endpoint 19
 2.3.1. Registration Requirements 20
 2.3.2. Multiple Redirect URIs 21
 2.3.3. Preventing CSRF Attacks 21
 2.3.4. Preventing Mix-Up Attacks 21
 2.3.5. Invalid Endpoint 21
 2.3.6. Endpoint Content 22
 2.4. Client Authentication 22
 2.4.1. Client Secret . 23
 2.4.2. Other Authentication Methods 24
 2.5. Unregistered Clients 24

Hardt, et al. Expires 12 July 2024 [Page 2]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 3. Protocol Endpoints . 24
 3.1. Authorization Endpoint 25
 3.2. Token Endpoint . 26
 3.2.1. Client Authentication 26
 3.2.2. Token Request . 27
 3.2.3. Token Response 28
 3.2.4. Error Response 29
 4. Grant Types . 31
 4.1. Authorization Code Grant 31
 4.1.1. Authorization Request 33
 4.1.2. Authorization Response 36
 4.1.3. Token Endpoint Extension 39
 4.2. Client Credentials Grant 41
 4.2.1. Token Endpoint Extension 41
 4.3. Refresh Token Grant 42
 4.3.1. Token Endpoint Extension 42
 4.3.2. Refresh Token Response 44
 4.3.3. Refresh Token Recommendations 44
 4.4. Extension Grants . 45
 5. Resource Requests . 45
 5.1. Bearer Token Requests 45
 5.1.1. Authorization Request Header Field 46
 5.1.2. Form-Encoded Content Parameter 46
 5.2. Access Token Validation 47
 5.3. Error Response . 48
 5.3.1. The WWW-Authenticate Response Header Field 48
 5.3.2. Error Codes . 49
 6. Extensibility . 50
 6.1. Defining Access Token Types 50
 6.1.1. Registered Access Token Types 50
 6.1.2. Vendor-Specific Access Token Types 51
 6.2. Defining New Endpoint Parameters 51
 6.3. Defining New Authorization Grant Types 52
 6.4. Defining New Authorization Endpoint Response Types . . . 52
 6.5. Defining Additional Error Codes 52
 7. Security Considerations 53
 7.1. Access Token Security Considerations 53
 7.1.1. Security Threats 53
 7.1.2. Threat Mitigation 54
 7.1.3. Summary of Recommendations 55
 7.1.4. Access Token Privilege Restriction 56
 7.2. Client Authentication 56
 7.3. Client Impersonation 57
 7.3.1. Impersonation of Native Apps 57
 7.3.2. Access Token Privilege Restriction 58
 7.4. Client Impersonating Resource Owner 58
 7.5. Authorization Code Security Considerations 59
 7.5.1. Authorization Code Injection 59

Hardt, et al. Expires 12 July 2024 [Page 3]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 7.5.2. Countermeasures 59
 7.5.3. Reuse of Authorization Codes 60
 7.5.4. HTTP 307 Redirect 61
 7.6. Ensuring Endpoint Authenticity 61
 7.7. Credentials-Guessing Attacks 61
 7.8. Phishing Attacks . 62
 7.9. Cross-Site Request Forgery 62
 7.10. Clickjacking . 63
 7.11. Code Injection and Input Validation 64
 7.12. Open Redirection . 64
 7.12.1. Client as Open Redirector 65
 7.12.2. Authorization Server as Open Redirector 65
 7.13. Authorization Server Mix-Up Mitigation 66
 7.13.1. Mix-Up Defense via Issuer Identification 67
 7.13.2. Mix-Up Defense via Distinct Redirect URIs 67
 8. Native Applications . 68
 8.1. Registration of Native App Clients 69
 8.1.1. Client Authentication of Native Apps 69
 8.2. Using Inter-App URI Communication for OAuth in Native
 Apps . 69
 8.3. Initiating the Authorization Request from a Native App . 70
 8.4. Receiving the Authorization Response in a Native App . . 71
 8.4.1. Claimed "https" Scheme URI Redirection 71
 8.4.2. Loopback Interface Redirection 71
 8.4.3. Private-Use URI Scheme Redirection 72
 8.5. Security Considerations in Native Apps 73
 8.5.1. Embedded User Agents in Native Apps 73
 8.5.2. Fake External User-Agents in Native Apps 74
 8.5.3. Malicious External User-Agents in Native Apps 75
 8.5.4. Loopback Redirect Considerations in Native Apps . . . 75
 9. Browser-Based Apps . 75
 10. Differences from OAuth 2.0 76
 10.1. Removal of the OAuth 2.0 Implicit grant 76
 10.2. Redirect URI Parameter in Token Request 77
 11. IANA Considerations . 78
 12. References . 78
 12.1. Normative References 78
 12.2. Informative References 80
 Appendix A. Augmented Backus-Naur Form (ABNF) Syntax 83
 A.1. "client_id" Syntax 84
 A.2. "client_secret" Syntax 84
 A.3. "response_type" Syntax 84
 A.4. "scope" Syntax . 84
 A.5. "state" Syntax . 84
 A.6. "redirect_uri" Syntax 84
 A.7. "error" Syntax . 85
 A.8. "error_description" Syntax 85
 A.9. "error_uri" Syntax 85

Hardt, et al. Expires 12 July 2024 [Page 4]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 A.10. "grant_type" Syntax 85
 A.11. "code" Syntax . 85
 A.12. "access_token" Syntax 85
 A.13. "token_type" Syntax 85
 A.14. "expires_in" Syntax 86
 A.15. "refresh_token" Syntax 86
 A.16. Endpoint Parameter Syntax 86
 A.17. "code_verifier" Syntax 86
 A.18. "code_challenge" Syntax 86
 Appendix B. Use of application/x-www-form-urlencoded Media
 Type . 87
 Appendix C. Extensions . 87
 Appendix D. Acknowledgements 89
 Appendix E. Document History 89
 Authors’ Addresses . 93

1. Introduction

 OAuth introduces an authorization layer to the client-server
 authentication model by separating the role of the client from that
 of the resource owner. In OAuth, the client requests access to
 resources controlled by the resource owner and hosted by the resource
 server. Instead of using the resource owner’s credentials to access
 protected resources, the client obtains an access token - a
 credential representing a specific set of access attributes such as
 scope and lifetime. Access tokens are issued to clients by an
 authorization server with the approval of the resource owner. The
 client uses the access token to access the protected resources hosted
 by the resource server.

 In the older, more limited client-server authentication model, the
 client requests an access-restricted resource (protected resource) on
 the server by authenticating to the server using the resource owner’s
 credentials. In order to provide applications access to restricted
 resources, the resource owner shares their credentials with the
 application. This creates several problems and limitations:

 * Applications are required to store the resource owner’s
 credentials for future use, typically a password in clear-text.

 * Servers are required to support password authentication, despite
 the security weaknesses inherent in passwords.

 * Applications gain overly broad access to the resource owner’s
 protected resources, leaving resource owners without any ability
 to restrict duration or access to a limited subset of resources.

Hardt, et al. Expires 12 July 2024 [Page 5]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 * Resource owners often reuse passwords with other unrelated
 services, despite best security practices. This password reuse
 means a vulnerability or exposure in one service may have security
 implications in completely unrelated services.

 * Resource owners cannot revoke access to an individual application
 without revoking access to all third parties, and must do so by
 changing their password.

 * Compromise of any application results in compromise of the end-
 user’s password and all of the data protected by that password.

 With OAuth, an end-user (resource owner) can grant a printing service
 (client) access to their protected photos stored at a photo- sharing
 service (resource server), without sharing their username and
 password with the printing service. Instead, they authenticate
 directly with a server trusted by the photo-sharing service
 (authorization server), which issues the printing service delegation-
 specific credentials (access token).

 This separation of concerns also provides the ability to use more
 advanced user authentication methods such as multi-factor
 authentication and even passwordless authentication, without any
 modification to the applications. With all user authentication logic
 handled by the authorization server, applications don’t need to be
 concerned with the specifics of implementing any particular
 authentication mechanism. This provides the ability for the
 authorization server to manage the user authentication policies and
 even change them in the future without coordinating the changes with
 applications.

 The authorization layer can also simplify how a resource server
 determines if a request is authorized. Traditionally, after
 authenticating the client, each resource server would evaluate
 policies to compute if the client is authorized on each API call. In
 a distributed system, the policies need to be synchronized to all the
 resource servers, or the resource server must call a central policy
 server to process each request. In OAuth, evaluation of the policies
 is performed only when a new access token is created by the
 authorization server. If the authorized access is represented in the
 access token, the resource server no longer needs to evaluate the
 policies, and only needs to validate the access token. This
 simplification applies when the application is acting on behalf of a
 resource owner, or on behalf of itself.

 OAuth is an authorization protocol, and is not an authentication
 protocol. The access token represents the authorization granted to
 the client. It is a common practice for the client to present the

Hardt, et al. Expires 12 July 2024 [Page 6]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 access token to a proprietary API which returns a user identifier for
 the resource owner, and then using the result of the API as a proxy
 for authenticating the user. This practice is not part of the OAuth
 standard or security considerations, and may not have been considered
 by the resource owner. Implementors should carefully consult the
 documentation of the resource server before adopting this practice.

 This specification is designed for use with HTTP ([RFC9110]). The
 use of OAuth over any protocol other than HTTP is out of scope.

 Since the publication of the OAuth 2.0 Authorization Framework
 ([RFC6749]) in October 2012, it has been updated by OAuth 2.0 for
 Native Apps ([RFC8252]), OAuth Security Best Current Practice
 ([I-D.ietf-oauth-security-topics]), and OAuth 2.0 for Browser-Based
 Apps ([I-D.ietf-oauth-browser-based-apps]). The OAuth 2.0
 Authorization Framework: Bearer Token Usage ([RFC6750]) has also been
 updated with ([I-D.ietf-oauth-security-topics]). This Standards
 Track specification consolidates the information in all of these
 documents and removes features that have been found to be insecure in
 [I-D.ietf-oauth-security-topics].

1.1. Roles

 OAuth defines four roles:

 "resource owner": An entity capable of granting access to a
 protected resource. When the resource owner is a person, it is
 referred to as an end-user. This is sometimes abbreviated as
 "RO".

 "resource server": The server hosting the protected resources,
 capable of accepting and responding to protected resource requests
 using access tokens. The resource server is often accessible via
 an API. This is sometimes abbreviated as "RS".

 "client": An application making protected resource requests on
 behalf of the resource owner and with its authorization. The term
 "client" does not imply any particular implementation
 characteristics (e.g., whether the application executes on a
 server, a desktop, or other devices).

 "authorization server": The server issuing access tokens to the
 client after successfully authenticating the resource owner and
 obtaining authorization. This is sometimes abbreviated as "AS".

 The interaction between the authorization server and resource server
 is beyond the scope of this specification, however several extensions
 have been defined to provide an option for interoperability between

Hardt, et al. Expires 12 July 2024 [Page 7]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 resource servers and authorization servers. The authorization server
 may be the same server as the resource server or a separate entity.
 A single authorization server may issue access tokens accepted by
 multiple resource servers.

1.2. Protocol Flow

 +--------+ +---------------+
 | |--(1)- Authorization Request ->| Resource |
 | | | Owner |
 | |<-(2)-- Authorization Grant ---| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(3)-- Authorization Grant -->| Authorization |
 | Client | | Server |
 | |<-(4)----- Access Token -------| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(5)----- Access Token ------>| Resource |
 | | | Server |
 | |<-(6)--- Protected Resource ---| |
 +--------+ +---------------+

 Figure 1: Abstract Protocol Flow

 The abstract OAuth 2.1 flow illustrated in Figure 1 describes the
 interaction between the four roles and includes the following steps:

 1. The client requests authorization from the resource owner. The
 authorization request can be made directly to the resource owner
 (as shown), or preferably indirectly via the authorization server
 as an intermediary.

 2. The client receives an authorization grant, which is a credential
 representing the resource owner’s authorization, expressed using
 one of the authorization grant types defined in this
 specification or using an extension grant type. The
 authorization grant type depends on the method used by the client
 to request authorization and the types supported by the
 authorization server.

 3. The client requests an access token by authenticating with the
 authorization server and presenting the authorization grant.

 4. The authorization server authenticates the client and validates
 the authorization grant, and if valid, issues an access token.

Hardt, et al. Expires 12 July 2024 [Page 8]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 5. The client requests the protected resource from the resource
 server and authenticates by presenting the access token.

 6. The resource server validates the access token, and if valid,
 serves the request.

 The preferred method for the client to obtain an authorization grant
 from the resource owner (depicted in steps (1) and (2)) is to use the
 authorization server as an intermediary, which is illustrated in
 Figure 3 in Section 4.1.

1.3. Authorization Grant

 An authorization grant represents the resource owner’s authorization
 (to access its protected resources) used by the client to obtain an
 access token. This specification defines three grant types --
 authorization code, refresh token, and client credentials -- as well
 as an extensibility mechanism for defining additional types.

1.3.1. Authorization Code

 An authorization code is a temporary credential used to obtain an
 access token. Instead of the client requesting authorization
 directly from the resource owner, the client directs the resource
 owner to an authorization server (via its user agent) which in turn
 directs the resource owner back to the client with the authorization
 code. The client can then exchange the authorization code for an
 access token.

 Before directing the resource owner back to the client with the
 authorization code, the authorization server authenticates the
 resource owner, and may request the resource owner’s consent or
 otherwise inform them of the client’s request. Because the resource
 owner only authenticates with the authorization server, the resource
 owner’s credentials are never shared with the client, and the client
 does not need to have knowledge of any additional authentication
 steps such as multi-factor authentication or delegated accounts.

 The authorization code provides a few important security benefits,
 such as the ability to authenticate the client, as well as the
 transmission of the access token directly to the client without
 passing it through the resource owner’s user agent and potentially
 exposing it to others, including the resource owner.

Hardt, et al. Expires 12 July 2024 [Page 9]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

1.3.2. Refresh Token

 Refresh tokens are credentials used to obtain access tokens. Refresh
 tokens may be issued to the client by the authorization server and
 are used to obtain a new access token when the current access token
 becomes invalid or expires, or to obtain additional access tokens
 with identical or narrower scope (access tokens may have a shorter
 lifetime and fewer privileges than authorized by the resource owner).
 Issuing a refresh token is optional at the discretion of the
 authorization server, and may be issued based on properties of the
 client, properties of the request, policies within the authorization
 server, or any other criteria. If the authorization server issues a
 refresh token, it is included when issuing an access token (i.e.,
 step (2) in Figure 2).

 A refresh token is a string representing the authorization granted to
 the client by the resource owner. The string is considered opaque to
 the client. The refresh token may be an identifier used to retrieve
 the authorization information or may encode this information into the
 string itself. Unlike access tokens, refresh tokens are intended for
 use only with authorization servers and are never sent to resource
 servers.

 +--------+ +---------------+
	--(1)------- Authorization Grant --------->			
	<-(2)----------- Access Token -------------			
	& Refresh Token			
	+----------+			
	--(3)---- Access Token ---->			
	<-(4)- Protected Resource --	Resource		Authorization
Client		Server		Server
	--(5)---- Access Token ---->			
	<-(6)- Invalid Token Error -			
	+----------+			
	--(7)----------- Refresh Token ----------->			
	<-(8)----------- Access Token -------------			
 +--------+ & Optional Refresh Token +---------------+

 Figure 2: Refreshing an Expired Access Token

 The flow illustrated in Figure 2 includes the following steps:

Hardt, et al. Expires 12 July 2024 [Page 10]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 1. The client requests an access token by authenticating with the
 authorization server and presenting an authorization grant.

 2. The authorization server authenticates the client and validates
 the authorization grant, and if valid, issues an access token and
 optionally a refresh token.

 3. The client makes a protected resource request to the resource
 server by presenting the access token.

 4. The resource server validates the access token, and if valid,
 serves the request.

 5. Steps (3) and (4) repeat until the access token expires. If the
 client knows the access token expired, it skips to step (7);
 otherwise, it makes another protected resource request.

 6. Since the access token is invalid, the resource server returns an
 invalid token error.

 7. The client requests a new access token by presenting the refresh
 token and providing client authentication if it has been issued
 credentials. The client authentication requirements are based on
 the client type and on the authorization server policies.

 8. The authorization server authenticates the client and validates
 the refresh token, and if valid, issues a new access token (and,
 optionally, a new refresh token).

1.3.3. Client Credentials

 The client credentials or other forms of client authentication (e.g.
 a private key used to sign a JWT, as described in [RFC7523]) can be
 used as an authorization grant when the authorization scope is
 limited to the protected resources under the control of the client,
 or to protected resources previously arranged with the authorization
 server. Client credentials are used when the client is requesting
 access to protected resources based on an authorization previously
 arranged with the authorization server.

1.4. Access Token

 Access tokens are credentials used to access protected resources. An
 access token is a string representing an authorization issued to the
 client.

Hardt, et al. Expires 12 July 2024 [Page 11]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 The string is considered opaque to the client, even if it has a
 structure. The client MUST NOT expect to be able to parse the access
 token value. The authorization server is not required to use a
 consistent access token encoding or format other than what is
 expected by the resource server.

 Access tokens represent specific scopes and durations of access,
 granted by the resource owner, and enforced by the resource server
 and authorization server.

 Depending on the authorization server implementation, the token
 string may be used by the resource server to retrieve the
 authorization information, or the token may self-contain the
 authorization information in a verifiable manner (i.e., a token
 string consisting of a signed data payload). One example of a token
 retrieval mechanism is Token Introspection [RFC7662], in which the RS
 calls an endpoint on the AS to validate the token presented by the
 client. One example of a structured token format is JWT Profile for
 Access Tokens [RFC9068], a method of encoding and signing access
 token data as a JSON Web Token [RFC7519].

 Additional authentication credentials, which are beyond the scope of
 this specification, may be required in order for the client to use an
 access token. This is typically referred to as a sender-constrained
 access token, such as DPoP [RFC9449] and Mutual TLS Certificate-Bound
 Access Tokens [RFC8705].

 The access token provides an abstraction layer, replacing different
 authorization constructs (e.g., username and password) with a single
 token understood by the resource server. This abstraction enables
 issuing access tokens more restrictive than the authorization grant
 used to obtain them, as well as removing the resource server’s need
 to understand a wide range of authentication methods.

 Access tokens can have different formats, structures, and methods of
 utilization (e.g., cryptographic properties) based on the resource
 server security requirements. Access token attributes and the
 methods used to access protected resources may be extended beyond
 what is described in this specification.

 Access tokens (as well as any confidential access token attributes)
 MUST be kept confidential in transit and storage, and only shared
 among the authorization server, the resource servers the access token
 is valid for, and the client to which the access token is issued.

 The authorization server MUST ensure that access tokens cannot be
 generated, modified, or guessed to produce valid access tokens by
 unauthorized parties.

