
Chris Wood & Jana Iyengar

Architecture

Client Server

GET /gustav.jpg

Client Server

This
client looks
suspicious...

GET /gustav.jpg

Challenge

Client Server

Generate
proof based on this

challenge
GET /gustav.jpg

Challenge

Proof

Client Server

GET /gustav.jpg

Challenge

Proof

OK, I trust you

Client Server

GET /gustav.jpg

Challenge

Proof

Client Server

Can you solve a CAPTCHA?

CAPTCHA solution

Client Server

Can you solve a CAPTCHA?

Proof that I solved a CAPTCHA

Client Server

Can you attest to some property?

Proof that I attested to this property

Client ServerIssuer

Can you attest to some property?

Proof that I attested to this property

Attest to property

Proof of attestation

Client ServerIssuer

Can you attest to some property?

Proof that I attested to this property

Attest to property

Proof of attestation

Trust

Client ServerAttester

Can you attest to some property?

Proof

Attest to property

Proof

Issuer

Proof, please

Proof

Client ServerAttester

Can you attest to some property?

Proof

Attest to property

Proof

Issuer

Trust

Trust

Proof, please

Proof

Client ServerAttester

Can you attest to some property?

Proof

Attest to property

Proof

Issuer

Trust

Trust

Proof, please

Proof

Privacy Pass Architecture

Deployment Variations
The architecture can be instantiated in various ways

Combined origin/attester/issuer (“single verifier”)

Combined attester/issuer

All separate

15

Clientattester.netissuer.com example.com

Client example.comexample.com 
 (Attester + Issuer)

Client example.comissuer.com 
 (Attester + Issuer)

Protocol Structure

Architecture describes two parts of the protocol, which are detailed in two
separate documents:

Redemption is a consistent/unified API for redeeming tokens, along with the
ability to challenge.

Issuance can support multiple types (VOPRF, publicly verifiable, etc). This is
the exchange that can be extended or replaced for new deployment models.

16

Client OriginAttesterIssuer

Issuance
Protocol

Redemption
Protocol

Big Picture
Architecture

Some function attests to certain state or properties associated with a client

• Has this person solved a CAPTCHA?

• Does this person have a subscriber account?

Issuers that trust attesters produce proof -- tokens -- bound to these properties

Redeemers, or origins, consume tokens from trusted issuers

17

Why rework the architecture?

Current architecture tightly couples issuance and redemption

Issuer and redeemer may be the same (as in Privacy Pass) but don’t need to be

Separate roles allow for new deployment models and are more compatible with
features like public verifiability

New architecture separates these functions and shifts extensibility to issuance

New extensions or features can be solved by new issuance protocols

Redemption is unchanged

Makes attestation explicit, but deployment specific

18

Proposal

19

Define architecture in terms of functional roles (Client, Origin, Attester, Issuer)

Define protocols in terms of Redemption and Issuance

Merge PR into architecture document

https://github.com/ietf-wg-privacypass/base-drafts/pull/86

Tommy Pauly

Challenge & Redemption

21

Client OriginAttesterIssuer

Issuance
Protocol

Redemption
Protocol

22

Client Origin

“Let me do/access foo”

“Give me a token to prove you’re not a bot”

Challenge

Client Origin

“Here’s a token, let me do/access foo”

“Token validated, go ahead”

Redemption

Challenge & Redemption

All token schemes involve token redemption

Token redemption is when a client presents a token to gain access,
anonymously

Challenges are optional

Allows a server to indicate that it needs tokens

Indicates types of tokens and token issuers that are trusted

Allows for interactive tokens

23

What was missing?

Previous design required Javascript APIs (W3C) work to functionally drive token
interactions

No clear way to support new token types (POPRF vs publicly verifiable, etc)

HTTP authentication method allows a more standard definition

Explicit support for different types of tokens, defined in their own contexts

Works both in Javascript (W3C) and non-Javascript contexts

Authors proposing that this work replaces the HTTP API document

24

Features

Define an IANA registry of token types, indicate in challenge & redemption

Indicate Issuer name(s) (who does the Origin trust to vend tokens?)

