
Rich Authorization Requests
draft-ietf-oauth-rar

05.04.2021
Brian Campbell, Justin Richer, Torsten Lodderstedt

Rich Authorization Requests

new parameter "authorization_details" allows to
convey fine grained and structured authorization
data as JSON objects

designed to be used where “scope” is not
sufficient

Inspired by use cases and solutions in:

● Open Banking
● eHealths
● eSigning
● eGovernment

[
 {
 "type": "payment_initiation",
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant",
 "creditorAccount": {
 "iban": "DE021001...7118603"
 }
]

Changes since IETF-107

● 3 new revisions
● Restructured draft for better readability
● Clarifications

○ dependencies between "resource" and "authorization_details" parameters
○ authorization details enrichment
○ unknown authorization details parameters

● Added implementation considerations
● (Continuous) synchronization with GNAP

Implementation Considerations

● Processing and presentation of authorization details will vary significantly
among different authorization data types.

● Products should allow deployments
○ to determine presentation of the authorization_details
○ modification of requested authorization_details in the user consent process, e.g.

adding fields
○ allow merge of requested and pre-existing authorization_details

● Design options (non-exhaustive)
○ Redirect from product to custom module
○ Callback from product to custom module
○ Custom module built on top of product API
○ Custom build (e.g. fork of open source project)

Open Topic: authorization_details token request parameter

● Assign privileges to first access token (code)
● Downscope privileges of pre-existing grant (code, refresh token, CIBA, device)
● Request access tokens with client credentials

Requested and granted authorization details need to be compared

Comparing Authorization Details

Comparing Scopes

● What’s supposed to happen:
○ "a b c" is requesting more than "a b"

● What sometimes happens:
○ "c" is included in the request for "a"
○ "b" turns on some special functionality instead of asking for access at an RS

● Real-world examples:
○ GitHub API "repo" vs "repo:status"
○ OpenID Connect "openid" and "offline_access"

● Still possible to do a simple set comparison and mostly get away with it

Comparing authorization details

● Don’t say anything?
○ Hope for the best!

● Compare JSON objects?
○ Normalization required
○ Makes assumptions about API design

● Leave it out of scope
○ Fully defined by type value

● Editors’ proposal:
○ Give some examples for comparison practices, but leave it up to the type definition

{
 "type": "photo-api",
 "actions": [
 "read"
],
 "locations": [
 "https://server.example.net/"
],
 "datatypes": [
 "images"
]
}

Comparing two requests: the simple case
{
 "type": "photo-api",
 "actions": [
 "read", "write"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata", "images"
]
}

Compare object members: more values == more access

{
 "type": "photo-api",
 "actions": [
 "read"
],
 "locations": [
 "https://server.example.net/"
],
 "datatypes": [
 "images"
]
}

Comparing two requests: subsumption
{
 "type": "photo-api",
 "actions": [
 "write"
],
 "locations": [
 "https://example.net/"
],
 "datatypes": [
 "metadata"
]
}

Compare object members: some values subsume others

{
 "type": "photo-api",
 "actions": [
 "read"
],
 "locations": [
 "https://server.example.net/"
],
 "datatypes": [
 "images"
]
}

Comparing two requests: defaults
{
 "type": "photo-api",
 "actions": [
 "read"
]
}

Compare object members: AS has defaults for some items

{
 "type": "photo-api",
 "actions": [
 "read"
],
 "locations": [
 "https://server.example.net/"
],
 "datatypes": [
 "images"
]
}

Comparing two requests: added detail
{
 "type": "photo-api",
 "actions": [
 "read"
],
 "locations": [
 "https://server.example.net/"
],
 "datatypes": [
 "images"
],
 "identifier": "S2B-7C2-MY2Y"
}

Compare object members: add more specific detail with new field

[
 {
 "type": "photo-api",
 "actions": [
 "write"
],
 "datatypes": [
 "images"
]
 }
]

Comparing two requests: more objects
[
 {
 "type": "photo-api",
 "actions": [
 "write"
],
 "datatypes": [
 "images"
]
 },
 {
 "type": "photo-api",
 "actions": [
 "read"
],
 "datatypes": [
 "metadata"
]
 }
]

Compare arrays: how does a request match across objects?

{
 "type": "arbitrary-api",
 "foo": [
 "bar"
],
 "baz": true
}

Comparing two requests: arbitrary API designs
{
 "type": "arbitrary-api",
 "foo": [
 "batman"
],
 "quux": "quuuuuuux"
}

Compare object members: BUT HOW??

Which is correct?

● All of them
○ Depends on the nature of the API being protected and described
○ OAuth doesn’t take a stance on the nature of the API

Provide guidance

● Concepts of a request being “more” or “less” than another
○ Needed in refresh tokens, user consent, authorization

● API designers need to consider this when defining the type they use
● AS implementers need to make comparisons

○ Custom: whatever makes sense for the API
○ General-purpose: pluggable comparison system? (see implementation considerations)

● Spec can show common patterns as examples

