A Secure Selection and Filtering Mechanism for the Network Time Protocol

draft-ietf-ntp-chronos-04

Neta Rozen-Schiff, Danny Dolev, Tal Mizrahi, Michael Schapira
The Chronos Watchdog

The Chronos Watchdog is a security layer that wraps NTPv4’s (or NTPv5’s) time-computation logic.

Chronos protects the NTP client against time-shifting attacks while preserving the time accuracy and precision of the default scheme.
Reminder: Threat Model

The attacker:

• Controls a large fraction of the NTP servers in the pool (say, $\frac{1}{4}$)

• Capable of both deciding the content of NTP responses and timing when responses arrive at the client

• Malicious
The Chronos Watchdog: Design Goals

The **Chronos NTP client** is designed to achieve the following:

- **Time accuracy and precision**
 - match the accuracy and precision of NTPv4 when *not* under attack

- **Provable security** in the face of fairly powerful MitM attacks
 - negligible probability for successful timeshifting attacks

- **Backwards-compatibility**
 - no changes to NTP servers
 - limited software changes to client

- **Low computational and communication overhead**
 - query few NTP servers
The Chronos Watchdog Architecture

- Two concurrent modes:
 - Primary mode: NTPv4
 - (Secure) watchdog mode: Chronos

- Key idea:
 Match NTPv4’s accuracy and precision by using NTPv4 to update the local clock when the client is not under attack. Significantly enhance security by using Chronos to update the local clock when under attack.
The Chronos Watchdog Architecture – cont.

- Two different time scales to keep computation/communication overhead low:
 - NTPv4 updates at the same time granularity as today
 - Less frequent Chronos time computations (e.g., once per 10 NTPv4 updates)
- Following each Chronos time computation, Chronos’ and NTPv4’s offsets are compared.

If the difference between NTPv4’s and Chronos’ offsets exceeds a threshold, an attack is detected, and Chronos’ offset is used to update the client's clock. Otherwise, NTPv4's offset is used.
Chronos’ design combines several ingredients:

- **Rely on many NTP servers**
 - Generate a large server pool (hundreds) per client
 - E.g., by repeatedly resolving NTP pool hostnames and storing returned IPs
 - Sets a very high threshold for a MitM attacker

- **Query few servers**
 - Randomly query a small fraction of the servers in the pool (e.g., 10-20)
 - Avoids overloading NTP servers

- **Smart filtering**
 - Remove outliers via a technique used in approximate agreement algorithms
 - Limits the MitM attacker's ability to contaminate the chosen time samples
Chronos computation differs from NTPv4 in three key aspects:

- **Calibration process**
 - Generates a local pool of servers the client can synchronize with, consisting of n servers (up to hundreds).

- **Modified selection process**
 - Chronos relies on many NTP servers, chosen at random periodically.

- **Modified cluster algorithm**
 - Chronos uses an approximate agreement technique to remove outliers.
Chronos Time Computation vs. NTPd

• Chronos computation vs. NTPv4’s:
 • Greater variety of sampled servers over time
 • Avoids (NTPv4) source quality filters
 • Provable security guarantees

• Possible adverse effects on precision.

Therefore, by using NTPv4 as a primary process and Chronos as a "watchdog",
Chronos watchdog matches NTPv4's accuracy and precision while significantly improving
security against time shifting attacks.
Chronos Draft History

- Chronos was modified based on the comments we got from the WG.
- The main updates are the following:

A Secure Selection and Filtering Mechanism for the Network Time Protocol with Chronos
draft-ietf-ntp-chronos-04

- Hybrid approach – Chronos is passive till external attack indication.
- Evaluating Chronos precision and accuracy with and without attacks.
- Adding a security analysis.
- Suggesting parameters values.
- Updating link to the paper.
- Chronos as a watchdog.
- Describing the modification of NTP selection and cluster algorithms.
- Adding resiliency analysis against DDoS attacks.
- Elaborating the watchdog mechanism
- Adding default parameters values
- Adding more details to the pseudo code
- Updating the references.
- Extending the security analysis.
- Updating draft’s title.
Open-Source Implementations

• Currently, we have two available Chronos implementations, running as a NTPv4 watchdog.
 • **Python implementation** (in the master branch) – verified
 • https://github.com/netars/chronos
 • **C implementation** (in a separate branch) – being tested
 • https://github.com/netars/chronos/tree/final_project
• Attack simulator code also available.
Group Contributors

We thank all the group contributors for the fruitful discussion:

Karen O’Donoghue Danny Mayer
Dieter Sibold Miroslav Lichvar
Greg Dowd Daniel Franke
Watson Ladd Kristof Teichel
Ulrich Windl Marcus Dansarie
Erik Kline Yaakov. J. Stein
Harlan Stenn
What’s Next?

• We believe that Chronos is ready for publication as an informational document.
 • We answered all the WG comments
 • We developed two Chronos client implementations (which are available)

• We aspire to making Chronos an official watchdog for NTPv5 and are looking forward to continued collaboration with the WG.
Thank you for your time 😊

Please take a look at our Chronos client implementation at:

https://github.com/netars/chronos