Allow for “interactive tokens” with a one-time nonce to prevent farming

Allow for binding tokens to an origin to prevent cross-origin spending

25

Origin considerations

Make it easy for origins to adopt!

Origins don’t need to do complex crypto, just need to verify

Publicly verifiable types are simple (RSA signatures)

Privately verifiable requires Issuer key (or a single HTTP request to the issuer)

Interactive tokens mitigate concerns about farming and double-spending

Shifts server state from redeemed tokens (unbounded) to number of
outstanding challenges (bounded by active sessions)

26

Challenge
WWW-Authenticate: PrivateToken challenge=abc..., token-
key=123...  
 
struct {
 uint16_t token_type; // Defines Issuance protocol
 opaque issuer_name<1..2^16-1>;
 opaque redemption_nonce<0..32>; // Optional
 opaque origin_name<0..2^16-1>; // Optional
} TokenChallenge;

27

Redemption nonce: If present, token presented must be fresh (interactively
minted)

Origin name: If present, token is restricted to the origin, else it’s cross-origin

Redemption
Authorization: PrivateToken token=abc...
 
struct {
 uint16_t token_type; // Matches challenge
 uint8_t nonce[32]; // Client-generated nonce
 uint8_t context[32]; // Hash of TokenChallenge
 uint8_t token_key_id[Nid];
 uint8_t authenticator[Nk]; // From Issuance protocol
} Token;

28

Context: SHA256 hash of the corresponding challenge

Authenticator: Signature, POPRF output, etc

Redemption Properties
Security properties

Redemption unlinkability: Redeemer cannot link two tokens 
to the same client

29

Proposal

30

Replace HTTP API document with this HTTP auth scheme

HTTP interactions with Issuers go to the Issuance Protocol document

Update W3C APIs to drive this HTTP API

Chris Wood

Issuance

32

Client OriginAttesterIssuer

Issuance
Protocol

Redemption
Protocol

Basic Tokens
Issuance protocols

Client

pks

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗍𝗈𝗄𝖾𝗇

33

Origin
 Issuer

(sks, pks)

Attester

Basic Tokens
Issuance protocols

Client

pks

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗍𝗈𝗄𝖾𝗇

34

Origin

𝗇𝗈𝗇𝖼𝖾 ← {0,1}256

Issuer

(sks, pks)

Attester

𝗋𝖾𝗊, 𝗂𝗇𝗏 = 𝖡𝗅𝗂𝗇𝖽(pkS, (𝗇𝗈𝗇𝖼𝖾, 𝖼𝗈𝗇𝗍𝖾𝗑𝗍))
𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = 𝖧𝖺𝗌𝗁(𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾)

Basic Tokens
Issuance protocols

Client

pks

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗍𝗈𝗄𝖾𝗇

35

Origin

𝗇𝗈𝗇𝖼𝖾 ← {0,1}256

Issuer

(sks, pks)

req

resp

Attester

𝗋𝖾𝗊, 𝗂𝗇𝗏 = 𝖡𝗅𝗂𝗇𝖽(pkS, (𝗇𝗈𝗇𝖼𝖾, 𝖼𝗈𝗇𝗍𝖾𝗑𝗍))
𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = 𝖧𝖺𝗌𝗁(𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾)

𝗋𝖾𝗌𝗉 = 𝖡𝗅𝗂𝗇𝖽𝖲𝗂𝗀𝗇(sks, 𝗋𝖾𝗊)

Basic Tokens
Issuance protocols

Client

pks

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗍𝗈𝗄𝖾𝗇

36

Origin

𝗇𝗈𝗇𝖼𝖾 ← {0,1}256

Issuer

(sks, pks)

req

resp

Attester

𝗋𝖾𝗊, 𝗂𝗇𝗏 = 𝖡𝗅𝗂𝗇𝖽(pkS, (𝗇𝗈𝗇𝖼𝖾, 𝖼𝗈𝗇𝗍𝖾𝗑𝗍))
𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = 𝖧𝖺𝗌𝗁(𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾)

