Applying TCP User Timeout Parameters to BGP Sessions

draft-chen-idr-tcp-user-timeout-01
IETF IDR WG Interim-2023

Enke Chen
Robert Raszuk
TCP User Timeout

- Defined in the TCP base spec [RFC0793] [RFC9293]
 - Terminate the connection if TCP is not progressing within certain time

- Application data delivery by TCP
 - Transmitted data: waiting for acknowledgment
 - Buffered data: waiting for transmission (due to 0-window size)

- No difference to an application between the two TCP cases
 - Application data not delivered
Implementations

- Linux implementation as an example
 - TCP_USER_TIMEOUT option
 - setsockopt(s, IPPROTO_TCP, TCP_USER_TIMEOUT, &timeout, sizeof(timeout));
 - Return ETIMEDOUT to the app in read/write (just like EPIPE)
 - Recent bug fixes (v5.4.x, 01/2021)
 - 9d9b1ee0b2d1 tcp: fix TCP_USER_TIMEOUT with zero window
 - 344db93ae3ee tcp: make TCP_USER_TIMEOUT accurate for zero window probes

- Straightforward for timeouts
 - Timer start, reset, measure
Applying TCP User Timeout to BGP

- **BGP “stuck” session**
 - BGP messages are not delivered for an extended period of time
 - Can result in “stale” routes in the routing system
 - Desirable to detect and terminate the session

- **TCP User Timeout Option**
 - Specifically defined for such data delivery issues
 - Deterministic detection than by BGP itself (zero-window in particular)
 - Minimal code changes in BGP
Recommendations

- Use TCP User Timeout
 - Default timeout value: 5 x holdtimer, and no less than 10 minutes
 - Enable after EOR, or 30 minutes post session establishment
 - Follow the GR procedures for TCP ETIMEDOUT error
 - Log the event, and work with the peer admin for resolution
Next Steps

- Welcome feedback
- Request IDR WG Adoption