
Nik Sultana
Illinois Tech

COIN Interim // 10th Feb 2022

http://www.cs.iit.edu/~nsultana1

Flightplan: Dataplane Disaggregation
and Placement for P4 programs

http://www.cs.iit.edu/~nsultana1

Ack
Shivani Burad

Anirudh Chelluri

André DeHon

Hans Giesen

Zhaoyang Han

Latha A. Kant

Boon Thau Loo

Tony McAuley

Heena Nagda

Rakesh Nagda

Isaac Pedisich

Alexander Poylisher

Nishanth Prabhu

Lei Shi

Nishanth Shyamkumar

John Sonchack

3

Dataplane Programmability
& In-Network Programming

NPU

FPGA

Switch

Host (CPU)

4

Dataplane Programmability

(Netronome)
(Netcope)

(Linux Foundation)

(P4 Language Consortium)

& In-Network Programming

NPU

FPGA

Switch

Host (CPU)

5

Dataplane Programmability

NPU

FPGA

Switch

Host (CPU)

6

Dataplane Programmability

Current paradigm: dataplane program one dataplane
mapped to

(device)

NPU

FPGA

Switch

Host (CPU)

Dataplane Programmability

Current paradigm: dataplane program one dataplane
mapped to

Mismatch with Software-Defined Networking

Conceptually simple.

Familiar from programming other devices.

(device)

(the overarching vision).

xor xor xor

Exclusive OR

Current paradigm: dataplane program one dataplane
mapped to

Mismatch with Software-Defined Networking

Program must entirely execute on a single target. 
Unnecessary constraints of program functionality.

Target’s resources are dedicated to the program.
Inefficient use of individual target resources.

We’re meant to be “programming the network”.  
Programmability is scoped too conservatively.

xor xor xor

9

and() or or

()and or

()and or

New paradigm: 
dataplane program suitable mix of dataplanes

Current paradigm: dataplane program one dataplane
mapped to

xor xor xor

10

and() or or

()and or

()and or

New paradigm: 
dataplane program suitable mix of dataplanes

• Resource-based program decomposition.
• Split into set of 1-1 dataplane programs.

Current paradigm: dataplane program one dataplane

xor xor xor

11

and() or or

()and or

()and or

New paradigm: 
dataplane program suitable mix of dataplanes

• Resource-based program decomposition.
• Split into set of 1-1 dataplane programs.

Uses existing vendor toolchains,

language & hardware.

Current paradigm: dataplane program one dataplane

12

Example: “Crosspod” Program

13

Example: “Crosspod” Program

14

Hand-over + monitoring

15

16

xor xor xor

17

and() or or

()and or

()and or

• Resource-based program decomposition.
• Split into set of 1-1 dataplane programs.

Dataplane DisaggregationNew paradigm: 
dataplane program suitable mix of dataplanes

Current paradigm: dataplane program one dataplane

Dataplane Disaggregation
(= Server Disaggregation)

Virtual Dataplane Set of Physical Dataplanes

“One big switch” “One big programmable switch”

(= Switch Disaggregation)

Current paradigm: dataplane program one dataplane

xor xor xor

19

and() or or

()and or

()and or

Dataplane Disaggregation: 
dataplane program suitable mix of dataplanes

• Resource-based program decomposition.
• Split into set of 1-1 dataplane programs.

How to implement? Automated support needed

Uses existing vendor toolchains,

language & hardware.
If manual: laborious, error-prone,

hard to change.

Current paradigm: dataplane program one dataplane

xor xor xor

20

and() or or

()and or

()and or

Dataplane Disaggregation: 
dataplane program suitable mix of dataplanes

• Analyze program’s use of resources.
• Split into set of 1-1 dataplane programs.!

Current paradigm: dataplane program one dataplane

xor xor xor

21

and() or or

()and or

()and or

Dataplane Disaggregation: 
dataplane program suitable mix of dataplanes

• Exploit heterogeneous resources.
• Meet resource & performance objectives.

• Analyze program’s use of resources.
• Split into set of 1-1 dataplane programs.!

!

Current paradigm: dataplane program one dataplane

xor xor xor

22

and() or or

()and or

()and or

Dataplane Disaggregation: 
dataplane program suitable mix of dataplanes

• Exploit heterogeneous resources.
• Meet resource & performance objectives.