𝗋𝖾𝗌𝗉 = 𝖡𝗅𝗂𝗇𝖽𝖲𝗂𝗀𝗇(sks, 𝗋𝖾𝗊)

𝖺𝗎𝗍𝗁𝖾𝗇𝗍𝗂𝖼𝖺𝗍𝗈𝗋 =
𝖥𝗂𝗇𝖺𝗅𝗂𝗓𝖾(pks, (𝗇𝗈𝗇𝖼𝖾, 𝖼𝗈𝗇𝗍𝖾𝗑𝗍), 𝗋𝖾𝗌𝗉, 𝗂𝗇𝗏)

Basic Tokens
Issuance protocols

Client

pks

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗍𝗈𝗄𝖾𝗇

37

Origin

𝗇𝗈𝗇𝖼𝖾 ← {0,1}256

Issuer

(sks, pks)

req

resp

This could also be a POPRF

Attester

𝗋𝖾𝗊, 𝗂𝗇𝗏 = 𝖡𝗅𝗂𝗇𝖽(pkS, (𝗇𝗈𝗇𝖼𝖾, 𝖼𝗈𝗇𝗍𝖾𝗑𝗍))
𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = 𝖧𝖺𝗌𝗁(𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾)

𝗋𝖾𝗌𝗉 = 𝖡𝗅𝗂𝗇𝖽𝖲𝗂𝗀𝗇(sks, 𝗋𝖾𝗊)

𝖺𝗎𝗍𝗁𝖾𝗇𝗍𝗂𝖼𝖺𝗍𝗈𝗋 =
𝖥𝗂𝗇𝖺𝗅𝗂𝗓𝖾(pks, (𝗇𝗈𝗇𝖼𝖾, 𝖼𝗈𝗇𝗍𝖾𝗑𝗍), 𝗋𝖾𝗌𝗉, 𝗂𝗇𝗏)

Issuance Registry
Issuance protocols

Value Name Publicly
Verifiable

Public
Metadata

Private
Metadata

Authenticator
Size

0x0001 POPRF(P-384,
SHA-384) N Y N 48

0x0002 Blind RSA
(4096) Y N N 512

...

Extensions for consideration:

 Anonymous tokens with private metadata bit (https://eprint.iacr.org/2020/072)

 Publicly verifiable anonymous tokens with private metadata bit (https://eprint.iacr.org/2022/004)

 Blind BLS (https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/)

https://eprint.iacr.org/2020/072
https://eprint.iacr.org/2022/004
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/

Issuance Considerations
Issuance protocols

Issuance protocol is assumed to be stateless on the Issuer

Blind signature protocols that require multiple rounds and state are possible,
but not specified

Compatible with deployment specific key consistency mechanisms

Issuer keys are discoverable such that applications can build consistency
systems on top

39

Issuance Properties
Security properties

One-more unforgeability: Clients cannot forge tokens

Issuance secrecy: Issuing parties cannot link per-client and per-origin state

40

Proposal

41

Replace existing protocol document with new issuance protocol details

Integrates with HTTP-based redemption protocol

Satisfies private and public verifiability (per the charter)

Makes issuance flow in the protocol document explicit and interoperable

Questions for the WG
Wrapping up

1. Are the document proposals clear?

2. Is there consensus in this new direction, which includes:

1. Updates to draft-ietf-privacypass-architecture and  
draft-ietf-privacypass-protocol

2. Adoption of draft-pauly-privacypass-auth-scheme

Chris Wood

Rate-Limited Issuance

Rate-Limited Tokens
Issuance protocols

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Issuers learn origin associated with a token challenge

2. Attesters learn stable mapping between per-client secret and per-origin
secret, and no per-origin information

3. Token requests may fail if the per-origin rate limit is exceeded

Challenge: How to reveal only the origin to issuer, and only the mapping to
attester?

44

Rate-Limited Tokens
Issuance protocols

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Issuers learn origin associated with a token challenge

2. Attesters learn stable mapping between per-client secret and per-origin
secret, and no per-origin information

3. Token requests may fail if the per-origin rate limit is exceeded

Challenge: How to reveal only the origin to issuer, and only the mapping to
attester?

