
CELLAR Group S. Lhomme
Internet-Draft
Intended status: Standards Track M. Bunkus
Expires: 30 July 2024
 D. Rice
 27 January 2024

 Matroska Media Container Chapter Codecs Specifications
 draft-ietf-cellar-chapter-codecs-04

Abstract

 This document defines common Matroska Chapter Codecs, the basic
 Matroska Script and the DVD inspired DVD menu [DVD-Video].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 30 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Lhomme, et al. Expires 30 July 2024 [Page 1]

Internet-Draft Matroska Chapter Codecs January 2024

Table of Contents

 1. Introduction . 2
 2. Status of this document 2
 3. Security Considerations 2
 4. IANA Considerations . 2
 5. Notation and Conventions 2
 6. Matroska Chapter Codecs 3
 6.1. Segment Linking . 3
 7. Matroska Chapter Codecs and Nested Chapters 3
 7.1. Matroska Script (0) 4
 7.2. DVD menu (1) . 5
 8. Normative References . 7
 9. Informative References 7
 Authors’ Addresses . 7

1. Introduction

 TODO

2. Status of this document

 This document is a work-in-progress specification defining the
 Matroska file format as part of the IETF Cellar working group
 (https://datatracker.ietf.org/wg/cellar/charter/). It uses basic
 elements and concept already defined in the Matroska specifications
 defined by this workgroup [Matroska].

3. Security Considerations

 Tag values can be either strings or binary blobs. This document
 inherits security considerations from the EBML [RFC8794] and Matroska
 [Matroska] documents.

4. IANA Considerations

 To be determined.

5. Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Lhomme, et al. Expires 30 July 2024 [Page 2]

Internet-Draft Matroska Chapter Codecs January 2024

6. Matroska Chapter Codecs

 Chapter codecs are a way to add more complex playback features than
 the usual linear playback.

 Some ChapProcess elements hold commands to execute when entering/
 leaving a chapter.

 When chapter codecs are used the EditionFlagOrdered of the edition
 they belong to MUST be set.

6.1. Segment Linking

 Chapter Codecs can reference another Segment and jump to that
 Segment.

 The Chapter Codecs MAY store the Segment information in their own
 format, possibly not using the SegmentUUID format. The
 ChapterTranslate element and its child elements SHOULD be used to
 link the internal chapter codec representation, the chapter codec
 number and the actual Segment it represents.

 For example, if a chapter codec of type "1" in SegmentA needs to link
 to SegmentB, it can store that information as "SegB" in its internal
 data.

 The translation ChapterTranslate in SegmentB would use the following
 elements: * ChapterTranslate\ChapterTranslateCodec = 1 *
 ChapterTranslate\ChapterTranslateID = "SegB"

 The Matroska Player MUST use the SegmentFamily to find all Segments
 that need translation between the chapter codec values and the actual
 segment it targets.

7. Matroska Chapter Codecs and Nested Chapters

 When Nested Chapters contain chapters codecs -- via the ChapProcess
 Element -- the enter/leave commands -- ChapProcessTime Element --
 MUST be executed in a specific order, if the Matroska Player supports
 the chapter codecs included in the chapters.

Lhomme, et al. Expires 30 July 2024 [Page 3]

Internet-Draft Matroska Chapter Codecs January 2024

 When starting playback, the Matroska Player MUST start at the
 ChapterTimeStart of the first chapter of the ordered chapter. The
 enter commands of that chapter MUST be executed. If that chapter
 contains Nested Chapters, the enter commands of the Nested Chapter
 with the same ChapterTimeStart MUST be executed. If that chapter
 contains Nested Chapters, the enter commands of the Nested Chapter
 with the same ChapterTimeStart MUST be executed, and so on until
 there is no Nested Chapter with the same ChapterTimeStart.

 When switching from a chapter to another:

 * the leave commands (ChapProcessTime=2) of the chapter MUST be
 executed, then the leave commands of its parent chapter, etc.
 until the common Parent Chapter or Edition element. The leave
 command of that Parent Chapter or Edition element MUST NOT be
 executed.
 * the enter commands (ChapProcessTime=1) of the Nested Chapter of
 the common Parent Chapter or Edition element, to reach the chapter
 we switch to, MUST be executed, then the enter commands of its
 Nested Chapter to reach the chapter we switch to MUST be executed,
 until that chapter is the chapter we switch to. The enter
 commands of that chapter MUST be executed as well.

 When the last Chapter finished playing -- i.e. its ChapterTimeEnd has
 been reached -- the Matroska Player MUST execute its leaved commands,
 then the leave commands of it’s Parent Chapter, until the parent of
 the chapter is the Edition.

7.1. Matroska Script (0)

 This is the case when ChapProcessCodecID = 0. This is a script
 language build for Matroska purposes. The inspiration comes from
 ActionScript, javascript and other similar scripting languages. The
 commands are stored as text commands, in UTF-8. The syntax is C
 like, with commands spanned on many lines, each terminating with a
 ";". You can also include comments at the end of lines with "//" or
 comment many lines using "/* */". The scripts are stored in
 ChapProcessData. For the moment ChapProcessPrivate is not used.

 The one and only command existing for the moment is GotoAndPlay(
 ChapterUID);. As the same suggests, it means that, when this command
 is encountered, the Matroska Player SHOULD jump to the Chapter
 specified by the UID and play it.

Lhomme, et al. Expires 30 July 2024 [Page 4]

Internet-Draft Matroska Chapter Codecs January 2024

7.2. DVD menu (1)

 This is the case when ChapProcessCodecID = 1. Each level of a
 chapter corresponds to a logical level in the DVD system [DVD-Video]
 that is stored in the first octet of the ChapProcessPrivate. This
 DVD hierarchy is as follows:

 +====================+======+===========+==========+=============+
 | ChapProcessPrivate | DVD | Hierarchy | Commands | Comment |
 | | Name | | Possible | |
 +====================+======+===========+==========+=============+
 | 0x30 | SS | DVD | - | First Play, |
 | | | domain | | Video |
 | | | | | Manager, |
 | | | | | Video Title |
 +--------------------+------+-----------+----------+-------------+
 | 0x2A | LU | Language | - | Contains |
 | | | Unit | | only PGCs |
 +--------------------+------+-----------+----------+-------------+
 | 0x28 | TT | Title | - | Contains |
 | | | | | only PGCs |
 +--------------------+------+-----------+----------+-------------+
 | 0x20 | PGC | Program | * | |
 | | | Group | | |
 | | | Chain | | |
 | | | (PGC) | | |
 +--------------------+------+-----------+----------+-------------+
 | 0x18 | PG | Program 1 | - | |
 | | | / Program | | |
 | | | 2 / | | |
 | | | Program 3 | | |
 +--------------------+------+-----------+----------+-------------+
 | 0x10 | PTT | Part Of | - | Equivalent |
 | | | Title 1 / | | to the |
 | | | Part Of | | chapters on |
 | | | Title 2 | | the sleeve. |
 +--------------------+------+-----------+----------+-------------+
 | 0x08 | CN | Cell 1 / | - | |
 | | | Cell 2 / | | |
 | | | Cell 3 / | | |
 | | | Cell 4 / | | |
 | | | Cell 5 / | | |
 | | | Cell 6 | | |
 +--------------------+------+-----------+----------+-------------+

 Table 1

Lhomme, et al. Expires 30 July 2024 [Page 5]

Internet-Draft Matroska Chapter Codecs January 2024

 You can also recover wether a Segment is a Video Manager (VMG), Video
 Title Set (VTS) or Video Title Set Menu (VTSM) from the
 ChapterTranslateID element found in the Segment Info. This field
 uses 2 octets as follows:

 1. Domain Type: 0 for VMG, the domain number for VTS and VTSM
 2. Domain Value: 0 for VMG and VTSM, 1 for the VTS source.

 For instance, the menu part from VTS_01_0.VOB would be coded [1,0]
 and the content part from VTS_02_3.VOB would be [2,1]. The VMG is
 always [0,0]

 The following octets of ChapProcessPrivate are as follows:

 +=========+======+===+
 | Octet 1 | DVD | Following Octets |
 | | Name | |
 +=========+======+===+
 | 0x30 | SS | Domain name code (1: 0x00= First play, 0xC0= |
 | | | VMG, 0x40= VTSM, 0x80= VTS) + VTS(M) number (2) |
 +---------+------+---+
 | 0x2A | LU | Language code (2) + Language extension (1) |
 +---------+------+---+
 | 0x28 | TT | global Title number (2) + corresponding TTN of |
 | | | the VTS (1) |
 +---------+------+---+
 | 0x20 | PGC | PGC number (2) + Playback Type (1) + Disabled |
 | | | User Operations (4) |
 +---------+------+---+
 | 0x18 | PG | Program number (2) |
 +---------+------+---+
 | 0x10 | PTT | PTT-chapter number (1) |
 +---------+------+---+
 | 0x08 | CN | Cell number [VOB ID(2)][Cell ID(1)][Angle |
 | | | Num(1)] |
 +---------+------+---+

 Table 2

 If the level specified in ChapProcessPrivate is a PGC (0x20), there
 is an octet called the Playback Type, specifying the kind of PGC
 defined:

 * 0x00: entry only/basic PGC
 * 0x82: Title+Entry Menu (only found in the Video Manager domain)
 * 0x83: Root Menu (only found in the VTSM domain)
 * 0x84: Subpicture Menu (only found in the VTSM domain)
 * 0x85: Audio Menu (only found in the VTSM domain)

Lhomme, et al. Expires 30 July 2024 [Page 6]

Internet-Draft Matroska Chapter Codecs January 2024

 * 0x86: Angle Menu (only found in the VTSM domain)
 * 0x87: Chapter Menu (only found in the VTSM domain)

 The next 4 following octets correspond to the User Operation flags in
 the standard PGC. When a bit is set, the command SHOULD be disabled.

 ChapProcessData contains the pre/post/cell commands in binary format
 as there are stored on a DVD. There is just an octet preceding these
 data to specify the number of commands in the element. As follows:
 [# of commands(1)][command 1 (8)][command 2 (8)][command 3 (8)].

