A Data-centric CoAP Transport

Cenk Gündoğan¹

¹HAW Hamburg

October 26, 2021

cenk.guendogan@haw-hamburg.de

Information-Centric Networking (ICN)

- Alternative networking paradigm
- Specialization on content delivery
- ► Loose coupling of data and host endpoints

Prominent architectures

- Named-Data Networking (NDN)
- Content-Centric Networking (CCNx)

Protocol features

- Name-based, stateful forwarding
- In-network content caching
- Content object security

Communication Model

- Request-response paradigm
- Layer 3 primitives: Interest & Data

Interest /T2TRG/interim/sensor

Communication Model

- Request-response paradigm
- Layer 3 primitives: Interest & Data

Forwarding & Flow Balance

- Request state on each hop
- ► Hop-wise caching & retransmissions

Communication Model

- Request-response paradigm
- Layer 3 primitives: Interest & Data

Forwarding & Flow Balance

- Request state on each hop
- ► Hop-wise caching & retransmissions

Interest /T2TRG/interim/sensor

Communication Model

- Request-response paradigm
- Layer 3 primitives: Interest & Data

Interest /T2TRG/interim/sensor Data

Forwarding & Flow Balance

- Request state on each hop
- ► Hop-wise caching & retransmissions

Content Object Security

- Individually verifiable data packets using HMAC or digital signatures
- End-to-end protection beyond untrusted gateways

Outline

Constructing a Data-centric Web of Things

Enabling a Reliable Multiparty Content Retrieval

Use Case: Firmware Updates

.

Constructing a

Data-centric Web of Things

Benefits of Information-centric Properties for the IoT

Research indicates: promising candidate for IoT deployments

Stateful Forwarding

Caching

Content
Object Security

- ► **Stateful forwarding** and **caching** shorten request paths and reduce link traversals on retransmissions
- Content object security enables end-to-end security, reduces session management complexity and allows multi-party communication

Benefits of Information-centric Properties for the IoT

Research indicates: promising candidate for IoT deployments

Stateful Forwarding

Caching

Content
Object Security

CoAP Proxy

OSCORE

- ► **Stateful forwarding** and **caching** shorten request paths and reduce link traversals on retransmissions
- Content object security enables end-to-end security, reduces session management complexity and allows multi-party communication

Constructing a Data-centric CoAP Deployment

Standard deployment

CoAP client / server + IPv6 forwarders End-to-end retransmissions

Constructing a Data-centric CoAP Deployment

Standard deployment

CoAP client / server + IPv6 forwarders End-to-end retransmissions

Data-centric deployment

CoAP client / server + CoAP proxies

Hop-by-hop request state
Hop-wise caching & retransmissions
Forwarding decision on names

GET /T2TRG/interim/sensor

[ACM ICN'20] Toward a RESTful Information-Centric Web of Things [...]

GET coap://[2001:db8::4]/sensor (Proxy-Uri)

- Forward request to next proxy (fe80::2)
- ► Point request state to localhost

Proxy-level Forwarding Information Base

Destination	Next-hop
2001:db8::4 /sensor	fe80::2

Request Table

Cache Key	Source
Key _i	::1/128

Header

Code: GET, ...

Options

..., Proxy-Uri, ...

Cache Key	Response
-	_

GET coap://[2001:db8::4]/sensor (Proxy-Uri)

- Acknowledge with empty response
- Forward request to next proxy (fe80::3)
- Point request state to previous proxy (fe80::1)

Proxy-level Forwarding Information Base

Destination	Next-hop
2001:db8::4 /sensor	fe80::3

Request Table

Cache Key	Source
Key _i	fe80::1

Header

Code: GET, ...

Options

..., Proxy-Uri, ...

Cache Key	Response
_	_

GET coap://[2001:db8::4]/sensor (Uri-Path)

- Acknowledge with empty response
- Forward request to global address (2001:db8::4)
- Point request state to previous proxy (fe80::2)

Header Code: GET, ... Options Uri-Path, ...

Proxy-level Forwarding Information Base

Destination	Next-hop
_	_

Request Table

Cache Key	Source
Key _i	fe80::2

Cache Key	Response
_	_

Reply with sensor data

Header
Code: 2.05, ...

Payload
24 °C

Proxy-level Forwarding Information Base

Destination	Next-hop
_	_

Request Table

Cache Key	Source
_	_

Cache Key	Response
_	-

- ► Foward response to ff80::2
- Consume request state

Header Code: 2.05, ... Payload 24 °C

Proxy-level Forwarding Information Base

Destination	Next-hop
_	_

Request Table

Cache Key	Source
Key ;	fe80::2

Cache Key	Response
Key _i	Resp _i

- ► Foward response to ff80::1
- Consume request state

Header
Code: 2.05, ...