45

S

Detour: Stable Mappings
Issuance protocols

A stable mapping is a deterministic function between per-client and per-origin
information, e.g., F(client secret, origin secret)

The mapping is used to enforce per-origin limits

Attester uses mapping as index into data structure tracking per-client state

46

Mapping Count

…. …

12311235123 N

…. …

Attester

Detour: Stable Mappings
Issuance protocols

47

Client
pkS, pkI

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗍𝗈𝗄𝖾𝗇

Issuer

𝗈𝗋𝗂𝗀𝗂𝗇

skC

𝗋𝖾𝗌𝗉, L𝗈𝗋𝗂𝗀𝗂𝗇

𝗋𝖾𝗊

𝗋𝖾𝗌𝗉

𝗋𝖾𝗊

Drop request

Compute stable mapping, decrement count,
compare against origin limit, accept or reject

response accordingly

Attester

Detour: Stable Mappings
Issuance protocols

48

Client
pkS, pkI

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗍𝗈𝗄𝖾𝗇

Issuer

𝗈𝗋𝗂𝗀𝗂𝗇

skC

𝗋𝖾𝗌𝗉, L𝗈𝗋𝗂𝗀𝗂𝗇

𝗋𝖾𝗊

𝗋𝖾𝗌𝗉

𝗋𝖾𝗊

Drop request

Compute stable mapping, decrement count,
compare against origin limit, accept or reject

response accordingly

Mapping Count
…. …
1234 N —> N-1

…. …

N − 1 < L𝗈𝗋𝗂𝗀𝗂𝗇

1234 = F(𝖼𝗅𝗂𝖾𝗇𝗍, 𝗈𝗋𝗂𝗀𝗂𝗇)

An OPRF protocol computes for per-origin and per-client

F(k, x) k x

 OPRF

Detour: An OPRF Sketch
Issuance protocols

49

Client Issuer

x k

F(k, x)

Clients can encrypt the origin identifier under the Issuer’s public key

 OPRF

Detour: An OPRF Sketch
Issuance protocols

50

Client Issuer

x k

F(k, x)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(pkI, 𝗈𝗋𝗂𝗀𝗂𝗇)

An Attester can relay the encrypted origin name and complete the OPRF

 OPRF

Detour: An OPRF Sketch
Issuance protocols

51

Client Issuer

x k

F(k, x)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(pkI, 𝗈𝗋𝗂𝗀𝗂𝗇), x

Attester

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(pkI, 𝗈𝗋𝗂𝗀𝗂𝗇)

… Attester can perform a dictionary attack to learn

F(k, x)

 OPRF

Detour: An OPRF Sketch
Issuance protocols

52

Issuer
x k

F(k, x)

Attester

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(pkI, 𝗈𝗋𝗂𝗀𝗂𝗇′￼)

Rate-Limited Tokens
Issuance protocols

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Issuers learn origin associated with a token challenge

2. Attesters learn stable mapping between per-client secret and per-origin secret, and
no per-origin information

3. Token requests may fail if the per-origin rate limit is exceeded

Challenge 1: How to reveal only the origin to issuer, and only the mapping to attester?

Challenge 2: How to ensure the attester cannot dictionary attack or replay client
requests to learn per-origin information?

53

S

Proposed solution to both
uses the same mechanism!

Rate-Limited Tokens
Issuance protocols

Cryptographic primitives:

• Blind RSA: Token request

• HPKE: Encrypting origin names from Client to Issuer

• EdDSA with key blinding: Signing Client requests and computing stable
mappings

This is the interesting piece!

