Selecting data representation formats for reduced energy

Does encoding matter?

Why optimize if the difference is small?

Data impacts on encoding size

- Text data encodes into text formats well.
 - Non-text encodes poorly
 - Hex escape sequences produce 4x inflation of escaped octets
- Binary data encodes into text formats poorly:
 - Base64 = 33% data inflation
- Integers encode poorly into text
 - Typically 50% data inflation
- Floating point encodes poorly into text
 - Trivial examples are smaller than binary (e.g. 1.1)
 - Real examples are larger than binary (e.g. -1.01)
- Structures encode poorly into text
 - Separators, beginning and end markers are needed
 - Data inflation typically 2 + N 1 for N elements (e.g. JSON)

Туре	JSON Size	CBOR Size
string	strlen+2 + escaping	strlen + UINT(strlen)
octets (hex)	bytesize * 2	bytesize + UINT(bytesize)
octets (b64)	bytesize * 4/3	bytesize + UINT(bytesize)
int8	1 to 3	1 or 2
int16	1 to 5	3
int32	1 to 10	5
int64	1 to 19	9
float32	3 to 16	5
float64	3 to 23	9
Date	12	2 + UINT(days since 1970)

Practical differences in encoding data SiZe Size comparison of JSON vs CBOR in SenML Examples

- Data from SenML examples
- Encoded as both JSON and CBOR
- CBOR size reduction in all cases
 - Often 33% or better

Encoding impact on energy

Why optimize if energy impact is small?

Energy impact of data size by encoding

Energy comparison of JSON vs CBOR in SenML Examples

- LoRa overhead reduces impact
 - Sensitive to packet count
 - Quantized to 127 bytes
 - Per-packet overhead
 - Favors reduction across packet count
- Energy reduction in all cases
 - Often 30% or better

Impact of energy reduction in constrained networks

- Smaller batteries
- Longer life
- Smaller need for energy harvesting
- Reduced e-waste (for primary cell)
- Lower cost

Encoding Choices in IETF

JSON & CBOR account for most hierarchical data formats

Common myths of text formats

Why people still think they like text formats

- "It's easier to debug JSON"
 - Many tools for CBOR → CBOR Debug
- "I don't need to install a tool to look at JSON"
 - CBOR decoding can be done in a web browser

Unpleasant truth:

- These are tooling problems, not encoding problems.
- The vast majority of traffic is never debugged.
- Plan for primary use case: machine interpretation

Benefits of binary encodings

- Simple to parse
 - Low embodied energy
 - Low code
 - Low memory
 - Low active energy
 - Low compute overhead
- Lower data use
 - Lower transmit & receive energy
- Lower interpretation complexity
 - Simpler security posture

- Less per-character work
 - Escaping, delimiting
- Less redundant conversion work
 - Decimal conversion
 - Base64 encoding
- More deterministic
 - Whitespace
 - Escape choices

Recommendations

Suggestions to the IAB

Consider content and intended use for data representation formats,
e.g.:

Configuration documents	Text formats are appropriate
Primarily text content	Text formats are appropriate
Primarily non-text content	Binary formats should be preferred

Not a game changer for e-impact, but a small contribution

Backup

Model use case assumptions

- Model use case: LoRa Class A node
- Justification:
 - Common LPWAN
 - Simple software stack
 - easy deployment
- Leaf Transceiver: SX1262
- Concentrator: SX1250 + SX1302
- LoRa packets are <=127 bytes
- Expect device energy to be dominated by radio energy
- See paper for network parameters