Hardt, et al. Expires 12 July 2024 [Page 12]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

1.4.1. Access Token Scope

 Access tokens are intended to be issued to clients with less
 privileges than the user granting the access has. This is known as a
 limited "scope" access token. The authorization server and resource
 server can use this scope mechanism to limit what types of resources
 or level of access a particular client can have. For example, a
 client may only need "read" access to a user’s resources, but doesn’t
 need to update resources, so the client can request the read-only
 scope defined by the authorization server, and obtain an access token
 that cannot be used to update resources. This requires coordination
 between the authorization server and resource server. The
 authorization server provides the client the ability to request
 specific scopes, and associates those scopes with the access token
 issued to the client. The resource server is then responsible for
 enforcing scopes when presented with a limited-scope access token.

 To request a limited-scope access token, the client uses the scope
 request parameter at the authorization or token endpoints, depending
 on the grant type used. In turn, the authorization server uses the
 scope response parameter to inform the client of the scope of the
 access token issued.

 The value of the scope parameter is expressed as a list of space-
 delimited, case-sensitive strings. The strings are defined by the
 authorization server. If the value contains multiple space-delimited
 strings, their order does not matter, and each string adds an
 additional access range to the requested scope.

 scope = scope-token *(SP scope-token)
 scope-token = 1*(%x21 / %x23-5B / %x5D-7E)

 The authorization server MAY fully or partially ignore the scope
 requested by the client, based on the authorization server policy or
 the resource owner’s instructions. If the issued access token scope
 is different from the one requested by the client, the authorization
 server MUST include the scope response parameter in the token
 response (Section 3.2.3) to inform the client of the actual scope
 granted.

 If the client omits the scope parameter when requesting
 authorization, the authorization server MUST either process the
 request using a pre-defined default value or fail the request
 indicating an invalid scope. The authorization server SHOULD
 document its scope requirements and default value (if defined).

Hardt, et al. Expires 12 July 2024 [Page 13]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

1.4.2. Bearer Tokens

 A Bearer Token is a security token with the property that any party
 in possession of the token (a "bearer") can use the token in any way
 that any other party in possession of it can. Using a Bearer Token
 does not require a bearer to prove possession of cryptographic key
 material (proof-of-possession).

 Bearer Tokens may be enhanced with proof-of-possession specifications
 such as DPoP [RFC9449] and mTLS [RFC8705] to provide proof-of-
 possession characteristics.

 To protect against access token disclosure, the communication
 interaction between the client and the resource server MUST utilize
 confidentiality and integrity protection as described in Section 1.5.

 There is no requirement on the particular structure or format of a
 bearer token. If a bearer token is a reference to authorization
 information, such references MUST be infeasible for an attacker to
 guess, such as using a sufficiently long cryptographically random
 string. If a bearer token uses an encoding mechanism to contain the
 authorization information in the token itself, the access token MUST
 use integrity protection sufficient to prevent the token from being
 modified. One example of an encoding and signing mechanism for
 access tokens is described in JSON Web Token Profile for Access
 Tokens [RFC9068].

1.4.3. Sender-Constrained Access Tokens

 A sender-constrained access token binds the use of an access token to
 a specific sender. This sender is obliged to demonstrate knowledge
 of a certain secret as prerequisite for the acceptance of that access
 token at the recipient (e.g., a resource server).

 Authorization and resource servers SHOULD use mechanisms for sender-
 constraining access tokens, such as OAuth Demonstration of Proof of
 Possession (DPoP) [RFC9449] or Mutual TLS for OAuth 2.0 [RFC8705].
 See [I-D.ietf-oauth-security-topics] Section 4.10.1, to prevent
 misuse of stolen and leaked access tokens.

 It is RECOMMENDED to use end-to-end TLS between the client and the
 resource server. If TLS traffic needs to be terminated at an
 intermediary, refer to Section 4.13 of
 [I-D.ietf-oauth-security-topics] for further security advice.

Hardt, et al. Expires 12 July 2024 [Page 14]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

1.5. Communication security

 Implementations MUST use a mechanism to provide communication
 authentication, integrity and confidentiality such as Transport-Layer
 Security [RFC8446], to protect the exchange of clear-text credentials
 and tokens either in the content or in header fields from
 eavesdropping, tampering, and message forgery (eg. see Section 2.4.1,
 Section 7.5.1, Section 3.2, and Section 1.4.2).

 OAuth URLs MUST use the https scheme except for loopback interface
 redirect URIs, which MAY use the http scheme. When using https, TLS
 certificates MUST be checked according to [RFC9110]. At the time of
 this writing, TLS version 1.3 [RFC8446] is the most recent version.

 Implementations MAY also support additional transport-layer security
 mechanisms that meet their security requirements.

 The identification of the TLS versions and algorithms is outside the
 scope of this specification. Refer to [BCP195] for up to date
 recommendations on transport layer security, and to the relevant
 specifications for certificate validation and other security
 considerations.

1.6. HTTP Redirections

 This specification makes extensive use of HTTP redirections, in which
 the client or the authorization server directs the resource owner’s
 user agent to another destination. While the examples in this
 specification show the use of the HTTP 302 status code, any other
 method available via the user agent to accomplish this redirection,
 with the exception of HTTP 307, is allowed and is considered to be an
 implementation detail. See Section 7.5.4 for details.

1.7. Interoperability

 OAuth 2.1 provides a rich authorization framework with well-defined
 security properties.

 This specification leaves a few required components partially or
 fully undefined (e.g., client registration, authorization server
 capabilities, endpoint discovery). Some of these behaviors are
 defined in optional extensions which implementations can choose to
 use, such as:

 * [RFC8414]: Authorization Server Metadata, defining an endpoint
 clients can use to look up the information needed to interact with
 a particular OAuth server

Hardt, et al. Expires 12 July 2024 [Page 15]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 * [RFC7591]: Dynamic Client Registration, providing a mechanism for
 programmatically registering clients with an authorization server

 * [RFC7592]: Dynamic Client Management, providing a mechanism for
 updating dynamically registered client information

 * [RFC7662]: Token Introspection, defining a mechanism for resource
 servers to obtain information about access tokens

 Please refer to Appendix C for a list of current known extensions at
 the time of this publication.

1.8. Compatibility with OAuth 2.0

 OAuth 2.1 is compatible with OAuth 2.0 with the extensions and
 restrictions from known best current practices applied.
 Specifically, features not specified in OAuth 2.0 core, such as PKCE,
 are required in OAuth 2.1. Additionally, some features available in
 OAuth 2.0, such as the Implicit or Resource Owner Credentials grant
 types, are not specified in OAuth 2.1. Furthermore, some behaviors
 allowed in OAuth 2.0 are restricted in OAuth 2.1, such as the strict
 string matching of redirect URIs required by OAuth 2.1.

 See Section 10 for more details on the differences from OAuth 2.0.

1.9. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234]. Additionally, the rule URI-reference is
 included from "Uniform Resource Identifier (URI): Generic Syntax"
 [RFC3986].

 Certain security-related terms are to be understood in the sense
 defined in [RFC4949]. These terms include, but are not limited to,
 "attack", "authentication", "authorization", "certificate",
 "confidentiality", "credential", "encryption", "identity", "sign",
 "signature", "trust", "validate", and "verify".

 The term "content" is to be interpreted as described in Section 6.4
 of [RFC9110].

Hardt, et al. Expires 12 July 2024 [Page 16]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 The term "user agent" is to be interpreted as described in
 Section 3.5 of [RFC9110].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

2. Client Registration

 Before initiating the protocol, the client must establish its
 registration with the authorization server. The means through which
 the client registers with the authorization server are beyond the
 scope of this specification but typically involve the client
 developer manually registering the client at the authorization
 server’s website after creating an account and agreeing to the
 service’s Terms of Service, or by using Dynamic Client Registration
 ([RFC7591]).

 Client registration does not require a direct interaction between the
 client and the authorization server. When supported by the
 authorization server, registration can rely on other means for
 establishing trust and obtaining the required client properties
 (e.g., redirect URI, client type). For example, registration can be
 accomplished using a self-issued or third-party-issued assertion, or
 by the authorization server performing client discovery using a
 trusted channel.

 When registering a client, the client developer SHALL:

 * specify the client type as described in Section 2.1,

 * provide client details needed by the grant type in use, such as
 redirect URIs as described in Section 2.3, and

 * include any other information required by the authorization server
 (e.g., application name, website, description, logo image, the
 acceptance of legal terms).

 Dynamic Client Registration ([RFC7591]) defines a common general data
 model for clients that may be used even with manual client
 registration.

2.1. Client Types

 OAuth 2.1 defines two client types based on their ability to
 authenticate securely with the authorization server.

 "confidential": Clients that have credentials with the AS are
 designated as "confidential clients"

Hardt, et al. Expires 12 July 2024 [Page 17]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 "public": Clients without credentials are called "public clients"

 Any clients with credentials MUST take precautions to prevent leakage
 and abuse of their credentials.

 Client authentication allows an Authorization Server to ensure it is
 interacting with a certain client (identified by its client_id) in an
 OAuth flow. The Authorization Server might make policy decisions
 about things such as whether to prompt the user for consent on every
 authorization or only the first based on the confidence that the
 Authorization Server is actually communicating with the legitimate
 client.

 Whether and how an Authorization Server validates the identity of a
 client or the party providing/operating this client is out of scope
 of this specification. Authorization servers SHOULD consider the
 level of confidence in a client’s identity when deciding whether they
 allow a client access to more sensitive resources and operations such
 as the Client Credentials grant type and how often to prompt the user
 for consent.

 A single client_id SHOULD NOT be treated as more than one type of
 client.

 This specification has been designed around the following client
 profiles:

 "web application": A web application is a client running on a web
 server. Resource owners access the client via an HTML user
 interface rendered in a user agent on the device used by the
 resource owner. The client credentials as well as any access
 tokens issued to the client are stored on the web server and are
 not exposed to or accessible by the resource owner.

 "browser-based application": A browser-based application is a client
 in which the client code is downloaded from a web server and
 executes within a user agent (e.g., web browser) on the device
 used by the resource owner. Protocol data and credentials are
 easily accessible (and often visible) to the resource owner. If
 such applications wish to use client credentials, it is
 recommended to utilize the backend for frontend pattern. Since
 such applications reside within the user agent, they can make
 seamless use of the user agent capabilities when requesting
 authorization.

 "native application": A native application is a client installed and

Hardt, et al. Expires 12 July 2024 [Page 18]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 executed on the device used by the resource owner. Protocol data
 and credentials are accessible to the resource owner. It is
 assumed that any client authentication credentials included in the
 application can be extracted. Dynamically issued access tokens
 and refresh tokens can receive an acceptable level of protection.
 On some platforms, these credentials are protected from other
 applications residing on the same device. If such applications
 wish to use client credentials, it is recommended to utilize the
 backend for frontend pattern, or issue the credentials at runtime
 using Dynamic Client Registration ([RFC7591]).

2.2. Client Identifier

 Every client is identified in the context of an authorization server
 by a client identifier -- a unique string representing the
 registration information provided by the client. While the
 Authorization Server typically issues the client identifier itself,
 it may also serve clients whose client identifier was created by a
 party other than the Authorization Server. The client identifier is
 not a secret; it is exposed to the resource owner and MUST NOT be
 used alone for client authentication. The client identifier is
 unique in the context of an authorization server.

 The client identifier is an opaque string whose size is left
 undefined by this specification. The client should avoid making
 assumptions about the identifier size. The authorization server
 SHOULD document the size of any identifier it issues.

 If the authorization server supports clients with client identifiers
 issued by parties other than the authorization server, the
 authorization server SHOULD take precautions to avoid clients
 impersonating resource owners as described in Section 7.4.

2.3. Client Redirection Endpoint

 The client redirection endpoint (also referred to as "redirect
 endpoint") is the URI of the client that the authorization server
 redirects the user agent back to after completing its interaction
 with the resource owner.

 The authorization server redirects the user agent to one of the
 client’s redirection endpoints previously established with the
 authorization server during the client registration process.

Hardt, et al. Expires 12 July 2024 [Page 19]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 The redirect URI MUST be an absolute URI as defined by [RFC3986]
 Section 4.3. The redirect URI MAY include an "application/x-www-
 form-urlencoded" formatted query component ([WHATWG.URL]), which MUST
 be retained when adding additional query parameters. The redirect
 URI MUST NOT include a fragment component.

2.3.1. Registration Requirements

 Authorization servers MUST require clients to register their complete
 redirect URI (including the path component). Authorization servers
 MUST reject authorization requests that specify a redirect URI that
 doesn’t exactly match one that was registered, with an exception for
 loopback redirects, where an exact match is required except for the
 port URI component, see Section 4.1.1 for details.

 The authorization server MAY allow the client to register multiple
 redirect URIs.

 Registration may happen out of band, such as a manual step of
 configuring the client information at the authorization server, or
 may happen at runtime, such as in the initial POST in Pushed
 Authorization Requests [RFC9126].

 For private-use URI scheme-based redirect URIs, authorization servers
 SHOULD enforce the requirement in Section 8.4.3 that clients use
 schemes that are reverse domain name based. At a minimum, any
 private-use URI scheme that doesn’t contain a period character (.)
 SHOULD be rejected.

 In addition to the collision-resistant properties, this can help to
 prove ownership in the event of a dispute where two apps claim the
 same private-use URI scheme (where one app is acting maliciously).
 For example, if two apps claimed com.example.app, the owner of
 example.com could petition the app store operator to remove the
 counterfeit app. Such a petition is harder to prove if a generic URI
 scheme was used.

 Clients MUST NOT expose URLs that forward the user’s browser to
 arbitrary URIs obtained from a query parameter ("open redirector"),
 as described in Section 7.12. Open redirectors can enable
 exfiltration of authorization codes and access tokens.

 The client MAY use the state request parameter to achieve per-request
 customization if needed rather than varying the redirect URI per
 request.

Hardt, et al. Expires 12 July 2024 [Page 20]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Without requiring registration of redirect URIs, attackers can use
 the authorization endpoint as an open redirector as described in
 Section 7.12.

2.3.2. Multiple Redirect URIs

 If multiple redirect URIs have been registered to a client, the
 client MUST include a redirect URI with the authorization request
 using the redirect_uri request parameter (Section 4.1.1). If only a
 single redirect URI has been registered to a client, the redirect_uri
 request parameter is optional.

2.3.3. Preventing CSRF Attacks

 Clients MUST prevent Cross-Site Request Forgery (CSRF) attacks. In
 this context, CSRF refers to requests to the redirection endpoint
 that do not originate at the authorization server, but a malicious
 third party (see Section 4.4.1.8. of [RFC6819] for details). Clients
 that have ensured that the authorization server supports the
 code_challenge parameter MAY rely on the CSRF protection provided by
 that mechanism. In OpenID Connect flows, validating the nonce
 parameter provides CSRF protection. Otherwise, one-time use CSRF
 tokens carried in the state parameter that are securely bound to the
 user agent MUST be used for CSRF protection (see Section 7.9).

2.3.4. Preventing Mix-Up Attacks

 When an OAuth client can only interact with one authorization server,
 a mix-up defense is not required. In scenarios where an OAuth client
 interacts with two or more authorization servers, however, clients
 MUST prevent mix-up attacks. In order to prevent mix-up attacks,
 clients MUST only process redirect responses of the issuer they sent
 the respective request to and from the same user agent this
 authorization request was initiated with.

 See Section 7.13 for a detailed description of two different defenses
 against mix-up attacks.

2.3.5. Invalid Endpoint

 If an authorization request fails validation due to a missing,
 invalid, or mismatching redirect URI, the authorization server SHOULD
 inform the resource owner of the error and MUST NOT automatically
 redirect the user agent to the invalid redirect URI.

Hardt, et al. Expires 12 July 2024 [Page 21]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

2.3.6. Endpoint Content

 The redirection request to the client’s endpoint typically results in
 an HTML document response, processed by the user agent. If the HTML
 response is served directly as the result of the redirection request,
 any script included in the HTML document will execute with full
 access to the redirect URI and the artifacts (e.g. authorization
 code) it contains. Additionally, the request URL containing the
 authorization code may be sent in the HTTP Referer header to any
 embedded images, stylesheets and other elements loaded in the page.

 The client SHOULD NOT include any third-party scripts (e.g., third-
 party analytics, social plug-ins, ad networks) in the redirect URI
 endpoint response. Instead, it SHOULD extract the artifacts from the
 URI and redirect the user agent again to another endpoint without
 exposing the artifacts (in the URI or elsewhere). If third-party
 scripts are included, the client MUST ensure that its own scripts
 (used to extract and remove the credentials from the URI) will
 execute first.

2.4. Client Authentication

 The authorization server MUST only rely on client authentication if
 the process of issuance/registration and distribution of the
 underlying credentials ensures their confidentiality.

 If the client is confidential, the authorization server MAY accept
 any form of client authentication meeting its security requirements
 (e.g., password, public/private key pair).

 It is RECOMMENDED to use asymmetric (public-key based) methods for
 client authentication such as mTLS [RFC8705] or using signed JWTs
 ("Private Key JWT") in accordance with [RFC7521] and [RFC7523] (in
 [OpenID] defined as the client authentication method
 private_key_jwt). When such methods for client authentication are
 used, authorization servers do not need to store sensitive symmetric
 keys, making these methods more robust against a number of attacks.

 When client authentication is not possible, the authorization server
 SHOULD employ other means to validate the client’s identity -- for
 example, by requiring the registration of the client redirect URI or
 enlisting the resource owner to confirm identity. A valid redirect
 URI is not sufficient to verify the client’s identity when asking for
 resource owner authorization but can be used to prevent delivering
 credentials to a counterfeit client after obtaining resource owner
 authorization.

Hardt, et al. Expires 12 July 2024 [Page 22]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 The client MUST NOT use more than one authentication method in each
 request to prevent a conflict of which authentication mechanism is
 authoritative for the request.

 The authorization server MUST consider the security implications of
 interacting with unauthenticated clients and take measures to limit
 the potential exposure of tokens issued to such clients, (e.g.,
 limiting the lifetime of refresh tokens).

 The privileges an authorization server associates with a certain
 client identity MUST depend on the assessment of the overall process
 for client identification and client credential lifecycle management.
 See Section 7.2 for additional details.

2.4.1. Client Secret

 Clients in possession of a client secret, sometimes known as a client
 password, MAY use the HTTP Basic authentication scheme as defined in
 Section 11 of [RFC9110] to authenticate with the authorization
 server. The client identifier is encoded using the application/x-
 www-form-urlencoded encoding algorithm per Appendix B, and the
 encoded value is used as the username; the client secret is encoded
 using the same algorithm and used as the password. The authorization
 server MUST support the HTTP Basic authentication scheme for
 authenticating clients that were issued a client secret.

 For example (with extra line breaks for display purposes only):

 Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

 In addition to that, the authorization server MAY support including
 the client credentials in the request content using the following
 parameters:

 "client_id": REQUIRED. The client identifier issued to the client
 during the registration process described by Section 2.2.