 More information on the DVD commands and format on DVD from the
 [DVD-Info] project.

8. Normative References

 [Matroska] Lhomme, S., Bunkus, M., and D. Rice, "Media Container
 Specifications", Work in Progress, Internet-Draft, draft-
 ietf-cellar-matroska-10, 1 May 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cellar-
 matroska-10>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8794] Lhomme, S., Rice, D., and M. Bunkus, "Extensible Binary
 Meta Language", RFC 8794, DOI 10.17487/RFC8794, July 2020,
 <https://www.rfc-editor.org/info/rfc8794>.

9. Informative References

 [DVD-Info] "DVD-Video Information",
 <http://dvd.sourceforge.net/dvdinfo/>.

 [DVD-Video]
 DVD Forum, "DVD-Books: Part 3 DVD-Video Book", 1 November
 1995, <http://www.dvdforum.org/>.

Authors’ Addresses

 Steve Lhomme
 Email: slhomme@matroska.org

Lhomme, et al. Expires 30 July 2024 [Page 7]

Internet-Draft Matroska Chapter Codecs January 2024

 Moritz Bunkus
 Email: moritz@bunkus.org

 Dave Rice
 Email: dave@dericed.com

Lhomme, et al. Expires 30 July 2024 [Page 8]

CELLAR Group S. Lhomme
Internet-Draft
Intended status: Standards Track M. Bunkus
Expires: 30 July 2024
 D. Rice
 27 January 2024

 Matroska Media Container Codec Specifications
 draft-ietf-cellar-codec-12

Abstract

 This document defines the Matroska codec mappings, including the
 codec ID, layout of data in a Block Element and in an optional
 CodecPrivate Element.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 30 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Lhomme, et al. Expires 30 July 2024 [Page 1]

Internet-Draft Matroska Codec January 2024

Table of Contents

 1. Introduction . 5
 2. Status of this document 5
 3. Notation and Conventions 5
 4. Codec Mappings . 5
 4.1. Defining Matroska Codec Support 6
 4.1.1. Codec ID . 6
 4.1.2. Codec Name . 7
 4.1.3. Description . 7
 4.1.4. Initialization 7
 4.1.5. Codec BlockAdditions 8
 4.1.6. Citation . 9
 4.1.7. Deprecation Date 9
 4.1.8. Superseded By . 9
 4.2. Recommendations for the Creation of New Codec Mappings . 9
 4.3. Video Codec Mappings 9
 4.3.1. V_MS/VFW/FOURCC 9
 4.3.2. V_UNCOMPRESSED 10
 4.3.3. V_MPEG4/ISO/SP 10
 4.3.4. V_MPEG4/ISO/ASP 10
 4.3.5. V_MPEG4/ISO/AP 11
 4.3.6. V_MPEG4/MS/V3 . 11
 4.3.7. V_MPEG1 . 11
 4.3.8. V_MPEG2 . 12
 4.3.9. V_MPEG4/ISO/AVC 12
 4.3.10. V_MPEGH/ISO/HEVC 12
 4.3.11. V_AVS2 . 13
 4.3.12. V_AVS3 . 13
 4.3.13. V_REAL/RV10 . 13
 4.3.14. V_REAL/RV20 . 13
 4.3.15. V_REAL/RV30 . 14
 4.3.16. V_REAL/RV40 . 14
 4.3.17. V_QUICKTIME . 14
 4.3.18. V_THEORA . 15
 4.3.19. V_PRORES . 15
 4.3.20. V_VP8 . 16
 4.3.21. V_VP9 . 16
 4.3.22. V_FFV1 . 16
 4.4. Audio Codec Mappings 17
 4.4.1. A_MPEG/L3 . 17
 4.4.2. A_MPEG/L2 . 17
 4.4.3. A_MPEG/L1 . 17
 4.4.4. A_PCM/INT/BIG . 18
 4.4.5. A_PCM/INT/LIT . 18
 4.4.6. A_PCM/FLOAT/IEEE 18
 4.4.7. A_MPC . 18
 4.4.8. A_AC3 . 19

Lhomme, et al. Expires 30 July 2024 [Page 2]

Internet-Draft Matroska Codec January 2024

 4.4.9. A_AC3/BSID9 . 19
 4.4.10. A_AC3/BSID10 . 19
 4.4.11. A_ALAC . 19
 4.4.12. A_DTS . 20
 4.4.13. A_DTS/EXPRESS . 20
 4.4.14. A_DTS/LOSSLESS 20
 4.4.15. A_VORBIS . 20
 4.4.16. A_FLAC . 21
 4.4.17. A_REAL/14_4 . 21
 4.4.18. A_REAL/28_8 . 21
 4.4.19. A_REAL/COOK . 22
 4.4.20. A_REAL/SIPR . 22
 4.4.21. A_REAL/RALF . 22
 4.4.22. A_REAL/ATRC . 23
 4.4.23. A_MS/ACM . 23
 4.4.24. A_AAC/MPEG2/MAIN 23
 4.4.25. A_AAC/MPEG2/LC 23
 4.4.26. A_AAC/MPEG2/LC/SBR 24
 4.4.27. A_AAC/MPEG2/SSR 24
 4.4.28. A_AAC/MPEG4/MAIN 24
 4.4.29. A_AAC/MPEG4/LC 25
 4.4.30. A_AAC/MPEG4/LC/SBR 25
 4.4.31. A_AAC/MPEG4/SSR 25
 4.4.32. A_AAC/MPEG4/LTP 25
 4.4.33. A_QUICKTIME . 26
 4.4.34. A_QUICKTIME/QDMC 26
 4.4.35. A_QUICKTIME/QDM2 26
 4.4.36. A_TTA1 . 27
 4.4.37. A_WAVPACK4 . 27
 4.4.38. A_ATRAC/AT1 . 28
 4.5. Subtitle Codec Mappings 28
 4.5.1. S_TEXT/UTF8 . 28
 4.5.2. S_TEXT/SSA . 28
 4.5.3. S_TEXT/ASS . 28
 4.5.4. S_TEXT/WEBVTT . 28
 4.5.5. S_IMAGE/BMP . 29
 4.5.6. S_DVBSUB . 29
 4.5.7. S_VOBSUB . 29
 4.5.8. S_HDMV/PGS . 30
 4.5.9. S_HDMV/TEXTST . 30
 4.5.10. S_KATE . 30
 4.5.11. S_ARIBSUB . 30
 4.6. Button Codec Mappings 30
 4.6.1. B_VOBBTN . 30
 4.7. Block Addition Mappings 31
 4.7.1. Use BlockAddIDValue 31
 4.7.2. Opaque data . 31
 4.7.3. ITU T.35 metadata 31

Lhomme, et al. Expires 30 July 2024 [Page 3]

Internet-Draft Matroska Codec January 2024

 4.7.4. avcE . 31
 4.7.5. dvcC . 32
 4.7.6. dvvC . 32
 4.7.7. hvcE . 32
 4.7.8. mvcC . 32
 5. Subtitles . 33
 5.1. Images Subtitles . 33
 5.2. SRT Subtitles . 36
 5.3. SSA/ASS Subtitles . 37
 5.4. WebVTT . 42
 5.4.1. Storage of WebVTT in Matroska 42
 5.4.1.1. CodecID: codec identification 42
 5.4.1.2. CodecPrivate: storage of global WebVTT blocks . . 42
 5.4.1.3. Storage of non-global WebVTT blocks 42
 5.4.1.4. Storage of Cues in Matroska blocks 42
 5.4.1.5. BlockAdditions: storing non-global WebVTT blocks,
 Cue Settings Lists and Cue identifiers 43
 5.4.2. Examples of transformation 43
 5.4.2.1. Example WebVTT file 43
 5.4.2.2. Example of CodecPrivate 44
 5.4.2.3. Storage of Cue 1 45
 5.4.2.4. Storage of Cue 2 45
 5.4.2.5. Storage of Cue 3 46
 5.4.2.6. Storage of Cue 4 46
 5.4.3. Storage of WebVTT in Matroska vs. WebM 46
 5.5. HDMV presentation graphics subtitles 47
 5.5.1. Storage of HDMV presentation graphics subtitles . . . 47
 5.5.1.1. Storage of HDMV PGS Segments in Matroska
 Blocks . 47
 5.6. HDMV text subtitles 47
 5.6.1. Storage of HDMV text subtitles 47
 5.6.1.1. Storage of HDMV TextST Dialog Presentation Segments
 in Matroska Blocks 48
 5.6.1.2. Character set 48
 5.7. Digital Video Broadcasting (DVB) subtitles 48
 5.7.1. Storage of DVB subtitles 49
 5.7.1.1. CodecID . 49
 5.7.1.2. CodecPrivate 49
 5.7.1.3. Storage of DVB subtitles in Matroska Blocks . . . 49
 5.8. ARIB (ISDB) subtitles 49
 5.8.1. Storage of ARIB subtitles 49
 5.8.1.1. CodecID . 49
 5.8.1.2. CodecPrivate 49
 5.8.1.3. Storage of ARIB subtitles in Matroska Blocks . . 50
 6. Block Additional Mapping 50
 6.1. Summary of Assigned BlockAddIDType Values 52
 6.2. SMPTE ST 12-1 Timecode 52
 6.2.1. Timecode Description 52

Lhomme, et al. Expires 30 July 2024 [Page 4]

Internet-Draft Matroska Codec January 2024

 6.2.2. BlockAddIDType 53
 6.2.3. BlockAddIDName 53
 6.2.4. BlockAddIDExtraData 54
 7. Security Considerations 54
 8. IANA Considerations . 54
 9. Normative References . 54
 10. Informative References 56
 Authors’ Addresses . 56

1. Introduction

 Matroska is a multimedia container format. It stores interleaved and
 timestamped audio/video/subtitle data using various codecs. To
 interpret the codec data, a mapping between the way the data is
 stored in Matroska and how it is understood by such a codec is
 necessary.

 This document intends to define this mapping for many commonly used
 codecs in Matroska.

2. Status of this document

 This document is a work-in-progress specification defining the
 Matroska file format as part of the IETF Cellar working group
 (https://datatracker.ietf.org/wg/cellar/charter/). It uses basic
 elements and concept already defined in the Matroska specifications
 defined by this workgroup [Matroska].

3. Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

4. Codec Mappings

 A Codec Mapping is a set of attributes to identify, name, and
 contextualize the format and characteristics of encoded data that can
 be contained within Matroska Clusters.

Lhomme, et al. Expires 30 July 2024 [Page 5]

Internet-Draft Matroska Codec January 2024

 Each TrackEntry used within Matroska MUST reference a defined Codec
 Mapping using the Codec ID to identify and describe the format of the
 encoded data in its associated Clusters. This Codec ID is a unique
 registered identifier that represents the encoding stored within the
 Track. Certain encodings MAY also require some form of codec
 initialization in order to provide its decoder with context and
 technical metadata.

 The intention behind this list is not to list all existing audio and
 video codecs, but rather to list those codecs that are currently
 supported in Matroska and therefore need a well defined Codec ID so
 that all developers supporting Matroska will use the same Codec ID.
 If you feel we missed support for a very important codec, please tell
 us on our development mailing list (cellar at ietf.org).

4.1. Defining Matroska Codec Support

 Support for a codec is defined in Matroska with the following values.

4.1.1. Codec ID

 Each codec supported for storage in Matroska MUST have a unique Codec
 ID. Each Codec ID MUST be prefixed with the string from the
 following table according to the associated type of the codec. All
 characters of a Codec ID Prefix MUST be capital letters (A-Z) except
 for the last character of a Codec ID Prefix which MUST be an
 underscore ("_").

 +============+=================+
 | Codec Type | Codec ID Prefix |
 +============+=================+
 | Video | "V_" |
 +------------+-----------------+
 | Audio | "A_" |
 +------------+-----------------+
 | Subtitle | "S_" |
 +------------+-----------------+
 | Button | "B_" |
 +------------+-----------------+

 Table 1

 Each Codec ID MUST include a Major Codec ID immediately following the
 Codec ID Prefix. A Major Codec ID MAY be followed by an OPTIONAL
 Codec ID Suffix to communicate a refinement of the Major Codec ID.
 If a Codec ID Suffix is used, then the Codec ID MUST include a
 forward slash ("/") as a separator between the Major Codec ID and the
 Codec ID Suffix. The Major Codec ID MUST be composed of only capital

Lhomme, et al. Expires 30 July 2024 [Page 6]

Internet-Draft Matroska Codec January 2024

 letters (A-Z) and numbers (0-9). The Codec ID Suffix MUST be
 composed of only capital letters (A-Z), numbers (0-9), underscore
 ("_"), and forward slash ("/").

 The following table provides examples of valid Codec IDs and their
 components:

 +==========+==========+===========+===========+=================+
 | Codec ID | Major | Separator | Codec ID | Codec ID |
 | Prefix | Codec ID | | Suffix | |
 +==========+==========+===========+===========+=================+
 | A_ | AAC | / | MPEG2/LC/ | A_AAC/MPEG2/LC/ |
 | | | | SBR | SBR |
 +----------+----------+-----------+-----------+-----------------+
 | V_ | MPEG4 | / | ISO/ASP | V_MPEG4/ISO/ASP |
 +----------+----------+-----------+-----------+-----------------+
 | V_ | MPEG1 | | | V_MPEG1 |
 +----------+----------+-----------+-----------+-----------------+

 Table 2

4.1.2. Codec Name

 Each encoding supported for storage in Matroska MUST have a Codec
 Name. The Codec Name provides a readable label for the encoding.

4.1.3. Description

 An optional description for the encoding. This value is only
 intended for human consumption.

4.1.4. Initialization

 Each encoding supported for storage in Matroska MUST have a defined
 Initialization. The Initialization MUST describe the storage of data
 necessary to initialize the decoder, which MUST be stored within the
 CodecPrivate Element. When the Initialization is updated within a
 track, then that updated Initialization data MUST be written into the
 CodecState Element of the first Cluster to require it. If the
 encoding does not require any form of Initialization, then none MUST
 be used to define the Initialization and the CodecPrivate Element
 SHOULD NOT be written and MUST be ignored. Data that is defined
 Initialization to be stored in the CodecPrivate Element is known as
 Private Data.

Lhomme, et al. Expires 30 July 2024 [Page 7]

Internet-Draft Matroska Codec January 2024

4.1.5. Codec BlockAdditions

 Additional data that contextualizes or supplements a Block can be
 stored within the BlockAdditional Element of a BlockMore Element.
 This BlockAdditional data MAY be passed to the associated decoder
 along with the content of the Block Element. Each BlockAdditional is
 coupled with a BlockAddID that identifies the kind of data it
 contains. The following table defines the meanings of BlockAddID
 values.

 +============+===+
 | BlockAddID | Definition |
 | Value | |
 +============+===+
 | 0 | Invalid. |
 +------------+---+
 | 1 | Indicates that the context of the BlockAdditional |
 | | data is defined by the corresponding Codec Mapping. |
 +------------+---+
2 or	BlockAddID values of 2 and greater are mapped to
greater	the BlockAddIDValue of the BlockAdditionMapping of
	the associated Track.
 +------------+---+

 Table 3

 The values of BlockAddID that are 2 of greater have no semantic
 meaning, but simply associate the BlockMore Element with a
 BlockAdditionMapping of the associated Track. See Section 6 on Block
 Additional Mappings for more information.

 The following XML depicts the nested Elements of a BlockGroup Element
 with an example of BlockAdditions:

 <BlockGroup>
 <Block>{Binary data of a VP9 video frame in YUV}</Block>
 <BlockAdditions>
 <BlockMore>
 <BlockAddID>1</BlockAddID>
 <BlockAdditional>
 {alpha channel encoding to supplement the VP9 frame}
 </BlockAdditional>
 </BlockMore>
 </BlockAdditions>
 </BlockGroup>

Lhomme, et al. Expires 30 July 2024 [Page 8]

Internet-Draft Matroska Codec January 2024

4.1.6. Citation

 Documentation of the associated normative and informative references
 for the codec is RECOMMENDED.

4.1.7. Deprecation Date

 A timestamp, expressed in [RFC3339] that notes when support for the
 Codec Mapping within Matroska was deprecated. If a Codec Mapping is
 defined with a Deprecation Date, then it is RECOMMENDED that Matroska
 writers SHOULD NOT use the Codec Mapping after the Deprecation Date.

4.1.8. Superseded By

 A Codec Mapping MAY only be defined with a Superseded By value, if it
 has an expressed Deprecation Date. If used, the Superseded By value
 MUST store the Codec ID of another Codec Mapping that has superseded
 the Codec Mapping.

4.2. Recommendations for the Creation of New Codec Mappings

 Creators of new Codec Mappings to be used in the context of Matroska:

 * SHOULD assume that all Codec Mappings they create might become
 standardized, public, commonly deployed, or usable across multiple
 implementations.

 * SHOULD employ meaningful values for Codec ID and Codec Name that
 they have reason to believe are currently unused.

 * SHOULD NOT prefix their Codec ID with "X_" or similar constructs.

 These recommendations are based upon Section 3 of [RFC6648].

4.3. Video Codec Mappings

4.3.1. V_MS/VFW/FOURCC

 Codec ID: V_MS/VFW/FOURCC

 Codec Name: Microsoft (TM) Video Codec Manager (VCM)

Lhomme, et al. Expires 30 July 2024 [Page 9]

Internet-Draft Matroska Codec January 2024

 Description: The private data contains the VCM structure
 BITMAPINFOHEADER including the extra private bytes, as defined by
 Microsoft (https://msdn.microsoft.com/en-us/library/windows/desktop/
 dd318229(v=vs.85).aspx). The data are stored in little-endian format
 (like on IA32 machines). Where is the Huffman table stored in
 HuffYUV, not AVISTREAMINFO ??? And the FourCC, not in
 AVISTREAMINFO.fccHandler ???

 Initialization: Private Data contains the VCM structure
 BITMAPINFOHEADER including the extra private bytes, as defined by
 Microsoft in https://msdn.microsoft.com/en-
 us/library/windows/desktop/dd183376(v=vs.85).aspx
 (https://msdn.microsoft.com/en-us/library/windows/desktop/
 dd183376(v=vs.85).aspx).

 Citation: https://msdn.microsoft.com/en-us/library/windows/desktop/
 dd183376(v=vs.85).aspx (https://msdn.microsoft.com/en-
 us/library/windows/desktop/dd183376(v=vs.85).aspx)

4.3.2. V_UNCOMPRESSED

 Codec ID: V_UNCOMPRESSED

 Codec Name: Video, raw uncompressed video frames

 Description: All details about the used color specs and bit depth are
 to be put/read from the TrackEntry\Video\UncompressedFourCC elements.

 Initialization: none

4.3.3. V_MPEG4/ISO/SP

 Codec ID: V_MPEG4/ISO/SP

 Codec Name: MPEG4 ISO simple profile (DivX4)

 Description: Stream was created via improved codec API (UCI) or even
 transmuxed from AVI (no b-frames in Simple Profile), frame order is
 coding order.

 Initialization: none

4.3.4. V_MPEG4/ISO/ASP

 Codec ID: V_MPEG4/ISO/ASP

 Codec Name: MPEG4 ISO advanced simple profile (DivX5, XviD, FFMPEG)

Lhomme, et al. Expires 30 July 2024 [Page 10]

Internet-Draft Matroska Codec January 2024

 Description: Stream was created via improved codec API (UCI) or
 transmuxed from MP4, not simply transmuxed from AVI. Note there are
 differences how b-frames are handled in these original streams, when
 being compared to a VfW created stream, as here there are no dummy
 frames inserted, the frame order is exactly the same as the coding
 order, same as in MP4 streams.

 Initialization: none

4.3.5. V_MPEG4/ISO/AP

 Codec ID: V_MPEG4/ISO/AP

 Codec Name: MPEG4 ISO advanced profile

 Description: Stream was created via improved codec API (UCI) or
 transmuxed from MP4, not simply transmuxed from AVI. Note there are
 differences how b-frames are handled in these original streams, when
 being compared to a VfW created stream, as here there are no dummy
 frames inserted, the frame order is exactly the same as the coding
 order, same as in MP4 streams.

