
IETF 111, San Francisco
OAuth WG Virtual Interim
April 2021 TMI-BFF

Token Mediating and session
Information Backend For Frontend

Vittorio Bertocci Brian Campbell

TL;DR

• Mechanism for a JS frontent to delegate token requests and storage
to its backend, while retaining the ability to invoke API directly from
frontend code

• Formalization of a common practice

Important Note

• Some people interpret BFF as “the backend does everything, including
routing API calls”

• That’s NOT how we use the term here. We call that “Full BFF”

• In this document we use BFF to indicate that the backend exists and
does some of the work

• BFF TMI does NOT describe a Full BFF

• BFF TMI does NOT try to replace a Full BFF

Agenda

• Why TMI-BFF

• Main Flow

• Discussion

Why TMI BFF (1/3) – vs Full BFF, Reverse
Proxy
• Whenever possible, it is more secure to keep tokens out of the browser

• Eg JS frontend accessing API via reverse proxy on backend

• But it is not always possible
• Performance

• Costs
• Backend limitations
• Misc requirements

• Regions, etc

Backend

API 1browser

API 2
browser

Backend

API 1browser

API 2
browser

reverse proxy

Why TMI BFF (2/3) – vs Code+PKCE

• Code+PKCE from JS is viable, but complex
• Config settings

• Many moving parts
• Requirements not satisfied by every AS (RT rotation, CORS)

Why TMI BFF (3/3) – Common
Workaround
• Developers use confidential code flows on the backend to obtain ATs…

• …and pass them back to their JS to perform API calls from the browser

• Issues
• Custom code
• Custom frontend-backed protocol
• No threat model
• No interop, every app/dev stack reinvents the frontend-backend relationship

TMI-BFF Elements

• Two new endpoints on the app
• bff-token – for the frontend to ask for ATs from the backend
• bff-sessioninfo - for the frontend to ask the backend session info (eg username)

• Message format for requesting ATs, session info

• Error messages

• Security considerations

1. Classic web sign on the app, establish session

2. Get access token (AT), any other artifact (RTs?)

Main Flow (1/3) - Prerequisites

Backendfrontend authorization
server

1

2

Those are components of the SAME app

Main Flow (2/3) - getting an AT

Frontend:

1. requests an AT from the backend

2. receives an AT

3. calls the API

Backend

API 1

frontend

https://myapp.example.com/.well-known/bff-
token

authorization
server

GET /.well-known/bff-token?scope=buy+sell
 &resource=https%3A%2F%2Fapi.example.org%2Fstocks HTTP/1.1
Host: myapp.example.com
Cookie: super-secure-session=hVQvkyX2IOj36fqIoUQFlBeALbh

HTTP/1.1 200 OK
Content-Type: application/json
X-Content-Type-Options: nosniff
Cache-Control: no-cache, no-store
Cross-Origin-Resource-Policy: same-origin
Content-Security-Policy: sandbox
Cross-Origin-Opener-Policy: same-origin
X-Frame-Options: DENY

{
 "access_token":"4bWc0ESC9aCc77LTC8EjR1pCfE4WxfNg",
 "expires_in":3596,
 "scope":"buy sell"
}

Main Flow (3/3) - Getting Session Info

Backend

frontend

https://myapp.example.com/.well-known/bff-
sessioninfo

GET /.well-known/bff-sessioninfo HTTP/1.1
Host: myapp.example.com
Cookie: super-secure-session=hVQvkyX2IOj36fqIoUQFlBeALbh

HTTP/1.1 200 OK
Content-Type: application/json
X-Content-Type-Options: nosniff
Cache-Control: no-cache, no-store

{
 "iss": "https://as.example.com",
 "sub": "24400320",
 "exp": 1311281970,
 "auth_time": 1311280969,
 "preferred_username": "johnny",
 "email_verified: "johnny@foo.com",
 "given_name": "Jonathan",
 "family_name" : "Swift"
}

Advantages

• JS is ultrasimple (no config whatsoever)

• The new endpoints can be easily added to existing middleware

• API calls are perfomed from the user-agent
• Less burden on backend, better perf

• Works with any AS, including old implementations

• Easy mix & match interop between frontend stacks (react, angular
etc) and backend stacks (Node, Ruby, ASP.NET etc)

• Works with any sign in tech (as long as it results in a session cookie)

• Easy testing, mocking, etc

Changes in draft -01

• Extra security measures in the HTTP headers when returning ATs

• Removal of all claims of security benefits

• Clarified “BFF” vs “Full BFF”

• Reccomandation to go Full BFF when viable

• More thorough explanation of prerequisites (preexisting session, tokens)

• Clarified relationship with the Browser BCP

https://tools.ietf.org/html/draft-bertocci-oauth2-tmi-bff-01

https://tools.ietf.org/html/draft-bertocci-oauth2-tmi-bff-01

TL;DR 2

• People are doing this today, without any guidance. Two possibilities:
• We find reasons for which this is so insecure NO ONE should do this.

We articulate that super clearly and start a campaign against it
• We find the approach acceptable. In that case, leaving developers to their

own device without guidance is less than ideal

Open Issues

• Should we handle interactive token acquisition case?

	Slide 1
	TL;DR
	Important Note
	Agenda
	Why TMI BFF (1/3) – vs Full BFF, Reverse Proxy
	Why TMI BFF (2/3) – vs Code+PKCE
	Why TMI BFF (3/3) – Common Workaround
	TMI-BFF Elements
	Main Flow (1/3) - Prerequisites
	Main Flow (2/3) - getting an AT
	Main Flow (3/3) - Getting Session Info
	Advantages
	Changes in draft -01
	TL;DR 2
	Open Issues