 "client_secret": REQUIRED. The client secret.

 Including the client credentials in the request content using the two
 parameters is NOT RECOMMENDED and SHOULD be limited to clients unable
 to directly utilize the HTTP Basic authentication scheme (or other
 password-based HTTP authentication schemes). The parameters can only
 be transmitted in the request content and MUST NOT be included in the
 request URI.

Hardt, et al. Expires 12 July 2024 [Page 23]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 For example, a request to refresh an access token (Section 4.3) using
 the content parameters (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA
 &client_id=s6BhdRkqt3&client_secret=7Fjfp0ZBr1KtDRbnfVdmIw

 Since this client authentication method involves a password, the
 authorization server MUST protect any endpoint utilizing it against
 brute force attacks.

2.4.2. Other Authentication Methods

 The authorization server MAY support any suitable authentication
 scheme matching its security requirements. When using other
 authentication methods, the authorization server MUST define a
 mapping between the client identifier (registration record) and
 authentication scheme.

 Some additional authentication methods such as mTLS [RFC8705] and
 Private Key JWT [RFC7523] are defined in the "OAuth Token Endpoint
 Authentication Methods (https://www.iana.org/assignments/oauth-
 parameters/oauth-parameters.xhtml#token-endpoint-auth-method)"
 registry, and may be useful as generic client authentication methods
 beyond the specific use of protecting the token endpoint.

2.5. Unregistered Clients

 This specification does not require that clients be registered with
 the authorization server. However, the use of unregistered clients
 is beyond the scope of this specification and requires additional
 security analysis and review of its interoperability impact.

3. Protocol Endpoints

 The authorization process utilizes two authorization server endpoints
 (HTTP resources):

 * Authorization endpoint - used by the client to obtain
 authorization from the resource owner via user agent redirection.

 * Token endpoint - used by the client to exchange an authorization
 grant for an access token, typically with client authentication.

Hardt, et al. Expires 12 July 2024 [Page 24]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 As well as one client endpoint:

 * Redirection endpoint - used by the authorization server to return
 responses containing authorization credentials to the client via
 the resource owner user agent.

 Not every authorization grant type utilizes both endpoints.
 Extension grant types MAY define additional endpoints as needed.

3.1. Authorization Endpoint

 The authorization endpoint is used to interact with the resource
 owner and obtain an authorization grant. The authorization server
 MUST first authenticate the resource owner. The way in which the
 authorization server authenticates the resource owner (e.g., username
 and password login, passkey, federated login, or by using an
 established session) is beyond the scope of this specification.

 The means through which the client obtains the URL of the
 authorization endpoint are beyond the scope of this specification,
 but the URL is typically provided in the service documentation, or in
 the authorization server’s metadata document ([RFC8414]).

 The authorization endpoint URL MUST NOT include a fragment component,
 and MAY include an "application/x-www-form-urlencoded" formatted
 query component [WHATWG.URL], which MUST be retained when adding
 additional query parameters.

 The authorization server MUST support the use of the HTTP GET method
 Section 9.3.1 of [RFC9110] for the authorization endpoint and MAY
 support the POST method (Section 9.3.3 of [RFC9110]) as well.

 The authorization server MUST ignore unrecognized request parameters
 sent to the authorization endpoint.

 Request and response parameters defined by this specification MUST
 NOT be included more than once. Parameters sent without a value MUST
 be treated as if they were omitted from the request.

 An authorization server that redirects a request potentially
 containing user credentials MUST avoid forwarding these user
 credentials accidentally (see Section 7.5.4 for details).

 Cross-Origin Resource Sharing (also known as CORS) [WHATWG.CORS] MUST
 NOT be supported at the Authorization Endpoint as the client does not
 access this endpoint directly, instead the client redirects the user
 agent to it.

Hardt, et al. Expires 12 July 2024 [Page 25]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

3.2. Token Endpoint

 The token endpoint is used by the client to obtain an access token
 using a grant such as those described in Section 4 and Section 4.3.

 The means through which the client obtains the URL of the token
 endpoint are beyond the scope of this specification, but the URL is
 typically provided in the service documentation and configured during
 development of the client, or provided in the authorization server’s
 metadata document ([RFC8414]) and fetched programmatically at
 runtime.

 The token endpoint URL MUST NOT include a fragment component, and MAY
 include an application/x-www-form-urlencoded formatted query
 component ([WHATWG.URL]).

 The client MUST use the HTTP POST method when making requests to the
 token endpoint.

 The authorization server MUST ignore unrecognized request parameters
 sent to the token endpoint.

 Parameters sent without a value MUST be treated as if they were
 omitted from the request. Request and response parameters defined by
 this specification MUST NOT be included more than once.

 Authorization servers that wish to support browser-based applications
 (applications running exclusively in client-side JavaScript without
 access to a supporting backend server) will need to ensure the token
 endpoint supports the necessary CORS ([WHATWG.CORS]) headers to allow
 the responses to be visible to the application. If the authorization
 server provides additional endpoints to the application, such as
 metadata URLs, dynamic client registration, revocation,
 introspection, discovery or user info endpoints, these endpoints may
 also be accessed by the browser-based application, and will also need
 to have the CORS headers defined to allow access. See
 [I-D.ietf-oauth-browser-based-apps] for further details.

3.2.1. Client Authentication

 Confidential clients MUST authenticate with the authorization server
 as described in Section 2.4 when making requests to the token
 endpoint.

 Client authentication is used for:

Hardt, et al. Expires 12 July 2024 [Page 26]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 * Enforcing the binding of refresh tokens and authorization codes to
 the client they were issued to. Client authentication adds an
 additional layer of security when an authorization code is
 transmitted to the redirection endpoint over an insecure channel.

 * Recovering from a compromised client by disabling the client or
 changing its credentials, thus preventing an attacker from abusing
 stolen refresh tokens. Changing a single set of client
 credentials is significantly faster than revoking an entire set of
 refresh tokens.

 * Implementing authentication management best practices, which
 require periodic credential rotation. Rotation of an entire set
 of refresh tokens can be challenging, while rotation of a single
 set of client credentials is significantly easier.

3.2.2. Token Request

 The client makes a request to the token endpoint by sending the
 following parameters using the application/x-www-form-urlencoded
 format per Appendix B with a character encoding of UTF-8 in the HTTP
 request content:

 "client_id": REQUIRED, if the client is not authenticating with the
 authorization server as described in Section 3.2.1.

 "grant_type": REQUIRED. Identifier of the grant type the client
 uses with the particular token request. This specification
 defines the values authorization_code, refresh_token, and
 client_credentials. The grant type determines the further
 parameters required or supported by the token request. The
 details of those grant types are defined below.

 Confidential clients MUST authenticate with the authorization server
 as described in Section 3.2.1.

 For example, the client makes the following HTTP request (with extra
 line breaks for display purposes only):

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &code_verifier=3641a2d12d66101249cdf7a79c000c1f8c05d2aafcf14bf146497bed

Hardt, et al. Expires 12 July 2024 [Page 27]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 The authorization server MUST:

 * require client authentication for confidential clients (or clients
 with other authentication requirements),

 * authenticate the client if client authentication is included

 Further grant type specific processing rules apply and are specified
 with the respective grant type.

3.2.3. Token Response

 If the access token request is valid and authorized, the
 authorization server issues an access token and optional refresh
 token.

 If the request client authentication failed or is invalid, the
 authorization server returns an error response as described in
 Section 3.2.4.

 The authorization server issues an access token and optional refresh
 token by creating an HTTP response content using the application/json
 media type as defined by [RFC8259] with the following parameters and
 an HTTP 200 (OK) status code:

 "access_token": REQUIRED. The access token issued by the
 authorization server.

 "token_type": REQUIRED. The type of the access token issued as
 described in Section 1.4. Value is case insensitive.

 "expires_in": RECOMMENDED. The lifetime in seconds of the access
 token. For example, the value 3600 denotes that the access token
 will expire in one hour from the time the response was generated.
 If omitted, the authorization server SHOULD provide the expiration
 time via other means or document the default value.

 "scope": RECOMMENDED, if identical to the scope requested by the
 client; otherwise, REQUIRED. The scope of the access token as
 described by Section 1.4.1.

 "refresh_token": OPTIONAL. The refresh token, which can be used to
 obtain new access tokens based on the grant passed in the
 corresponding token request.

 Authorization servers SHOULD determine, based on a risk assessment
 and their own policies, whether to issue refresh tokens to a certain
 client. If the authorization server decides not to issue refresh

Hardt, et al. Expires 12 July 2024 [Page 28]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 tokens, the client MAY obtain new access tokens by starting the OAuth
 flow over, for example initiating a new authorization code request.
 In such a case, the authorization server may utilize cookies and
 persistent grants to optimize the user experience.

 If refresh tokens are issued, those refresh tokens MUST be bound to
 the scope and resource servers as consented by the resource owner.
 This is to prevent privilege escalation by the legitimate client and
 reduce the impact of refresh token leakage.

 The parameters are serialized into a JavaScript Object Notation
 (JSON) structure by adding each parameter at the highest structure
 level. Parameter names and string values are included as JSON
 strings. Numerical values are included as JSON numbers. The order
 of parameters does not matter and can vary.

 The authorization server MUST include the HTTP Cache-Control response
 header field (see Section 5.2 of [RFC9111]) with a value of no-store
 in any response containing tokens, credentials, or other sensitive
 information.

 For example:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"Bearer",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "example_parameter":"example_value"
 }

 The client MUST ignore unrecognized value names in the response. The
 sizes of tokens and other values received from the authorization
 server are left undefined. The client should avoid making
 assumptions about value sizes. The authorization server SHOULD
 document the size of any value it issues.

3.2.4. Error Response

 The authorization server responds with an HTTP 400 (Bad Request)
 status code (unless specified otherwise) and includes the following
 parameters with the response:

 "error": REQUIRED. A single ASCII [USASCII] error code from the

Hardt, et al. Expires 12 July 2024 [Page 29]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 following:

 "invalid_request": The request is missing a required parameter,
 includes an unsupported parameter value (other than grant
 type), repeats a parameter, includes multiple credentials,
 utilizes more than one mechanism for authenticating the client,
 contains a code_verifier although no code_challenge was sent in
 the authorization request, or is otherwise malformed.

 "invalid_client": Client authentication failed (e.g., unknown
 client, no client authentication included, or unsupported
 authentication method). The authorization server MAY return an
 HTTP 401 (Unauthorized) status code to indicate which HTTP
 authentication schemes are supported. If the client attempted
 to authenticate via the Authorization request header field, the
 authorization server MUST respond with an HTTP 401
 (Unauthorized) status code and include the WWW-Authenticate
 response header field matching the authentication scheme used
 by the client.

 "invalid_grant": The provided authorization grant (e.g.,
 authorization code, resource owner credentials) or refresh
 token is invalid, expired, revoked, does not match the redirect
 URI used in the authorization request, or was issued to another
 client.

 "unauthorized_client": The authenticated client is not authorized
 to use this authorization grant type.

 "unsupported_grant_type": The authorization grant type is not
 supported by the authorization server.

 "invalid_scope": The requested scope is invalid, unknown,
 malformed, or exceeds the scope granted by the resource owner.

 Values for the error parameter MUST NOT include characters outside
 the set %x20-21 / %x23-5B / %x5D-7E.

 "error_description": OPTIONAL. Human-readable ASCII [USASCII] text
 providing additional information, used to assist the client
 developer in understanding the error that occurred. Values for
 the error_description parameter MUST NOT include characters
 outside the set %x20-21 / %x23-5B / %x5D-7E.

 "error_uri": OPTIONAL. A URI identifying a human-readable web page

Hardt, et al. Expires 12 July 2024 [Page 30]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 with information about the error, used to provide the client
 developer with additional information about the error. Values for
 the error_uri parameter MUST conform to the URI-reference syntax
 and thus MUST NOT include characters outside the set %x21 /
 %x23-5B / %x5D-7E.

 The parameters are included in the content of the HTTP response using
 the application/json media type as defined by [RFC7159]. The
 parameters are serialized into a JSON structure by adding each
 parameter at the highest structure level. Parameter names and string
 values are included as JSON strings. Numerical values are included
 as JSON numbers. The order of parameters does not matter and can
 vary.

 For example:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store

 {
 "error":"invalid_request"
 }

4. Grant Types

 To request an access token, the client obtains authorization from the
 resource owner. This specification defines the following
 authorization grant types:

 * authorization code

 * client credentials, and

 * refresh token

 It also provides an extension mechanism for defining additional grant
 types.

4.1. Authorization Code Grant

 The authorization code grant type is used to obtain both access
 tokens and refresh tokens.

 The grant type uses the additional authorization endpoint to let the
 authorization server interact with the resource owner in order to get
 consent for resource access.

Hardt, et al. Expires 12 July 2024 [Page 31]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Since this is a redirect-based flow, the client must be capable of
 initiating the flow with the resource owner’s user agent (typically a
 web browser) and capable of being redirected back to from the
 authorization server.

 +----------+
 | Resource |
 | Owner |
 +----------+
 ^
 |
 |
 +-----|----+ Client Identifier +---------------+
 | .---+---------(1)-- & Redirect URI ------->| | | | |
 | | | | | |
 | | ’---------(2)-- User authenticates --->| |
 | | User- | | Authorization |
 | | Agent | | Server |
 | | | | |
 | | .--------(3)-- Authorization Code ---<| |
 +-|----|---+ +---------------+
 | | ^ v
 | | | |
 ^ v | |
 +---------+ | |
 | |>---(4)-- Authorization Code ---------’ |
 | Client | & Redirect URI |
 | | |
 | |<---(5)----- Access Token -------------------’
 +---------+ (w/ Optional Refresh Token)

 Figure 3: Authorization Code Flow

 The flow illustrated in Figure 3 includes the following steps:

 (1) The client initiates the flow by directing the resource owner’s
 user agent to the authorization endpoint. The client includes its
 client identifier, code challenge (derived from a generated code
 verifier), optional requested scope, optional local state, and a
 redirect URI to which the authorization server will send the user
 agent back once access is granted (or denied).

 (2) The authorization server authenticates the resource owner (via
 the user agent) and establishes whether the resource owner grants or
 denies the client’s access request.

Hardt, et al. Expires 12 July 2024 [Page 32]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 (3) Assuming the resource owner grants access, the authorization
 server redirects the user agent back to the client using the redirect
 URI provided earlier (in the request or during client registration).
 The redirect URI includes an authorization code and any local state
 provided by the client earlier.

 (4) The client requests an access token from the authorization
 server’s token endpoint by including the authorization code received
 in the previous step, and including its code verifier. When making
 the request, the client authenticates with the authorization server
 if it can. The client includes the redirect URI used to obtain the
 authorization code for verification.

 (5) The authorization server authenticates the client when possible,
 validates the authorization code, validates the code verifier, and
 ensures that the redirect URI received matches the URI used to
 redirect the client in step (3). If valid, the authorization server
 responds back with an access token and, optionally, a refresh token.

4.1.1. Authorization Request

 To begin the authorization request, the client builds the
 authorization request URI by adding parameters to the authorization
 server’s authorization endpoint URI. The client will eventually
 redirect the user agent to this URI to initiate the request.

 Clients use a unique secret per authorization request to protect
 against authorization code injection and CSRF attacks. The client
 first generates this secret, which it can use at the time of
 redeeming the authorization code to prove that the client using the
 authorization code is the same client that requested it.

 The client constructs the request URI by adding the following
 parameters to the query component of the authorization endpoint URI
 using the application/x-www-form-urlencoded format, per Appendix B:

 "response_type": REQUIRED. The authorization endpoint supports
 different sets of request and response pameters. The client
 determines the type of flow by using a certain response_type
 value. This specification defines the value code, which must be
 used to signal that the client wants to use the authorization code
 flow.

 Extension response types MAY contain a space-delimited (%x20) list of
 values, where the order of values does not matter (e.g., response
 type a b is the same as b a). The meaning of such composite response
 types is defined by their respective specifications.

Hardt, et al. Expires 12 July 2024 [Page 33]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Some extension response types are defined by ([OpenID]).

 If an authorization request is missing the response_type parameter,
 or if the response type is not understood, the authorization server
 MUST return an error response as described in Section 4.1.2.1.

 "client_id": REQUIRED. The client identifier as described in
 Section 2.2.

 "code_challenge": REQUIRED or RECOMMENDED (see Section 7.5.1). Code
 challenge.

 "code_challenge_method": OPTIONAL, defaults to plain if not present
 in the request. Code verifier transformation method is S256 or
 plain.

 "redirect_uri": OPTIONAL if only one redirect URI is registered for
 this client. REQUIRED if multiple redirict URIs are registered
 for this client. See Section 2.3.2.

 "scope": OPTIONAL. The scope of the access request as described by
 Section 1.4.1.

 "state": OPTIONAL. An opaque value used by the client to maintain
 state between the request and callback. The authorization server
 includes this value when redirecting the user agent back to the
 client.

 The code_verifier is a unique high-entropy cryptographically random
 string generated for each authorization request, using the unreserved
 characters [A-Z] / [a-z] / [0-9] / "-" / "." / "_" / "˜", with a
 minimum length of 43 characters and a maximum length of 128
 characters.

 The client stores the code_verifier temporarily, and calculates the
 code_challenge which it uses in the authorization request.

 ABNF for code_verifier is as follows.

 code-verifier = 43*128unreserved
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 ALPHA = %x41-5A / %x61-7A
 DIGIT = %x30-39

Hardt, et al. Expires 12 July 2024 [Page 34]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Clients SHOULD use code challenge methods that do not expose the
 code_verifier in the authorization request. Otherwise, attackers
 that can read the authorization request (cf. Attacker A4 in
 [I-D.ietf-oauth-security-topics]) can break the security provided by
 this mechanism. Currently, S256 is the only such method.

 NOTE: The code verifier SHOULD have enough entropy to make it
 impractical to guess the value. It is RECOMMENDED that the output of
 a suitable random number generator be used to create a 32-octet
 sequence. The octet sequence is then base64url-encoded to produce a
 43-octet URL-safe string to use as the code verifier.

 The client then creates a code_challenge derived from the code
 verifier by using one of the following transformations on the code
 verifier:

 S256
 code_challenge = BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

 plain
 code_challenge = code_verifier

 If the client is capable of using S256, it MUST use S256, as S256 is
 Mandatory To Implement (MTI) on the server. Clients are permitted to
 use plain only if they cannot support S256 for some technical reason,
 for example constrained environments that do not have a hashing
 function available, and know via out-of-band configuration or via
 Authorization Server Metadata ([RFC8414]) that the server supports
 plain.

 ABNF for code_challenge is as follows.

 code-challenge = 43*128unreserved
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 ALPHA = %x41-5A / %x61-7A
 DIGIT = %x30-39

 The properties code_challenge and code_verifier are adopted from the
 OAuth 2.0 extension known as "Proof-Key for Code Exchange", or PKCE
 ([RFC7636]) where this technique was originally developed.