 Initialization: none

4.3.6. V_MPEG4/MS/V3

 Codec ID: V_MPEG4/MS/V3

 Codec Name: Microsoft (TM) MPEG4 V3

 Description: Microsoft (TM) MPEG4 V3 and derivates, means DivX3,
 Angelpotion, SMR, etc.; stream was created using VfW codec or
 transmuxed from AVI; note that V1/V2 are covered in VfW compatibility
 mode.

 Initialization: none

4.3.7. V_MPEG1

 Codec ID: V_MPEG1

 Codec Name: MPEG 1

 Description: The Matroska video stream will contain a demuxed
 Elementary Stream (ES), where block boundaries are still to be
 defined. It’s RECOMMENDED to use MPEG2MKV.exe for creating those
 files, and to compare the results with self-made implementations

Lhomme, et al. Expires 30 July 2024 [Page 11]

Internet-Draft Matroska Codec January 2024

 Initialization: none

4.3.8. V_MPEG2

 Codec ID: V_MPEG2

 Codec Name: MPEG 2

 Description: The Matroska video stream will contain a demuxed
 Elementary Stream (ES), where block boundaries are still to be
 defined. It’s RECOMMENDED to use MPEG2MKV.exe for creating those
 files, and to compare the results with self-made implementations

 Initialization: none

4.3.9. V_MPEG4/ISO/AVC

 Codec ID: V_MPEG4/ISO/AVC

 Codec Name: AVC/H.264

 Description: Individual pictures (which could be a frame, a field, or
 2 fields having the same timestamp) of AVC/H.264 stored as described
 in [ISO.14496-15].

 Initialization: The Private Data contains a
 AVCDecoderConfigurationRecord structure, as defined in
 [ISO.14496-15]. For legacy reasons, because Block Addition Mappings
 are preferred, see Section 4.7, the AVCDecoderConfigurationRecord
 structure MAY be followed by an extension block beginning with a
 4-byte extension block size field in big-endian byte order which is
 the size of the extension block minus 4 (excluding the size of the
 extension block size field) and a 4-byte field corresponding to a
 BlockAddIDType of "mvcC" followed by a content corresponding to the
 content of BlockAddIDExtraData for mvcC; see Section 4.7.8.

4.3.10. V_MPEGH/ISO/HEVC

 Codec ID: V_MPEGH/ISO/HEVC

 Codec Name: HEVC/H.265

 Description: Individual pictures (which could be a frame, a field, or
 2 fields having the same timestamp) of HEVC/H.265 stored as described
 in [ISO.14496-15].

Lhomme, et al. Expires 30 July 2024 [Page 12]

Internet-Draft Matroska Codec January 2024

 Initialization: The Private Data contains a
 HEVCDecoderConfigurationRecord structure, as defined in
 [ISO.14496-15].

4.3.11. V_AVS2

 Codec ID: V_AVS2

 Codec Name: AVS2-P2/IEEE.1857.4

 Description: Individual pictures of AVS2-P2 stored as described in
 the second part of [IEEE.1857-4].

 Initialization: none.

4.3.12. V_AVS3

 Codec ID: V_AVS3

 Codec Name: AVS3-P2/IEEE.1857.10

 Description: Individual pictures of AVS3-P2 stored as described in
 the second part of [IEEE.1857-10].

 Initialization: none.

4.3.13. V_REAL/RV10

 Codec ID: V_REAL/RV10

 Codec Name: RealVideo 1.0 aka RealVideo 5

 Description: Individual slices from the Real container are combined
 into a single frame.

 Initialization: The Private Data contains a real_video_props_t
 structure in big-endian byte order as found in librmff
 (https://github.com/mbunkus/mkvtoolnix/blob/master/lib/librmff/
 librmff.h).

4.3.14. V_REAL/RV20

 Codec ID: V_REAL/RV20

 Codec Name: RealVideo G2 and RealVideo G2+SVT

 Description: Individual slices from the Real container are combined
 into a single frame.

Lhomme, et al. Expires 30 July 2024 [Page 13]

Internet-Draft Matroska Codec January 2024

 Initialization: The Private Data contains a real_video_props_t
 structure in big-endian byte order as found in librmff
 (https://github.com/mbunkus/mkvtoolnix/blob/master/lib/librmff/
 librmff.h).

4.3.15. V_REAL/RV30

 Codec ID: V_REAL/RV30

 Codec Name: RealVideo 8

 Description: Individual slices from the Real container are combined
 into a single frame.

 Initialization: The Private Data contains a real_video_props_t
 structure in big-endian byte order as found in librmff
 (https://github.com/mbunkus/mkvtoolnix/blob/master/lib/librmff/
 librmff.h).

4.3.16. V_REAL/RV40

 Codec ID: V_REAL/RV40

 Codec Name: rv40 : RealVideo 9

 Description: Individual slices from the Real container are combined
 into a single frame.

 Initialization: The Private Data contains a real_video_props_t
 structure in big-endian byte order as found in librmff
 (https://github.com/mbunkus/mkvtoolnix/blob/master/lib/librmff/
 librmff.h).

4.3.17. V_QUICKTIME

 Codec ID: V_QUICKTIME

 Codec Name: Video taken from QuickTime(TM) files

 Description: Several codecs as stored in QuickTime, e.g., Sorenson or
 Cinepak.

Lhomme, et al. Expires 30 July 2024 [Page 14]

Internet-Draft Matroska Codec January 2024

 Initialization: The Private Data contains all additional data that is
 stored in the ’stsd’ (sample description) atom in the QuickTime file
 after the mandatory video descriptor structure (starting with the
 size and FourCC fields). For an explanation of the QuickTime file
 format read QuickTime File Format Specification
 (https://developer.apple.com/library/mac/documentation/QuickTime/
 QTFF/QTFFPreface/qtffPreface.html).

4.3.18. V_THEORA

 Codec ID: V_THEORA

 Codec Name: Theora

 Initialization: The Private Data contains the first three Theora
 packets in order. The lengths of the packets precedes them. The
 actual layout is:

 * Byte 1: number of distinct packets #p minus one inside the
 CodecPrivate block. This MUST be "2" for current (as of
 2016-07-08) Theora headers.
 * Bytes 2..n: lengths of the first #p packets, coded in Xiph-style
 lacing. The length of the last packet is the length of the
 CodecPrivate block minus the lengths coded in these bytes minus
 one.
 * Bytes n+1..: The Theora identification header, followed by the
 commend header followed by the codec setup header. Those are
 described in the Theora specs (http://www.theora.org/doc/
 Theora.pdf).

4.3.19. V_PRORES

 Codec ID: V_PRORES

 Codec Name: Apple ProRes

 Initialization: The Private Data contains the FourCC as found in MP4
 movies:

 * ap4x: ProRes 4444 XQ
 * ap4h: ProRes 4444
 * apch: ProRes 422 High Quality
 * apcn: ProRes 422 Standard Definition
 * apcs: ProRes 422 LT
 * apco: ProRes 422 Proxy
 * aprh: ProRes RAW High Quality
 * aprn: ProRes RAW Standard Definition

Lhomme, et al. Expires 30 July 2024 [Page 15]

Internet-Draft Matroska Codec January 2024

 this page for more technical details on ProRes
 (http://wiki.multimedia.cx/index.php?title=Apple_ProRes#Frame_layout)

4.3.20. V_VP8

 Codec ID: V_VP8

 Codec Name: VP8 Codec format

 Description: VP8 is an open and royalty free video compression format
 developed by Google and created by On2 Technologies as a successor to
 VP7. [RFC6386]

 Codec BlockAdditions: A single-channel encoding of an alpha channel
 MAY be stored in BlockAdditions. The BlockAddId of the BlockMore
 containing these data MUST be 1.

 Initialization: none

4.3.21. V_VP9

 Codec ID: V_VP9

 Codec Name: VP9 Codec format

 Description: VP9 is an open and royalty free video compression format
 developed by Google as a successor to VP8. Draft VP9 Bitstream and
 Decoding Process Specification (https://www.webmproject.org/vp9/)

 Codec BlockAdditions: A single-channel encoding of an alpha channel
 MAY be stored in BlockAdditions. The BlockAddId of the BlockMore
 containing these data MUST be 1.

 Initialization: none

4.3.22. V_FFV1

 Codec ID: V_FFV1

 Codec Name: FF Video Codec 1

 Description: FFV1 is a lossless intra-frame video encoding format
 designed to efficiently compress video data in a variety of pixel
 formats. Compared to uncompressed video, FFV1 offers storage
 compression, frame fixity, and self-description, which makes FFV1
 useful as a preservation or intermediate video format. Draft FFV1
 Specification (https://datatracker.ietf.org/doc/draft-ietf-cellar-
 ffv1/)

Lhomme, et al. Expires 30 July 2024 [Page 16]

Internet-Draft Matroska Codec January 2024

 Initialization: For FFV1 versions 0 or 1, Private Data SHOULD NOT be
 written. For FFV1 version 3 or greater, the Private Data MUST
 contain the FFV1 Configuration Record structure, as defined in
 https://tools.ietf.org/html/draft-ietf-cellar-ffv1-04#section-4.2
 (https://tools.ietf.org/html/draft-ietf-cellar-ffv1-04#section-4.2),
 and no other data.

4.4. Audio Codec Mappings

4.4.1. A_MPEG/L3

 Codec ID: A_MPEG/L3

 Codec Name: MPEG Audio 1, 2, 2.5 Layer III

 Description: The data contain everything needed for playback in the
 MPEG Audio header of each frame. Corresponding ACM wFormatTag :
 0x0055

 Initialization: none

4.4.2. A_MPEG/L2

 Codec ID: A_MPEG/L2

 Codec Name: MPEG Audio 1, 2 Layer II

 Description: The data contain everything needed for playback in the
 MPEG Audio header of each frame. Corresponding ACM wFormatTag :
 0x0050

 Initialization: none

4.4.3. A_MPEG/L1

 Codec ID: A_MPEG/L1

 Codec Name: MPEG Audio 1, 2 Layer I

 Description: The data contain everything needed for playback in the
 MPEG Audio header of each frame. Corresponding ACM wFormatTag :
 0x0050

 Initialization: none

Lhomme, et al. Expires 30 July 2024 [Page 17]

Internet-Draft Matroska Codec January 2024

4.4.4. A_PCM/INT/BIG

 Codec ID: A_PCM/INT/BIG

 Codec Name: PCM Integer Big Endian

 Description: The audio bit depth MUST be read and set from the
 BitDepth Element. Audio samples MUST be considered as signed values,
 except if the audio bit depth is 8 which MUST be interpreted as
 unsigned values. Corresponding ACM wFormatTag : ???