Placement

• Analyze program’s use of resources.
• Split into set of 1-1 dataplane programs.!

!
!

Current paradigm: dataplane program one dataplane

xor xor xor

23

and() or or

()and or

()and or

Dataplane Disaggregation: 
dataplane program suitable mix of dataplanes

• Exploit heterogeneous resources.
• Meet resource & performance objectives.

• Hand-over control between dataplanes.
• Synchronize state.
• Detect and handle faults.

Placement

• Analyze program’s use of resources.
• Split into set of 1-1 dataplane programs.!

!
!

!

Current paradigm: dataplane program one dataplane

xor xor xor

24

and() or or

()and or

()and or

Dataplane Disaggregation: 
dataplane program suitable mix of dataplanes

• Exploit heterogeneous resources.
• Meet resource & performance objectives.

• Hand-over control between dataplanes.
• Synchronize state.
• Detect and handle faults.

Placement

• Analyze program’s use of resources.
• Split into set of 1-1 dataplane programs.!

!
!

!
•No language or hardware changes.
• Changing programs, topology, and hardware.
• Ingest various data: program, topology, resource

information, constraints, objectives.
• Scoping network programming and operation.
• Consider and explain multiple possible solutions.
• Multiple programs in same network.
• Diagnosis and debugging.

!

Current paradigm: dataplane program one dataplane

xor xor xor

25

and() or or

()and or

()and or

Dataplane Disaggregation: 
dataplane program suitable mix of dataplanes

• Exploit heterogeneous resources.
• Meet resource & performance objectives.

• Hand-over control between dataplanes.
• Synchronize state.
• Detect and handle faults.

Placement

• Analyze program’s use of resources.
• Split into set of 1-1 dataplane programs.

•No language or hardware changes.
• Changing programs, topology, and hardware.
• Ingest various data: program, topology, resource

information, constraints, objectives.
• Scoping network programming and operation.
• Consider and explain multiple possible solutions.
• Multiple programs in same network.
• Diagnosis and debugging.

Flightplan

Code, tests, scripts, data, documentation:
https://flightplan.cis.upenn.edu/

26

Flightplan

27

Flightplan

28

Flightplan

Idea from symbolic AI:
rule-based search.

Flightplan

Flightplan

31

Example program (Crosspod)

Segment annotation

Resource
dependence

Xc

Xc

Xc
Xc

XcX
c Xc Xc

32

Xc

(Rule generation is fully automatic)

Abstract program

Flightplan

Flightplan

BRAMs + 54.4%
FF + 15.8%

Abstract Resource Semantics

35

(Specific device + 
platform)

In-Network Program
Examples

• Layer 2+ FEC (Forward Error Correction)

• Traffic compression

• In-network caching of key-value requests

Running on 10GbE network at ~2us latency.

10°5 10°4 10°3 10°2 10°1

Error Rate (Percent of packets Lost)

0

2

4

6

8

10

Th
ro

ug
hp

ut
(G

b/
s)

No FEC
(25, 1)
(25, 5)

(25, 10)
(10, 5)
(5, 5)

(Higher is better)

(Lower is better)

Flightplan

Runtime: Fault Detection
 + Handling

38

• In-dataplane: +ve and -ve Acks.
• Strobes from control program.

Two mechanisms

Evaluation
• Simulation:

• Scale of the network (featuring various programs)

• Overhead

• Disaggregation (different programs split in different ways)

• Fail-over

• Test-bed:

• Throughput, latency, power, resource utilization

• Plan comparisons for hardware alternatives

• Single-feature evaluation

39

40

Fig 7: Multiple Programs vs Runtimes vs Splits 
 in same network (Simulation)

41

Fig 7: Multiple Programs vs Runtimes vs Splits 
 in same network (Simulation)

42

Fig 7: Multiple Programs vs Runtimes vs Splits 
 in same network (Simulation)

43

Flightplan demo
MSc students: Heena Nagda (GATech), Rakesh Nagda (Penn)
Other features: graphs, multimedia cues (e.g., icons, packet structure), …[
https://flightplan.cis.upenn.edu/demo

[Haoxian Chen, Max Demoulin, 
Joel Hypolite, Pardis Pashakhanloo, 

Lei Shi, Nishanth Shyamkumar,  
Caleb Stanford, Ke Zhong

Ack:

https://flightplan.cis.upenn.edu/demo