 Authorization servers MUST support the code_challenge and
 code_verifier parameters.

 Clients MUST use code_challenge and code_verifier and authorization
 servers MUST enforce their use except under the conditions described
 in Section 7.5.1. In this case, using and enforcing code_challenge
 and code_verifier as described in the following is still RECOMMENDED.

Hardt, et al. Expires 12 July 2024 [Page 35]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 The state and scope parameters SHOULD NOT include sensitive client or
 resource owner information in plain text, as they can be transmitted
 over insecure channels or stored insecurely.

 The client directs the resource owner to the constructed URI using an
 HTTP redirection, or by other means available to it via the user
 agent.

 For example, the client directs the user agent to make the following
 HTTP request (with extra line breaks for display purposes only):

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &code_challenge=6fdkQaPm51l13DSukcAH3Mdx7_ntecHYd1vi3n0hMZY
 &code_challenge_method=S256 HTTP/1.1
 Host: server.example.com

 The authorization server validates the request to ensure that all
 required parameters are present and valid.

 In particular, the authorization server MUST validate the
 redirect_uri in the request if present, ensuring that it matches one
 of the registered redirect URIs previously established during client
 registration (Section 2). When comparing the two URIs the
 authorization server MUST ensure that the two URIs are equal, see
 [RFC3986], Section 6.2.1, Simple String Comparison, for details.

 If the request is valid, the authorization server authenticates the
 resource owner and obtains an authorization decision (by asking the
 resource owner or by establishing approval via other means).

 When a decision is established, the authorization server directs the
 user agent to the provided client redirect URI using an HTTP
 redirection response, or by other means available to it via the user
 agent.

4.1.2. Authorization Response

 If the resource owner grants the access request, the authorization
 server issues an authorization code and delivers it to the client by
 adding the following parameters to the query component of the
 redirect URI using the application/x-www-form-urlencoded format, per
 Appendix B:

 "code": REQUIRED. The authorization code is generated by the

Hardt, et al. Expires 12 July 2024 [Page 36]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 authorization server and opaque to the client. The authorization
 code MUST expire shortly after it is issued to mitigate the risk
 of leaks. A maximum authorization code lifetime of 10 minutes is
 RECOMMENDED. The authorization code is bound to the client
 identifier, code challenge and redirect URI.

 "state": REQUIRED if the state parameter was present in the client
 authorization request. The exact value received from the client.

 "iss": OPTIONAL. The identifier of the authorization server which
 the client can use to prevent mix-up attacks, if the client
 interacts with more than one authorization server. See
 Section 7.13 and [RFC9207] for additional details on when this
 parameter is necessary, and how the client can use it to prevent
 mix-up attacks.

 For example, the authorization server redirects the user agent by
 sending the following HTTP response:

 HTTP/1.1 302 Found
 Location: https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA
 &state=xyz&iss=https%3A%2F%2Fauthorization-server.example.com

 The client MUST ignore unrecognized response parameters. The
 authorization code string size is left undefined by this
 specification. The client should avoid making assumptions about code
 value sizes. The authorization server SHOULD document the size of
 any value it issues.

 The authorization server MUST associate the code_challenge and
 code_challenge_method values with the issued authorization code so
 the code challenge can be verified later.

 The exact method that the server uses to associate the code_challenge
 with the issued code is out of scope for this specification. The
 code challenge could be stored on the server and associated with the
 code there. The code_challenge and code_challenge_method values may
 be stored in encrypted form in the code itself, but the server MUST
 NOT include the code_challenge value in a response parameter in a
 form that entities other than the AS can extract.

 Clients MUST prevent injection (replay) of authorization codes into
 the authorization response by attackers. Using code_challenge and
 code_verifier prevents injection of authorization codes since the
 authorization server will reject a token request with a mismatched
 code_verifier. See Section 7.5.1 for more details.

Hardt, et al. Expires 12 July 2024 [Page 37]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

4.1.2.1. Error Response

 If the request fails due to a missing, invalid, or mismatching
 redirect URI, or if the client identifier is missing or invalid, the
 authorization server SHOULD inform the resource owner of the error
 and MUST NOT automatically redirect the user agent to the invalid
 redirect URI.

 An AS MUST reject requests without a code_challenge from public
 clients, and MUST reject such requests from other clients unless
 there is reasonable assurance that the client mitigates authorization
 code injection in other ways. See Section 7.5.1 for details.

 If the server does not support the requested code_challenge_method
 transformation, the authorization endpoint MUST return the
 authorization error response with error value set to invalid_request.
 The error_description or the response of error_uri SHOULD explain the
 nature of error, e.g., transform algorithm not supported.

 If the resource owner denies the access request or if the request
 fails for reasons other than a missing or invalid redirect URI, the
 authorization server informs the client by adding the following
 parameters to the query component of the redirect URI using the
 application/x-www-form-urlencoded format, per Appendix B:

 "error": REQUIRED. A single ASCII [USASCII] error code from the
 following:

 "invalid_request": The request is missing a required parameter,
 includes an invalid parameter value, includes a parameter more
 than once, or is otherwise malformed.

 "unauthorized_client": The client is not authorized to request an
 authorization code using this method.

 "access_denied": The resource owner or authorization server
 denied the request.

 "unsupported_response_type": The authorization server does not
 support obtaining an authorization code using this method.

 "invalid_scope": The requested scope is invalid, unknown, or
 malformed.

 "server_error": The authorization server encountered an

Hardt, et al. Expires 12 July 2024 [Page 38]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 unexpected condition that prevented it from fulfilling the
 request. (This error code is needed because a 500 Internal
 Server Error HTTP status code cannot be returned to the client
 via an HTTP redirect.)

 "temporarily_unavailable": The authorization server is currently
 unable to handle the request due to a temporary overloading or
 maintenance of the server. (This error code is needed because
 a 503 Service Unavailable HTTP status code cannot be returned
 to the client via an HTTP redirect.)

 Values for the error parameter MUST NOT include characters outside
 the set %x20-21 / %x23-5B / %x5D-7E.

 "error_description": OPTIONAL. Human-readable ASCII [USASCII] text
 providing additional information, used to assist the client
 developer in understanding the error that occurred. Values for
 the error_description parameter MUST NOT include characters
 outside the set %x20-21 / %x23-5B / %x5D-7E.

 "error_uri": OPTIONAL. A URI identifying a human-readable web page
 with information about the error, used to provide the client
 developer with additional information about the error. Values for
 the error_uri parameter MUST conform to the URI-reference syntax
 and thus MUST NOT include characters outside the set %x21 /
 %x23-5B / %x5D-7E.

 "state": REQUIRED if a state parameter was present in the client
 authorization request. The exact value received from the client.

 "iss": OPTIONAL. The identifier of the authorization server. See
 Section 4.1.2 above for details.

 For example, the authorization server redirects the user agent by
 sending the following HTTP response:

 HTTP/1.1 302 Found
 Location: https://client.example.com/cb?error=access_denied
 &state=xyz&iss=https%3A%2F%2Fauthorization-server.example.com

4.1.3. Token Endpoint Extension

 The authorization grant type is identified at the token endpoint with
 the grant_type value of authorization_code.

 If this value is set, the following additional token request
 parameters beyond Section 3.2.2 are required:

Hardt, et al. Expires 12 July 2024 [Page 39]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 "code": REQUIRED. The authorization code received from the
 authorization server.

 "code_verifier": REQUIRED, if the code_challenge parameter was
 included in the authorization request. MUST NOT be used
 otherwise. The original code verifier string.

 The authorization server MUST return an access token only once for a
 given authorization code.

 If a second valid token request is made with the same authorization
 code as a previously successful token request, the authorization
 server MUST deny the request and SHOULD revoke (when possible) all
 access tokens and refresh tokens previously issued based on that
 authorization code. See Section 7.5.3 for further details.

 For example, the client makes the following HTTP request (with extra
 line breaks for display purposes only):

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &code_verifier=3641a2d12d66101249cdf7a79c000c1f8c05d2aafcf14bf146497bed

 In addition to the processing rules in Section 3.2.2, the
 authorization server MUST:

 * ensure that the authorization code was issued to the authenticated
 confidential client, or if the client is public, ensure that the
 code was issued to client_id in the request,

 * verify that the authorization code is valid,

 * verify that the code_verifier parameter is present if and only if
 a code_challenge parameter was present in the authorization
 request,

 * if a code_verifier is present, verify the code_verifier by
 calculating the code challenge from the received code_verifier and
 comparing it with the previously associated code_challenge, after
 first transforming it according to the code_challenge_method
 method specified by the client, and

Hardt, et al. Expires 12 July 2024 [Page 40]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 * If there was no code_challenge in the authorization request
 associated with the authorization code in the token request, the
 authorization server MUST reject the token request.

 See Section 10.2 for details on backwards compatibility with OAuth
 2.0 clients regarding the redirect_uri parameter in the token
 request.

4.2. Client Credentials Grant

 The client can request an access token using only its client
 credentials (or other supported means of authentication) when the
 client is requesting access to the protected resources under its
 control, or those of another resource owner that have been previously
 arranged with the authorization server (the method of which is beyond
 the scope of this specification).

 The client credentials grant type MUST only be used by confidential
 clients.

 +---------+ +---------------+
 | | | |
 | |>--(1)- Client Authentication --->| Authorization |
 | Client | | Server |
 | |<--(2)---- Access Token ---------<| |
 | | | |
 +---------+ +---------------+

 Figure 4: Client Credentials Grant

 The use of the client credentials grant illustrated in Figure 4
 includes the following steps:

 (1) The client authenticates with the authorization server and
 requests an access token from the token endpoint.

 (2) The authorization server authenticates the client, and if valid,
 issues an access token.

4.2.1. Token Endpoint Extension

 The authorization grant type is identified at the token endpoint with
 the grant_type value of client_credentials.

 If this value is set, the following additional token request
 parameters beyond Section 3.2.2 are supported:

 "scope": OPTIONAL. The scope of the access request as described by

Hardt, et al. Expires 12 July 2024 [Page 41]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Section 1.4.1.

 For example, the client makes the following HTTP request using
 transport-layer security (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials

 The authorization server MUST authenticate the client.

4.3. Refresh Token Grant

 The refresh token is a credential issued by the authorization server
 to a client, which can be used to obtain new (fresh) access tokens
 based on an existing grant. The client uses this option either
 because the previous access token has expired or the client
 previously obtained an access token with a scope more narrow than
 approved by the respective grant and later requires an access token
 with a different scope under the same grant.

 Refresh tokens MUST be kept confidential in transit and storage, and
 shared only among the authorization server and the client to whom the
 refresh tokens were issued. The authorization server MUST maintain
 the binding between a refresh token and the client to whom it was
 issued.

 The authorization server MUST verify the binding between the refresh
 token and client identity whenever the client identity can be
 authenticated. When client authentication is not possible, the
 authorization server SHOULD issue sender-constrained refresh tokens
 or use refresh token rotation as described in Section 4.3.1.

 The authorization server MUST ensure that refresh tokens cannot be
 generated, modified, or guessed to produce valid refresh tokens by
 unauthorized parties.

4.3.1. Token Endpoint Extension

 The authorization grant type is identified at the token endpoint with
 the grant_type value of refresh_token.

 If this value is set, the following additional parameters beyond
 Section 3.2.2 are required/supported:

Hardt, et al. Expires 12 July 2024 [Page 42]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 "refresh_token": REQUIRED. The refresh token issued to the client.

 "scope": OPTIONAL. The scope of the access request as described by
 Section 1.4.1. The requested scope MUST NOT include any scope not
 originally granted by the resource owner, and if omitted is
 treated as equal to the scope originally granted by the resource
 owner.

 Because refresh tokens are typically long-lasting credentials used to
 request additional access tokens, the refresh token is bound to the
 client to which it was issued. Confidential clients MUST
 authenticate with the authorization server as described in
 Section 3.2.1.

 For example, the client makes the following HTTP request using
 transport-layer security (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA

 In addition to the processing rules in Section 3.2.2, the
 authorization server MUST:

 * if client authentication is included in the request, ensure that
 the refresh token was issued to the authenticated client, OR if a
 client_id is included in the request, ensure the refresh token was
 issued to the matching client

 * validate that the grant corresponding to this refresh token is
 still active

 * validate the refresh token

 Authorization servers MUST utilize one of these methods to detect
 refresh token replay by malicious actors for public clients:

 * _Sender-constrained refresh tokens:_ the authorization server
 cryptographically binds the refresh token to a certain client
 instance, e.g. by utilizing DPoP [RFC9449] or mTLS [RFC8705].

 * _Refresh token rotation:_ the authorization server issues a new
 refresh token with every access token refresh response. The
 previous refresh token is invalidated but information about the

Hardt, et al. Expires 12 July 2024 [Page 43]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 relationship is retained by the authorization server. If a
 refresh token is compromised and subsequently used by both the
 attacker and the legitimate client, one of them will present an
 invalidated refresh token, which will inform the authorization
 server of the breach. The authorization server cannot determine
 which party submitted the invalid refresh token, but it will
 revoke the active refresh token as well as the access
 authorization grant associated with it. This stops the attack at
 the cost of forcing the legitimate client to obtain a fresh
 authorization grant.

 Implementation note: the grant to which a refresh token belongs may
 be encoded into the refresh token itself. This can enable an
 authorization server to efficiently determine the grant to which a
 refresh token belongs, and by extension, all refresh tokens that need
 to be revoked. Authorization servers MUST ensure the integrity of
 the refresh token value in this case, for example, using signatures.

4.3.2. Refresh Token Response

 If valid and authorized, the authorization server issues an access
 token as described in Section 3.2.3.

 The authorization server MAY issue a new refresh token, in which case
 the client MUST discard the old refresh token and replace it with the
 new refresh token.

4.3.3. Refresh Token Recommendations

 The authorization server MAY revoke the old refresh token after
 issuing a new refresh token to the client. If a new refresh token is
 issued, the refresh token scope MUST be identical to that of the
 refresh token included by the client in the request.

 Authorization servers MAY revoke refresh tokens automatically in case
 of a security event, such as:

 * password change

 * logout at the authorization server

 Refresh tokens SHOULD expire if the client has been inactive for some
 time, i.e., the refresh token has not been used to obtain new access
 tokens for some time. The expiration time is at the discretion of
 the authorization server. It might be a global value or determined
 based on the client policy or the grant associated with the refresh
 token (and its sensitivity).

Hardt, et al. Expires 12 July 2024 [Page 44]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

4.4. Extension Grants

 The client uses an extension grant type by specifying the grant type
 using an absolute URI (defined by the authorization server) as the
 value of the grant_type parameter of the token endpoint, and by
 adding any additional parameters necessary.

 For example, to request an access token using the Device
 Authorization Grant as defined by [RFC8628] after the user has
 authorized the client on a separate device, the client makes the
 following HTTP request (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Adevice_code
 &device_code=GmRhmhcxhwEzkoEqiMEg_DnyEysNkuNhszIySk9eS
 &client_id=C409020731

 If the access token request is valid and authorized, the
 authorization server issues an access token and optional refresh
 token as described in Section 3.2.3. If the request failed client
 authentication or is invalid, the authorization server returns an
 error response as described in Section 3.2.4.

5. Resource Requests

 The client accesses protected resources by presenting an access token
 to the resource server. The resource server MUST validate the access
 token and ensure that it has not expired and that its scope covers
 the requested resource. The methods used by the resource server to
 validate the access token are beyond the scope of this specification,
 but generally involve an interaction or coordination between the
 resource server and the authorization server. For example, when the
 resource server and authorization server are colocated or are part of
 the same system, they may share a database or other storage; when the
 two components are operated independently, they may use Token
 Introspection [RFC7662] or a structured access token format such as a
 JWT [RFC9068].

5.1. Bearer Token Requests

 This section defines two methods of sending Bearer tokens in resource
 requests to resource servers. Clients MUST use one of the two
 methods defined below, and MUST NOT use more than one method to
 transmit the token in each request.

Hardt, et al. Expires 12 July 2024 [Page 45]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 In particular, clients MUST NOT send the access token in a URI query
 parameter, and resource servers MUST ignore access tokens in a URI
 query parameter.

5.1.1. Authorization Request Header Field

 When sending the access token in the Authorization request header
 field defined by HTTP/1.1 [RFC7235], the client uses the Bearer
 scheme to transmit the access token.

 For example:

 GET /resource HTTP/1.1
 Host: server.example.com
 Authorization: Bearer mF_9.B5f-4.1JqM

 The syntax of the Authorization header field for this scheme follows
 the usage of the Basic scheme defined in Section 2 of [RFC2617].
 Note that, as with Basic, it does not conform to the generic syntax
 defined in Section 1.2 of [RFC2617] but is compatible with the
 general authentication framework in HTTP 1.1 Authentication
 [RFC7235], although it does not follow the preferred practice
 outlined therein in order to reflect existing deployments. The
 syntax for Bearer credentials is as follows:

 token68 = 1*(ALPHA / DIGIT /
 "-" / "." / "_" / "˜" / "+" / "/") *"="
 credentials = "Bearer" 1*SP token68

 Clients SHOULD make authenticated requests with a bearer token using
 the Authorization request header field with the Bearer HTTP
 authorization scheme. Resource servers MUST support this method.

5.1.2. Form-Encoded Content Parameter

 When sending the access token in the HTTP request content, the client
 adds the access token to the request content using the access_token
 parameter. The client MUST NOT use this method unless all of the
 following conditions are met:

 * The HTTP request includes the Content-Type header field set to
 application/x-www-form-urlencoded.

 * The content follows the encoding requirements of the application/
 x-www-form-urlencoded content-type as defined by the URL Living
 Standard [WHATWG.URL].

 * The HTTP request content is single-part.

Hardt, et al. Expires 12 July 2024 [Page 46]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 * The content to be encoded in the request MUST consist entirely of
 ASCII [USASCII] characters.

 * The HTTP request method is one for which the content has defined
 semantics. In particular, this means that the GET method MUST NOT
 be used.

 The content MAY include other request-specific parameters, in which
 case the access_token parameter MUST be properly separated from the
 request-specific parameters using & character(s) (ASCII code 38).

 For example, the client makes the following HTTP request using
 transport-layer security:

 POST /resource HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 access_token=mF_9.B5f-4.1JqM

 The application/x-www-form-urlencoded method SHOULD NOT be used
 except in application contexts where participating clients do not
 have access to the Authorization request header field. Resource
 servers MAY support this method.

5.2. Access Token Validation

 After receiving the access token, the resource server MUST check that
 the access token is not yet expired, is authorized to access the
 requested resource, was issued with the appropriate scope, and meets
 other policy requirements of the resource server to access the
 protected resource.

 Access tokens generally fall into two categories: reference tokens or
 self-encoded tokens. Reference tokens can be validated by querying
 the authorization server or looking up the token in a token database,
 whereas self-encoded tokens contain the authorization information in
 an encrypted and/or signed string which can be extracted by the
 resource server.

