Proxy Operations for
CoAP Group Communication

draft-tiloca-core-groupcomm-proxy-06

Marco Tiloca, RISE
Esko Dijk, loTconsultancy.nl

CoRE WG interim meeting, May 25t", 2022

Recap

» CoAP supports group communication, e.g., over IP multicast
— Section 3.5 of draft-ietf-core-groupcomm-bis discusses issues when using a proxy
— The proxy forwards a request to the group of servers, e.g., over |IP multicast
— Handling responses and relaying them back to the client is not trivial

» Contribution — Definition of proxy operations for CoOAP group communication
— Addressed all issues in draft-ietf-core-groupcomm-bis
— Signaling protocol between client and proxy, with two new CoAP options
— Individual responses from the CoAP servers relayed back to the client
— Support for forward-proxies, reverse-proxies, chain of proxies and HTTP-CoAP proxies

» Proxy is explicitly configured to support group communication
— Clients are allowed-listed on the proxy, and identified by the proxy

CoRE WG interim meeting | May 25th, 2022 Page 2

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis

Message forwarding

Unicast

» In the unicast request addressed to the proxy, ‘ Request
N/

the client indicates:
— To be interested / capable of handling multiple responses g Unicast
Responses

— For how long the proxy should collect and forward responses

— with the new CoAP option Multicast-Timeout, removed by the proxy Unicast
Response

> In each response to the group request, the proxy includes the server address

— In the new CoAP option Response-Forwarding
— The client can distinguish responses and different servers
— The client can later contact an individual server (directly, or again via the proxy)

> Group OSCORE can be used for end-to-end security between client and servers

» Security between Client and Proxy, especially to identify the Client
— (D)TLS or OSCORE (see draft-tiloca-core-oscore-capable-proxies)

Page 3

CoRE WG interim meeting | May 25th, 2022

https://datatracker.ietf.org/doc/html/draft-tiloca-core-oscore-capable-proxies

Updates since version -05 (1/3)

» Last presentation, of version -05, at the CoRE interim on 2021-10-27
» Version -06 submitted before IETF 113 (but not presented yet)

» "Multicast-Timeout™ Option
— Renamed from "Multicast-Signaling", as suggested by Carsten
— Max length of uint reduced to 4 bytes, as suggested by Christian

» "Response-Forwarding” Option
— Updated semantics on “srv_port” port number - null or absent (swapped)
— null - same port as destination port number of the group request
— absent — default port number for transport protocol used in the group request ~ 5683

CoRE WG interim meeting | May 25th, 2022 Page 4

Updates since version -05 (2/3)

> Improved processing on a reverse-proxy (Section 6.2)
— Proxy may rely on a default timeout for accepting responses
— Client may omit the "Multicast-Timeout" Option to use the default timeout

— Clients need to be aware of this configuration, which is expected if they are registered
and allow-listed at the proxy

> Placeholder notes on response revalidation
— Between proxy and servers, when Group OSCORE is used end-to-end
— Revalidation might be enabled through an outer ETag for the proxy, but ...

— ... cacheable OSCORE had to be used in the first place
https://datatracker.ietf.org/doc/draft-amsuess-core-cachable-oscore/

— Then use of outer ETag can be defined in draft-amsuess-core-cachable-oscore

CoRE WG interim meeting | May 25th, 2022 Page 5

https://datatracker.ietf.org/doc/draft-amsuess-core-cachable-oscore/

Updates since version -05 (3/3)

> Added one more example with a reverse proxy (Appendix A. 1)

S1 52

— Only 1 address required at the proxy, ratherthan | P
1 address per group ngngzﬁ?am;lg.com:PiPORT ZE%EESE;tOl:hz N
. /ecpfcoap://groupl.com/r
1 address per server in the group RISt cSFmeatE 0
— Request target expressed in URI-path (RFC8075) Dt: G_ADDR:G_PORT
— Scalable with number of groups and group size UL

» HTTP-CoAP proxies
— Added processing for HTTP-CoAP reverse-proxy (Section 9.10)

— Placeholder TODO notes on using streamed delivery of responses using the Transfer-
Coding "Chunked” (RFC 7230), as suggested by Christian (Section 9.9)

