draft-ietf-core-attacks-on-coap
Interim July 5 2023

Jon Shallow

Christian Amsuss

Agenda

* Block2 Responses
* Token Manipulation
* Clarifications

Block2 Responses (no RTag / ETag)

Client Foe Server
l —————— ; : POST "request" T:1 { "offset":0, "length":2000}
l——————l —————— l POST "request" T:2 { "offset":4000, "length":2000}
: é —————— l POST "request" T:1 { "offset":0, "length":2000}
L——————l —————— l 2.04 T:2 Block2:0/1/1024 { data containing 4000:1024 }
L——————l —————— l 2.04 T:1 Block2:0/1/1024 { data containing 0:1024 }
l——————l —————— l POST "request" T:3 Block2:1/0/1024
server - is this continuation of request using T:1 or T:2 ?
L ————————————— l 2.04 T:3 Block2:1/0/1024 { data containing 1024:2000 }

Using T:1 - was this the client’s expected data ?

No use of Request-Tag or ETag

Block2 Responses (ETag Only)

Client Foe Server

| | I

R X | POST "request" T:

| I I

o > POST "request" T:

| I I

| @-=———- > POST "request" T:

| I I

e + 2.04 T:2 Etag:11

| I I

e + 2.04 T:1 Etag:12

| I I

o > POST "request" T:
server - 1is this

| I

e + 2.04 T:3 Etag:11

Using T:2 - what

1 { "offset":0, "length":2000}

2 { "offset":4000, "length":2000}

1 { "offset":0, "length":2000}
Block2:0/1/1024 { data containing 4000:1024 }
Block2:0/1/1024 { data containing 0:1024 }

3 Block2:1/0/1024 (client asking for T:1)
continuation of request using T:1 or T:2 ?

Block2:1/0/1024 { data containing 5024:2000 }
does client do with ETag mismatch?

Use of ETag only makes sure that the client associates the response
with the correct request, but this may be a response to a request for
the next block which has not yet been issued by client.

Block2 Responses (Request-Tag Only)

Client Foe Server
| | |
F——_—_—— e — — — > POST
| | |
F——_—_—— e — — — > POST
| | |
L — — + 2.04
| | |
R —— + 2.04
| | |
4 X | POST
F——_——_—— e — — > POST
| @=-—===- > POST
| | |
L — + 2.04
- 4+ 2.04

"request" T:1 RT:21
"request" T:2 RT:22
T:1 Block2:0/1/1024
T:2 Block2:0/1/1024
"request" T:3 RT:21
"request" T:4 RT:22

"request" T:3 RT:21

T:4 Block2:1/0/1024
T:3 Block2:1/0/1024

{ "offset":0, "length":2000}

{ "offset":4000, "length":2000}

{ data

{ data

Block?2:
Block?2:
Block?2:

{ data
{ data

containing 0:1024 }

containing 4000:1024 }

1/0/1024 (client asking for T:1)
1/0/1024 (client asking for T:2)
1/0/1024 (client asking for T:1)

containing 5024:2000 }
containing 1024:2000 }

Use of Request-Tag means server sends correct next block response,
but client should correctly associate responses based on Tokens with
appropriate requests even if data arrives in wrong order. [Not using
ETag means changing data on server not detected]

Issues

* Client has no knowledge of whether a response is
going to need to use Block2 or not

* Send Request-Tag with every request?
[Request-Tag is supported for requests without
Block1/Block2]

— Unnecessary overhead
— Size (DTLS requires larger for unpredictability)
— It is required by RFC9177 Q-Block
* Without Request-Tag, if multiple requests are

active, server can select wrong response (FIFO or
LIFO request lookup)

Mitigation

* Send Request-Tag with every request

* Prevent client doing concurrent different requests

— NSTART =1 not enough as all blocks to be returned
before next new request sent
* Specify new Signal from server in response
indicating (server generated) Request-Tag to use
for the next block — how?
— Request-Tag not allowed in response — change?

— New Block2 option with embedded Request-Tag to
use

Attacks

* Without use of both Request-Tag and ETag,
data is subject to corruption even when not
under attack

 NSTART =1 serialization of CON requests can
be broken by “foe” ACKing request and
converting responses from ACK to CON on the
way back to client. Easy then for “foe” to re-
order requests

Client

Token Manipulation (NON)

Foe Server
| |
______ X |
| |
______ X |
| |
d===——- >
| |
d===——- >
| |
_____________ _|_
| |
_____________ _|_

NON

NON

NON

NON

NON

NON

POST

POST

POST

POST

2.04

2.04

"requestl"

"request2"

"request2"

"requestl"

T:1 { data

T:2 { data

T:1
T:2
T:1 (token
T:2 (token
contalning

containing

replaced)

replaced)

response?}

responsel }

Client

Token Manipulation (CON)

Foe

Server

CON
ACK
CON
ACK
CON
CON

ACK
CON
ACK
ACK
CON
ACK

POST

POST

POST
POST

"requestl"

"request2"

"request2"

"requestl"

T:1 { data
T:1 { data

T:2 { data
T:2 { data

T:1 (token
T:2 (token

containing

contalining

containing

containing

replaced)

replaced)

response?}

response?}

responsel }

responsel }

Attacks

Works with NON (or CON NSTART > 1)

Works with CON if “foe” ACKs request and
updates response from ACK to CON

OSCORE does protect (Request/Response
matching with PIV/AAD)

(D)TLS does not protect if “foe” is a rogue
proxy or “foe” is successful man-in-the-middle

Mitigation

e Use OSCORE
* Do not use No-Sec

Clarifications

Request using Block1 triggers Block2 response

Request for next block

— RFC7959 2.7: “To continue this Block2 transfer, the client
continues to send requests similar to the requests in the
Block1 phase, but leaves out the Blockl Options and
includes a Block2 request option with non-zero NUM”

Observe Request using Block1

Observe deregister cancellation

— Includes original data (with all the Block1s) (only Observe
Option changed, ETags ignored) RFC7641 3.6.

— Cancellation response may include Block2

Thank you

