
A Parametrized Content Format

https://datatracker.ietf.org/doc/draft-fossati-core-parametrized-cf/

 CoRE Interim - 2022-07-06

1

https://datatracker.ietf.org/doc/draft-fossati-core-parametrized-cf/

CoAP Content-Format

CoAP squashes the combination of a media type, media type
parameters and content coding into a single Content-Format number

This number is carried in the Content-Format and Accept Options

Paraphrasing Uncle Ben from Spider-Man:
 "With great compression comes great inflexibility"

2

pəˈramɪtrʌɪzd /
 pəˈramɪt(ə)rʌɪzd
 Content-Format
 (PCF for short)

3

Concept (natural language)

Extend the familiar uint16_t Content-Format with a list of key-val
pairs representing the associated media type parameters

4

Concept (CDD language)

 parametrized-content-format = [
 content-format
 * [parameter-name, parameter-value]
]

 content-format = 0..65535

 parameter-name = textual / numeric
 parameter-value = any

Note: parameter-name has also a compact representation
(numeric), which requires a new registry
5

Relevant excerpts from RFC6838

"
 Parameter names are case-insensitive and no meaning is attached to
 the order in which they appear. It is an error for a specific
 parameter to be specified more than once.
 [...]

 There is no defined syntax for parameter values. Therefore,
 registrations MUST specify parameter value syntax. Additionally,
 some transports impose restrictions on parameter value syntax.
 [...]
"

6

Applications

Once we have defined it we can use it to create new parametrised
versions of the Accept and Content-Format options that carry
CBOR-encoded PCF instead of uint16_t

Keep the same semantics - e.g., 4.06 (Not Acceptable) and 4.15
(Unsupported Content-Format) would apply as well

Increased flexibility

7

pContent-Format

Number C U N R Name Format Length Default

TBD24 Parametriz
ed
Content-
Format
Option

See below none

bytes .cbor parametrized-content-format
8

 (multi-valued) pAccept1

Number C U N R Name Format Length Default

TBD13 X Parametrize
d Multi-
Valued
Accept
Option

See below none

bytes .cbor one-or-more<parametrized-content-format>
1 Carsten asks: "Should pAccept be .cborseq rather than .cbor?"

9

Moving to (multi-valued) pAccept

— We wanted to retain the same exact semantics as Accept
— therefore, the critical bit is up

— This implies the request will fail with 4.02 (maybe with a problem
detail sporting an "Unprocessed CoAP Option" key with value
TBD13) if pAccept is not implemented on server-side

— there is no way to soft-fail
— maybe it is OK

10

Prior art
RFC 9193

OCF's C-F Version

11

Comparison with SenML Data Value Content-Format

RFC 9193 defines:
 Content-Format-Spec: The string representation of a content format;
 either a Content-Format-String or the (decimal) string
 representation of a Content-Format number.

PCF is essentially a third type of Content-Format-Spec, roughly a
binary version of Content-Format-String

How PCF compares to Content-Format-String?

— pro: more compact
12

Comparison with OCF's C-F "version"

OCF have hit the lack of flexibility in content negotiation, but they
have worked around it in a different way:

— OCF endpoints exchange a single CBOR based content format
"application/vnd.ocf+cbor" which is explicitly versioned

— Instead of putting the version in the media type they keep the
media type fixed, using a couple of options to do version
negotiation

13

CoAP Option Numbers

Number Name Format Length (bytes)

2049 OCF-Accept-
Content-
Format-Version

uint 2

2053 OCF-Content-
Format-Version

uint 2

14

OCF encoding

The option value is a two-byte unsigned integer that is used to define
the major (MS 5-bits), minor (5-bits) and patch (6-bits) using the
simplest ("core") semantic versioning format

Example:

"1.1.0" => 00001 00001 000000 => 0x0840

15

Translating OCF into PCF

[
 10000, // application/vnd.ocf+cbor
 [0, 2112] // version=1.1.0
]

; 9-bytes wire image:

82 # array(2)
 19 2710 # unsigned(10000)
 82 # array(2)
 00 # unsigned(0)
 19 0840 # unsigned(2112)

— fits into one Option, instead of two (spare one byte)

— 4 bytes is the price you pay for generalising rather than optimising
for one use case

16

Questions

— Is there any interest for pursuing this feature?
— Is the proposal a good starting point?

17

