
draft-ietf-core-attacks-on-coap
Interim July 5 2023

Jon Shallow

Christian Amsüss

1

Agenda

• Block2 Responses

• Token Manipulation

• Clarifications

2

Block2 Responses (no RTag / ETag)

Client Foe Server

 | | |

 +------X | POST "request" T:1 { "offset":0, "length":2000}

 | | |

 +-------------> POST "request" T:2 { "offset":4000, "length":2000}

 | | |

 | @------> POST "request" T:1 { "offset":0, "length":2000}

 | | |

 <-------------+ 2.04 T:2 Block2:0/1/1024 { data containing 4000:1024 }

 | | |

 <-------------+ 2.04 T:1 Block2:0/1/1024 { data containing 0:1024 }

 | | |

 +-------------> POST "request" T:3 Block2:1/0/1024

 server - is this continuation of request using T:1 or T:2 ?

 | | |

 <-------------+ 2.04 T:3 Block2:1/0/1024 { data containing 1024:2000 }

 Using T:1 - was this the client’s expected data ?

 | | |

No use of Request-Tag or ETag

3

Block2 Responses (ETag Only)

Client Foe Server

 | | |

 +------X | POST "request" T:1 { "offset":0, "length":2000}

 | | |

 +-------------> POST "request" T:2 { "offset":4000, "length":2000}

 | | |

 | @------> POST "request" T:1 { "offset":0, "length":2000}

 | | |

 <-------------+ 2.04 T:2 Etag:11 Block2:0/1/1024 { data containing 4000:1024 }

 | | |

 <-------------+ 2.04 T:1 Etag:12 Block2:0/1/1024 { data containing 0:1024 }

 | | |

 +-------------> POST "request" T:3 Block2:1/0/1024 (client asking for T:1)

 server - is this continuation of request using T:1 or T:2 ?

 | | |

 <-------------+ 2.04 T:3 Etag:11 Block2:1/0/1024 { data containing 5024:2000 }

 Using T:2 – what does client do with ETag mismatch?

 | | |

Use of ETag only makes sure that the client associates the response
with the correct request, but this may be a response to a request for
the next block which has not yet been issued by client.

4

Block2 Responses (Request-Tag Only)

Client Foe Server

 | | |

 +-------------> POST "request" T:1 RT:21 { "offset":0, "length":2000}

 | | |

 +-------------> POST "request" T:2 RT:22 { "offset":4000, "length":2000}

 | | |

 <-------------+ 2.04 T:1 Block2:0/1/1024 { data containing 0:1024 }

 | | |

 <-------------+ 2.04 T:2 Block2:0/1/1024 { data containing 4000:1024 }

 | | |

 +------X | POST "request" T:3 RT:21 Block2:1/0/1024 (client asking for T:1)

 +-------------> POST "request" T:4 RT:22 Block2:1/0/1024 (client asking for T:2)

 | @------> POST "request" T:3 RT:21 Block2:1/0/1024 (client asking for T:1)

 | | |

 <-------------+ 2.04 T:4 Block2:1/0/1024 { data containing 5024:2000 }

 <-------------+ 2.04 T:3 Block2:1/0/1024 { data containing 1024:2000 }

 | | |

Use of Request-Tag means server sends correct next block response,
but client should correctly associate responses based on Tokens with
appropriate requests even if data arrives in wrong order. [Not using
ETag means changing data on server not detected]

5

Issues

• Client has no knowledge of whether a response is
going to need to use Block2 or not

• Send Request-Tag with every request?
[Request-Tag is supported for requests without
Block1/Block2]
– Unnecessary overhead
– Size (DTLS requires larger for unpredictability)
– It is required by RFC9177 Q-Block

• Without Request-Tag, if multiple requests are
active, server can select wrong response (FIFO or
LIFO request lookup)

6

Mitigation

• Send Request-Tag with every request

• Prevent client doing concurrent different requests
– NSTART =1 not enough as all blocks to be returned

before next new request sent

• Specify new Signal from server in response
indicating (server generated) Request-Tag to use
for the next block – how?
– Request-Tag not allowed in response – change?

– New Block2 option with embedded Request-Tag to
use

7

Attacks

• Without use of both Request-Tag and ETag,
data is subject to corruption even when not
under attack

• NSTART = 1 serialization of CON requests can
be broken by “foe” ACKing request and
converting responses from ACK to CON on the
way back to client. Easy then for “foe” to re-
order requests

8

Token Manipulation (NON)

Client Foe Server

 | | |

 +------X | NON POST "request1" T:1

 | | |

 +------X | NON POST "request2" T:2

 | | |

 | @------> NON POST "request2" T:1 (token replaced)

 | | |

 | @------> NON POST "request1" T:2 (token replaced)

 | | |

 <-------------+ NON 2.04 T:1 { data containing response2}

 | | |

 <-------------+ NON 2.04 T:2 { data containing response1}

 | | |

9

Token Manipulation (CON)

Client Foe Server

 | | |

 +------X | CON POST "request1" T:1

 <------@ | ACK

 +------X | CON POST "request2" T:2

 <------@ | ACK

 | @------> CON POST "request2" T:1 (token replaced)

 | @------> CON POST "request1" T:2 (token replaced)

 | | |

 | X------+ ACK 2.04 T:1 { data containing response2}

 <------@ + CON 2.04 T:1 { data containing response2}

 +------X | ACK

 | X------+ ACK 2.04 T:2 { data containing response1}

 <------@ + CON 2.04 T:2 { data containing response1}

 +------X | ACK
10

Attacks

• Works with NON (or CON NSTART > 1)

• Works with CON if “foe” ACKs request and
updates response from ACK to CON

• OSCORE does protect (Request/Response
matching with PIV/AAD)

• (D)TLS does not protect if “foe” is a rogue
proxy or “foe” is successful man-in-the-middle

11

Mitigation

• Use OSCORE

• Do not use No-Sec

12

Clarifications

• Request using Block1 triggers Block2 response

• Request for next block
– RFC7959 2.7: “To continue this Block2 transfer, the client

continues to send requests similar to the requests in the
Block1 phase, but leaves out the Block1 Options and
includes a Block2 request option with non-zero NUM”

• Observe Request using Block1

• Observe deregister cancellation
– Includes original data (with all the Block1s) (only Observe

Option changed, ETags ignored) RFC7641 3.6.

– Cancellation response may include Block2

13

Thank you

14