 Initialization: none

4.4.5. A_PCM/INT/LIT

 Codec ID: A_PCM/INT/LIT

 Codec Name: PCM Integer Little Endian

 Description: The audio bit depth MUST be read and set from the
 BitDepth Element. Audio samples MUST be considered as signed values,
 except if the audio bit depth is 8 which MUST be interpreted as
 unsigned values. Corresponding ACM wFormatTag : 0x0001

 Initialization: none

4.4.6. A_PCM/FLOAT/IEEE

 Codec ID: A_PCM/FLOAT/IEEE

 Codec Name: Floating-Point, IEEE compatible

 Description: The audio bit depth MUST be read and set from the
 BitDepth Element (32 bit in most cases). The floats are stored as
 defined in [IEEE.754] and in little-endian order. Corresponding ACM
 wFormatTag : 0x0003

 Initialization: none

4.4.7. A_MPC

 Codec ID: A_MPC

 Codec Name: MPC (musepack) SV8

 Description: The main developer for musepack has requested that we
 wait until the SV8 framing has been fully defined for musepack before
 defining how to store it in Matroska.

Lhomme, et al. Expires 30 July 2024 [Page 18]

Internet-Draft Matroska Codec January 2024

4.4.8. A_AC3

 Codec ID: A_AC3

 Codec Name: (Dolby (U+2122)) AC3

 Description: BSID <= 8 !! The private data is void ??? Corresponding
 ACM wFormatTag : 0x2000 ; channel number have to be read from the
 corresponding audio element

4.4.9. A_AC3/BSID9

 Codec ID: A_AC3/BSID9

 Codec Name: (Dolby (U+2122)) AC3

 Description: The ac3 frame header has, similar to the mpeg-audio
 header a version field. Normal ac3 is defined as bitstream id 8 (5
 Bits, numbers are 0-15). Everything below 8 is still compatible with
 all decoders that handle 8 correctly. Everything higher are
 additions that break decoder compatibility. For the samplerates
 24kHz (00); 22,05kHz (01) and 16kHz (10) the BSID is 9 For the
 samplerates 12kHz (00); 11,025kHz (01) and 8kHz (10) the BSID is 10

 Initialization: none

4.4.10. A_AC3/BSID10

 Codec ID: A_AC3/BSID10

 Codec Name: (Dolby (U+2122)) AC3

 Description: The ac3 frame header has, similar to the mpeg-audio
 header a version field. Normal ac3 is defined as bitstream id 8 (5
 Bits, numbers are 0-15). Everything below 8 is still compatible with
 all decoders that handle 8 correctly. Everything higher are
 additions that break decoder compatibility. For the samplerates
 24kHz (00); 22,05kHz (01) and 16kHz (10) the BSID is 9 For the
 samplerates 12kHz (00); 11,025kHz (01) and 8kHz (10) the BSID is 10

 Initialization: none

4.4.11. A_ALAC

 Codec ID: A_ALAC

 Codec Name: ALAC (Apple Lossless Audio Codec)

Lhomme, et al. Expires 30 July 2024 [Page 19]

Internet-Draft Matroska Codec January 2024

 Initialization: The Private Data contains ALAC’s magic cookie (both
 the codec specific configuration as well as the optional channel
 layout information). Its format is described in ALAC’s official
 source code (http://alac.macosforge.org/trac/browser/trunk/
 ALACMagicCookieDescription.txt).

4.4.12. A_DTS

 Codec ID: A_DTS

 Codec Name: Digital Theatre System

 Description: Supports DTS, DTS-ES, DTS-96/26, DTS-HD High Resolution
 Audio and DTS-HD Master Audio. The private data is void.
 Corresponding ACM wFormatTag : 0x2001

 Initialization: none

4.4.13. A_DTS/EXPRESS

 Codec ID: A_DTS/EXPRESS

 Codec Name: Digital Theatre System Express

 Description: DTS Express (a.k.a. LBR) audio streams. The private
 data is void. Corresponding ACM wFormatTag : 0x2001

 Initialization: none

4.4.14. A_DTS/LOSSLESS

 Codec ID: A_DTS/LOSSLESS

 Codec Name: Digital Theatre System Lossless

 Description: DTS Lossless audio that does not have a core substream.
 The private data is void. Corresponding ACM wFormatTag : 0x2001

 Initialization: none

4.4.15. A_VORBIS

 Codec ID: A_VORBIS

 Codec Name: Vorbis

Lhomme, et al. Expires 30 July 2024 [Page 20]

Internet-Draft Matroska Codec January 2024

 Initialization: The Private Data contains the first three Vorbis
 packet in order. The lengths of the packets precedes them. The
 actual layout is: - Byte 1: number of distinct packets #p minus one
 inside the CodecPrivate block. This MUST be "2" for current (as of
 2016-07-08) Vorbis headers. - Bytes 2..n: lengths of the first #p
 packets, coded in Xiph-style lacing. The length of the last packet
 is the length of the CodecPrivate block minus the lengths coded in
 these bytes minus one. - Bytes n+1..: The Vorbis identification
 header (https://xiph.org/vorbis/doc/Vorbis_I_spec.html), followed by
 the Vorbis comment header (https://xiph.org/vorbis/doc/
 v-comment.html) followed by the codec setup header
 (https://xiph.org/vorbis/doc/Vorbis_I_spec.html).

4.4.16. A_FLAC

 Codec ID: A_FLAC

 Codec Name: FLAC (Free Lossless Audio Codec)
 (http://flac.sourceforge.net/)

 Initialization: The Private Data contains all the header/metadata
 packets before the first data packet. These include the first header
 packet containing only the word fLaC as well as all metadata packets.

4.4.17. A_REAL/14_4

 Codec ID: A_REAL/14_4

 Codec Name: Real Audio 1

 Initialization: The Private Data contains either the
 "real_audio_v4_props_t" or the "real_audio_v5_props_t" structure
 (differentiated by their "version" field; big-endian byte order) as
 found in librmff
 (https://github.com/mbunkus/mkvtoolnix/blob/master/lib/librmff/
 librmff.h).

4.4.18. A_REAL/28_8

 Codec ID: A_REAL/28_8

 Codec Name: Real Audio 2

Lhomme, et al. Expires 30 July 2024 [Page 21]

Internet-Draft Matroska Codec January 2024

 Initialization: The Private Data contains either the
 "real_audio_v4_props_t" or the "real_audio_v5_props_t" structure
 (differentiated by their "version" field; big-endian byte order) as
 found in librmff
 (https://github.com/mbunkus/mkvtoolnix/blob/master/lib/librmff/
 librmff.h).

4.4.19. A_REAL/COOK

 Codec ID: A_REAL/COOK

 Codec Name: Real Audio Cook Codec (codename: Gecko)

 Initialization: The Private Data contains either the
 "real_audio_v4_props_t" or the "real_audio_v5_props_t" structure
 (differentiated by their "version" field; big-endian byte order) as
 found in librmff
 (https://github.com/mbunkus/mkvtoolnix/blob/master/lib/librmff/
 librmff.h).

4.4.20. A_REAL/SIPR

 Codec ID: A_REAL/SIPR

 Codec Name: Sipro Voice Codec

 Initialization: The Private Data contains either the
 "real_audio_v4_props_t" or the "real_audio_v5_props_t" structure
 (differentiated by their "version" field; big-endian byte order) as
 found in librmff
 (https://github.com/mbunkus/mkvtoolnix/blob/master/lib/librmff/
 librmff.h).

4.4.21. A_REAL/RALF

 Codec ID: A_REAL/RALF

 Codec Name: Real Audio Lossless Format

 Initialization: The Private Data contains either the
 "real_audio_v4_props_t" or the "real_audio_v5_props_t" structure
 (differentiated by their "version" field; big-endian byte order) as
 found in librmff
 (https://github.com/mbunkus/mkvtoolnix/blob/master/lib/librmff/
 librmff.h).

Lhomme, et al. Expires 30 July 2024 [Page 22]

Internet-Draft Matroska Codec January 2024

4.4.22. A_REAL/ATRC

 Codec ID: A_REAL/ATRC

 Codec Name: Sony Atrac3 Codec

 Initialization: The Private Data contains either the
 "real_audio_v4_props_t" or the "real_audio_v5_props_t" structure
 (differentiated by their "version" field; big-endian byte order) as
 found in librmff
 (https://github.com/mbunkus/mkvtoolnix/blob/master/lib/librmff/
 librmff.h).

4.4.23. A_MS/ACM

 Codec ID: A_MS/ACM

 Codec Name: Microsoft(TM) Audio Codec Manager (ACM)

 Description: The data are stored in little-endian format (like on
 IA32 machines).

 Initialization: The Private Data contains the [WAVEFORMATEX]
 structure including the extra format information bytes. The
 structure is stored without packing or padding bytes. A WORD
 corresponds to a signed 2 octets integer, DWORD corresponds to a
 signed 4 octets integer. The extra format information are appended
 after the WAVEFORMATEX octets.

4.4.24. A_AAC/MPEG2/MAIN

 Codec ID: A_AAC/MPEG2/MAIN

 Codec Name: MPEG2 Main Profile

 Description: Channel number and sample rate have to be read from the
 corresponding audio element. Audio stream is stripped from ADTS
 headers and normal Matroska frame based muxing scheme is applied.
 AAC audio always uses wFormatTag 0xFF.

