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Dataplane Programmability
& In-Network Programming
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Dataplane Programmability

(Netronome)
(Netcope)

(Linux Foundation)

(P4 Language Consortium)
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Dataplane Programmability
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Dataplane Programmability

Current paradigm: dataplane program        one dataplane
mapped to

(device)
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Dataplane Programmability

Current paradigm: dataplane program        one dataplane
mapped to

Mismatch with Software-Defined Networking

Conceptually simple.

Familiar from programming other devices.

(device)

(the overarching vision).



xor xor xor

Exclusive OR

Current paradigm: dataplane program        one dataplane
mapped to

Mismatch with Software-Defined Networking

Program must entirely execute on a single target. 
Unnecessary constraints of program functionality.

Target’s resources are dedicated to the program. 
Inefficient use of individual target resources.

We’re meant to be “programming the network”.  
Programmability is scoped too conservatively.
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(            )and or
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New paradigm: 
dataplane program        suitable mix of dataplanes

Current paradigm: dataplane program        one dataplane
mapped to
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New paradigm: 
dataplane program        suitable mix of dataplanes

• Resource-based program decomposition. 
• Split into set of 1-1 dataplane programs.

Current paradigm: dataplane program        one dataplane
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New paradigm: 
dataplane program        suitable mix of dataplanes

• Resource-based program decomposition. 
• Split into set of 1-1 dataplane programs.

Uses existing vendor toolchains,

language & hardware.

Current paradigm: dataplane program        one dataplane
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Example: “Crosspod” Program
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Example: “Crosspod” Program
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Hand-over + monitoring
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and(        ) or or

(            )and or
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• Resource-based program decomposition. 
• Split into set of 1-1 dataplane programs.

Dataplane DisaggregationNew paradigm: 
dataplane program        suitable mix of dataplanes

Current paradigm: dataplane program        one dataplane



Dataplane Disaggregation
( = Server Disaggregation)

Virtual Dataplane      Set of Physical Dataplanes

“One big switch” “One big programmable switch”

( = Switch Disaggregation)



Current paradigm: dataplane program        one dataplane

xor xor xor
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and(        ) or or

(            )and or
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Dataplane Disaggregation: 
dataplane program        suitable mix of dataplanes

• Resource-based program decomposition. 
• Split into set of 1-1 dataplane programs.

How to implement? Automated support needed

Uses existing vendor toolchains,

language & hardware.
If manual: laborious, error-prone,

hard to change.



Current paradigm: dataplane program        one dataplane
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and(        ) or or

(            )and or
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Dataplane Disaggregation: 
dataplane program        suitable mix of dataplanes

• Analyze program’s use of resources. 
• Split into set of 1-1 dataplane programs.!
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Dataplane Disaggregation: 
dataplane program        suitable mix of dataplanes

• Exploit heterogeneous resources. 
• Meet resource & performance objectives.

• Analyze program’s use of resources. 
• Split into set of 1-1 dataplane programs.!

!
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and(        ) or or

(            )and or
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Dataplane Disaggregation: 
dataplane program        suitable mix of dataplanes

• Exploit heterogeneous resources. 
• Meet resource & performance objectives.

Placement

• Analyze program’s use of resources. 
• Split into set of 1-1 dataplane programs.!

!
!



Current paradigm: dataplane program        one dataplane

xor xor xor

23

and(        ) or or

(            )and or

(        )and or

Dataplane Disaggregation: 
dataplane program        suitable mix of dataplanes

• Exploit heterogeneous resources. 
• Meet resource & performance objectives.

• Hand-over control between dataplanes. 
• Synchronize state. 
• Detect and handle faults.

Placement

• Analyze program’s use of resources. 
• Split into set of 1-1 dataplane programs.!

!
!

!
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Dataplane Disaggregation: 
dataplane program        suitable mix of dataplanes

• Exploit heterogeneous resources. 
• Meet resource & performance objectives.

• Hand-over control between dataplanes. 
• Synchronize state. 
• Detect and handle faults.

Placement

• Analyze program’s use of resources. 
• Split into set of 1-1 dataplane programs.!

!
!

!
•No language or hardware changes. 
• Changing programs, topology, and hardware. 
• Ingest various data: program, topology, resource 

information, constraints, objectives. 
• Scoping network programming and operation. 
• Consider and explain multiple possible solutions. 
• Multiple programs in same network. 
• Diagnosis and debugging.

!
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Dataplane Disaggregation: 
dataplane program        suitable mix of dataplanes

• Exploit heterogeneous resources. 
• Meet resource & performance objectives.

• Hand-over control between dataplanes. 
• Synchronize state. 
• Detect and handle faults.

Placement

• Analyze program’s use of resources. 
• Split into set of 1-1 dataplane programs.

•No language or hardware changes. 
• Changing programs, topology, and hardware. 
• Ingest various data: program, topology, resource 

information, constraints, objectives. 
• Scoping network programming and operation. 
• Consider and explain multiple possible solutions. 
• Multiple programs in same network. 
• Diagnosis and debugging.

Flightplan

Code, tests, scripts, data, documentation: 
https://flightplan.cis.upenn.edu/



26

Flightplan
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Flightplan



Idea from symbolic AI: 
rule-based search.

Flightplan



Flightplan
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Example program (Crosspod)

Segment annotation

Resource 
dependence
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Xc

(Rule generation is fully automatic)

Abstract program
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BRAMs + 54.4%
FF + 15.8%   

Abstract Resource Semantics
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(Specific device + 
platform)



In-Network Program 
Examples

• Layer 2+ FEC (Forward Error Correction)


• Traffic compression


• In-network caching of key-value requests


Running on 10GbE network at ~2us latency.
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Runtime: Fault Detection 
         + Handling
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• In-dataplane: +ve and -ve Acks. 
• Strobes from control program.

Two mechanisms



Evaluation
• Simulation: 

• Scale of the network (featuring various programs)


• Overhead


• Disaggregation (different programs split in different ways)


• Fail-over


• Test-bed: 

• Throughput, latency, power, resource utilization


• Plan comparisons for hardware alternatives


• Single-feature evaluation
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Fig 7: Multiple Programs vs Runtimes vs Splits 
           in same network (Simulation)
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Fig 7: Multiple Programs vs Runtimes vs Splits 
           in same network (Simulation)



42

Fig 7: Multiple Programs vs Runtimes vs Splits 
           in same network (Simulation)
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Flightplan demo
MSc students: Heena Nagda (GATech), Rakesh Nagda (Penn)
Other features: graphs, multimedia cues (e.g., icons, packet structure), …[
https://flightplan.cis.upenn.edu/demo

[ Haoxian Chen, Max Demoulin, 
Joel Hypolite, Pardis Pashakhanloo, 

Lei Shi, Nishanth Shyamkumar,  
Caleb Stanford, Ke Zhong

Ack:

https://flightplan.cis.upenn.edu/demo

