Constrained Application Protocol (CoAP) Performance Measurement Option

draft-fz-core-coap-pm-01

Online, Mar 2022, interim meeting

Giuseppe Fioccola (Huawei) Tianran Zhou (Huawei) Mauro Cociglio (Telecom Italia) Fabio Bulgarella (Telecom Italia) Massimo Nilo (Telecom Italia)

Motivation

A mechanism to measure the performance in CoAP can be useful to verify and meet the operational requirements.

✓ It should be a simple mechanism for network diagnostic to be developed on constrained nodes requiring just a minimal amount of collaboration from the endpoints.

It is resource consuming to read IDs / sequence numbers and store timestamps for constrained nodes.

• Performance Measurement in constrained environment needs straightforward methodologies!

Changes from -00 to -01

Most of the changes are to address the comments and inputs from Christian Amsuess and Thomas Fossati:

- New considerations in the Introduction and regarding the Structure of the PM Option
- New section on Application Scenarios (end-to-end or segmented measurements)
- Added considerations in the Security section (OSCORE ensures end-to-end integrity protection)

Spin Bit and sQuare Bit

Explicit Flow Measurement (EFM) techniques employ few marking bits, inside the header of each packet, for loss and delay measurement. These are described in **draft-ietf-ippm-explicit-flow-measurements**

The Spin bit idea is to create a square wave signal on the data flow, using a bit, whose length is equal to RTT. It is optional in QUIC (RFC9000)

The sQuare bit creates square waves of a known length as defined in the Alternate Marking (RFC8321). This can be used for packet loss (and delay) measurements.

COAP PM Option

 A new option for CoAP carrying PM bits (in particular Spin bit and sQuare Bit) can be defined

- The PM Option Value can be defined with 1 bit or 2 bits. 2 bits are defined as follows:
 - sQuare Bit (Q) for Packet Loss (and delay) measurement in both Client-Server and Server-Client directions
 - Spin Bit (S) can also be added for RTT measurement (reinforced by the Q bit)

Example: the Event bits can be divided into two parts: loss event bits and delay event bits.

• An end point can define different levels of thresholds and set the delay/loss event accordingly.

An on-path observer (Proxy or Gateway) knows the network condition by reading the Event bits.

• It MAY communicate with Client and Server to set some parameters based on the performance.

Application Scenarios

The main usage of the CoAP PM Options is for end-to-end measurement between the client and the server

Split measurements are also allowed. The intermediaries or on-path observers could be:

- Network Functions or Probes that must be able to see deep into application.
- Gateway or Proxies, tasked by CoAP clients to perform requests on their behalf (RFC7252)
- If the on-path observers are network functions or probes, the CoAP PM Option can be applied end-to-end between client and server.
 - The on-path network probes can read Q bit and S bit and implement the relevant algorithms to measure losses and RTT. Otherwise they can simply read the Event bits and be informed about the performance without implementing any algorithm.
- If the on-path observers are CoAP proxies, the CoAP PM Option can only be applied to the different separate connections between client and server.
 - The measurements can be segmented: between the Proxies or between a Proxy and a Client or between a Proxy and the Server.
 - It could also be possible to bundle different clients if they are mixed. An alternative can be to use the Option only for a single client at once.
 - Communication may happen with different servers, and in this case it is necessary to check the other fields to understand the server.

Key Points and Benefits

 No IDs/sequence numbers for packet loss and flexible timestamp handling to measure RTT. The method is simple to meet the requirement of constrained nodes.
– Equip the CoAP with Performance Measurement bits to enable RTT and Loss metrics.

- Proposal to improve the Q bit mechanism and find a synergy with S bit in order to simplify the application. Q bit can also be used alone to measure loss and delay.
 - Constrained nodes need simple way to do performance measurements

Possible advanced usage:

Addition of event signaling bits for on-path observers. The on-path observer can be the Proxy or a Gateway to interconnect disjointed CoAP networks.

- This information could be used to adjust protocol parameters (e.g. timeout values) based on the real network performance.
- It could also be possible to decide whether to use reliable or unreliable message transmission based on network conditions

Next Steps

- This draft is based on well-known methodologies applied in RFC9000 (Spin Bit) and RFC8321 (sQuare Bit).
- It aims to meet the limited resources of constrained environment.

Welcome questions, comments

Thank you