 Initialization: none

4.4.25. A_AAC/MPEG2/LC

 Codec ID: A_AAC/MPEG2/LC

 Codec Name: Low Complexity

Lhomme, et al. Expires 30 July 2024 [Page 23]

Internet-Draft Matroska Codec January 2024

 Description: Channel number and sample rate have to be read from the
 corresponding audio element. Audio stream is stripped from ADTS
 headers and normal Matroska frame based muxing scheme is applied.
 AAC audio always uses wFormatTag 0xFF.

 Initialization: none

4.4.26. A_AAC/MPEG2/LC/SBR

 Codec ID: A_AAC/MPEG2/LC/SBR

 Codec Name: Low Complexity with Spectral Band Replication

 Description: Channel number and sample rate have to be read from the
 corresponding audio element. Audio stream is stripped from ADTS
 headers and normal Matroska frame based muxing scheme is applied.
 AAC audio always uses wFormatTag 0xFF.

 Initialization: none

4.4.27. A_AAC/MPEG2/SSR

 Codec ID: A_AAC/MPEG2/SSR

 Codec Name: Scalable Sampling Rate

 Description: Channel number and sample rate have to be read from the
 corresponding audio element. Audio stream is stripped from ADTS
 headers and normal Matroska frame based muxing scheme is applied.
 AAC audio always uses wFormatTag 0xFF.

 Initialization: none

4.4.28. A_AAC/MPEG4/MAIN

 Codec ID: A_AAC/MPEG4/MAIN

 Codec Name: MPEG4 Main Profile

 Description: Channel number and sample rate have to be read from the
 corresponding audio element. Audio stream is stripped from ADTS
 headers and normal Matroska frame based muxing scheme is applied.
 AAC audio always uses wFormatTag 0xFF.

 Initialization: none

Lhomme, et al. Expires 30 July 2024 [Page 24]

Internet-Draft Matroska Codec January 2024

4.4.29. A_AAC/MPEG4/LC

 Codec ID: A_AAC/MPEG4/LC

 Codec Name: Low Complexity

 Description: Channel number and sample rate have to be read from the
 corresponding audio element. Audio stream is stripped from ADTS
 headers and normal Matroska frame based muxing scheme is applied.
 AAC audio always uses wFormatTag 0xFF.

 Initialization: none

4.4.30. A_AAC/MPEG4/LC/SBR

 Codec ID: A_AAC/MPEG4/LC/SBR

 Codec Name: Low Complexity with Spectral Band Replication

 Description: Channel number and sample rate have to be read from the
 corresponding audio element. Audio stream is stripped from ADTS
 headers and normal Matroska frame based muxing scheme is applied.
 AAC audio always uses wFormatTag 0xFF.

 Initialization: none

4.4.31. A_AAC/MPEG4/SSR

 Codec ID: A_AAC/MPEG4/SSR

 Codec Name: Scalable Sampling Rate

 Description: Channel number and sample rate have to be read from the
 corresponding audio element. Audio stream is stripped from ADTS
 headers and normal Matroska frame based muxing scheme is applied.
 AAC audio always uses wFormatTag 0xFF.

 Initialization: none

4.4.32. A_AAC/MPEG4/LTP

 Codec ID: A_AAC/MPEG4/LTP

 Codec Name: Long Term Prediction

Lhomme, et al. Expires 30 July 2024 [Page 25]

Internet-Draft Matroska Codec January 2024

 Description: Channel number and sample rate have to be read from the
 corresponding audio element. Audio stream is stripped from ADTS
 headers and normal Matroska frame based muxing scheme is applied.
 AAC audio always uses wFormatTag 0xFF.

 Initialization: none

4.4.33. A_QUICKTIME

 Codec ID: A_QUICKTIME

 Codec Name: Audio taken from QuickTime(TM) files

 Description: Several codecs as stored in QuickTime, e.g., QDesign
 Music v1 or v2.

 Initialization: The Private Data contains all additional data that is
 stored in the ’stsd’ (sample description) atom in the QuickTime file
 after the mandatory sound descriptor structure (starting with the
 size and FourCC fields). For an explanation of the QuickTime file
 format read QuickTime File Format Specification
 (https://developer.apple.com/library/mac/documentation/QuickTime/
 QTFF/QTFFPreface/qtffPreface.html).

4.4.34. A_QUICKTIME/QDMC

 Codec ID: A_QUICKTIME/QDMC

 Codec Name: QDesign Music

 Description:

 Initialization: The Private Data contains all additional data that is
 stored in the ’stsd’ (sample description) atom in the QuickTime file
 after the mandatory sound descriptor structure (starting with the
 size and FourCC fields). For an explanation of the QuickTime file
 format read QuickTime File Format Specification
 (https://developer.apple.com/library/mac/documentation/QuickTime/
 QTFF/QTFFPreface/qtffPreface.html).

 Superseded By: A_QUICKTIME

4.4.35. A_QUICKTIME/QDM2

 Codec ID: A_QUICKTIME/QDM2

 Codec Name: QDesign Music v2

Lhomme, et al. Expires 30 July 2024 [Page 26]

Internet-Draft Matroska Codec January 2024

 Description:

 Initialization: The Private Data contains all additional data that is
 stored in the ’stsd’ (sample description) atom in the QuickTime file
 after the mandatory sound descriptor structure (starting with the
 size and FourCC fields). For an explanation of the QuickTime file
 format read QuickTime File Format Specification
 (https://developer.apple.com/library/mac/documentation/QuickTime/
 QTFF/QTFFPreface/qtffPreface.html).

 Superseded By: A_QUICKTIME

4.4.36. A_TTA1

 Codec ID: A_TTA1

 Codec Name: The True Audio (http://tausoft.org/) lossless audio
 compressor

 Description: TTA format description (http://tausoft.org/wiki/
 True_Audio_Codec_Format) Each frame is kept intact, including the
 CRC32. The header and seektable are dropped. SamplingFrequency,
 Channels and BitDepth are used in the TrackEntry. wFormatTag = 0x77A1

 Initialization: none

4.4.37. A_WAVPACK4

 Codec ID: A_WAVPACK4

 Codec Name: WavPack (http://www.wavpack.com/) lossless audio
 compressor

 Description: The Wavpack packets consist of a stripped header
 followed by the frame data. For multi-track (> 2 tracks) a frame
 consists of many packets. For more details, check the WavPack muxing
 description (wavpack.html).

 Codec BlockAdditions: For hybrid A_WAVPACK4 encodings (that include a
 lossy encoding with a supplemental correction to produce a lossless
 encoding), the correction part is stored in BlockAdditional. The
 BlockAddId of the BlockMore containing these data MUST be 1.

 Initialization: none

Lhomme, et al. Expires 30 July 2024 [Page 27]

Internet-Draft Matroska Codec January 2024

4.4.38. A_ATRAC/AT1

 Codec ID: A_ATRAC/AT1

 Codec Name: Sony ATRAC1 Codec

 Description: The original ATRAC codec by Sony, mainly used in
 MiniDisc platforms. The core technical details on ATRAC1 can be
 found in [AtracAES]. An example encoder/decoder can be found at
 [atracdenc].

 Initialization: None

4.5. Subtitle Codec Mappings

4.5.1. S_TEXT/UTF8

 Codec ID: S_TEXT/UTF8

 Codec Name: UTF-8 Plain Text

 Description: Basic text subtitles. For more information, see
 Section 5 on Subtitles.

4.5.2. S_TEXT/SSA

 Codec ID: S_TEXT/SSA

 Codec Name: Subtitles Format

 Description: The [Script Info] and [V4 Styles] sections are stored in
 the codecprivate. Each event is stored in its own Block. For more
 information, see Section 5.3 on SSA/ASS.

4.5.3. S_TEXT/ASS

 Codec ID: S_TEXT/ASS

 Codec Name: Advanced Subtitles Format

 Description: The [Script Info] and [V4 Styles] sections are stored in
 the codecprivate. Each event is stored in its own Block. For more
 information, see Section 5.3 on SSA/ASS.

4.5.4. S_TEXT/WEBVTT

 Codec ID: S_TEXT/WEBVTT

Lhomme, et al. Expires 30 July 2024 [Page 28]

Internet-Draft Matroska Codec January 2024

 Codec Name: Web Video Text Tracks Format (WebVTT)

 Description: Advanced text subtitles. For more information, see
 Section 5.4 on WebVTT.

4.5.5. S_IMAGE/BMP

 Codec ID: S_IMAGE/BMP

 Codec Name: Bitmap

 Description: Basic image based subtitle format; The subtitles are
 stored as images, like in the DVD [DVD-Video]. The timestamp in the
 block header of Matroska indicates the start display time, the
 duration is set with the Duration element. The full data for the
 subtitle bitmap is stored in the Block’s data section.

4.5.6. S_DVBSUB

 Codec ID: S_DVBSUB

 Codec Name: Digital Video Broadcasting (DVB) subtitles

 Description: This is the graphical subtitle format used in the
 Digital Video Broadcasting standard. For more information, see
 Section 5.7 on Digital Video Broadcasting (DVB).

4.5.7. S_VOBSUB

 Codec ID: S_VOBSUB

 Codec Name: VobSub subtitles

 Description: The same subtitle format used on DVDs [DVD-Video].
 Supported is only format version 7 and newer. VobSubs consist of two
 files, the .idx containing information, and the .sub, containing the
 actual data. The .idx file is stripped of all empty lines, of all
 comments and of lines beginning with alt: or langidx:. The line
 beginning with id: SHOULD be transformed into the appropriate
 Matroska track language element and is discarded. All remaining
 lines but the ones containing timestamps and file positions are put
 into the CodecPrivate element.

 For each line containing the timestamp and file position data is read
 from the appropriate position in the .sub file. This data consists
 of a MPEG program stream which in turn contains SPU packets. The
 MPEG program stream data is discarded, and each SPU packet is put
 into one Matroska frame.

Lhomme, et al. Expires 30 July 2024 [Page 29]

Internet-Draft Matroska Codec January 2024

4.5.8. S_HDMV/PGS

 Codec ID: S_HDMV/PGS

 Codec Name: HDMV presentation graphics subtitles (PGS)

 Description: This is the graphical subtitle format used on Blu-rays.
 For more information, see Section 5.6 on HDMV text presentation.