 A standardized method to query the authorization server to check the
 validity of an access token is defined in Token Introspection
 ([RFC7662]).

 A standardized method of encoding information in a token string is
 defined in JWT Profile for Access Tokens ([RFC9068]).

Hardt, et al. Expires 12 July 2024 [Page 47]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 See Section 7.1 for additional considerations around creating and
 validating access tokens.

5.3. Error Response

 If a resource access request fails, the resource server SHOULD inform
 the client of the error. The details of the error response is
 determined by the particular token type, such as the description of
 Bearer tokens in Section 5.3.2.

5.3.1. The WWW-Authenticate Response Header Field

 If the protected resource request does not include authentication
 credentials or does not contain an access token that enables access
 to the protected resource, the resource server MUST include the HTTP
 WWW-Authenticate response header field; it MAY include it in response
 to other conditions as well. The WWW-Authenticate header field uses
 the framework defined by HTTP/1.1 [RFC7235].

 All challenges for this token type MUST use the auth-scheme value
 Bearer. This scheme MUST be followed by one or more auth-param
 values. The auth-param attributes used or defined by this
 specification for this token type are as follows. Other auth-param
 attributes MAY be used as well.

 "realm": A realm attribute MAY be included to indicate the scope of
 protection in the manner described in HTTP/1.1 [RFC7235]. The
 realm attribute MUST NOT appear more than once.

 "scope": The scope attribute is defined in Section 1.4.1. The scope
 attribute is a space-delimited list of case-sensitive scope values
 indicating the required scope of the access token for accessing
 the requested resource. scope values are implementation defined;
 there is no centralized registry for them; allowed values are
 defined by the authorization server. The order of scope values is
 not significant. In some cases, the scope value will be used when
 requesting a new access token with sufficient scope of access to
 utilize the protected resource. Use of the scope attribute is
 OPTIONAL. The scope attribute MUST NOT appear more than once.
 The scope value is intended for programmatic use and is not meant
 to be displayed to end-users.

 Two example scope values follow; these are taken from the OpenID
 Connect [OpenID.Messages] and the Open Authentication Technology
 Committee (OATC) Online Multimedia Authorization Protocol [OMAP]
 OAuth 2.0 use cases, respectively:

Hardt, et al. Expires 12 July 2024 [Page 48]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 scope="openid profile email"
 scope="urn:example:channel=HBO&urn:example:rating=G,PG-13"

 "error": If the protected resource request included an access token
 and failed authentication, the resource server SHOULD include the
 error attribute to provide the client with the reason why the
 access request was declined. The parameter value is described in
 Section 5.3.2.

 "error_description": The resource server MAY include the
 error_description attribute to provide developers a human-readable
 explanation that is not meant to be displayed to end-users.

 "error_uri": The resource server MAY include the error_uri attribute
 with an absolute URI identifying a human-readable web page
 explaining the error.

 The error, error_description, and error_uri attributes MUST NOT
 appear more than once.

 Values for the scope attribute (specified in Appendix A.4) MUST NOT
 include characters outside the set %x21 / %x23-5B / %x5D-7E for
 representing scope values and %x20 for delimiters between scope
 values. Values for the error and error_description attributes
 (specified in Appendix A.7 and Appendix A.8) MUST NOT include
 characters outside the set %x20-21 / %x23-5B / %x5D-7E. Values for
 the error_uri attribute (specified in Appendix A.9 of) MUST conform
 to the URI-reference syntax and thus MUST NOT include characters
 outside the set %x21 / %x23-5B / %x5D-7E.

5.3.2. Error Codes

 When a request fails, the resource server responds using the
 appropriate HTTP status code (typically, 400, 401, 403, or 405) and
 includes one of the following error codes in the response:

 "invalid_request": The request is missing a required parameter,
 includes an unsupported parameter or parameter value, repeats the
 same parameter, uses more than one method for including an access
 token, or is otherwise malformed. The resource server SHOULD
 respond with the HTTP 400 (Bad Request) status code.

 "invalid_token": The access token provided is expired, revoked,
 malformed, or invalid for other reasons. The resource SHOULD
 respond with the HTTP 401 (Unauthorized) status code. The client
 MAY request a new access token and retry the protected resource
 request.

Hardt, et al. Expires 12 July 2024 [Page 49]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 "insufficient_scope": The request requires higher privileges
 (scopes) than provided by the scopes granted to the client and
 represented by the access token. The resource server SHOULD
 respond with the HTTP 403 (Forbidden) status code and MAY include
 the scope attribute with the scope necessary to access the
 protected resource.

 Extensions may define additional error codes or specify additional
 circumstances in which the above error codes are retured.

 If the request lacks any authentication information (e.g., the client
 was unaware that authentication is necessary or attempted using an
 unsupported authentication method), the resource server SHOULD NOT
 include an error code or other error information.

 For example:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: Bearer realm="example"

 And in response to a protected resource request with an
 authentication attempt using an expired access token:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: Bearer realm="example",
 error="invalid_token",
 error_description="The access token expired"

6. Extensibility

6.1. Defining Access Token Types

 Access token types can be defined in one of two ways: registered in
 the Access Token Types registry (following the procedures in
 Section 11.1 of [RFC6749]), or by using a unique absolute URI as its
 name.

6.1.1. Registered Access Token Types

 [RFC6750] establishes a common registry in Section 11.4 of [RFC6749]
 for error values to be shared among OAuth token authentication
 schemes.

 New authentication schemes designed primarily for OAuth token
 authentication SHOULD define a mechanism for providing an error
 status code to the client, in which the error values allowed are
 registered in the error registry established by this specification.

Hardt, et al. Expires 12 July 2024 [Page 50]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Such schemes MAY limit the set of valid error codes to a subset of
 the registered values. If the error code is returned using a named
 parameter, the parameter name SHOULD be error.

 Other schemes capable of being used for OAuth token authentication,
 but not primarily designed for that purpose, MAY bind their error
 values to the registry in the same manner.

 New authentication schemes MAY choose to also specify the use of the
 error_description and error_uri parameters to return error
 information in a manner parallel to their usage in this
 specification.

 Type names MUST conform to the type-name ABNF. If the type
 definition includes a new HTTP authentication scheme, the type name
 SHOULD be identical to the HTTP authentication scheme name (as
 defined by [RFC2617]). The token type example is reserved for use in
 examples.

 type-name = 1*name-char
 name-char = "-" / "." / "_" / DIGIT / ALPHA

6.1.2. Vendor-Specific Access Token Types

 Types utilizing a URI name SHOULD be limited to vendor-specific
 implementations that are not commonly applicable, and are specific to
 the implementation details of the resource server where they are
 used.

 All other types MUST be registered.

6.2. Defining New Endpoint Parameters

 New request or response parameters for use with the authorization
 endpoint or the token endpoint are defined and registered in the
 OAuth Parameters registry following the procedure in Section 11.2 of
 [RFC6749].

 Parameter names MUST conform to the param-name ABNF, and parameter
 values syntax MUST be well-defined (e.g., using ABNF, or a reference
 to the syntax of an existing parameter).

 param-name = 1*name-char
 name-char = "-" / "." / "_" / DIGIT / ALPHA

Hardt, et al. Expires 12 July 2024 [Page 51]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Unregistered vendor-specific parameter extensions that are not
 commonly applicable and that are specific to the implementation
 details of the authorization server where they are used SHOULD
 utilize a vendor-specific prefix that is not likely to conflict with
 other registered values (e.g., begin with ’companyname_’).

6.3. Defining New Authorization Grant Types

 New authorization grant types can be defined by assigning them a
 unique absolute URI for use with the grant_type parameter. If the
 extension grant type requires additional token endpoint parameters,
 they MUST be registered in the OAuth Parameters registry as described
 by Section 11.2 of [RFC6749].

6.4. Defining New Authorization Endpoint Response Types

 New response types for use with the authorization endpoint are
 defined and registered in the Authorization Endpoint Response Types
 registry following the procedure in Section 11.3 of [RFC6749].
 Response type names MUST conform to the response-type ABNF.

 response-type = response-name *(SP response-name)
 response-name = 1*response-char
 response-char = "_" / DIGIT / ALPHA

 If a response type contains one or more space characters (%x20), it
 is compared as a space-delimited list of values in which the order of
 values does not matter. Only one order of values can be registered,
 which covers all other arrangements of the same set of values.

 For example, an extension can define and register the code
 other_token response type. Once registered, the same combination
 cannot be registered as other_token code, but both values can be used
 to denote the same response type.

6.5. Defining Additional Error Codes

 In cases where protocol extensions (i.e., access token types,
 extension parameters, or extension grant types) require additional
 error codes to be used with the authorization code grant error
 response (Section 4.1.2.1), the token error response (Section 3.2.4),
 or the resource access error response (Section 5.3), such error codes
 MAY be defined.

Hardt, et al. Expires 12 July 2024 [Page 52]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Extension error codes MUST be registered (following the procedures in
 Section 11.4 of [RFC6749]) if the extension they are used in
 conjunction with is a registered access token type, a registered
 endpoint parameter, or an extension grant type. Error codes used
 with unregistered extensions MAY be registered.

 Error codes MUST conform to the error ABNF and SHOULD be prefixed by
 an identifying name when possible. For example, an error identifying
 an invalid value set to the extension parameter example SHOULD be
 named example_invalid.

 error = 1*error-char
 error-char = %x20-21 / %x23-5B / %x5D-7E

7. Security Considerations

 As a flexible and extensible framework, OAuth’s security
 considerations depend on many factors. The following sections
 provide implementers with security guidelines focused on the three
 client profiles described in Section 2.1: web application, browser-
 based application, and native application.

 A comprehensive OAuth security model and analysis, as well as
 background for the protocol design, is provided by [RFC6819] and
 [I-D.ietf-oauth-security-topics].

7.1. Access Token Security Considerations

7.1.1. Security Threats

 The following list presents several common threats against protocols
 utilizing some form of tokens. This list of threats is based on NIST
 Special Publication 800-63 [NIST800-63].

7.1.1.1. Access token manufacture/modification

 An attacker may generate a bogus access token or modify the token
 contents (such as the authentication or attribute statements) of an
 existing token, causing the resource server to grant inappropriate
 access to the client. For example, an attacker may modify the token
 to extend the validity period; a malicious client may modify the
 assertion to gain access to information that they should not be able
 to view.

7.1.1.2. Access token disclosure

 Access tokens may contain authentication and attribute statements
 that include sensitive information.

Hardt, et al. Expires 12 July 2024 [Page 53]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

7.1.1.3. Access token redirect

 An attacker uses an access token generated for consumption by one
 resource server to gain access to a different resource server that
 mistakenly believes the token to be for it.

7.1.1.4. Access token replay

 An attacker attempts to use an access token that has already been
 used with that resource server in the past.

7.1.2. Threat Mitigation

 A large range of threats can be mitigated by protecting the contents
 of the access token by using a digital signature.

 Alternatively, a bearer token can contain a reference to
 authorization information, rather than encoding the information
 directly. Using a reference may require an extra interaction between
 a resource server and authorization server to resolve the reference
 to the authorization information. The mechanics of such an
 interaction are not defined by this specification, but one such
 mechanism is defined in Token Introspection [RFC7662].

 This document does not specify the encoding or the contents of the
 access token; hence, detailed recommendations about the means of
 guaranteeing access token integrity protection are outside the scope
 of this specification. One example of an encoding and signing
 mechanism for access tokens is described in JSON Web Token Profile
 for Access Tokens [RFC9068].

 To deal with access token redirects, it is important for the
 authorization server to include the identity of the intended
 recipients (the audience), typically a single resource server (or a
 list of resource servers), in the token. Restricting the use of the
 token to a specific scope is also RECOMMENDED.

 If cookies are transmitted without TLS protection, any information
 contained in them is at risk of disclosure. Therefore, Bearer tokens
 MUST NOT be stored in cookies that can be sent in the clear, as any
 information in them is at risk of disclosure. See "HTTP State
 Management Mechanism" [RFC6265] for security considerations about
 cookies.

 In some deployments, including those utilizing load balancers, the
 TLS connection to the resource server terminates prior to the actual
 server that provides the resource. This could leave the token
 unprotected between the front-end server where the TLS connection

Hardt, et al. Expires 12 July 2024 [Page 54]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 terminates and the back-end server that provides the resource. In
 such deployments, sufficient measures MUST be employed to ensure
 confidentiality of the access token between the front-end and back-
 end servers; encryption of the token is one such possible measure.

7.1.3. Summary of Recommendations

7.1.3.1. Safeguard bearer tokens

 Client implementations MUST ensure that bearer tokens are not leaked
 to unintended parties, as they will be able to use them to gain
 access to protected resources. This is the primary security
 consideration when using bearer tokens and underlies all the more
 specific recommendations that follow.

7.1.3.2. Validate TLS certificate chains

 The client MUST validate the TLS certificate chain when making
 requests to protected resources. Failing to do so may enable DNS
 hijacking attacks to steal the token and gain unintended access.

7.1.3.3. Always use TLS (https)

 Clients MUST always use TLS (https) or equivalent transport security
 when making requests with bearer tokens. Failing to do so exposes
 the token to numerous attacks that could give attackers unintended
 access.

7.1.3.4. Don’t store bearer tokens in HTTP cookies

 Implementations MUST NOT store bearer tokens within cookies that can
 be sent in the clear (which is the default transmission mode for
 cookies). Implementations that do store bearer tokens in cookies
 MUST take precautions against cross-site request forgery.

7.1.3.5. Issue short-lived bearer tokens

 Authorization servers SHOULD issue short-lived bearer tokens,
 particularly when issuing tokens to clients that run within a web
 browser or other environments where information leakage may occur.
 Using short-lived bearer tokens can reduce the impact of them being
 leaked.

7.1.3.6. Issue scoped bearer tokens

 Authorization servers SHOULD issue bearer tokens that contain an
 audience restriction, scoping their use to the intended relying party
 or set of relying parties.

Hardt, et al. Expires 12 July 2024 [Page 55]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

7.1.3.7. Don’t pass bearer tokens in page URLs

 Bearer tokens MUST NOT be passed in page URLs (for example, as query
 string parameters). Instead, bearer tokens SHOULD be passed in HTTP
 message headers or message bodies for which confidentiality measures
 are taken. Browsers, web servers, and other software may not
 adequately secure URLs in the browser history, web server logs, and
 other data structures. If bearer tokens are passed in page URLs,
 attackers might be able to steal them from the history data, logs, or
 other unsecured locations.

7.1.4. Access Token Privilege Restriction

 The privileges associated with an access token SHOULD be restricted
 to the minimum required for the particular application or use case.
 This prevents clients from exceeding the privileges authorized by the
 resource owner. It also prevents users from exceeding their
 privileges authorized by the respective security policy. Privilege
 restrictions also help to reduce the impact of access token leakage.

 In particular, access tokens SHOULD be restricted to certain resource
 servers (audience restriction), preferably to a single resource
 server. To put this into effect, the authorization server associates
 the access token with certain resource servers and every resource
 server is obliged to verify, for every request, whether the access
 token sent with that request was meant to be used for that particular
 resource server. If not, the resource server MUST refuse to serve
 the respective request. Clients and authorization servers MAY
 utilize the parameters scope or resource as specified in this
 document and [RFC8707], respectively, to determine the resource
 server they want to access.

 Additionally, access tokens SHOULD be restricted to certain resources
 and actions on resource servers or resources. To put this into
 effect, the authorization server associates the access token with the
 respective resource and actions and every resource server is obliged
 to verify, for every request, whether the access token sent with that
 request was meant to be used for that particular action on the
 particular resource. If not, the resource server must refuse to
 serve the respective request. Clients and authorization servers MAY
 utilize the parameter scope and authorization_details as specified in
 [RFC9396] to determine those resources and/or actions.

7.2. Client Authentication

 Depending on the overall process of client registration and
 credential lifecycle management, this may affect the confidence an
 authorization server has in a particular client.

Hardt, et al. Expires 12 July 2024 [Page 56]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 For example, authentication of a dynamically registered client does
 not prove the identity of the client, it only ensures that repeated
 requests to the authorization server were made from the same client
 instance. Such clients may be limited in terms of which scopes they
 are allowed to request, or may have other limitations such as shorter
 token lifetimes.

 In contrast, if there is a registered application whose developer’s
 identity was verified, who signed a contract and is issued a client
 secret that is only used in a secure backend service, the
 authorization server might allow this client to request more
 sensitive scopes or to be issued longer-lasting tokens.

7.3. Client Impersonation

 If a confidential client has its credentials stolen, a malicious
 client can impersonate the client and obtain access to protected
 resources.

 The authorization server SHOULD enforce explicit resource owner
 authentication and provide the resource owner with information about
 the client and the requested authorization scope and lifetime. It is
 up to the resource owner to review the information in the context of
 the current client and to authorize or deny the request.

 The authorization server SHOULD NOT process repeated authorization
 requests automatically (without active resource owner interaction)
 without authenticating the client or relying on other measures to
 ensure that the repeated request comes from the original client and
 not an impersonator.

7.3.1. Impersonation of Native Apps

 As stated above, the authorization server SHOULD NOT process
 authorization requests automatically without user consent or
 interaction, except when the identity of the client can be assured.
 This includes the case where the user has previously approved an
 authorization request for a given client ID -- unless the identity of
 the client can be proven, the request SHOULD be processed as if no
 previous request had been approved.

 Measures such as claimed https scheme redirects MAY be accepted by
 authorization servers as identity proof. Some operating systems may
 offer alternative platform-specific identity features that MAY be
 accepted, as appropriate.

Hardt, et al. Expires 12 July 2024 [Page 57]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

7.3.2. Access Token Privilege Restriction

 The client SHOULD request access tokens with the minimal scope
 necessary. The authorization server SHOULD take the client identity
 into account when choosing how to honor the requested scope and MAY
 issue an access token with fewer scopes than requested.

 The privileges associated with an access token SHOULD be restricted
 to the minimum required for the particular application or use case.
 This prevents clients from exceeding the privileges authorized by the
 resource owner. It also prevents users from exceeding their
 privileges authorized by the respective security policy. Privilege
 restrictions also help to reduce the impact of access token leakage.

 In particular, access tokens SHOULD be restricted to certain resource
 servers (audience restriction), preferably to a single resource
 server. To put this into effect, the authorization server associates
 the access token with certain resource servers and every resource
 server is obliged to verify, for every request, whether the access
 token sent with that request was meant to be used for that particular
 resource server. If not, the resource server MUST refuse to serve
 the respective request. Clients and authorization servers MAY
 utilize the parameters scope or resource as specified in [RFC8707],
 respectively, to determine the resource server they want to access.

