Key Update for OSCORE (KUDOS)

draft-ietf-core-oscore-key-update-02

Rikard Hoglund, RISE
Marco Tiloca, RISE

CoRE WG interim, September 28", 2022

Recap

» OSCORE (RFC8613) uses AEAD algorithms
— Need to follow limits in number of encryptions and failed decryptions, before rekeying
— Excessive use of the same key can enable breaking security properties of the AEAD algorithm*

» (1) Key Update for OSCORE (KUDOS) ==> Today's main focus
— Renew the Master Secret and Master Salt; derive new Sender/Recipient keys
— No change to the ID Context; can achieve Perfect Forward Secrecy
— Loosely inspired by Appendix B.2 of OSCORE

» (2) AEAD Key Usage Limits in OSCORE
— Defining appropriate limits for OSCORE, for a variety of algorithms
— Defining counters for key usage; message processing details; steps when limits are reached

*See also draft-irtf-cfrg-aead-limits
CoRE WG interim | 2022-09-28 | Page 2

Client-initiated rekeying

Client Server
L] (initiator) (responder)
Rekeying procedure -« ™
CTX 1 = I
updateCtx (X1, N1, |
CTX_OLD) |
I Request #1
Protect with CTX 1 |=mmmmmm - >
» Key Update for OSCORE (KUDOS) OSCORE Option: | CTX1 =
. updateCtx (X1, N1,
— Client and server exchange nonces N1 and N2 d fleg: 1 CTX_0LD)
Nonce: M1 Verify with CTX_1

— UpdateCtx() function for deriving new OSCORE Security
Context using the nonces

Generate N2

|
|
|
|
|
|
|
|
|
|
|
X1 |
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
. CTX_NEW =
— Extended OSCORE Option | updateCtx(Conb(X1,X2),

| Comb (N1,N2),
| CTX_OLD)
|
| Response #1

a|11234567 8 9 18 11 12 13 14 [1§[<----- n bytes -----» Jgmmmm | Protect with CTX_NEW

L + CTX_NEW = | OSCORE Option: |

la|lalhlk] n Ja |8 |@|&e|a|a]|e]|l[d||rartial Iv (if any) | updateCtx(Comb(X1,X2), | ... I

R 5 OSSP PUESPORS S S S Sy Suuyuy ey Supuyi i [1 R + Comb(N1,12), | |

— CTX_oLp) | d flag: 1 |
| |
Verify with CTX_MEW Nonce: M2

- 1 byte -» €----- s bytes ------» «- 1 byte -» <--- m + 1 bytes ---» [|

P femmmmmmmmmmmeesmm——- Froosisosooooooiioioooooooos 7 Discard CTX_OLD | |

| = (if any) | kid context (if any) (| x (if any)} | nomce (if any) | |

el Lindetele el - -o-m oo foooceoo e oo ki // The actual key update process ends here.

! 1) | /{ The two peers can use the new Security Context CTX_NEW.
!
J o B1234567 | I . e v
e . . eques
'i";;il;'ir;""i """ + I 'i';i'é'i'l;'i"i""'_*“‘"'i' I X byte enriched with Protect with CTX_NEW [=mmmmmmm - >
if any) ... [m o - -
e | botttodotttt | additional signaling flags

|
|
|
| verify with CTX_NEW
|
| Discard CTX OLD

|

|

{mmmmm e | Protect with CTX_MEW

CoRE WG interim | 2022-09-28 | Page 3 |

Verify with CTX_MEW

Open points for today

» Flag bits in the OSCORE Option
— First byte
— Bit 'd' in the new second byte

v

Single method to update the key material

v

No runtime "negotiation" of FS mode or no-FS mode

v

Content about key usage limits

v

Learning KUDOS support through EDHOC EAD items

» Where to define the update of OSCORE Sender/Recipient IDs

CoRE WG interim | 2022-09-28 | Page 4

1234567 8 9 1 11 12 13 14 |15|<----- n bytes ----- >
T S R R e PP P PP P St
Q

OSCORE flag bits SR T

F—
1

<- 1 byte -> <----- s bytes ------ > <- 1 byte -> <---m + 1 bytes --->
» Bit 15, namely 'd’, has been registered | 3 GF any) | Jad context Gf any) | x (4F am) | nonee GF) |
— If setto 1, it is a KUDOS message / —
/ 81234567 |
. . . +-|-<?|_:,|"?-F ---------- + | +;é+[;+-+-+-+-+-+ |
» Current situation: bits 0 and 1 are Reserved ~ ||.X¢.%7 = - | | lelolelel m

— Current text: define bit 1 for signaling a second flag bytes (as intended by RFC 8613)

» Alternative approach discussed on the mailing list [1]

— Define bit O for signaling a second flag byte
— Change the status of bit 1 to "Unassigned" Possible to add to the already
— No real plan for bit 0 otherwise --- Only old thpughfSS&S8AHRATRDHASTESKH T OSE Object

— Nice to have a consistent "extension pattern” through bits 0/8/16/24/...

» Ok with the alternative approach? If yes:
— Do Early Allocation of bit 0?

— Register bits 8/16/24/... already?
[1] https://mailarchive.ietf.org/arch/msg/core/x_Ix5a4PV-XcrvmLECtsC_CmoYs/

CoRE WG interim | 2022-09-28 | Page 5

https://mailarchive.ietf.org/arch/msg/core/x_Ix5a4PV-XcrvmLECtsC_CmoYs/

Single method for context update

» Current method: updateCtx() has two internal paths for key update

— One based on EDHOC-KeyUpdate() (Method 1)
When EDHOC was used at first

— One based on a HKDF Extract and Expand (Method 2)
When EDHOC was not used at first

— Method 1 implies that the EDHOC session is still valid
Otherwise, need to dynamically fallback to Method 2

> From IETF 114: then why not only Method 2?
— No additional benefits from EDHOC-KeyUpdate
— Building X_N becomes simpler

» Proposed change: updateCtx() uses only Method 2

» Objections?