Payload
24 °C

Proxy-level Forwarding Information Base

Destination	Next-hop
2001:db8::4 /sensor	fe80::3

Request Table

Cache Key	Source
Key ;	fe80::1

Cache

Cache Key	Response
Key _i	Resp _i

- ► Receive response at application
- Consume request state

Header Code: 2.05, ... Payload 24 °C

Proxy-level Forwarding Information Base

Destination	Next-hop
2001:db8::4 /sensor	fe80::2

Request Table

Cache Key	Source
Key,	::1/128

Cache Key	Response
Key _i	Resp _i

OSCORE: Content Object Security

- Provides confidentiality, integrity, and replay mitigations
- Wraps CoAP in CoAP with method: POST
- Proxy-Uri remains outside OSCORE (host part only? with path?)
- Trade-off: fine-grained forwarding control vs. privacy

Packet Structure Dissection

Maximum frame size for IEEE 802.15.4 is 127 bytes

Stateful proxying reduces en-route message size (link-local addr. compression)

Request Creation Time

- Message retransmissions are frequent in low-power regimes
- ► **CoAP:** Application layer retransmissions
- ▶ NDN: Network layer retransmissions

Content object security reduces strain on retransmissions

Enabling a

Reliable Multiparty
Content Retrieval

Multi-party Communication

- CCNx / NDN has integral support for multi-party communication
- Data-centric CoAP deployments inherit the same feature set

Problems with Naïve OSCORE Integration

Stateful Forwarding

- Strong message binding of OSCORE confines request aggregation to request-response pairs
- ⇒ single-party, single-request

Caching

- Cryptographic protection of OSCORE naturally prevents data access for other peers
- ⇒ single-party, single-request

[IEEE LCN'21] RESTful Multiparty Access to a Data-Centric WoT [...]

Extending the Data-centric WoT

Multiparty cache utilization

- Members assume role of a virtual client (draft-amsuess-core-cachable-oscore)
- Iterated requests from a virtual client to same resource are identical

Multiparty forwarding

- Requests aggregate per cache key
- Responses fan out to all matching requests

Extending the Data-centric WoT

Multiparty cache utilization

- Members assume role of a virtual client (draft-amsuess-core-cachable-oscore)
- ▶ Iterated requests from a virtual client to same resource are identical

Multiparty forwarding

- Requests aggregate per cache key
- Responses fan out to all matching requests

Extending the Data-centric WoT

Multiparty cache utilization

- Members assume role of a virtual client (draft-amsuess-core-cachable-oscore)
- ▶ Iterated requests from a virtual client to same resource are identical

Multiparty forwarding

- Requests aggregate per cache key
- Responses fan out to all matching requests

Testbed Setup

Hardware M3 node in IoT Lab testbed, IEEE 802.15.4

Topology 9 clients, 35 forwarders, 1 server

Scenario Clients request latest instruction every \approx 1 s

Time to Content Arrival (Client₉)

Request aggregation and caching improve network performance

Use Case: Firmware Update

Data-centric Firmware Propagation

Motivation

- General purpose devices require software updates
- Increasing security demands require similar practices for IoT

A secure and reliable firmware propagation in low-power regimes is mandatory

Challenges

- ▶ Updates are resource-consuming and show as peak loads in the Internet
- ▶ IoT firmware images are 1–2 orders of magnitude larger than sensor values

Update propagations can lead to DDoS and break security

Firmware Retrieval

▶ NDN interchangeable with data-centric CoAP block-wise transfer

[ACM ICN'21] Reliable Firmware Updates for the information-centric IoT [...]

Retrieval Strategies

Concurrent Retrievals

- Nodes retrieve missing chunks and also forward to downstream nodes
- Multiple nodes on a path perform update concurrently

Cascading Retrievals

- Nodes block downstream chunk requests while local retrieval is running
- Single node on a path performs update at a time

Experiment Setup

Hardware M3 node in IoT Lab testbed, IEEE 802.15.4

Topology 30 devices, 1 gateway

Scenario Devices request new firmware version

Goodput Analysis

- All devices download128KiB common firmware image
- Concurrent retrievals saturate network resources
- Cascading retrievals shorten nodal update time

Update Completion Time

- All devices download
 128KiB firmware image
- Common binary benefits from hop-wise cache hits
- Individual binaries degrade overall network performance

Conclusion & Outlook

Takeaways

- ► Hop-wise content replication fosters efficient, reliable disseminations
- Stateful forwarding & object security enable secure multi-party comm.
- Data-centric CoAP brings new perspectives for IoT deployments

Future Work

- Inspect dynamic proxy discovery
- Explore alternative identifiers in Proxy-Uri