DetNet Enhanced Data Plane

draft-yzz-detnet-enhanced-data-plane-01

Fan Yang, Tianran Zhou, Li Zhang @Huawei
Goals and Requirements of DetNet Bounded Latency

1. **DetNet Goal “Minimum and maximum end-to-end latency” in RFC8655**
   - DetNet-specific metadata *Flow-ID* is used to identify the DetNet flow
   - However, no DetNet-specific metadata is defined to guarantee the end-to-end latency

2. **Requirements of DetNet data plane in draft-liu-detnet-large-scale-requirements**
   - Explicit inclusion of the metadata used for traffic treatment, especially for bounded latency and jitter
   - Compatibility to different options of queuing, shaping, policing or any other underlying network technologies
   - Minimize the end-to-end delay difference of multiple forwarding paths that are used for packet replication and elimination
   - DetNet data plane processing of DetNet flow coexists with the non-DetNet flows
Existing Proposals of DetNet Bounded Latency

Various mechanisms:

• Time Aware Shaper
• Credit-Based Shaper
• Guaranteed-Service IntServ
• Cyclic Queuing and Forwarding
• Longest in System (LIS)/Earliest Deadline First (EDF)
• Deadline Based Deterministic Forwarding
• ... ...

in different I-Ds

- `draft-eckert-detnet-tcqf-00`
- `draft-ietf-detnet-bounded-latency`
- `draft-stein-srtsn`
- `draft-eckert-detnet-mpls-tc-tcqf`
- `draft-dang-queuing-with-multiple-cyclic-buffers`
- `draft-yizhou-detnet-ipv6-options-for-cqf-variant`
A New DetNet-Specific Metadata - BLI

- **Bounded Latency Information (BLI)** is used to facilitate DetNet transit nodes to guarantee the bounded latency transmission in data plane.
- BLI is transmitted across multiple DetNet transit nodes and used by the DetNet forwarding sub-layer.
- The format and encapsulations of BLI are proposed in this I-D.
Design Rationale

1. In order to provide bounded latency, the metadata information carried in data plane should facilitate DetNet flow to map the forwarding and scheduling resources, not focus on the local mechanisms.

2. Good to have a uniform format to accommodate various scheduling mechanisms.

3. BLI is classified into two categories:
   - Requirement: summarize the requirements from DetNet services and map to the resources.
   - Resource: indicate the resources directly.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget of Delay</td>
<td>End-to-end delay budget</td>
</tr>
<tr>
<td></td>
<td>Local delay budget</td>
</tr>
<tr>
<td>Deadline</td>
<td>End-to-end deadline</td>
</tr>
<tr>
<td></td>
<td>Local deadline</td>
</tr>
<tr>
<td>Budget of Delay Variation</td>
<td>End-to-end delay variation budget</td>
</tr>
<tr>
<td></td>
<td>Local delay variation budget</td>
</tr>
<tr>
<td>Priority</td>
<td>SVC/App specific priorities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource ID</td>
<td>Cycle ID</td>
</tr>
<tr>
<td></td>
<td>Queue ID</td>
</tr>
<tr>
<td></td>
<td>Time Slot ID</td>
</tr>
</tbody>
</table>
BLI Data Field

Data Field of Bounded Latency Information

<table>
<thead>
<tr>
<th>BLI Type Value</th>
<th>Bounded Latency Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Time resource ID</td>
</tr>
<tr>
<td>2</td>
<td>Priority</td>
</tr>
<tr>
<td>3</td>
<td>End-to-end delay budget</td>
</tr>
<tr>
<td>4</td>
<td>Local delay budget</td>
</tr>
<tr>
<td>5</td>
<td>End-to-end deadline</td>
</tr>
<tr>
<td>7</td>
<td>End-to-end delay variation budget</td>
</tr>
<tr>
<td>8</td>
<td>Local delay variation budget</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format Value</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32-bit unsigned Integer</td>
</tr>
<tr>
<td>2</td>
<td>16-bit unsigned Integer</td>
</tr>
<tr>
<td>3</td>
<td>8-bit unsigned Integer</td>
</tr>
<tr>
<td>4</td>
<td>PTP 80-bit Timestamp</td>
</tr>
<tr>
<td>5</td>
<td>PTP 64-bit Timestamp</td>
</tr>
<tr>
<td>6</td>
<td>NTP 64-bit Timestamp</td>
</tr>
<tr>
<td>7</td>
<td>NTP 32-bit Timestamp</td>
</tr>
</tbody>
</table>

where:

