
Key Update for OSCORE (KUDOS)
draft-ietf-core-oscore-key-update-02

Rikard Höglund, RISE
Marco Tiloca, RISE

CoRE WG interim, September 28th, 2022

CoRE WG interim | 2022-09-28 | Page 2

› OSCORE (RFC8613) uses AEAD algorithms

– Need to follow limits in number of encryptions and failed decryptions, before rekeying

– Excessive use of the same key can enable breaking security properties of the AEAD algorithm*

› (1) Key Update for OSCORE (KUDOS) ==> Today's main focus

– Renew the Master Secret and Master Salt; derive new Sender/Recipient keys

– No change to the ID Context; can achieve Perfect Forward Secrecy

– Loosely inspired by Appendix B.2 of OSCORE

› (2) AEAD Key Usage Limits in OSCORE

– Defining appropriate limits for OSCORE, for a variety of algorithms

– Defining counters for key usage; message processing details; steps when limits are reached

Recap

*See also draft-irtf-cfrg-aead-limits

CoRE WG interim | 2022-09-28 | Page 3

› Key Update for OSCORE (KUDOS)

– Client and server exchange nonces N1 and N2

– UpdateCtx() function for deriving new OSCORE Security

Context using the nonces

– Extended OSCORE Option

Rekeying procedure
Client-initiated rekeying

'x' byte enriched with

additional signaling flags

CoRE WG interim | 2022-09-28 | Page 4

› Flag bits in the OSCORE Option

– First byte

– Bit 'd' in the new second byte

› Single method to update the key material

› No runtime "negotiation" of FS mode or no-FS mode

› Content about key usage limits

› Learning KUDOS support through EDHOC EAD items

› Where to define the update of OSCORE Sender/Recipient IDs

Open points for today

CoRE WG interim | 2022-09-28 | Page 5

› Bit 15, namely 'd', has been registered

– If set to 1, it is a KUDOS message

› Current situation: bits 0 and 1 are Reserved

– Current text: define bit 1 for signaling a second flag bytes (as intended by RFC 8613)

› Alternative approach discussed on the mailing list [1]

– Define bit 0 for signaling a second flag byte

– Change the status of bit 1 to "Unassigned"

– No real plan for bit 0 otherwise --- Only old thoughts on an uncompressed COSE Object

– Nice to have a consistent "extension pattern" through bits 0/8/16/24/...

› Ok with the alternative approach? If yes:

– Do Early Allocation of bit 0?

– Register bits 8/16/24/... already?

OSCORE flag bits

[1] https://mailarchive.ietf.org/arch/msg/core/x_Ix5a4PV-XcrvmLECtsC_CmoYs/

Possible to add to the already

present update to RFC 8613

https://mailarchive.ietf.org/arch/msg/core/x_Ix5a4PV-XcrvmLECtsC_CmoYs/

CoRE WG interim | 2022-09-28 | Page 6

› Current method: updateCtx() has two internal paths for key update

– One based on EDHOC-KeyUpdate() (Method 1)

› When EDHOC was used at first

– One based on a HKDF Extract and Expand (Method 2)

› When EDHOC was not used at first

– Method 1 implies that the EDHOC session is still valid

› Otherwise, need to dynamically fallback to Method 2

› From IETF 114: then why not only Method 2?

– No additional benefits from EDHOC-KeyUpdate

– Building X_N becomes simpler

› Proposed change: updateCtx() uses only Method 2

› Objections?

Single method for context update

CoRE WG interim | 2022-09-28 | Page 7

› Mode currently signaled through the 'p' bit in the 'x' byte of the OSCORE Option
– 'p' set to 0 ==> sender's wish to run KUDOS in FS mode (original mode)

– 'p' set to 1 ==> sender's wish to run KUDOS in no-FS mode

– If p = 0 in both KUDOS messages ==> use the FS mode

– If p = 1 in both KUDOS messages ==> use the no-FS mode

› If the initiator uses p = 0 and the responder uses p = 1

– Abort KUDOS; from now on, the initiator uses p = 1

– The initiator might not know the responder's capabilities from the start

› Is the above possible, and thus an agreed fallback necessary? (issue #54)

› Does an OSCORE Security Context also have information:

– On the other peer's support for KUDOS? (answer: "maybe")

– If yes, also on the other peer's support for the FS mode? (answer: "maybe")

– If no, should it? That pre-knowledge may not be possible

"Negotiation" of FS/no-FS mode

CoRE WG interim | 2022-09-28 | Page 8

› Defined method for updating the peers' OSCORE Sender/Recipient IDs

– Based on earlier discussions on the mailing list [1][2] and on [3]

– This procedure can be embedded in a KUDOS execution or run standalone

– This procedure can be initiated by a client or by a server

› Properties

– The sender indicates its new wished Recipient ID in the new Recipient-ID Option (class E)

– Both peers have to opt-in and agree in order for the IDs to be updated

– Changing IDs practically triggers derivation of new OSCORE Security Context

› From IETF 114: split out as a separate draft?

– This is strictly related to OSCORE, but ...

– ... not strictly related to KUDOS functionality

– Thus the KUDOS draft can focus on KUDOS!

Split out update of OSCORE IDs?

[1] https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZxOzRdIG9QI/

[2] https://mailarchive.ietf.org/arch/msg/core/ClwcSF0BUVxDas8BpgT0WY1yQrY/

[3] https://github.com/core-wg/oscore/issues/263#issue-946989659

https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZxOzRdIG9QI/
https://mailarchive.ietf.org/arch/msg/core/ClwcSF0BUVxDas8BpgT0WY1yQrY/
https://github.com/core-wg/oscore/issues/263#issue-946989659

CoRE WG interim | 2022-09-28 | Page 9

› We can register EDHOC an EAD item for signaling KUDOS support

– A peer learns if the other peer supports KUDOS (and which modes) during EDHOC execution

› Possible semantics:

– Value 1 -> "Tell me about what you support"

– Value 2 -> "I do not support KUDOS"

– Value 3 -> "I support KUDOS in both modes; tell me about you if you haven't already"

– Value 4 -> "I support KUDOS only in no-FS mode; tell me about you if you haven't already"

Signal KUDOS support in EDHOC

Should we do it? Comments?

CoRE WG interim | 2022-09-28 | Page 10

› Current structure of Section 2

– Section 2.1 - Overview of key usage limits; specific values to follow --- This builds on [1]

– Section 2.2 - Extensions of the OSCORE Security Context

› 'exp' in the Common Context; limits and counters in Sender/Recipient Context

– Section 2.3 - Extensions of the OSCORE message processing

› On incrementing the counters and when stopping using the current keys

› How to proceed?

Relocate content related to limits?

[1] https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-limits/

[2] https://datatracker.ietf.org/doc/minutes-interim-2021-core-04-202104281600/

1. Keep as is 2. Move content to an Appendix

› 2.1 ==> Appendix A

› Appendix A ==> Appendix A.1

3. Move content to a new draft

› The whole Section 2? Only part of it?

It was agreed to elaborate on limits and to

have all this content in this same document [2]

https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-limits/
https://datatracker.ietf.org/doc/minutes-interim-2021-core-04-202104281600/

Thank you!

Comments/questions?

https://github.com/core-wg/oscore-key-update

https://github.com/core-wg/oscore-key-update