Yes, it's doable! To be turned into full text together with an example

» Clarifications and editorial improvements

CoRE WG interim meeting | May 25th, 2022 Page 6

https://datatracker.ietf.org/doc/html/rfc8075

Features at a glance (v -06)

» All the issues highlighted in Section 3.5 core-groupcomm-bis are addressed

» Signaling protocol for message forwarding through the proxy
— "Multicast-Timeout" Option included by the client in the request to the proxy
— "Response-Forwarding" Option included by the proxy in the relayed responses

» Caching of responses at the proxy
— Plus response validation between the proxy and the servers in the group
— Plus response validation between the client and the proxy, with a new CoAP Option "Group-ETag"®
— Note: core-groupcomm-bis defines caching at the client and validation between client and servers

» Support for both forward-proxies and reverse-proxies
— CoAP-CoAP proxies, with examples
— HTTP-CoAP proxies, with examples
— In a chain of proxies

CoRE WG interim meeting | May 25th, 2022 Page 7

Relation to other documents

» Case in point in draft-bormann-core-responses
— Multiple (non-traditional) responses to a same request, coming from members of a CoAP group
— Use of the "Multicast-Timeout" Option to provide the proxy with a time indication of interest

» Use case in draft-tiloca-core-oscore-capable-proxies
— In scenarios when:
OSCORE is used between client and proxy, also but not only for client authentication; and/or
Group OSCORE is used end-to-end between client and servers > OSCORE-in-OSCORE

> Referred concrete approach to address issues from draft-ietf-core-groupcomm-bis
— In draft-core-groupcomm-bis, issues when using proxies are highlighted but not addressed
— Agreed that concrete approaches are to be defined in separate documents
— From Carsten's WGLC review [1] of draft-core-groupcomm-bis:

“In several places, the document relies heavily on draft-tiloca-core-groupcomm-proxy supplying solutions for what it itself needs to leave
open. | believe we should at least have accepted that as a WG document before we pass on draft-ietf-core-groupcomm-bis to the IESG.”

[1] https://mailarchive.ietf.org/arch/msg/core/PtgtDE_3PWR-n-o_z9hOHxW2vDI/
CoRE WG interim meeting | May 25th, 2022 Page 8

https://mailarchive.ietf.org/arch/msg/core/PtqtDE_3PWR-n-o_z9h0HxW2vDI/

Summary

> Main latest additions
— Revised name and semantics of the new CoAP Options
— Reverse-proxies can rely on a default timeout for relaying responses
— New example with reverse-proxy needing only one address and using RFC 8075 style proxy request

> Planned next steps
Align with terminology and concepts from draft-bormann-core-responses
Use CRIs (draft-ietf-core-href) for server addressing information in the “Response-Forwarding” Option
“Cancellation”: Allow clients to stop the proxy relaying responses early, i.e., before timeout expiration
HTTP-CoAP proxies
Define and add examples on relaying responses as a stream, with Transfer-Encoding “Chunked”
Add security considerations revising those from RFC 8075, for the groupcomm case

» 'V -06 has all the main functionalities stable, and a clear relation with other documents

> Working Group Adoption ?

CoRE WG interim meeting | May 25th, 2022 Page 9

https://datatracker.ietf.org/doc/html/draft-ietf-core-href

Thank youl!

Comments/questions?

https://qitlab.com/crimson84/draft-tiloca-core-groupcomm-proxy

https://gitlab.com/crimson84/draft-tiloca-core-groupcomm-proxy

Backup

Example with forward-proxy (1/2)

Src: C_ADDR:C_PORT

Dst: P_ADDR:P_PORT
Proxi-URT {
coap://G_ADDR:G_PORT/r

)i
[Multicast-Timeout: 60 |

CoRE WG interim meeting | May 25th, 2022

Src: P_ADDR:P_PORT
Dst: G_ADDR:G_PORT
Uri-Path: /r

f*t=10:P starts
accepting responses
for this request */

51

52

Page 12

Example with forward-proxy (2/2)

CoRE WG interim meeting | May 25th, 2022

Src: P_ADDR:P_PORT

Dst: C_ADDR:C_PORT

RESpOnse-Forwarding 4
[1, /*CoAP over UDP*/
#6.260(bstr(S1_ADDR)),
null /* G_PORT */

Src: P_ADDR:P_PORT
Dst: C_ADDR:C_PORT
Response-Forwarding |
[1, /*CoAP over UDP*/
#6.260(bstr(S2_ADDR)),
52_PORT
J
!