4.5.9. S_HDMV/TEXTST

 Codec ID: S_HDMV/TEXTST

 Codec Name: HDMV text subtitles

 Description: This is the textual subtitle format used on Blu-rays.
 For more information, see Section 5.5 on HDMV graphics presentation.

4.5.10. S_KATE

 Codec ID: S_KATE

 Codec Name: Karaoke And Text Encapsulation

 Description: A subtitle format developed for ogg. The mapping for
 Matroska is described on the Xiph wiki
 (http://wiki.xiph.org/index.php/OggKate#Matroska_mapping). As for
 Theora and Vorbis, Kate headers are stored in the private data as
 xiph-laced packets.

4.5.11. S_ARIBSUB

 Codec ID: S_ARIBSUB

 Codec Name: ARIB STD-B24 subtitles

 Description: This is the textual subtitle format used in the ISDB/
 ARIB broadcasting standard. For more information, see Section 5.8 on
 ARIB (ISDB) subtitles.

4.6. Button Codec Mappings

4.6.1. B_VOBBTN

 Codec ID: B_VOBBTN

 Codec Name: VobBtn Buttons

Lhomme, et al. Expires 30 July 2024 [Page 30]

Internet-Draft Matroska Codec January 2024

 Description: Based on MPEG/VOB PCI packets
 (http://dvd.sourceforge.net/dvdinfo/pci_pkt.html). The file contains
 a header consisting of the string "butonDVD" followed by the width
 and height in pixels (16 bits integer each) and 4 reserved bytes.
 The rest is full PCI packets (http://dvd.sourceforge.net/dvdinfo/
 pci_pkt.html).

4.7. Block Addition Mappings

 Registered BlockAddIDType are:

4.7.1. Use BlockAddIDValue

 Block type identifier: 0

 Block type name: Use BlockAddIDValue

 Description: This value indicates that the actual type is stored in
 BlockAddIDValue instead. This value is expected to be used when it
 is important to have a strong compatibility with players or derived
 formats not supporting BlockAdditionMapping but using BlockAdditions
 with an unknown BlockAddIDValue, and SHOULD NOT be used if it is
 possible to use another value.

4.7.2. Opaque data

 Block type identifier: 1

 Block type name: Opaque data

 Description: the BlockAdditional data is interpreted as opaque
 additional data passed to the codec with the Block data.
 BlockAddIDValue MUST be 1.

4.7.3. ITU T.35 metadata

 Block type identifier: 4

 Block type name: ITU T.35 metadata

 Description: the BlockAdditional data is interpreted as ITU T.35
 metadata, as defined by ITU-T T.35 terminal codes. BlockAddIDValue
 MUST be 4.

4.7.4. avcE

 Block type identifier: 0x61766345

Lhomme, et al. Expires 30 July 2024 [Page 31]

Internet-Draft Matroska Codec January 2024

 Block type name: Dolby Vision enhancement-layer AVC configuration

 Description: the BlockAddIDExtraData data is interpreted as the Dolby
 Vision enhancement-layer AVC configuration box as described in
 [DolbyVisionWithinIso]. This extension MUST NOT be used if Codec ID
 is not V_MPEG4/ISO/AVC.

4.7.5. dvcC

 Block type identifier: 0x64766343

 Block type name: Dolby Vision configuration

 Description: the BlockAddIDExtraData data is interpreted as
 DOVIDecoderConfigurationRecord structure, as defined in
 [DolbyVisionWithinIso], for Dolby Vision profiles less than and equal
 to 7.

4.7.6. dvvC

 Block type identifier: 0x64767643

 Block type name: Dolby Vision configuration

 Description: the BlockAddIDExtraData data is interpreted as
 DOVIDecoderConfigurationRecord structure, as defined in
 [DolbyVisionWithinIso], for Dolby Vision profiles greater than 7.

4.7.7. hvcE

 Block type identifier: 0x68766345

 Block type name: Dolby Vision enhancement-layer HEVC configuration

 Description: the BlockAddIDExtraData data is interpreted as the Dolby
 Vision enhancement-layer HEVC configuration as described in
 [DolbyVisionWithinIso]. This extension MUST NOT be used if Codec ID
 is not V_MPEGH/ISO/HEVC.

4.7.8. mvcC

 Block type identifier: 0x6D766343

 Block type name: MVC configuration

Lhomme, et al. Expires 30 July 2024 [Page 32]

Internet-Draft Matroska Codec January 2024

 Description: the BlockAddIDExtraData data is interpreted as
 MVCDecoderConfigurationRecord structure, as defined in
 [ISO.14496-15]. This extension MUST NOT be used if Codec ID is not
 V_MPEG4/ISO/AVC.

5. Subtitles

 Because Matroska is a general container format, we try to avoid
 specifying the formats to store in it. This type of work is really
 outside of the scope of a container-only format. However, because
 the use of subtitles in A/V containers has been so limited (with the
 exception of DVD) we are taking the time to specify how to store some
 of the more common subtitle formats in Matroska. This is being done
 to help facilitate their growth. Otherwise, incompatibilities could
 prevent the standardization and use of subtitle storage.

 This page is not meant to be a complete listing of all subtitle
 formats that will be used in Matroska, it is only meant to be a guide
 for the more common, current formats. It is possible that we will
 add future formats to this page as they are created, but it is not
 likely as any other new subtitle format designer would likely have
 their own specifications. Any specification listed here SHOULD be
 strictly adhered to or it SHOULD NOT use the corresponding Codec ID.

 Here is a list of pointers for storing subtitles in Matroska:

 * Any Matroska file containing only subtitles SHOULD use the
 extension ".mks".
 * As a general rule of thumb for all codecs, information that is
 global to an entire stream SHOULD be stored in the CodecPrivate
 element.
 * Start and stop timestamps that are used in a timestamps original
 storage format SHOULD be removed when being placed in Matroska as
 they could interfere if the file is edited afterwards. Instead,
 the Blocks timestamp and Duration SHOULD be used to say when the
 timestamp is displayed.
 * Because a "subtitle" stream is actually just an overlay stream,
 anything with a transparency layer could be use, including video.

5.1. Images Subtitles

 The first image format that is a goal to import into Matroska is the
 VobSub subtitle format. This subtitle type is generated by exporting
 the subtitles from a DVD [DVD-Video].

Lhomme, et al. Expires 30 July 2024 [Page 33]

Internet-Draft Matroska Codec January 2024

 The requirement for muxing VobSub into Matroska is v7 subtitles (see
 first line of the .IDX file). If the version is smaller, you must
 remux them using the SubResync utility from VobSub 2.23 (or MPC) into
 v7 format. Generally any newly created subs will be in v7 format.

 The .IFO file will not be used at all.

 If there is more than one subtitle stream in the VobSub set, each
 stream will need to be separated into separate tracks for storage in
 Matroska. E.g. the VobSub file contains streams for both English and
 German subtitles. Then the resulting Matroska file SHOULD contain
 two tracks. That way the language information can be dropped and
 mapped to Matroska’s language tags.

 The .IDX file is reformatted (see below) and placed in the
 CodecPrivate.

 Each .BMP will be stored in its own Block. The Timestamp with be
 stored in the Blocks Timestamp and the duration will be stored in the
 Default Duration.

 Here is an example .IDX file:

 # VobSub index file, v7 (do not modify this line!)
 #
 # To repair desynchronization, you can insert gaps this way:
 # (it usually happens after vob id changes)
 #
 # delay: [sign]hh:mm:ss:ms
 #
 # Where:
 # [sign]: +, - (optional)
 # hh: hours (0 <= hh)
 # mm/ss: minutes/seconds (0 <= mm/ss <= 59)
 # ms: milliseconds (0 <= ms <= 999)
 #
 # Note: You can’t position a sub before the previous with a negative
 # value.
 #
 # You can also modify timestamps or delete a few subs you don’t
 # like. Just make sure they stay in increasing order.

 # Settings

 # Original frame size
 size: 720x480

 # Origin, relative to the upper-left corner, can be overloaded by

Lhomme, et al. Expires 30 July 2024 [Page 34]

Internet-Draft Matroska Codec January 2024

 # alignment
 org: 0, 0

 # Image scaling (hor,ver), origin is at the upper-left corner or at
 # the alignment coord (x, y)
 scale: 100%, 100%

 # Alpha blending
 alpha: 100%

 # Smoothing for very blocky images (use OLD for no filtering)
 smooth: OFF

 # In millisecs
 fadein/out: 50, 50

 # Force subtitle placement relative to (org.x, org.y)
 align: OFF at LEFT TOP

 # For correcting non-progressive desync. (in millisecs or
 # hh:mm:ss:ms)
 # Note: Not effective in DirectVobSub, use "delay: ... " instead.
 time offset: 0

 # ON: displays only forced subtitles, OFF: shows everything
 forced subs: OFF

 # The original palette of the DVD
 palette: 000000, 7e7e7e, fbff8b, cb86f1, 7f74b8, e23f06, 0a48ea, \
 b3d65a, 6b92f1, 87f087, c02081, f8d0f4, e3c411, 382201, e8840b, \
 fdfdfd

 # Custom colors (transp idxs and the four colors)
 custom colors: OFF, tridx: 0000, colors: 000000, 000000, 000000, \
 000000

 # Language index in use
 langidx: 0

 # English
 id: en, index: 0
 # Uncomment next line to activate alternative name in DirectVobSub /
 # Windows Media Player 6.x
 # alt: English
 # Vob/Cell ID: 1, 1 (PTS: 0)
 timestamp: 00:00:01:101, filepos: 000000000
 timestamp: 00:00:08:708, filepos: 000001000

Lhomme, et al. Expires 30 July 2024 [Page 35]

Internet-Draft Matroska Codec January 2024

 First, lines beginning with "#" are removed. These are comments to
 make text file editing easier, and as this is not a text file, they
 aren’t needed.

 Next remove the "langidx" and "id" lines. These are used to
 differentiate the subtitle streams and define the language. As the
 streams will be stored separately anyway, there is no need to
 differentiate them here. Also, the language setting will be stored
 in the Matroska tags, so there is no need to store it here.

 Finally, the "timestamp" will be used to set the Block’s timestamp.
 Once it is set there, there is no need for it to be stored here.
 Also, as it may interfere if the file is edited, it SHOULD NOT be
 stored here.

