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Recap

» OSCORE (RFC8613) uses AEAD algorithms
— Need to follow limits in number of encryptions and failed decryptions, before rekeying
— Excessive use of the same key can enable breaking security properties of the AEAD algorithm*

» (1) Key Update for OSCORE (KUDOS) ==> Today's main focus
— Renew the Master Secret and Master Salt; derive new Sender/Recipient keys
— No change to the ID Context; can achieve Perfect Forward Secrecy
— Loosely inspired by Appendix B.2 of OSCORE

» (2) AEAD Key Usage Limits in OSCORE
— Defining appropriate limits for OSCORE, for a variety of algorithms
— Defining counters for key usage; message processing details; steps when limits are reached

*See also draft-irtf-cfrg-aead-limits
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Client-initiated rekeying
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Verify with CTX_MEW



Open points for today

» Flag bits in the OSCORE Option
— First byte
— Bit 'd' in the new second byte

v

Single method to update the key material

v

No runtime "negotiation" of FS mode or no-FS mode

v

Content about key usage limits

v

Learning KUDOS support through EDHOC EAD items

» Where to define the update of OSCORE Sender/Recipient IDs
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— Current text: define bit 1 for signaling a second flag bytes (as intended by RFC 8613)

» Alternative approach discussed on the mailing list [1]

— Define bit O for signaling a second flag byte
— Change the status of bit 1 to "Unassigned" Possible to add to the already
— No real plan for bit 0 otherwise --- Only old thpughfSS&S8AHRATRDHASTESKH T OSE Object

— Nice to have a consistent "extension pattern” through bits 0/8/16/24/...

» Ok with the alternative approach? If yes:
— Do Early Allocation of bit 0?

— Register bits 8/16/24/... already?
[1] https://mailarchive.ietf.org/arch/msg/core/x_Ix5a4PV-XcrvmLECtsC_CmoYs/
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Single method for context update

» Current method: updateCtx() has two internal paths for key update

— One based on EDHOC-KeyUpdate() (Method 1)
When EDHOC was used at first

— One based on a HKDF Extract and Expand (Method 2)
When EDHOC was not used at first

— Method 1 implies that the EDHOC session is still valid
Otherwise, need to dynamically fallback to Method 2

> From IETF 114: then why not only Method 2?
— No additional benefits from EDHOC-KeyUpdate
— Building X_N becomes simpler

» Proposed change: updateCtx() uses only Method 2

» Objections?
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if <the original Security Context was established through EDHOC> {

// METHOD 1

// Update the EDHOC key PRK_out, and use the

// new one to update the EDHOC key PRK_exporter

(new PRK_out, new PRK_exporter) = EDHOC-KeyUpdate(X_N)

MSECRET_NEW = EDHOC-Exporter(®, h'', oscore_key_length)
= EDHOC-KDF (new PRK_exporter, 0, h'', oscore_key length)

oscore_salt_length = < Size of CTX_IN.MasterSalt in bytes >

MSALT_NEW = EDHOC-Exporter(1l, h'', oscore_salt_length)
= EDHOC-KDF (new PRK_exporter, 1, h'', oscore_salt_length)

}
else {

// METHOD 2
Label = "key update"
MSECRET_NEW = HKDF-Expand-Label(CTX_IN.MasterSecret, Label,
X_N, oscore_key_length)
= HKDF-Expand(CTX_IN.MasterSecret, HkdfLabel,
oscore_key_length)

MSALT NEW = N;




"Negotiation" of FS/no-FS mode

> Mode currently signaled through the 'p' bit in the X' byte of the OSCORE Option

— 'p' set to 0 ==> sender's wish to run KUDOS in FS mode (original mode)

— 'p' setto 1 ==> sender's wish to run KUDOS in no-FS mode el R N R A e
. |9|1\0|h|k| n |9|9|e|a|a|a|e|d | PartlalIV(lfany) \
— If p = 0in both KUDOS messages ==> use the FS mode P
— If p=1in both KUDOS messages ==> use the no-FS mode < byte > <o sbytes ooy ¢ Lbyte 5 o m v bytes -
| = (if any) | kid context (if any) | x (if any) | nonce (if any) |
e / n
» If the initiator uses p = 0 and the responder uses p =1 A !
/ e123las67 |
— Abort KUDOS; from now on, the initiator uses p = 1 | dd (5 oy 1o | i oloioo| v I i

— The initiator might not know the responder's capabilities from the start

» Is the above possible, and thus an agreed fallback necessary? (issue #54)

» Does an OSCORE Security Context also have information:
— On the other peer's support for KUDOS? (answer: "maybe")

— If yes, also on the other peer's support for the FS mode? (answer: "maybe")
— If no, should it? That pre-knowledge may not be possible
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Split out update of OSCORE IDs?

» Defined method for updating the peers' OSCORE Sender/Recipient IDs
— Based on earlier discussions on the mailing list [1][2] and on [3]
— This procedure can be embedded in a KUDOS execution or run standalone
— This procedure can be initiated by a client or by a server

» Properties
— The sender indicates its new wished Recipient ID in the new Recipient-ID Option (class E)
— Both peers have to opt-in and agree in order for the IDs to be updated
— Changing IDs practically triggers derivation of new OSCORE Security Context

_ TNe. TelUINIRI Name | Format | Length | Default |

» From IETF 114: split out as a separate draft? N [ N R [ ’
— This is strictly related to OSCORE, but ... TR || ReciplentID | opaque |07 (none) |

— ... not strictly related to KUDOS functionality |7 (i iitical, Usinsafe, NeNoCachekey, RoRepeatable i

— Thus the KUDOS draft can focus on KUDOS!
[1] https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZx0zRdIG9QI/
[2] https://mailarchive.ietf.org/arch/msg/core/ClwcSFOBUVXxDas8BpgTOWY1yQrY/
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Signal KUDQOS support in EDHOC

> We can register EDHOC an EAD item for signaling KUDOS support
— A peer learns if the other peer supports KUDOS (and which modes) during EDHOC execution

» Possible semantics:
— Value 1 -> "Tell me about what you support”
— Value 2 -> "I do not support KUDOS"
— Value 3 -> "l support KUDOS in both modes; tell me about you if you haven't already"
— Value 4 ->"| support KUDOS only in no-FS mode; tell me about you if you haven't already"

Should we do it? Comments?
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Relocate content related to limits?

» Current structure of Section 2
— Section 2.1 - Overview of key usage limits; specific values to follow --- This builds on [1]
— Section 2.2 - Extensions of the OSCORE Security Context
‘exp’ in the Common Context; limits and counters in Sender/Recipient Context
— Section 2.3 - Extensions of the OSCORE message processing
On incrementing the counters and when stopping using the current keys

> How to proceed?

1. Keep as is 2. Move content to an Appendix 3. Move content to a new draft
y 2.1 ==>Appendix A > The whole Section 2? Only part of it?
> Appendix A ==> Appendix A.1

It was agreed to elaborate on limits and to
have all this content in this same document [2]

[1] https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-limits/
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Thank you!

Comments/questions?

https://github.com/core-wg/oscore-key-update
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