- **BLI Type**: 8-bit identifier to represent the type of bounded latency information
- **Format**: 8-bit value to indicate the format of bounded latency information
- **Flags**: 8 bits of flags
Encapsulation of DetNet IP Data Plane

• For IPv6 based DetNet DP, a new IPv6 Extension Header Option called **BLI Option** is defined.
• BLI data field is encapsulated in either IPv6 HbH or IPv6 DOH depending on the processing happens at each hop or at the last hop.
• More than one bounded latency information can appear in one BLI Option.

![Encapsulation of BLI Option in IPv6 HbH or DOH](image)
Encapsulation of DetNet MPLS Data Plane

- For MPLS based DetNet data plane, a new MPLS Extension Header called **BLIEH** is defined.
- BLIEH is processed either HbH or E2E depending on the processing required at each hop or at the last hop.
- More than one bounded latency information can appear in one BLIEH.

![MPLS Encapsulation of BLIEH](image)

Bounded Latency Information Extension Header (BLIEH)
Encapsulation of DetNet MPLS over UDP/IP Data Plane

- The BLI encapsulation in MPLS over UDP/IP based DetNet data plane leverages the encapsulations of MPLS BLIEH, but without any MPLS forwarding labels.
Examples of different kinds of BLI

- The following examples are provided to give instructions on how Bounded Latency Information is used when node implements different algorithms.

### BLI Used With Cycle Based Algorithms

- **BLI Type**: (1)
- **Format**: (1)
- **Flag**: (0)
- **Reserved**: (0)
- **Cycle ID**

### BLI Used With Time Slot Based Algorithms

- **BLI Type**: (1)
- **Format**: (1)
- **Flag**: (0)
- **Reserved**: (0)
- **Time Slot ID**

### BLI Used With Delay Budget Based Algorithms

- **BLI Type**: (3/4)
- **Format**: (1)
- **Flag**: (0)
- **Reserved**: (0)
- **E2E/Local Delay Budget**

### BLI Used With Delay Variation Budget Based Algorithms

- **BLI Type**: (7/8)
- **Format**: (2)
- **Flag**: (0)
- **Reserved**: (0)
- **E2E/Local Delay Variation Budget**

### BLI Used With Deadline Based Algorithms

- **BLI Type**: (5/6)
- **Format**: (5)
- **Flag**: (0)
- **Reserved**: (0)
- **E2E/Local Deadline**

### BLI Used With Priority Based Algorithms

- **BLI Type**: (2)
- **Format**: (3)
- **Flag**: (0)
- **Reserved**: (0)
- **Priority ID**

DetNet Interim - December 2022
Comments from IETF 115

• Lou: At the last meeting Dhruv requested to have separate requirements and solutions documents, so that they could use the requirements in other working groups document.

  ➢ We have separated the requirements and solutions and present them on this meeting.

• Quan Xiong: how to distinguish two queuing mechanisms belong to the same type for example EDF and deadline operation which is proposed in separator drafts and how to use the time resource ID.

  ➢ The queuing mechanism corresponds to the BLI depends on which mechanism the node is used. For example, the time resource ID can represent a cycle ID when cyclic queuing mechanism is used on DetNet node.
Next Steps

• Other format suggestions? e.g. different format for each scheduling mechanism or uniform format for all scheduling mechanisms
• Collaboration is welcome!

As always, comments and suggestions are greatly welcome!
Thank you for listening!