7.4. Client Impersonating Resource Owner

 Resource servers may make access control decisions based on the
 identity of a resource owner for which an access token was issued, or
 based on the identity of a client in the client credentials grant.
 If both options are possible, depending on the details of the
 implementation, a client’s identity may be mistaken for the identity
 of a resource owner. For example, if a client is able to choose its
 own client_id during registration with the authorization server, a
 malicious client may set it to a value identifying an end-user (e.g.,
 a sub value if OpenID Connect is used). If the resource server
 cannot properly distinguish between access tokens issued to clients
 and access tokens issued to end-users, the client may then be able to
 access resource of the end-user.

Hardt, et al. Expires 12 July 2024 [Page 58]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 If the authorization server has a common namespace for client IDs and
 user identifiers, causing the resource server to be unable to
 distinguish an access token authorized by a resource owner from an
 access token authorized by a client itself, authorization servers
 SHOULD NOT allow clients to influence their client_id or any other
 Claim if that can cause confusion with a genuine resource owner.
 Where this cannot be avoided, authorization servers MUST provide
 other means for the resource server to distinguish between the two
 types of access tokens.

7.5. Authorization Code Security Considerations

7.5.1. Authorization Code Injection

 Authorization code injection is an attack where the client receives
 an authorization code from the attacker in its redirect URI instead
 of the authorization code from the legitimate authorization server.
 Without protections in place, there is no mechanism by which the
 client can know that the attack has taken place. Authorization code
 injection can lead to both the attacker obtaining access to a
 victim’s account, as well as a victim accidentally gaining access to
 the attacker’s account.

7.5.2. Countermeasures

 To prevent injection of authorization codes into the client, using
 code_challenge and code_verifier is REQUIRED for clients, and
 authorization servers MUST enforce their use, unless both of the
 following criteria are met:

 * The client is a confidential client.

 * In the specific deployment and the specific request, there is
 reasonable assurance by the authorization server that the client
 implements the OpenID Connect nonce mechanism properly.

 In this case, using and enforcing code_challenge and code_verifier is
 still RECOMMENDED.

 The code_challenge or OpenID Connect nonce value MUST be transaction-
 specific and securely bound to the client and the user agent in which
 the transaction was started. If a transaction leads to an error,
 fresh values for code_challenge or nonce MUST be chosen.

 Relying on the client to validate the OpenID Connect nonce parameter
 means the authorization server has no way to confirm that the client
 has actually protected itself against authorization code injection
 attacks. If an attacker is able to inject an authorization code into

Hardt, et al. Expires 12 July 2024 [Page 59]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 a client, the client would still exchange the injected authorization
 code and obtain tokens, and would only later reject the ID token
 after validating the nonce and seeing that it doesn’t match. In
 contrast, the authorization server enforcing the code_challenge and
 code_verifier parameters provides a higher security outcome, since
 the authorization server is able to recognize the authorization code
 injection attack pre-emtpively and avoid issuing any tokens in the
 first place.

 Historic note: Although PKCE [RFC7636] (where the code_challenge and
 code_verifier parameters were created) was originally designed as a
 mechanism to protect native apps from authorization code exfiltration
 attacks, all kinds of OAuth clients, including web applications and
 other confidential clients, are susceptible to authorziation code
 injection attacks, which are solved by the code_challenge and
 code_verifier mechanism.

7.5.3. Reuse of Authorization Codes

 Several types of attacks are possible if authorization codes are able
 to be used more than once.

 As described in Section 4.1.3, the authorization server must reject a
 token request and revoke any issued tokens when receiving a second
 valid request with an authorization code that has already been used
 to issue an access token. If an attacker is able to exfiltrate an
 authorization code and use it before the legitimate client, the
 attacker will obtain the access token and the legitimate client will
 not. Revoking any issued tokens means the attacker’s tokens will
 then be revoked, stopping the attack from proceeding any further.

 However, the authorization server should only revoke issued tokens if
 the request containing the authorization code is also valid,
 including any other parameters such as the code_verifier and client
 authentication. The authorization server SHOULD NOT revoke any
 issued tokens when receiving a replayed authorization code that
 contains invalid parameters. If it were to do so, this would create
 a denial of service opportunity for an attacker who is able to obtain
 an authorization code but unable to obtain the client authentication
 or code_verifier by sending an invalid authorization code request
 before the legitimate client and thereby revoking the legitimate
 client’s tokens once it makes the valid request.

Hardt, et al. Expires 12 July 2024 [Page 60]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

7.5.4. HTTP 307 Redirect

 An authorization server which redirects a request that potentially
 contains user credentials MUST NOT use the 307 status code
 (Section 15.4.8 of [RFC9110]) for redirection. If an HTTP
 redirection (and not, for example, JavaScript) is used for such a
 request, AS SHOULD use the status code 303 ("See Other").

 At the authorization endpoint, a typical protocol flow is that the AS
 prompts the user to enter their credentials in a form that is then
 submitted (using the POST method) back to the authorization server.
 The AS checks the credentials and, if successful, redirects the user
 agent to the client’s redirect URI.

 If the status code 307 were used for redirection, the user agent
 would send the user credentials via a POST request to the client.

 This discloses the sensitive credentials to the client. If the
 relying party is malicious, it can use the credentials to impersonate
 the user at the AS.

 The behavior might be unexpected for developers, but is defined in
 Section 15.4.8 of [RFC9110]. This status code does not require the
 user agent to rewrite the POST request to a GET request and thereby
 drop the form data in the POST request content.

 In HTTP [RFC9110], only the status code 303 unambigiously enforces
 rewriting the HTTP POST request to an HTTP GET request. For all
 other status codes, including the popular 302, user agents can opt
 not to rewrite POST to GET requests and therefore reveal the user
 credentials to the client. (In practice, however, most user agents
 will only show this behaviour for 307 redirects.)

7.6. Ensuring Endpoint Authenticity

 The risk related to man-in-the-middle attacks is mitigated by the
 mandatory use of channel security mechanisms such as [RFC8446] for
 communicating with the Authorization and Token Endpoints. See
 Section 1.5 for further details.

7.7. Credentials-Guessing Attacks

 The authorization server MUST prevent attackers from guessing access
 tokens, authorization codes, refresh tokens, resource owner
 passwords, and client credentials.

Hardt, et al. Expires 12 July 2024 [Page 61]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 The probability of an attacker guessing generated tokens (and other
 credentials not intended for handling by end-users) MUST be less than
 or equal to 2^(-128) and SHOULD be less than or equal to 2^(-160).

 The authorization server MUST utilize other means to protect
 credentials intended for end-user usage.

7.8. Phishing Attacks

 Wide deployment of this and similar protocols may cause end-users to
 become inured to the practice of being redirected to websites where
 they are asked to enter their passwords. If end-users are not
 careful to verify the authenticity of these websites before entering
 their credentials, it will be possible for attackers to exploit this
 practice to steal resource owners’ passwords.

 Service providers should attempt to educate end-users about the risks
 phishing attacks pose and should provide mechanisms that make it easy
 for end-users to confirm the authenticity of their sites. Client
 developers should consider the security implications of how they
 interact with the user agent (e.g., external, embedded), and the
 ability of the end-user to verify the authenticity of the
 authorization server.

 See Section 1.5 for further details on mitigating the risk of
 phishing attacks.

7.9. Cross-Site Request Forgery

 An attacker might attempt to inject a request to the redirect URI of
 the legitimate client on the victim’s device, e.g., to cause the
 client to access resources under the attacker’s control. This is a
 variant of an attack known as Cross-Site Request Forgery (CSRF).

 The traditional countermeasure is that clients pass a random value,
 also known as a CSRF Token, in the state parameter that links the
 request to the redirect URI to the user agent session as described.
 This countermeasure is described in detail in [RFC6819],
 Section 5.3.5. The same protection is provided by the code_verifier
 parameter or the OpenID Connect nonce value.

 When using code_verifier instead of state or nonce for CSRF
 protection, it is important to note that:

 * Clients MUST ensure that the AS supports the code_challenge_method
 intended to be used by the client. If an authorization server
 does not support the requested method, state or nonce MUST be used
 for CSRF protection instead.

Hardt, et al. Expires 12 July 2024 [Page 62]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 * If state is used for carrying application state, and integrity of
 its contents is a concern, clients MUST protect state against
 tampering and swapping. This can be achieved by binding the
 contents of state to the browser session and/or signed/encrypted
 state values [I-D.bradley-oauth-jwt-encoded-state].

 AS therefore MUST provide a way to detect their supported code
 challenge methods either via AS metadata according to [RFC8414] or
 provide a deployment-specific way to ensure or determine support.

7.10. Clickjacking

 As described in Section 4.4.1.9 of [RFC6819], the authorization
 request is susceptible to clickjacking attacks, also called user
 interface redressing. In such an attack, an attacker embeds the
 authorization endpoint user interface in an innocuous context. A
 user believing to interact with that context, for example, clicking
 on buttons, inadvertently interacts with the authorization endpoint
 user interface instead. The opposite can be achieved as well: A user
 believing to interact with the authorization endpoint might
 inadvertently type a password into an attacker-provided input field
 overlaid over the original user interface. Clickjacking attacks can
 be designed such that users can hardly notice the attack, for example
 using almost invisible iframes overlaid on top of other elements.

 An attacker can use this vector to obtain the user’s authentication
 credentials, change the scope of access granted to the client, and
 potentially access the user’s resources.

 Authorization servers MUST prevent clickjacking attacks. Multiple
 countermeasures are described in [RFC6819], including the use of the
 X-Frame-Options HTTP response header field and frame-busting
 JavaScript. In addition to those, authorization servers SHOULD also
 use Content Security Policy (CSP) level 2 [CSP-2] or greater.

 To be effective, CSP must be used on the authorization endpoint and,
 if applicable, other endpoints used to authenticate the user and
 authorize the client (e.g., the device authorization endpoint, login
 pages, error pages, etc.). This prevents framing by unauthorized
 origins in user agents that support CSP. The client MAY permit being
 framed by some other origin than the one used in its redirection
 endpoint. For this reason, authorization servers SHOULD allow
 administrators to configure allowed origins for particular clients
 and/or for clients to register these dynamically.

 Using CSP allows authorization servers to specify multiple origins in
 a single response header field and to constrain these using flexible
 patterns (see [CSP-2] for details). Level 2 of this standard

Hardt, et al. Expires 12 July 2024 [Page 63]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 provides a robust mechanism for protecting against clickjacking by
 using policies that restrict the origin of frames (using frame-
 ancestors) together with those that restrict the sources of scripts
 allowed to execute on an HTML page (by using script-src). A non-
 normative example of such a policy is shown in the following listing:

 HTTP/1.1 200 OK
 Content-Security-Policy: frame-ancestors https://ext.example.org:8000
 Content-Security-Policy: script-src ’self’
 X-Frame-Options: ALLOW-FROM https://ext.example.org:8000
 ...

 Because some user agents do not support [CSP-2], this technique
 SHOULD be combined with others, including those described in
 [RFC6819], unless such legacy user agents are explicitly unsupported
 by the authorization server. Even in such cases, additional
 countermeasures SHOULD still be employed.

7.11. Code Injection and Input Validation

 A code injection attack occurs when an input or otherwise external
 variable is used by an application unsanitized and causes
 modification to the application logic. This may allow an attacker to
 gain access to the application device or its data, cause denial of
 service, or introduce a wide range of malicious side-effects.

 The authorization server and client MUST sanitize (and validate when
 possible) any value received -- in particular, the value of the state
 and redirect_uri parameters.

7.12. Open Redirection

 An open redirector is an endpoint that forwards a user’s browser to
 an arbitrary URI obtained from a query parameter. Such endpoints are
 sometimes implemented, for example, to show a message before a user
 is then redirected to an external website, or to redirect users back
 to a URL they were intending to visit before being interrupted, e.g.,
 by a login prompt.

 The following attacks can occur when an AS or client has an open
 redirector.

Hardt, et al. Expires 12 July 2024 [Page 64]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

7.12.1. Client as Open Redirector

 Clients MUST NOT expose open redirectors. Attackers may use open
 redirectors to produce URLs pointing to the client and utilize them
 to exfiltrate authorization codes, as described in Section 4.1.1 of
 [I-D.ietf-oauth-security-topics]. Another abuse case is to produce
 URLs that appear to point to the client. This might trick users into
 trusting the URL and follow it in their browser. This can be abused
 for phishing.

 In order to prevent open redirection, clients should only redirect if
 the target URLs are whitelisted or if the origin and integrity of a
 request can be authenticated. Countermeasures against open
 redirection are described by OWASP [owasp_redir].

7.12.2. Authorization Server as Open Redirector

 Just as with clients, attackers could try to utilize a user’s trust
 in the authorization server (and its URL in particular) for
 performing phishing attacks. OAuth authorization servers regularly
 redirect users to other web sites (the clients), but must do so in a
 safe way.

 Section 4.1.2.1 already prevents open redirects by stating that the
 AS MUST NOT automatically redirect the user agent in case of an
 invalid combination of client_id and redirect_uri.

 However, an attacker could also utilize a correctly registered
 redirect URI to perform phishing attacks. The attacker could, for
 example, register a client via dynamic client registration [RFC7591]
 and execute one of the following attacks:

 1. Intentionally send an erroneous authorization request, e.g., by
 using an invalid scope value, thus instructing the AS to redirect
 the user-agent to its phishing site.

 2. Intentionally send a valid authorization request with client_id
 and redirect_uri controlled by the attacker. After the user
 authenticates, the AS prompts the user to provide consent to the
 request. If the user notices an issue with the request and
 declines the request, the AS still redirects the user agent to
 the phishing site. In this case, the user agent will be
 redirected to the phishing site regardless of the action taken by
 the user.

Hardt, et al. Expires 12 July 2024 [Page 65]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 3. Intentionally send a valid silent authentication request
 (prompt=none) with client_id and redirect_uri controlled by the
 attacker. In this case, the AS will automatically redirect the
 user agent to the phishing site.

 The AS MUST take precautions to prevent these threats. The AS MUST
 always authenticate the user first and, with the exception of the
 silent authentication use case, prompt the user for credentials when
 needed, before redirecting the user. Based on its risk assessment,
 the AS needs to decide whether it can trust the redirect URI or not.
 It could take into account URI analytics done internally or through
 some external service to evaluate the credibility and trustworthiness
 content behind the URI, and the source of the redirect URI and other
 client data.

 The AS SHOULD only automatically redirect the user agent if it trusts
 the redirect URI. If the URI is not trusted, the AS MAY inform the
 user and rely on the user to make the correct decision.

7.13. Authorization Server Mix-Up Mitigation

 Mix-up is an attack on scenarios where an OAuth client interacts with
 two or more authorization servers and at least one authorization
 server is under the control of the attacker. This can be the case,
 for example, if the attacker uses dynamic registration to register
 the client at his own authorization server or if an authorization
 server becomes compromised.

 When an OAuth client can only interact with one authorization server,
 a mix-up defense is not required. In scenarios where an OAuth client
 interacts with two or more authorization servers, however, clients
 MUST prevent mix-up attacks. Two different methods are discussed in
 the following.

 For both defenses, clients MUST store, for each authorization
 request, the issuer they sent the authorization request to, bind this
 information to the user agent, and check that the authorization
 response was received from the correct issuer. Clients MUST ensure
 that the subsequent access token request, if applicable, is sent to
 the same issuer. The issuer serves, via the associated metadata, as
 an abstract identifier for the combination of the authorization
 endpoint and token endpoint that are to be used in the flow. If an
 issuer identifier is not available, for example, if neither OAuth
 metadata [RFC8414] nor OpenID Connect Discovery [OpenID.Discovery]
 are used, a different unique identifier for this tuple or the tuple
 itself can be used instead. For brevity of presentation, such a
 deployment-specific identifier will be subsumed under the issuer (or
 issuer identifier) in the following.

Hardt, et al. Expires 12 July 2024 [Page 66]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Note: Just storing the authorization server URL is not sufficient to
 identify mix-up attacks. An attacker might declare an uncompromised
 AS’s authorization endpoint URL as "their" AS URL, but declare a
 token endpoint under their own control.

 See Section 4.4 of [I-D.ietf-oauth-security-topics] for a detailed
 description of several types of mix-up attacks.

7.13.1. Mix-Up Defense via Issuer Identification

 This defense requires that the authorization server sends his issuer
 identifier in the authorization response to the client. When
 receiving the authorization response, the client MUST compare the
 received issuer identifier to the stored issuer identifier. If there
 is a mismatch, the client MUST abort the interaction.

 There are different ways this issuer identifier can be transported to
 the client:

 * The issuer information can be transported, for example, via an
 optional response parameter iss (see Section 4.1.2).

 * When OpenID Connect is used and an ID Token is returned in the
 authorization response, the client can evaluate the iss claim in
 the ID Token.

 In both cases, the iss value MUST be evaluated according to
 [RFC9207].

 While this defense may require using an additional parameter to
 transport the issuer information, it is a robust and relatively
 simple defense against mix-up.

7.13.2. Mix-Up Defense via Distinct Redirect URIs

 For this defense, clients MUST use a distinct redirect URI for each
 issuer they interact with.

 Clients MUST check that the authorization response was received from
 the correct issuer by comparing the distinct redirect URI for the
 issuer to the URI where the authorization response was received on.
 If there is a mismatch, the client MUST abort the flow.

 While this defense builds upon existing OAuth functionality, it
 cannot be used in scenarios where clients only register once for the
 use of many different issuers (as in some open banking schemes) and
 due to the tight integration with the client registration, it is
 harder to deploy automatically.

Hardt, et al. Expires 12 July 2024 [Page 67]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Furthermore, an attacker might be able to circumvent the protection
 offered by this defense by registering a new client with the "honest"
 AS using the redirect URI that the client assigned to the attacker’s
 AS. The attacker could then run the attack as described above,
 replacing the client ID with the client ID of his newly created
 client.

 This defense SHOULD therefore only be used if other options are not
 available.

8. Native Applications

 Native applications are clients installed and executed on the device
 used by the resource owner (i.e., desktop application, native mobile
 application). Native applications require special consideration
 related to security, platform capabilities, and overall end-user
 experience.

 The authorization endpoint requires interaction between the client
 and the resource owner’s user agent. The best current practice is to
 perform the OAuth authorization request in an external user agent
 (typically the browser) rather than an embedded user agent (such as
 one implemented with web-views).

 The native application can capture the response from the
 authorization server using a redirect URI with a scheme registered
 with the operating system to invoke the client as the handler, manual
 copy-and-paste of the credentials, running a local web server,
 installing a user agent extension, or by providing a redirect URI
 identifying a server-hosted resource under the client’s control,
 which in turn makes the response available to the native application.

 Previously, it was common for native apps to use embedded user agents
 (commonly implemented with web-views) for OAuth authorization
 requests. That approach has many drawbacks, including the host app
 being able to copy user credentials and cookies as well as the user
 needing to authenticate from scratch in each app. See Section 8.5.1
 for a deeper analysis of the drawbacks of using embedded user agents
 for OAuth.

