
Profiling EDHOC for CoAP and OSCORE
draft-ietf-core-oscore-edhoc-03

Francesca Palombini, Ericsson
Marco Tiloca, RISE

Rikard Höglund, RISE
Stefan Hristozov, Fraunhofer AISEC

Göran Selander, Ericsson

CoRE WG interim meeting, April 27th, 2022

CoRE WG interim meeting | 2022-04-27 | Page 2

› EDHOC: lightweight authenticated key exchange

– Developed in the LAKE Working Group

– Main use: establish an OSCORE Security Context

– Normally, two round-trips before using OSCORE

› Scope of this document

– Focus on EDHOC for OSCORE, transported over CoAP

– Optimized key establishment workflow (main item)

› Single request with EDHOC option, combining final EDHOC

message_3 and first OSCORE-protected application request

– Conversion of OSCORE IDs to EDHOC IDs

– OSCORE-specific processing of EDHOC messages

– Extension/consistency of EDHOC application templates

– Web linking for discovery of EDHOC resources and their

application templates (through target attributes)

Recap

CoRE WG interim meeting | 2022-04-27 | Page 3

› EDHOC+OSCORE request – Client processing

– Not more than 1 “outstanding interaction” (see Section 4.7 of RFC 7252) such that

› They are EDHOC+OSCORE requests for the same server

› They are related to the same EDHOC session identified by C_R

–  A client “impatient” to obtain a response does not flood the server

› EDHOC+OSCORE request – Server processing

– Once finished processing EDHOC message_3 …

– … rebuild the OSCORE-protected application request and …

– … remove the EDHOC option (now explicitly stated)

› Not needed from then on

› Analogous to removing the OSCORE option after decryption

› Ensures correct processing when both inner and outer blockwise are used

Update since IETF 112

Comments/objections?

CoRE WG interim meeting | 2022-04-27 | Page 4

› Selection of EDHOC connection identifiers, on client and server

– More precise guidelines, as selection of OSCORE Recipient IDs

– Consistent with uniqueness requirements from RFC 8613

› SHOULD be an available Recipient ID overall

› MUST be available among the Security Contexts with zero-length ID-Context

› Editorial fixes/improvements

– “Perfect forward secrecy”  “Forward secrecy”

– Improved all example figures

– Highlighted that C_R is NOT in the payload of the EDHOC+OSCORE request

› The server recomputes it from the ‘kid’ of the OSCORE option

Update since IETF 112

CoRE WG interim meeting | 2022-04-27 | Page 5

› When can the EDHOC+OSCORE request get too big?

– Use of large ID_CRED_I in EDHOC, e.g., as a certificate chain

– Use of a large EAD_3 for External Authorization Data

› Use of Blockwise for the EDHOC+OSCORE request – Client side

– OSCORE protection of each inner block as usual

– If the protected block is not the first one (i.e., Block1.NUM ≠ 0)

› The client MUST NOT add the EDHOC option, but sends the protected request as is

›  Only the first inner block conveys EDHOC data

– If the protected block is the first one (i.e., Block1.NUM = 0) and …

› … (EDHOC message_3 | OSCORE ciphertext) > MAX_UNFRAGMENTED_SIZE … then

› … abort and possibly switch to the original vanilla EDHOC workflow

› No further inner blockwise can happen once the EDHOC+OSCORE request is assembled

Update since IETF 112

Comments/objections?

CoRE WG interim meeting | 2022-04-27 | Page 6

› Use of Blockwise for the EDHOC+OSCORE request – Server side

– If the EDHOC+OSCORE request has Block options, then outer blockwise is used

– First, the server collects all the outer blocks of the (first inner block of the) request

– Then, the server can process the EDHOC data and complete EDHOC as usual

› The new text on blockwise brought back an old question

– In case blockwise is used for the EDHOC+OSCORE request …

– … when does the optimized workflow stop being convenient to use?

