
The Semantic Definition 
Format (SDF):


A brief tutorial and status
Carsten Bormann

1



The need for One Data Model

• IoT standardization is dominated by ecosystem-specific SDOs


• Each ecosystem has their own data models,  
and their own way to document them


• IoT applications may need to work with things from multiple ecosystems: 
No single ecosystem can supply the whole variety needed


• Can build protocol translators; harder to translate hundreds of data 
models

2



The One Data Model liaison group
• People from different SDOs meet in an informal liaison group


• Bring together hundreds of ecosystem-specific data models


• Express in common format


• Work on merging and harmonizing data models


• Make harmonized data models available for all SDOs (BSD license!)


• Working in the open: https://github.com/one-data-model


• Inevitably: standardize on a common format: SDF

3

https://github.com/one-data-model


SDF: The Semantic Definition Format

• https://github.com/ietf-wg-asdf/SDF


• Defines classes of things (sdfObject, combine into sdfThing)


• Things don’t have data, they have interactions with their clients(*),  
provided by affordances


• Interaction affordances grouped into interaction patterns: 
For now, Property, Action, Event


• Interactions input and output data (groupable into sdfData)

4

(*) Not a  
oneDM term

http://Connectivity%20Naming%20System


Overall Specification Structure

• One or more JSON documents; linked together with JSON pointers 
[RFC6901]


• An SDF specification can reuse elements (such as sdfData definitions) of 
other SDF specifications


• Goal: define a basic core set that every specification can reference  
(“common reusable definitions”)

5



Interaction Patterns

• SDF is about 
modeling data


• Interaction Patterns 
mostly defined along 
input and output data

6

Name cf. REST Initiative Input Output

Property GET Client — Data

Property 
(writable) PUT Client Data (Data)

Action POST Client Input Output

Event ? Thing — Output



Action

• Actions can have 
different input and 
output data


• Some actions take 
time (not modeled): 
Initiative to return 
output moved to 
Thing (~ Event)

7

Name cf. REST Initiative Input Output

Property GET Client — Data

Property 
(writable) PUT Client Data Data

Action POST Client Input Output

Event ? Thing — Output



Property
• Property is used for 

data items that can 
be read by the client


• Writable properties 
can also be “set” (no 
special output)


• Observable 
properties look like 
an Event

8

Name cf. REST Initiativ
e Input Output

Property GET Client — Data

Property 
(writable) PUT Client Data (Data)

Property  
(observable)

GET
(observe)

Client, 
Thing — Data

Event ? Thing — Output



Event
• Least well-defined 

interaction pattern


• Is an Event just a 
notification (similar to 
observable property)?


• Are Events just status 
updates (temperature) 
or is any single one of 
them precious (coin 
insertion)?

9

Name cf. REST Initiative Input Output

Property GET Client — Data

Property 
(writable) PUT Client Data Data

Action POST Client Input Output

Event ? Thing — Output



Data

• Data is defined by their shape (as in data definition/“schema” languages)


• Data definitions can be made inline in an affordance definition or 
separately, for later reference


• Definitions can use curated subset of json-schema.org terms,  
and/or SDF-specific terms such as contentFormat, nullable, scale…


• Mapping information (protocol bindings) helps bind these data to 
ecosystem specific formats and encodings

10

SDF next

http://json-schema.org


Data Model vs. Information Model (1)

• SDF 1 uses json-schema.org-style data modeling, 
enhanced by SDF qualities


• Really: This should be information models (RFC 3444):


• Abstract from arbitrary representation decisions


• Don’t commit to specific numbers, strings, etc. (bindings can do that)


• Bind to semantics via RDF-style links

11

SDF next

http://json-schema.org


Data Model vs. Information Model (2)

• “Enums”: choices of values (strings, integers), 
each usually denoting some specific concept


• Information model: Don’t commit to specific 
representation (bindings can do that)


• Do bind to semantics via RDF-style links


• Enums in SDF 1 patterned after json-schema.org: 
"General", "Fire", "Flood", "Weather", “Security"?

12

"Alkaline", "Aluminium Air", "Aluminium Ion", "Atomic Betavoltaics",

"Atomic Optoelectric Nuclear", "Atomic Nuclear", "Bunsen Cell",

"Chromic Acid Cell", "Poggendorff Cell", "Clark Cell", "Daniell Cell",

"Dry Cell", "Earth", "Flow", "Flow Vanadium Redox", "Flow Zinc

Bromine", "Flow Zinc Cerium", "Frog", "Fuel", "Galvanic Cell",

"Glass", "Grove Cell", "Lead Acid", "Lead Acid Deep Cycle", "Lead Acid

VRLA", "Lead Acid AGM", "Lead Acid Gel", "Leclanche Cell",  
“Lemon Potato", "Lithium", "Lithium Air", "Lithium Ion", "Lithium Ion Cobalt

Oxide (ICR)", "Lithium Ion Manganese Oxide (IMR)", "Lithium Ion

Polymer", "Lithium Iron Phosphate", "Lithium Sulfur", "Lithium

Titanate", "Lithium Ion Thin Film", "Magnesium", "Magnesium Ion",

"Mercury", "Molten Salt", "Nickel Cadmium", "Nickel Cadmium Vented

Cell", "Nickel Hydrogen", "Nickel Iron ", "Nickel Metal Hydride",

"Nickel Metal Hydride Low Self-Discharge", "Nickel Oxyhydroxide",

"Nickel Oxyride", "Nickel Zinc", "Organic Radical", "Paper", "Polymer

Based", "Polysulfide Bromide", "Potassium Ion", "Pulvermachers Chain",

"Silicon Air", "Silver Calcium", "Silver Oxide", "Silver Zinc",

"Sodium Ion", "Sodium Sulfur", "Solid State", "Sugar", "Super Iron",

"UltraBattery", "Voltaic Pile", "Voltaic Pile Penny", "Voltaic Pile

Trough", "Water Activated", "Weston Cell", "Zinc Air", "Zinc Carbon",

"Zinc Chloride", "Zinc Ion", "Unknown"

SDF next

OCF “oic.r.batterymaterial”



sdfThing, sdfProduct

• sdfObject definitions can be 
combined into top-level 
structures


• sdfThing can contain 
sdfObject and sdfThing


• sdfProduct similar, as a (not 
to be harmonized) top-level 
product definition

13
[draft-onedm-t2trg-sdf-00]