CoRE WG interim | 2022-09-28 | Page 6

if <the original Security Context was established through EDHOC> {

// METHOD 1

// Update the EDHOC key PRK_out, and use the

// new one to update the EDHOC key PRK_exporter

(new PRK_out, new PRK_exporter) = EDHOC-KeyUpdate(X_N)

MSECRET_NEW = EDHOC-Exporter(®, h'', oscore_key_length)
= EDHOC-KDF (new PRK_exporter, 0, h'', oscore_key length)

oscore_salt_length = < Size of CTX_IN.MasterSalt in bytes >

MSALT_NEW = EDHOC-Exporter(1l, h'', oscore_salt_length)
= EDHOC-KDF (new PRK_exporter, 1, h'', oscore_salt_length)

}
else {

// METHOD 2
Label = "key update"
MSECRET_NEW = HKDF-Expand-Label(CTX_IN.MasterSecret, Label,
X_N, oscore_key_length)
= HKDF-Expand(CTX_IN.MasterSecret, HkdfLabel,
oscore_key_length)

MSALT NEW = N;

"Negotiation" of FS/no-FS mode

> Mode currently signaled through the 'p' bit in the X' byte of the OSCORE Option

— 'p' set to 0 ==> sender's wish to run KUDOS in FS mode (original mode)

— 'p' setto 1 ==> sender's wish to run KUDOS in no-FS mode el R N R A e
. |9|1\0|h|k| n |9|9|e|a|a|a|e|d | PartlalIV(lfany) \
— If p = 0in both KUDOS messages ==> use the FS mode P
— If p=1in both KUDOS messages ==> use the no-FS mode < byte > <o sbytes ooy ¢ Lbyte 5 o m v bytes -
| = (if any) | kid context (if any) | x (if any) | nonce (if any) |
e / n
» If the initiator uses p = 0 and the responder uses p =1 A !
/ e123las67 |
— Abort KUDOS; from now on, the initiator uses p = 1 | dd (5 oy 1o | i oloioo| v I i

— The initiator might not know the responder's capabilities from the start

» Is the above possible, and thus an agreed fallback necessary? (issue #54)

» Does an OSCORE Security Context also have information:
— On the other peer's support for KUDOS? (answer: "maybe")

— If yes, also on the other peer's support for the FS mode? (answer: "maybe")
— If no, should it? That pre-knowledge may not be possible

CoRE WG interim | 2022-09-28 | Page 7

Split out update of OSCORE IDs?

» Defined method for updating the peers' OSCORE Sender/Recipient IDs
— Based on earlier discussions on the mailing list [1][2] and on [3]
— This procedure can be embedded in a KUDOS execution or run standalone
— This procedure can be initiated by a client or by a server

» Properties
— The sender indicates its new wished Recipient ID in the new Recipient-ID Option (class E)
— Both peers have to opt-in and agree in order for the IDs to be updated
— Changing IDs practically triggers derivation of new OSCORE Security Context

_ TNe. TelUINIRI Name | Format | Length | Default |

» From IETF 114: split out as a separate draft? N [N R [’
— This is strictly related to OSCORE, but ... TR || ReciplentID | opaque |07 (none) |

— ... not strictly related to KUDOS functionality |7 (i iitical, Usinsafe, NeNoCachekey, RoRepeatable i

— Thus the KUDOS draft can focus on KUDOS!
[1] https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZx0zRdIG9QI/
[2] https://mailarchive.ietf.org/arch/msg/core/ClwcSFOBUVXxDas8BpgTOWY1yQrY/
CoRE WG interim | 2022-09-28 | Page 8 [3] https://github.com/core-wg/oscore/issues/263#issue-946989659

https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZxOzRdIG9QI/
https://mailarchive.ietf.org/arch/msg/core/ClwcSF0BUVxDas8BpgT0WY1yQrY/
https://github.com/core-wg/oscore/issues/263#issue-946989659

Signal KUDQOS support in EDHOC

> We can register EDHOC an EAD item for signaling KUDOS support
— A peer learns if the other peer supports KUDOS (and which modes) during EDHOC execution

» Possible semantics:
— Value 1 -> "Tell me about what you support”
— Value 2 -> "I do not support KUDOS"
— Value 3 -> "l support KUDOS in both modes; tell me about you if you haven't already"
— Value 4 ->"| support KUDOS only in no-FS mode; tell me about you if you haven't already"

Should we do it? Comments?

CoRE WG interim | 2022-09-28 | Page 9

Relocate content related to limits?

» Current structure of Section 2
— Section 2.1 - Overview of key usage limits; specific values to follow --- This builds on [1]
— Section 2.2 - Extensions of the OSCORE Security Context
‘exp’ in the Common Context; limits and counters in Sender/Recipient Context
— Section 2.3 - Extensions of the OSCORE message processing
On incrementing the counters and when stopping using the current keys

> How to proceed?

1. Keep as is 2. Move content to an Appendix 3. Move content to a new draft
y 2.1 ==>Appendix A > The whole Section 2? Only part of it?
> Appendix A ==> Appendix A.1

It was agreed to elaborate on limits and to
have all this content in this same document [2]

[1] https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-limits/
CoRE WG interim | 2022-09-28 | Page 10 [2] https://datatracker.ietf.org/doc/minutes-interim-2021-core-04-202104281600/

https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-limits/
https://datatracker.ietf.org/doc/minutes-interim-2021-core-04-202104281600/

Thank you!

Comments/questions?

https://github.com/core-wg/oscore-key-update

https://github.com/core-wg/oscore-key-update