 Native app authorization requests that use the system browser are
 more secure and can take advantage of the user’s authentication state
 on the device. Being able to use the existing authentication session
 in the browser enables single sign-on, as users don’t need to
 authenticate to the authorization server each time they use a new app
 (unless required by the authorization server policy).

Hardt, et al. Expires 12 July 2024 [Page 68]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Supporting authorization flows between a native app and the browser
 is possible without changing the OAuth protocol itself, as the OAuth
 authorization request and response are already defined in terms of
 URIs. This encompasses URIs that can be used for inter-app
 communication. Some OAuth server implementations that assume all
 clients are confidential web clients will need to add an
 understanding of public native app clients and the types of redirect
 URIs they use to support this best practice.

8.1. Registration of Native App Clients

 Except when using a mechanism like Dynamic Client Registration
 [RFC7591] to provision per-instance secrets, native apps are
 classified as public clients, as defined in Section 2.1; they MUST be
 registered with the authorization server as such. Authorization
 servers MUST record the client type in the client registration
 details in order to identify and process requests accordingly.

8.1.1. Client Authentication of Native Apps

 Secrets that are statically included as part of an app distributed to
 multiple users should not be treated as confidential secrets, as one
 user may inspect their copy and learn the shared secret. For this
 reason, it is NOT RECOMMENDED for authorization servers to require
 client authentication of public native apps clients using a shared
 secret, as this serves little value beyond client identification
 which is already provided by the client_id request parameter.

 Authorization servers that still require a statically included shared
 secret for native app clients MUST treat the client as a public
 client (as defined in Section 2.1), and not accept the secret as
 proof of the client’s identity. Without additional measures, such
 clients are subject to client impersonation (see Section 7.3.1).

8.2. Using Inter-App URI Communication for OAuth in Native Apps

 Just as URIs are used for OAuth on the web to initiate the
 authorization request and return the authorization response to the
 requesting website, URIs can be used by native apps to initiate the
 authorization request in the device’s browser and return the response
 to the requesting native app.

Hardt, et al. Expires 12 July 2024 [Page 69]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 By adopting the same methods used on the web for OAuth, benefits seen
 in the web context like the usability of a single sign-on session and
 the security of a separate authentication context are likewise gained
 in the native app context. Reusing the same approach also reduces
 the implementation complexity and increases interoperability by
 relying on standards-based web flows that are not specific to a
 particular platform.

 Native apps MUST use an external user agent to perform OAuth
 authorization requests. This is achieved by opening the
 authorization request in the browser (detailed in Section 8.3) and
 using a redirect URI that will return the authorization response back
 to the native app (defined in Section 8.4).

8.3. Initiating the Authorization Request from a Native App

 Native apps needing user authorization create an authorization
 request URI with the authorization code grant type per Section 4.1
 using a redirect URI capable of being received by the native app.

 The function of the redirect URI for a native app authorization
 request is similar to that of a web-based authorization request.
 Rather than returning the authorization response to the OAuth
 client’s server, the redirect URI used by a native app returns the
 response to the app. Several options for a redirect URI that will
 return the authorization response to the native app in different
 platforms are documented in Section 8.4. Any redirect URI that
 allows the app to receive the URI and inspect its parameters is
 viable.

 After constructing the authorization request URI, the app uses
 platform-specific APIs to open the URI in an external user agent.
 Typically, the external user agent used is the default browser, that
 is, the application configured for handling http and https scheme
 URIs on the system; however, different browser selection criteria and
 other categories of external user agents MAY be used.

 This best practice focuses on the browser as the RECOMMENDED external
 user agent for native apps. An external user agent designed
 specifically for user authorization and capable of processing
 authorization requests and responses like a browser MAY also be used.
 Other external user agents, such as a native app provided by the
 authorization server may meet the criteria set out in this best
 practice, including using the same redirect URI properties, but their
 use is out of scope for this specification.

Hardt, et al. Expires 12 July 2024 [Page 70]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Some platforms support a browser feature known as "in-app browser
 tabs", where an app can present a tab of the browser within the app
 context without switching apps, but still retain key benefits of the
 browser such as a shared authentication state and security context.
 On platforms where they are supported, it is RECOMMENDED, for
 usability reasons, that apps use in-app browser tabs for the
 authorization request.

8.4. Receiving the Authorization Response in a Native App

 There are several redirect URI options available to native apps for
 receiving the authorization response from the browser, the
 availability and user experience of which varies by platform.

8.4.1. Claimed "https" Scheme URI Redirection

 Some operating systems allow apps to claim https URIs (see
 Section 4.2.2 of [RFC9110]) in the domains they control. When the
 browser encounters a claimed URI, instead of the page being loaded in
 the browser, the native app is launched with the URI supplied as a
 launch parameter.

 Such URIs can be used as redirect URIs by native apps. They are
 indistinguishable to the authorization server from a regular web-
 based client redirect URI. An example is:

 https://app.example.com/oauth2redirect/example-provider

 As the redirect URI alone is not enough to distinguish public native
 app clients from confidential web clients, it is REQUIRED in
 Section 8.1 that the client type be recorded during client
 registration to enable the server to determine the client type and
 act accordingly.

 App-claimed https scheme redirect URIs have some advantages compared
 to other native app redirect options in that the identity of the
 destination app is guaranteed to the authorization server by the
 operating system. For this reason, native apps SHOULD use them over
 the other options where possible.

8.4.2. Loopback Interface Redirection

 Native apps that are able to open a port on the loopback network
 interface without needing special permissions (typically, those on
 desktop operating systems) can use the loopback interface to receive
 the OAuth redirect.

Hardt, et al. Expires 12 July 2024 [Page 71]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Loopback redirect URIs use the http scheme and are constructed with
 the loopback IP literal and whatever port the client is listening on.

 That is, http://127.0.0.1:{port}/{path} for IPv4, and
 http://[::1]:{port}/{path} for IPv6. An example redirect using the
 IPv4 loopback interface with a randomly assigned port:

 http://127.0.0.1:51004/oauth2redirect/example-provider

 An example redirect using the IPv6 loopback interface with a randomly
 assigned port:

 http://[::1]:61023/oauth2redirect/example-provider

 While redirect URIs using the name localhost (i.e.,
 http://localhost:{port}/{path}) function similarly to loopback IP
 redirects, the use of localhost is NOT RECOMMENDED. Specifying a
 redirect URI with the loopback IP literal rather than localhost
 avoids inadvertently listening on network interfaces other than the
 loopback interface. It is also less susceptible to client-side
 firewalls and misconfigured host name resolution on the user’s
 device.

 The authorization server MUST allow any port to be specified at the
 time of the request for loopback IP redirect URIs, to accommodate
 clients that obtain an available ephemeral port from the operating
 system at the time of the request.

 Clients SHOULD NOT assume that the device supports a particular
 version of the Internet Protocol. It is RECOMMENDED that clients
 attempt to bind to the loopback interface using both IPv4 and IPv6
 and use whichever is available.

8.4.3. Private-Use URI Scheme Redirection

 Many mobile and desktop computing platforms support inter-app
 communication via URIs by allowing apps to register private-use URI
 schemes (sometimes colloquially referred to as "custom URL schemes")
 like com.example.app. When the browser or another app attempts to
 load a URI with a private-use URI scheme, the app that registered it
 is launched to handle the request.

 Many environments that support private-use URI schemes do not provide
 a mechanism to claim a scheme and prevent other parties from using
 another application’s scheme. As such, clients using private-use URI
 schemes are vulnerable to potential attacks on their redirect URIs,
 so this option should only be used if the previously mentioned more
 secure options are not available.

Hardt, et al. Expires 12 July 2024 [Page 72]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 To perform an authorization request with a private-use URI scheme
 redirect, the native app launches the browser with a standard
 authorization request, but one where the redirect URI utilizes a
 private-use URI scheme it registered with the operating system.

 When choosing a URI scheme to associate with the app, apps MUST use a
 URI scheme based on a domain name under their control, expressed in
 reverse order, as recommended by Section 3.8 of [RFC7595] for
 private-use URI schemes.

 For example, an app that controls the domain name app.example.com can
 use com.example.app as their scheme. Some authorization servers
 assign client identifiers based on domain names, for example,
 client1234.usercontent.example.net, which can also be used as the
 domain name for the scheme when reversed in the same manner. A
 scheme such as myapp, however, would not meet this requirement, as it
 is not based on a domain name.

 When there are multiple apps by the same publisher, care must be
 taken so that each scheme is unique within that group. On platforms
 that use app identifiers based on reverse-order domain names, those
 identifiers can be reused as the private-use URI scheme for the OAuth
 redirect to help avoid this problem.

 Following the requirements of Section 3.2 of [RFC3986], as there is
 no naming authority for private-use URI scheme redirects, only a
 single slash (/) appears after the scheme component. A complete
 example of a redirect URI utilizing a private-use URI scheme is:

 com.example.app:/oauth2redirect/example-provider

 When the authorization server completes the request, it redirects to
 the client’s redirect URI as it would normally. As the redirect URI
 uses a private-use URI scheme, it results in the operating system
 launching the native app, passing in the URI as a launch parameter.
 Then, the native app uses normal processing for the authorization
 response.

8.5. Security Considerations in Native Apps

8.5.1. Embedded User Agents in Native Apps

 Embedded user agents are a technically possible method for
 authorizing native apps. These embedded user agents are unsafe for
 use by third parties to the authorization server by definition, as
 the app that hosts the embedded user agent can access the user’s full
 authentication credentials, not just the OAuth authorization grant
 that was intended for the app.

Hardt, et al. Expires 12 July 2024 [Page 73]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 In typical web-view-based implementations of embedded user agents,
 the host application can record every keystroke entered in the login
 form to capture usernames and passwords, automatically submit forms
 to bypass user consent, and copy session cookies and use them to
 perform authenticated actions as the user.

 Even when used by trusted apps belonging to the same party as the
 authorization server, embedded user agents violate the principle of
 least privilege by having access to more powerful credentials than
 they need, potentially increasing the attack surface.

 Encouraging users to enter credentials in an embedded user agent
 without the usual address bar and visible certificate validation
 features that browsers have makes it impossible for the user to know
 if they are signing in to the legitimate site; even when they are, it
 trains them that it’s OK to enter credentials without validating the
 site first.

 Aside from the security concerns, embedded user agents do not share
 the authentication state with other apps or the browser, requiring
 the user to log in for every authorization request, which is often
 considered an inferior user experience.

8.5.2. Fake External User-Agents in Native Apps

 The native app that is initiating the authorization request has a
 large degree of control over the user interface and can potentially
 present a fake external user agent, that is, an embedded user agent
 made to appear as an external user agent.

 When all good actors are using external user agents, the advantage is
 that it is possible for security experts to detect bad actors, as
 anyone faking an external user agent is provably bad. On the other
 hand, if good and bad actors alike are using embedded user agents,
 bad actors don’t need to fake anything, making them harder to detect.
 Once a malicious app is detected, it may be possible to use this
 knowledge to blacklist the app’s signature in malware scanning
 software, take removal action (in the case of apps distributed by app
 stores) and other steps to reduce the impact and spread of the
 malicious app.

 Authorization servers can also directly protect against fake external
 user agents by requiring an authentication factor only available to
 true external user agents.

Hardt, et al. Expires 12 July 2024 [Page 74]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Users who are particularly concerned about their security when using
 in-app browser tabs may also take the additional step of opening the
 request in the full browser from the in-app browser tab and complete
 the authorization there, as most implementations of the in-app
 browser tab pattern offer such functionality.

8.5.3. Malicious External User-Agents in Native Apps

 If a malicious app is able to configure itself as the default handler
 for https scheme URIs in the operating system, it will be able to
 intercept authorization requests that use the default browser and
 abuse this position of trust for malicious ends such as phishing the
 user.

 This attack is not confined to OAuth; a malicious app configured in
 this way would present a general and ongoing risk to the user beyond
 OAuth usage by native apps. Many operating systems mitigate this
 issue by requiring an explicit user action to change the default
 handler for http and https scheme URIs.

8.5.4. Loopback Redirect Considerations in Native Apps

 Loopback interface redirect URIs MAY use the http scheme (i.e.,
 without TLS). This is acceptable for loopback interface redirect
 URIs as the HTTP request never leaves the device.

 Clients should open the network port only when starting the
 authorization request and close it once the response is returned.

 Clients should listen on the loopback network interface only, in
 order to avoid interference by other network actors.

 Clients should use loopback IP literals rather than the string
 localhost as described in Section 8.4.2.

9. Browser-Based Apps

 Browser-based apps are are clients that run in a web browser,
 typically written in JavaScript, also known as "single-page apps".
 These types of apps have particular security considerations similar
 to native apps.

 TODO: Bring in the normative text of the browser-based apps BCP when
 it is finalized.

Hardt, et al. Expires 12 July 2024 [Page 75]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

10. Differences from OAuth 2.0

 This draft consolidates the functionality in OAuth 2.0 [RFC6749],
 OAuth 2.0 for Native Apps ([RFC8252]), Proof Key for Code Exchange
 ([RFC7636]), OAuth 2.0 for Browser-Based Apps
 ([I-D.ietf-oauth-browser-based-apps]), OAuth Security Best Current
 Practice ([I-D.ietf-oauth-security-topics]), and Bearer Token Usage
 ([RFC6750]).

 Where a later draft updates or obsoletes functionality found in the
 original [RFC6749], that functionality in this draft is updated with
 the normative changes described in a later draft, or removed
 entirely.

 A non-normative list of changes from OAuth 2.0 is listed below:

 * The authorization code grant is extended with the functionality
 from PKCE ([RFC7636]) such that the default method of using the
 authorization code grant according to this specification requires
 the addition of the PKCE parameters

 * Redirect URIs must be compared using exact string matching as per
 Section 4.1.3 of [I-D.ietf-oauth-security-topics]

 * The Implicit grant (response_type=token) is omitted from this
 specification as per Section 2.1.2 of
 [I-D.ietf-oauth-security-topics]

 * The Resource Owner Password Credentials grant is omitted from this
 specification as per Section 2.4 of
 [I-D.ietf-oauth-security-topics]

 * Bearer token usage omits the use of bearer tokens in the query
 string of URIs as per Section 4.3.2 of
 [I-D.ietf-oauth-security-topics]

 * Refresh tokens for public clients must either be sender-
 constrained or one-time use as per Section 4.13.2 of
 [I-D.ietf-oauth-security-topics]

 * The token endpoint request containing an authorization code no
 longer contains the redirect_uri parameter

10.1. Removal of the OAuth 2.0 Implicit grant

 The OAuth 2.0 Implicit grant is omitted from OAuth 2.1 as it was
 deprecated in [I-D.ietf-oauth-security-topics].

Hardt, et al. Expires 12 July 2024 [Page 76]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 The intent of removing the Implicit grant is to no longer issue
 access tokens in the authorization response, as such tokens are
 vulnerable to leakage and injection, and are unable to be sender-
 constrained to a client. This behavior was indicated by clients
 using the response_type=token parameter. This value for the
 response_type parameter is no longer defined in OAuth 2.1.

 Removal of response_type=token does not have an effect on other
 extension response types returning other artifacts from the
 authorization endpoint, for example, response_type=id_token defined
 by [OpenID].

10.2. Redirect URI Parameter in Token Request

 In OAuth 2.0, the request to the token endpoint in the authorization
 code flow (section 4.1.3 of [RFC6749]) contains an optional
 redirect_uri parameter. The parameter was intended to prevent an
 authorization code injection attack, and was required if the
 redirect_uri parameter was sent in the original authorization
 request. The authorization request only required the redirect_uri
 parameter if multiple redirect URIs were registered to the specific
 client. However, in practice, many authorization server
 implementations required the redirect_uri parameter in the
 authorization request even if only one was registered, leading the
 redirect_uri parameter to be required at the token endpoint as well.

 In OAuth 2.1, authorization code injection is prevented by the
 code_challenge and code_verifier parameters, making the inclusion of
 the redirect_uri parameter serve no purpose in the token request. As
 such, it has been removed.

 For backwards compatibility of an authorization server wishing to
 support both OAuth 2.0 and OAuth 2.1 clients, the authorization
 server MUST allow clients to send the redirect_uri parameter in the
 token request (Section 4.1.3), and MUST enforce the parameter as
 described in [RFC6749]. The authorization server can use the
 client_id in the request to determine whether to enforce this
 behavior for the specific client that it knows will be using the
 older OAuth 2.0 behavior.

 A client following only the OAuth 2.1 recommendations will not send
 the redirect_uri in the token request, and therefore will not be
 compatible with an authorization server that expects the parameter in
 the token request.

Hardt, et al. Expires 12 July 2024 [Page 77]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

11. IANA Considerations

 This document does not require any IANA actions.

 All referenced registries are defined by [RFC6749] and related
 documents that this work is based upon. No changes to those
 registries are required by this specification.

12. References

12.1. Normative References

 [BCP195] Saint-Andre, P., "Recommendations for Secure Use of
 Transport Layer Security (TLS)", 2015.

 [I-D.ietf-oauth-security-topics]
 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", Work in
 Progress, Internet-Draft, draft-ietf-oauth-security-
 topics-24, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
 security-topics-24>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",
 RFC 2617, DOI 10.17487/RFC2617, June 1999,
 <https://www.rfc-editor.org/info/rfc2617>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

Hardt, et al. Expires 12 July 2024 [Page 78]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

 [RFC7521] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,
 May 2015, <https://www.rfc-editor.org/info/rfc7521>.

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May
 2015, <https://www.rfc-editor.org/info/rfc7523>.

 [RFC7595] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
 and Registration Procedures for URI Schemes", BCP 35,
 RFC 7595, DOI 10.17487/RFC7595, June 2015,
 <https://www.rfc-editor.org/info/rfc7595>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
 BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
 <https://www.rfc-editor.org/info/rfc8252>.

Hardt, et al. Expires 12 July 2024 [Page 79]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC9110] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/info/rfc9110>.

 [RFC9111] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Caching", STD 98, RFC 9111,
 DOI 10.17487/RFC9111, June 2022,
 <https://www.rfc-editor.org/info/rfc9111>.

 [RFC9207] Meyer zu Selhausen, K. and D. Fett, "OAuth 2.0
 Authorization Server Issuer Identification", RFC 9207,
 DOI 10.17487/RFC9207, March 2022,
 <https://www.rfc-editor.org/info/rfc9207>.

 [USASCII] Institute, A. N. S., "Coded Character Set -- 7-bit
 American Standard Code for Information Interchange, ANSI
 X3.4", 1986.

 [W3C.REC-xml-20081126]
 Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
 and F. Yergeau, "Extensible Markup Language", November
 2008,
 <https://www.w3.org/TR/REC-xml/REC-xml-20081126.xml>.

 [WHATWG.CORS]
 WHATWG, "Fetch Standard: CORS protocol", June 2023,
 <https://fetch.spec.whatwg.org/#http-cors-protocol>.