Update since IETF 112

CoRE WG interim meeting | 2022-04-27 | Page 7

› Definitions

– A: size of application payload

– B: size of EDHOC message_3

– LIMIT: maximum amount of transmittable bytes before using blockwise, e.g.:

› UDP maximum datagram size, i.e., 64 KiB

› IPv6 MTU, i.e., 1280 bytes

– OVERHEAD: overall overhead from different layers (including OSCORE processing)

– LIMIT* = (LIMIT – OVERHEAD): practical limit for the application to consider

› Sending the EDHOC+OSCORE request is going to work fine if

– In case inner blockwise is not used, (A ≤ LIMIT*) && (B ≤ LIMIT*) && ((A + B) ≤ LIMIT*)

OR

– In case inner blockwise is used, (B ≤ LIMIT*) && ((BLOCK_SIZE + B) ≤ LIMIT*)

› Only the application payload can be split into blocks

Optimized workflow and blockwise

CoRE WG interim meeting | 2022-04-27 | Page 8

› Practical guidelines for using the EDHOC+OSCORE request

– If (B > LIMIT*), the EDHOC+OSCORE request cannot be used

– If (A > LIMIT*) || ((A + B) > LIMIT*), it is necessary to use inner blockwise

› BLOCK_SIZE has to be chosen such that ((BLOCK_SIZE + B) ≤ LIMIT*)

› Inner blockwise might be used even if not strictly due to exceeding LIMIT*

› If inner blockwise is used

– The round-trips to complete EDHOC and exchange OSCORE-protected data are

› Optimized workflow w/ blockwise  RT′ = 1 + ceil(A / BLOCK_SIZE)

› Original workflow w/ blockwise  RT′ ′ = 1 + ceil(A / BLOCK_SIZE) + ceil(B / BLOCK_SIZE)

– RT′ < RT′ ′  The optimized workflow is always more convenient

› Is it always overall worth it?

Optimized workflow and blockwise

CoRE WG interim meeting | 2022-04-27 | Page 9

› Practical guidelines for using the EDHOC+OSCORE request

– If (B > LIMIT*), the EDHOC+OSCORE request cannot be used

– If (A > LIMIT*) || ((A + B) > LIMIT*), it is necessary to use inner blockwise

› BLOCK_SIZE has to be chosen such that ((BLOCK_SIZE + B) ≤ LIMIT*)

› Inner blockwise might be used even if not strictly due to exceeding LIMIT*

› Corner case: (A ≤ LIMIT*) && ((A + B) > LIMIT*)

– Inner blockwise is necessary for the optimized workflow but not for the original workflow!

– The round-trips to complete EDHOC and exchange OSCORE-protected data are

› Optimized workflow with blockwise  RT′ = 1 + ceil(A / BLOCK_SIZE)

› Original workflow without blockwise  RT′ ′ = 3

– RT′ ≤ RT′ ′  The optimized workflow can be not worse in terms of RTT

› It depends on the used BLOCK_SIZE, ideally resulting in only 2 blocks, hence in 2 RTTs

› It still requires using the EDHOC+OSCORE request and inner blockwise …

Optimized workflow and blockwise

CoRE WG interim meeting | 2022-04-27 | Page 10

› Main takeaway

– When inner blockwise is used, the optimized workflow yields less RTTs

› Corner case: (A ≤ LIMIT*) && ((A + B) > LIMIT*)

– The optimized workflow requires inner blockwise but …

– … the original workflow does not require inner blockwise

– The optimized workflow can still be not worse, but it is overall less convenient

› No advantage in terms of round-trips anyway, thus …

› No reason for client and server to perform extra processing steps

› Proposal: in the corner case above, the client

– SHOULD NOT use the optimized workflow

– SHOULD revert to the original workflow

Optimized workflow and blockwise

Comments/objections?

CoRE WG interim meeting | 2022-04-27 | Page 11

› Text on using the optimized workflow or not when using blockwise

– The analytical model of the previous slides is a starting point

› Revise and simplify text related to OSCORE/EDHOC identifiers

– Due to expected changes for EDHOC identifiers (to be intrinsically byte strings only)

› More next steps

– Use of “URI compression" option from Christian once it is available

› https://datatracker.ietf.org/meeting/interim-2021-core-05/materials/slides-interim-2021-core-05-sessa-

core-option-for-well-known-resources-00.pdf

– Security considerations

› We have running code built for Eclipse Californium (Java)

– Aligned to EDHOC v -12; updates expected based on next EDHOC revision

› https://github.com/rikard-sics/californium/tree/edhoc

› Comments are reviews are welcome!

Next steps

https://datatracker.ietf.org/meeting/interim-2021-core-05/materials/slides-interim-2021-core-05-sessa-core-option-for-well-known-resources-00.pdf
https://github.com/rikard-sics/californium/tree/edhoc

Thank you!

Comments/questions?

https://github.com/core-wg/oscore-edhoc/

https://github.com/core-wg/oscore-edhoc/

CoRE WG interim meeting | 2022-04-27 | Page 13

EDHOC + OSCORE request