/* At t =60, P
responses for this request */

51 52

src: S1_ADDR:G_PORT
Dst: P_ADDR:P_PORT

Src: 52_ADDR:S2_PORT
Dst: P_ADDR:P_PORT

stops accepting

Page 13

Example #1 with reverse-proxy (1/3)

----------------------------- =>| /* C embeds the
. : : group URL into its
C->P: CoAP over TCP Dst: p.example.com:P_PORT request to the
Uri-Path: proxy */
p.example.com resolves R T e R
to the address of P Src: P_ADDR:P_PORT
Dst: 6_ADDR:G_PORT
group1.com resolves to ke
the multicast address of W .
the group
/*t =0 : P starts
The proxv hides the accepting responses
P y for this request */

group as a whole and the
individual servers

CoRE WG interim meeting | May 25th, 2022 Page 14

Example

C->P: CoAP over TCP

p.example.com resolves
to the address of P

group1.com resolves to
the multicast address of
the group

The proxy hides the
group as a whole and the
individual servers

Dx_ADDR:Dx_PORT is
mapped to address and
port of server Sx

CoRE WG interim meeting | May 25th, 2022

Src: p.example.com:P_PORT
Dst: C_ADDR:C_PORT

Response-Forwarding |
[3, /*ColAP over TCP*/
#6.260(bstr(S1_ADDR)),
51 PORT

1

}

Src: p.example.com:P_PORT
Dst: C_ADDR:C_PORT

Response-Forwarding |
[3, /*ColP over TCP*/
#6.260(bstr{52_ADDR)),
52_PORT

1

}

/* At t = 60, P stops accepting

responses for this request */
1

Src: 51_ADDR:S1_PORT
Dst: P_ADDR:P_|

1 with reverse-proxy (2/3)

PORT

Src: 52_ADDR:52_PORT
Dst: P_ADDR:P_PORT

Example #1 with reverse-proxy (3/3)

————————————————————————————— =| /* Request intended
Src: C_ADDR:C_PORT only to 51, via

C—>P: CoAP over TCP Dst: p.example.com:P_PORT proxy P */
Uri-Path: /cp/coap://
S1_ADDR]:51_PORT}/r2
p.example.com resolves Src: pADDR:P_PORT

to the address of P Dst: SI_ADDR:S1_PORT
Uri-Path: /r2

B e R S S S

group1.com resolves to
the multicast address of

Src: S1_ADDR:S1_PORT
the group Dst: P_ADDR:P_PORT

The proxy hides the Src: P_ADDR:P_PORT
Dst: C_ADDR:C_PORT

group as a whole and the

individual servers

Dx_ADDR:Dx_PORT is
mapped to address and
port of server Sx

CoRE WG interim meeting | May 25th, 2022 Page 16

Example #2 with reverse-proxy (1/3)

----------------------------- =| /* C is not aware

. Src: C ADDR:C_PORT that P is in fact
C->P: CoAP over TCP |Dst: groupl.com:P_PORT | a reverse-proxy =/
Urr-Path: /r
group1.com resolves Src: groupL. con:P_PORT
51: =
to the address of P .00 Bad Request

Multicast-Timeout: (empty)
Payload: "Please use
Multicast-Timeout"

The proxy hides the

group as a whole and src: C_ADDR:C_PORT
. .. Dst: groupl.com:P_PORT
the individual servers Ulticast-Timeout:
Uri-Path: Jr

Src: P_ADDR:P_PORT
Dst: G_ADDR:G_PORT
Uri-Path: /r

T L

\

—————— >

/* t =10 : P starts
accepting responses
for this request */

CoRE WG interim meeting | May 25th, 2022 Page 17

Example #2 with reverse-proxy (2/3)