 [WHATWG.URL]
 WHATWG, "URL", May 2022, <https://url.spec.whatwg.org/>.

12.2. Informative References

 [CSP-2] "Content Security Policy Level 2", December 2016,
 <https://www.w3.org/TR/CSP2>.

Hardt, et al. Expires 12 July 2024 [Page 80]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 [I-D.bradley-oauth-jwt-encoded-state]
 Bradley, J., Lodderstedt, T., and H. Zandbelt, "Encoding
 claims in the OAuth 2 state parameter using a JWT", Work
 in Progress, Internet-Draft, draft-bradley-oauth-jwt-
 encoded-state-09, 4 November 2018,
 <https://datatracker.ietf.org/doc/html/draft-bradley-
 oauth-jwt-encoded-state-09>.

 [I-D.ietf-oauth-browser-based-apps]
 Parecki, A., Waite, D., and P. De Ryck, "OAuth 2.0 for
 Browser-Based Apps", Work in Progress, Internet-Draft,
 draft-ietf-oauth-browser-based-apps-15, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
 browser-based-apps-15>.

 [NIST800-63]
 Burr, W., Dodson, D., Newton, E., Perlner, R., Polk, T.,
 Gupta, S., and E. Nabbus, "NIST Special Publication
 800-63-1, INFORMATION SECURITY", December 2011,
 <http://csrc.nist.gov/publications/>.

 [OMAP] Huff, J., Schlacht, D., Nadalin, A., Simmons, J.,
 Rosenberg, P., Madsen, P., Ace, T., Rickelton-Abdi, C.,
 and B. Boyer, "Online Multimedia Authorization Protocol:
 An Industry Standard for Authorized Access to Internet
 Multimedia Resources", August 2012,
 <https://www.svta.org/product/online-multimedia-
 authorization-protocol/>.

 [OpenID] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", November 2014,
 <https://openid.net/specs/openid-connect-core-1_0.html>.

 [OpenID.Discovery]
 Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
 Connect Discovery 1.0 incorporating errata set 1",
 November 2014, <https://openid.net/specs/openid-connect-
 discovery-1_0.html>.

 [OpenID.Messages]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,
 Mortimore, C., and E. Jay, "OpenID Connect Messages 1.0",
 June 2012, <http://openid.net/specs/openid-connect-
 messages-1_0.html>.

Hardt, et al. Expires 12 July 2024 [Page 81]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 [owasp_redir]
 "OWASP Cheat Sheet Series - Unvalidated Redirects and
 Forwards", 2020,
 <https://cheatsheetseries.owasp.org/cheatsheets/
 Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
 2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
 August 2013, <https://www.rfc-editor.org/info/rfc7009>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7592] Richer, J., Ed., Jones, M., Bradley, J., and M. Machulak,
 "OAuth 2.0 Dynamic Client Registration Management
 Protocol", RFC 7592, DOI 10.17487/RFC7592, July 2015,
 <https://www.rfc-editor.org/info/rfc7592>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

Hardt, et al. Expires 12 July 2024 [Page 82]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 [RFC8628] Denniss, W., Bradley, J., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Device Authorization Grant", RFC 8628,
 DOI 10.17487/RFC8628, August 2019,
 <https://www.rfc-editor.org/info/rfc8628>.

 [RFC8705] Campbell, B., Bradley, J., Sakimura, N., and T.
 Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication
 and Certificate-Bound Access Tokens", RFC 8705,
 DOI 10.17487/RFC8705, February 2020,
 <https://www.rfc-editor.org/info/rfc8705>.

 [RFC8707] Campbell, B., Bradley, J., and H. Tschofenig, "Resource
 Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/RFC8707,
 February 2020, <https://www.rfc-editor.org/info/rfc8707>.

 [RFC9068] Bertocci, V., "JSON Web Token (JWT) Profile for OAuth 2.0
 Access Tokens", RFC 9068, DOI 10.17487/RFC9068, October
 2021, <https://www.rfc-editor.org/info/rfc9068>.

 [RFC9126] Lodderstedt, T., Campbell, B., Sakimura, N., Tonge, D.,
 and F. Skokan, "OAuth 2.0 Pushed Authorization Requests",
 RFC 9126, DOI 10.17487/RFC9126, September 2021,
 <https://www.rfc-editor.org/info/rfc9126>.

 [RFC9396] Lodderstedt, T., Richer, J., and B. Campbell, "OAuth 2.0
 Rich Authorization Requests", RFC 9396,
 DOI 10.17487/RFC9396, May 2023,
 <https://www.rfc-editor.org/info/rfc9396>.

 [RFC9449] Fett, D., Campbell, B., Bradley, J., Lodderstedt, T.,
 Jones, M., and D. Waite, "OAuth 2.0 Demonstrating Proof of
 Possession (DPoP)", RFC 9449, DOI 10.17487/RFC9449,
 September 2023, <https://www.rfc-editor.org/info/rfc9449>.

 [W3C.REC-html401-19991224]
 Hors, A. L., Ed., Raggett, D., Ed., and I. Jacobs, Ed.,
 "HTML 4.01 Specification", W3C REC REC-html401-19991224,
 W3C REC-html401-19991224, 24 December 1999,
 <https://www.w3.org/TR/1999/REC-html401-19991224/>.

Appendix A. Augmented Backus-Naur Form (ABNF) Syntax

 This section provides Augmented Backus-Naur Form (ABNF) syntax
 descriptions for the elements defined in this specification using the
 notation of [RFC5234]. The ABNF below is defined in terms of Unicode
 code points [W3C.REC-xml-20081126]; these characters are typically
 encoded in UTF-8. Elements are presented in the order first defined.

Hardt, et al. Expires 12 July 2024 [Page 83]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Some of the definitions that follow use the "URI-reference"
 definition from [RFC3986].

 Some of the definitions that follow use these common definitions:

 VSCHAR = %x20-7E
 NQCHAR = %x21 / %x23-5B / %x5D-7E
 NQSCHAR = %x20-21 / %x23-5B / %x5D-7E

A.1. "client_id" Syntax

 The client_id element is defined in Section 2.4.1:

 client-id = *VSCHAR

A.2. "client_secret" Syntax

 The client_secret element is defined in Section 2.4.1:

 client-secret = *VSCHAR

A.3. "response_type" Syntax

 The response_type element is defined in Section 4.1.1 and
 Section 6.4:

 response-type = response-name *(SP response-name)
 response-name = 1*response-char
 response-char = "_" / DIGIT / ALPHA

A.4. "scope" Syntax

 The scope element is defined in Section 1.4.1:

 scope = scope-token *(SP scope-token)
 scope-token = 1*NQCHAR

A.5. "state" Syntax

 The state element is defined in Section 4.1.1, Section 4.1.2, and
 Section 4.1.2.1:

 state = 1*VSCHAR

A.6. "redirect_uri" Syntax

 The redirect_uri element is defined in Section 4.1.1, and
 Section 4.1.3:

Hardt, et al. Expires 12 July 2024 [Page 84]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 redirect-uri = URI-reference

A.7. "error" Syntax

 The error element is defined in Sections Section 4.1.2.1,
 Section 3.2.4, 7.2, and 8.5:

 error = 1*NQSCHAR

A.8. "error_description" Syntax

 The error_description element is defined in Sections Section 4.1.2.1,
 Section 3.2.4, and Section 5.3:

 error-description = 1*NQSCHAR

A.9. "error_uri" Syntax

 The error_uri element is defined in Sections Section 4.1.2.1,
 Section 3.2.4, and 7.2:

 error-uri = URI-reference

A.10. "grant_type" Syntax

 The grant_type element is defined in Section Section 3.2.2:

 grant-type = grant-name / URI-reference
 grant-name = 1*name-char
 name-char = "-" / "." / "_" / DIGIT / ALPHA

A.11. "code" Syntax

 The code element is defined in Section 4.1.3:

 code = 1*VSCHAR

A.12. "access_token" Syntax

 The access_token element is defined in Section 3.2.3:

 access-token = 1*VSCHAR

A.13. "token_type" Syntax

 The token_type element is defined in Section 3.2.3, and Section 6.1:

Hardt, et al. Expires 12 July 2024 [Page 85]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 token-type = type-name / URI-reference
 type-name = 1*name-char
 name-char = "-" / "." / "_" / DIGIT / ALPHA

A.14. "expires_in" Syntax

 The expires_in element is defined in Section 3.2.3:

 expires-in = 1*DIGIT

A.15. "refresh_token" Syntax

 The refresh_token element is defined in Section 3.2.3 and
 Section 4.3:

 refresh-token = 1*VSCHAR

A.16. Endpoint Parameter Syntax

 The syntax for new endpoint parameters is defined in Section 6.2:

 param-name = 1*name-char
 name-char = "-" / "." / "_" / DIGIT / ALPHA

A.17. "code_verifier" Syntax

 ABNF for code_verifier is as follows.

 code-verifier = 43*128unreserved
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 ALPHA = %x41-5A / %x61-7A
 DIGIT = %x30-39

A.18. "code_challenge" Syntax

 ABNF for code_challenge is as follows.

 code-challenge = 43*128unreserved
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 ALPHA = %x41-5A / %x61-7A
 DIGIT = %x30-39

Hardt, et al. Expires 12 July 2024 [Page 86]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

Appendix B. Use of application/x-www-form-urlencoded Media Type

 At the time of publication of [RFC6749], the application/x-www-form-
 urlencoded media type was defined in Section 17.13.4 of
 [W3C.REC-html401-19991224] but not registered in the IANA MIME Media
 Types registry (http://www.iana.org/assignments/media-types
 (http://www.iana.org/assignments/media-types)). Furthermore, that
 definition is incomplete, as it does not consider non-US-ASCII
 characters.

 To address this shortcoming when generating contents using this media
 type, names and values MUST be encoded using the UTF-8 character
 encoding scheme [RFC3629] first; the resulting octet sequence then
 needs to be further encoded using the escaping rules defined in
 [W3C.REC-html401-19991224].

 When parsing data from a content using this media type, the names and
 values resulting from reversing the name/value encoding consequently
 need to be treated as octet sequences, to be decoded using the UTF-8
 character encoding scheme.

 For example, the value consisting of the six Unicode code points (1)
 U+0020 (SPACE), (2) U+0025 (PERCENT SIGN), (3) U+0026 (AMPERSAND),
 (4) U+002B (PLUS SIGN), (5) U+00A3 (POUND SIGN), and (6) U+20AC (EURO
 SIGN) would be encoded into the octet sequence below (using
 hexadecimal notation):

 20 25 26 2B C2 A3 E2 82 AC

 and then represented in the content as:

 +%25%26%2B%C2%A3%E2%82%AC

 GitHub discussion: https://github.com/oauth-wg/oauth-v2-1/issues/128
 (https://github.com/oauth-wg/oauth-v2-1/issues/128)

Appendix C. Extensions

 Below is a list of well-established extensions at the time of
 publication:

 * [RFC9068]: JSON Web Token (JWT) Profile for OAuth 2.0 Access
 Tokens

 - This specification defines a profile for issuing OAuth access
 tokens in JSON Web Token (JWT) format.

 * [RFC8628]: OAuth 2.0 Device Authorization Grant

Hardt, et al. Expires 12 July 2024 [Page 87]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 - The Device Authorization Grant (formerly known as the Device
 Flow) is an extension that enables devices with no browser or
 limited input capability to obtain an access token. This is
 commonly used by smart TV apps, or devices like hardware video
 encoders that can stream video to a streaming video service.

 * [RFC8414]: Authorization Server Metadata

 - Authorization Server Metadata (also known as OAuth Discovery)
 defines an endpoint clients can use to look up the information
 needed to interact with a particular OAuth server, such as the
 location of the authorization and token endpoints and the
 supported grant types.

 * [RFC8707]: Resource Indicators

 - Provides a way for the client to explicitly signal to the
 authorization server where it intends to use the access token
 it is requesting.

 * [RFC7591]: Dynamic Client Registration

 - Dynamic Client Registration provides a mechanism for
 programmatically registering clients with an authorization
 server.

 * [RFC9449]: Demonstrating Proof of Possession (DPoP)

 - DPoP describes a mechanism of binding tokens to the clients
 they were issued to, and providing proof of that binding in an
 HTTP header when making requests.

 * [RFC8705]: Mutual TLS

 - Mutual TLS describes a mechanism of binding tokens to the
 clients they were issued to, as well as a client authentication
 mechanism, via TLS certificate authentication.

 * [RFC7662]: Token Introspection

 - The Token Introspection extension defines a mechanism for
 resource servers to obtain information about access tokens.

 * [RFC7009]: Token Revocation

 - The Token Revocation extension defines a mechanism for clients
 to indicate to the authorization server that an access token is
 no longer needed.

Hardt, et al. Expires 12 July 2024 [Page 88]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 * [RFC9126]: Pushed Authorization Requests

 - The Pushed Authorization Requests extension describes a
 technique of initiating an OAuth flow from the back channel,
 providing better security and more flexibility for building
 complex authorization requests.

 * [RFC9207]: Authorization Server Issuer Identification

 - The iss parameter in the authorization response indicates the
 identity of the authorization server to prevent mix-up attacks
 in the client.

 * [RFC9396]: Rich Authorization Requests

 - Rich Authorization Requests specifies a new parameter
 authorization_details that is used to carry fine-grained
 authorization data in the OAuth authorization request.

Appendix D. Acknowledgements

 This specification is the work of the OAuth Working Group, and its
 starting point was based on the contents of the following
 specifications: OAuth 2.0 Authorization Framework (RFC 6749), OAuth
 2.0 for Native Apps (RFC 8252), OAuth Security Best Current Practice,
 and OAuth 2.0 for Browser-Based Apps. The editors would like to
 thank everyone involved in the creation of those specifications upon
 which this is built.

 The editors would also like to thank the following individuals for
 their ideas, feedback, corrections, and wording that helped shape
 this version of the specification: Vittorio Bertocci, Michael Jones,
 Justin Richer, Daniel Fett, Brian Campbell, Joseph Heenan, Roberto
 Polli, Andrii Deinega, Falko, Michael Peck, Bob Hamburg, Deng Chao,
 and Karsten Meyer zu Selhausen.

 Discussions around this specification have also occurred at the OAuth
 Security Workshop in 2021 and 2022. The authors thank the organizers
 of the workshop (Guido Schmitz, Steinar Noem, and Daniel Fett) for
 hosting an event that’s conducive to collaboration and community
 input.

Appendix E. Document History

 [[To be removed from the final specification]]

 -10

Hardt, et al. Expires 12 July 2024 [Page 89]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 * Clarify that the client id is an opaque string

 * Extensions may define additional error codes on a resource request

 * Improved formatting for error field definitions

 * Moved and expanded "scope" definition to introduction section

 * Split access token section into structure and request

 * Renamed b64token to token68 for consistency with RFC7235

 * Restored content from old appendix B about application/x-www-form-
 urlencoded

 * Clarified that clients must not parse access tokens

 * Expanded text around when redirect_uri parameter is required in
 the authorization request

 * Changed "permissions" to "privileges" in refresh token section for
 consistency

 * Consolidated authorization code flow security considerations

 * Clarified authorization code reuse - an authorization code can
 only obtain an access token once

 -09

 * AS MUST NOT support CORS requests at authorization endpoint

 * more detail on asymmetric client authentication

 * sync CSRF description from security BCP

 * update and move sender-constrained access tokens section

 * sync client impersonating resource owner with security BCP

 * add reference to authorization request from redirect URI
 registration section

 * sync refresh rotation section from security BCP

 * sync redirect URI matching text from security BCP

 * updated references to RAR (RFC9396)

Hardt, et al. Expires 12 July 2024 [Page 90]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 * clarifications on URIs

 * removed redirect_uri from the token request

 * expanded security considerations around code_verifier

 * revised introduction section

 -08

 * Updated acknowledgments

 * Swap "by a trusted party" with "by an outside party" in client ID
 definition

 * Replaced "verify the identity of the resource owner" with
 "authenticate"

 * Clarified refresh token rotation to match RFC6819

 * Added appendix to hold application/x-www-form-urlencoded examples

 * Fixed references to entries in appendix

 * Incorporated new "Phishing via AS" section from Security BCP

 * Rephrase description of the motivation for client authentication

 * Moved "scope" parameter in token request into specific grant types
 to match OAuth 2.0

 * Updated Clickjacking and Open Redirection description from the
 latest version of the Security BCP

 * Moved normative requirements out of authorization code security
 considerations section

 * Security considerations clarifications, and removed a duplicate
 section

 -07

 * Removed "third party" from abstract

 * Added MFA and passwordless as additional motiviations in
 introduction

 * Mention PAR as one way redirect URI registration can happen

Hardt, et al. Expires 12 July 2024 [Page 91]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 * Added a reference to requiring CORS headers on the token endpoint

 * Updated reference to OMAP extension

 * Fixed numbering in sequence diagram

 -06

 * Removed "credentialed client" term

 * Simplified definition of "confidential" and "public" clients

 * Incorporated the iss response parameter referencing RFC9207

 * Added section on access token validation by the RS

 * Removed requirement for authorization servers to support all 3
 redirect methods for native apps

 * Fixes for some references

 * Updates HTTP references to RFC 9110

 * Clarifies "authorization grant" term

 * Clarifies client credential grant usage

 * Clean up authorization code diagram

 * Updated reference for application/x-www-form-urlencoded and
 removed outdated note about it not being in the IANA registry

 -05

 * Added a section about the removal of the implicit flow

 * Moved many normative requirements from security considerations
 into the appropriate inline sections

 * Reorganized and consolidated TLS language

 * Require TLS on redirect URIs except for localhost/custom URL
 scheme

 * Updated refresh token guidance to match security BCP

 -04

Hardt, et al. Expires 12 July 2024 [Page 92]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 * Added explicit mention of not sending access tokens in URI query
 strings

 * Clarifications on definition of client types

 * Consolidated text around loopback vs localhost

 * Editorial clarifications throughout the document

 -03

 * refactoring to collect all the grant types under the same top-
 level header in section 4

 * Better split normative and security consideration text into the
 appropriate places, both moving text that was really security
 considerations out of the main part of the document, as well as
 pulling normative requirements from the security considerations
 sections into the appropriate part of the main document

 * Incorporated many of the published errata on RFC6749

 * Updated references to various RFCs

 * Editorial clarifications throughout the document

 -02

 -01

 -00

 * initial revision

Authors’ Addresses

 Dick Hardt
 Hell
 Email: dick.hardt@gmail.com

 Aaron Parecki
 Okta
 Email: aaron@parecki.com
 URI: https://aaronparecki.com

Hardt, et al. Expires 12 July 2024 [Page 93]

Internet-Draft The OAuth 2.1 Authorization Framework January 2024

 Torsten Lodderstedt
 yes.com
 Email: torsten@lodderstedt.net

Hardt, et al. Expires 12 July 2024 [Page 94]