54

Detour: EdDSA with Key Blinding
Issuance protocols

Extend RFC8032 EdDSA with two functionalities

BlindPublicKey and UnblindPublicKey: Given public key and secret blind,
produce blinded public key

BlindKeySign: Sign message with secret key and secret blind

Draft specification: https://chris-wood.github.io/draft-wood-cfrg-eddsa-blinding/draft-wood-cfrg-eddsa-blinding.html
55

UnblindPublicKey(BlindPublicKey(pkS, skB), skB) = pkS

Verify(BlindPublicKey(pkS), msg, BlindKeySign(skS, skB, msg)) = true

https://chris-wood.github.io/draft-wood-cfrg-eddsa-blinding/draft-wood-cfrg-eddsa-blinding.html

Rate-Limited Tokens
Issuance protocols

Client
pkS, pkI

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗍𝗈𝗄𝖾𝗇

56

𝗇𝗈𝗇𝖼𝖾 ← {0,1}256, (skB, pkB) ← 𝖪𝖾𝗒𝖦𝖾𝗇

Issuer

(sks, pks), (skI, pkI), sk𝗈𝗋𝗂𝗀𝗂𝗇, …

Attester

𝗈𝗋𝗂𝗀𝗂𝗇

skC

𝖾𝗇𝖼_𝗈𝗋𝗂𝗀𝗂𝗇 = 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(pkI, 𝗈𝗋𝗂𝗀𝗂𝗇, (𝗋𝖾𝗊, pkR))
𝗋𝖾𝗊, 𝗂𝗇𝗏 = 𝖡𝗅𝗂𝗇𝖽(pkS, (𝗇𝗈𝗇𝖼𝖾, 𝖼𝗈𝗇𝗍𝖾𝗑𝗍))

𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = 𝖧𝖺𝗌𝗁(𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾)

𝖺𝗎𝗍𝗁𝖾𝗇𝗍𝗂𝖼𝖺𝗍𝗈𝗋 =
𝖥𝗂𝗇𝖺𝗅𝗂𝗓𝖾(pks, (𝗇𝗈𝗇𝖼𝖾, 𝖼𝗈𝗇𝗍𝖾𝗑𝗍), 𝗋𝖾𝗌𝗉, 𝗂𝗇𝗏)

pkR = 𝖡𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒(pkR, skB)

𝗌𝗂𝗀 = 𝖡𝗅𝗂𝗇𝖽𝖪𝖾𝗒𝖲𝗂𝗀𝗇(skC, skB, (𝗋𝖾𝗊, pkR, 𝖾𝗇𝖼_𝗈𝗋𝗂𝗀𝗂𝗇))

𝖵𝖾𝗋𝗂𝖿𝗒(pkR, 𝗌𝗂𝗀, (𝗋𝖾𝗊, pkR, 𝖾𝗇𝖼_𝗈𝗋𝗂𝗀𝗂𝗇))

𝗋𝖾𝗌𝗉, pkI

𝖡𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒(pkR, sk𝗈𝗋𝗂𝗀𝗂𝗇)
𝗉𝗄𝖨 =
𝗋𝖾𝗌𝗉 = 𝖡𝗅𝗂𝗇𝖽𝖲𝗂𝗀𝗇(sks, 𝗋𝖾𝗊)

𝗋𝖾𝗊, pkR, …, 𝗌𝗂𝗀

𝗋𝖾𝗌𝗉

𝖵𝖾𝗋𝗂𝖿𝗒(pkR, 𝗌𝗂𝗀,
(𝗋𝖾𝗊, pkR, 𝖾𝗇𝖼_𝗈𝗋𝗂𝗀𝗂𝗇))

𝗈𝗋𝗂𝗀𝗂𝗇 =
𝖣𝖾𝖼𝗋𝗒𝗉𝗍(skI, 𝖾𝗇𝖼_𝗈𝗋𝗂𝗀𝗂𝗇, (𝗋𝖾𝗊, pkR))

𝗋𝖾𝗊, pkR, …, 𝗌𝗂𝗀

𝗂𝗇𝖽𝖾𝗑 = 𝖴𝗇𝖻𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒(pkI, skB)

(Enforce state based on index)

Drop request

Can’t link two
requests to same

client

Function of client
secret and origin

secret

Create token request, encrypt
origin name, sign package using
blinded key pair, send package

and blind to attester

Verify package using
blinded public key,
forward request to

issuer

Verify package using
blinded public key,

decrypt origin name,
re-blind public key

using per-origin secret,
evaluate token requestUnblind twice-blinded

public key, yielding
stable mapping used for

rate limit check

Finalize token request and
output token