&

C->P: CoAP over TCP Src: S1_ADDR:S1_PORT

Dst: P_ADDR:P_PORT

e
group1 .com resolves Src: groupl.com:P_PORT

to the address of P Dst: C_ADDR:C_PORT

Respnnse—Forwarﬂlng {
[3, /*CoAP over TCP*/
#6.260(bstr (D1_ADDR)),

The proxy hides the it
group as a whole and }
the individual servers S
Src: S2_ADDR:52_PORT
Dst: P_ADDR:P_PORT
. RO D S S
Dx_ADDR:Dx_PORT Src: groupl.com:P_PORT
H Dst: C_ADDR:C_PORT
is mapped to address R?SPD?SE_FDWEM,“E {;
3, /"CoAP over TCP®
and port of server Sx R B
D2_PORT
]
}

/* At t = 60, P stops accepting
responses for }his request */

CoRE WG interim meeting | May 25th, 2022 Page 18

Example

C->P: CoAP over TCP

group1.com resolves
to the address of P

The proxy hides the
group as a whole and
the individual servers

Dx_ADDR:Dx PORT
is mapped to address
and port of server Sx

CoRE WG interim meeting | May 25th, 2022

Src: C_ADDR:C_PORT

[Dst: D1 _ADDR:DI_PORT]

Uri-Path: /r

Src: D1_ADDR:D1_PORT
Dst: C_ADDR:C_PORT

. /* time passes */

/* Request intended
only to 51 for same
resource /r */

Src: P_ADDR:P_PORT
Dst: S1_ADDR:S1_PORT
Uri-Path: /r

Src: S1_ADDR:51_PORT
Dst: P_ADDR:P_PORT

2 with reverse-proxy (3/3)

Page 19

Example with HTTP-CoAP proxy

POST https://pr0xy.url/hc/?target_uri=anp:77G_ADDR:G_PORT7|HTTP/1.1

Content-Length: <REQUEST_TOTAL_CONTENT_LENGTH>
Content-Type: text/plain
Multicast-Timeout:

—

HTTP/1.1 200 OK
Content-Length: <BATCH_RESPONSE_TOTAL_CONTENT_LENGTH>
Content-Type: multipart/mixed; boundary=batch_foo_bar

—-batch_foo_bar
Content-Type: application/http

HTTP/1.1 200 OK

Content-Type: text/plain

Content-Length: <INDIVIDUAL_RESPONSE_1_ CONTENT_LENGTH>
Response-Forwarding: coap://S1_ADDR:G_PORT

Body: Done!
——batch_foo_bar
Content-Type: application/http

HTTP/1.1 200 OK

Content-Type: text/plain

Content-Length: <INDIVIDUAL_ RESPONSE_2_ CONTENT_LENGTH>
Response-Forwarding: coap://S2_ADDR:S52_PORT

Body: Mcore than done!
——batch_foo_bar--

» C > P :HTTP unicast group request
— P converts it to a CoAP group request
— Forwarded to coap://G_ADDR:G_PORT

» P accepts responses for 60 s
» S1 > P : CoAP response
— Converted to HTTP and stored

»y S2 > P : CoAP response
— Converted to HTTP and stored

......... TIMEOUT!

CoRE WG interim meeting | May 25th, 2022

> P prepares one HTTP “batch” response

» Include the different individual
responses, one for each replying server

» P> C:HTTP “batch” response

» C extracts the individual HTTP
responses from the “batch” response

Page 20

	Proxy Operations for�CoAP Group Communication��draft-tiloca-core-groupcomm-proxy-06���Marco Tiloca, RISE�Esko Dijk, IoTconsultancy.nl���CoRE WG interim meeting, May 25th, 2022
	Recap
	Message forwarding
	Updates since version -05 (1/3)
	Updates since version -05 (2/3)
	Updates since version -05 (3/3)
	Features at a glance (v -06)
	Relation to other documents
	Summary
	Thank you!��Comments/questions?��� https://gitlab.com/crimson84/draft-tiloca-core-groupcomm-proxy�
	Backup
	Example with forward-proxy (1/2)
	Example with forward-proxy (2/2)
	Example #1 with reverse-proxy (1/3)
	Example #1 with reverse-proxy (2/3)
	Example #1 with reverse-proxy (3/3)
	Example #2 with reverse-proxy (1/3)
	Example #2 with reverse-proxy (2/3)
	Example #2 with reverse-proxy (3/3)
	Example with HTTP-CoAP proxy