 Once all of these items are removed, the data to store in the
 CodecPrivate SHOULD look like this:

 size: 720x480
 org: 0, 0
 scale: 100%, 100%
 alpha: 100%
 smooth: OFF
 fadein/out: 50, 50
 align: OFF at LEFT TOP
 time offset: 0
 forced subs: OFF
 palette: 000000, 7e7e7e, fbff8b, cb86f1, 7f74b8, e23f06, 0a48ea, \
 b3d65a, 6b92f1, 87f087, c02081, f8d0f4, e3c411, 382201, e8840b, \
 fdfdfd
 custom colors: OFF, tridx: 0000, colors: 000000, 000000, 000000, \
 000000

 There SHOULD also be two Blocks containing one image each with the
 timestamps "00:00:01:101" and "00:00:08:708".

5.2. SRT Subtitles

 SRT is perhaps the most basic of all subtitle formats.

 It consists of four parts, all in text:

 1. A number indicating which subtitle it is in the sequence. 2. The
 time that the subtitle appears on the screen, and then disappears. 3.
 The subtitle itself. 4. A blank line indicating the start of a new
 subtitle.

Lhomme, et al. Expires 30 July 2024 [Page 36]

Internet-Draft Matroska Codec January 2024

 When placing SRT in Matroska, part 3 is converted to UTF-8 (S_TEXT/
 UTF8) and placed in the data portion of the Block. Part 2 is used to
 set the timestamp of the Block, and BlockDuration element. Nothing
 else is used.

 Here is an example SRT file:

 1
 00:02:17,440 --> 00:02:20,375
 Senator, we’re making
 our final approach into Coruscant.

 2
 00:02:20,476 --> 00:02:22,501
 Very good, Lieutenant.

 In this example, the text "Senator, we’re making our final approach
 into Coruscant." would be converted into UTF-8 and placed in the
 Block. The timestamp of the block would be set to "00:02:17,440".
 And the BlockDuration element would be set to "00:00:02,935".

 The same is repeated for the next subtitle.

 Because there are no general settings for SRT, the CodecPrivate is
 left blank.

5.3. SSA/ASS Subtitles

 SSA stands for Sub Station Alpha. It’s the file format used by the
 popular subtitle editor, SubStation Alpha (http://wiki.multimedia.cx/
 index.php?title=SubStation_Alpha). This format is widely used by
 fansubbers.

 It allows you to do some advanced display features, like positioning,
 karaoke, style managements...

 For detailed information on SSA/ASS, see the SSA specs
 (http://moodub.free.fr/video/ass-specs.doc). It includes an SSA
 specs description and the advanced features added by ASS format
 (standing for Advanced SSA). Because SSA and ASS are so similar,
 they are treated the same here.

 Like SRT, this format is text based with a particular syntax.

 A file consists of 4 or 5 parts, declared ala INI file (but it’s not
 an INI !)

Lhomme, et al. Expires 30 July 2024 [Page 37]

Internet-Draft Matroska Codec January 2024

 The first, "[Script Info]" contains some information about the
 subtitle file, such as it’s title, who created it, type of script and
 a very important one: "PlayResY". Be careful of this value,
 everything in your script (font size, positioning) is scaled by it.
 Sub Station Alpha uses your desktops Y resolution to write this
 value, so if a friend with a large monitor and a high screen
 resolution gives you an edited script, you can mess everything up by
 saving the script in SSA with your low-cost monitor.

 The second, "[V4 Styles]", is a list of style definitions. A style
 describe how will look a text on the screen. It defines font, font
 size, primary/.../outile colour, position, alignment, etc.

 For example, this:

 Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, \
 TertiaryColour, BackColour, Bold, Italic, BorderStyle, Outline, \
 Shadow, Alignment, MarginL, MarginR, MarginV, AlphaLevel, Encoding
 Style: Wolf main,Wolf_Rain,56,15724527,15724527,15724527,4144959,0,\
 0,1,1,2,2,5,5,30,0,0

 The third, "[Events]", is the list of text you want to display at the
 right timing. You can specify some attribute here. Like the style
 to use for this event (MUSTbe defined in the list), the position of
 the text (Left, Right, Vertical Margin), an effect. Name is mostly
 used by translator to know who said this sentence. Timing is in
 h:mm:ss.cc (centisec).

 Format: Marked, Start, End, Style, Name, MarginL, MarginR, MarginV, \
 Effect, Text
 Dialogue: Marked=0,0:02:40.65,0:02:41.79,Wolf main,Cher,0000,0000,\
 0000,,Et les enregistrements de ses ondes delta ?
 Dialogue: Marked=0,0:02:42.42,0:02:44.15,Wolf main,autre,0000,0000,\
 0000,,Toujours rien.

 "[Pictures]" or "[Fonts]" part can be found in some SSA file, they
 contains UUE-encoded pictures/font but those features are only used
 by Sub Station Alpha -- i.e. no filter (Vobsub/Avery Lee Subtiler
 filter) use them.

 Now, how are they stored in Matroska?

 * All text is converted to UTF-8
 * All the headers are stored in CodecPrivate (Script Info and the
 Styles list)
 * Start & End field are used to set TimeStamp and the BlockDuration
 element. the data stored is:

Lhomme, et al. Expires 30 July 2024 [Page 38]

Internet-Draft Matroska Codec January 2024

 * Events are stored in the Block in this order: ReadOrder, Layer,
 Style, Name, MarginL, MarginR, MarginV, Effect, Text (Layer comes
 from ASS specs ... it’s empty for SSA.) "ReadOrder field is
 needed for the decoder to be able to reorder the streamed samples
 as they were placed originally in the file."

 Here is an example of an SSA file.

Lhomme, et al. Expires 30 July 2024 [Page 39]

Internet-Draft Matroska Codec January 2024

 [Script Info]
 ; This is a Sub Station Alpha v4 script.
 ; For Sub Station Alpha info and downloads,
 ; go to \
 ; http://www.eswat.demon.co.uk/
 ; or email \
 ; kotus@eswat.demon.co.uk
 Title: Wolf’s rain 2
 Original Script: Anime-spirit Ishin-francais
 Original Translation: Coolman
 Original Editing: Spikewolfwood
 Original Timing: Lord_alucard
 Original Script Checking: Spikewolfwood
 ScriptType: v4.00
 Collisions: Normal
 PlayResY: 1024
 PlayDepth: 0
 Wav: 0, 128697,D:\Alex\Anime\- Fansub -\- TAFF -\WR_-_02_Wav.wav
 Wav: 0, 120692,H:\team truc\WR_-_02.wav
 Wav: 0, 116504,E:\sub\wolf’s_rain\WOLF’S RAIN 02.wav
 LastWav: 3
 Timer: 100,0000

 [V4 Styles]
 Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, \
 TertiaryColour, BackColour, Bold, Italic, BorderStyle, Outline, \
 Shadow, Alignment, MarginL, MarginR, MarginV, AlphaLevel, Encoding
 Style: Default,Arial,20,65535,65535,65535,-2147483640,-1,0,1,3,0,2,\
 30,30,30,0,0
 Style: Titre_episode,Akbar,140,15724527,65535,65535,986895,-1,0,1,1,\
 0,3,30,30,30,0,0
 Style: Wolf main,Wolf_Rain,56,15724527,15724527,15724527,4144959,0,\
 0,1,1,2,2,5,5,30,0,0

 [Events]
 Format: Marked, Start, End, Style, Name, MarginL, MarginR, MarginV, \
 Effect, Text
 Dialogue: Marked=0,0:02:40.65,0:02:41.79,Wolf main,Cher,0000,0000,\
 0000,,Et les enregistrements de ses ondes delta ?
 Dialogue: Marked=0,0:02:42.42,0:02:44.15,Wolf main,autre,0000,0000,\
 0000,,Toujours rien.

 Here is what would be placed into the CodecPrivate element.

Lhomme, et al. Expires 30 July 2024 [Page 40]

Internet-Draft Matroska Codec January 2024

 [Script Info]
 ; This is a Sub Station Alpha v4 script.
 ; For Sub Station Alpha info and downloads,
 ; go to \
 ; http://www.eswat.demon.co.uk/
 ; or email \
 ; kotus@eswat.demon.co.uk
 Title: Wolf’s rain 2
 Original Script: Anime-spirit Ishin-francais
 Original Translation: Coolman
 Original Editing: Spikewolfwood
 Original Timing: Lord_alucard
 Original Script Checking: Spikewolfwood
 ScriptType: v4.00
 Collisions: Normal
 PlayResY: 1024
 PlayDepth: 0
 Wav: 0, 128697,D:\Alex\Anime\- Fansub -\- TAFF -\WR_-_02_Wav.wav
 Wav: 0, 120692,H:\team truc\WR_-_02.wav
 Wav: 0, 116504,E:\sub\wolf’s_rain\WOLF’S RAIN 02.wav
 LastWav: 3
 Timer: 100,0000

 [V4 Styles]
 Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, \
 TertiaryColour, BackColour, Bold, Italic, BorderStyle, Outline, \
 Shadow, Alignment, MarginL, MarginR, MarginV, AlphaLevel, Encoding
 Style: Default,Arial,20,65535,65535,65535,-2147483640,-1,0,1,3,0,2,\
 30,30,30,0,0
 Style: Titre_episode,Akbar,140,15724527,65535,65535,986895,-1,0,1,1,\
 0,3,30,30,30,0,0
 Style: Wolf main,Wolf_Rain,56,15724527,15724527,15724527,4144959,0,\
 0,1,1,2,2,5,5,30,0,0

 And here are the two blocks that would be generated.

 Block’s timestamp: 00:02:40.650 BlockDuration: 00:00:01.140

 1,,Wolf main,Cher,0000,0000,0000,,Et les enregistrements de ses \
 ondes delta ?

 Block’s timestamp: 00:02:42.420 BlockDuration: 00:00:01.730

 2,,Wolf main,autre,0000,0000,0000,,Toujours rien.

Lhomme, et al. Expires 30 July 2024 [Page 41]

Internet-Draft Matroska Codec January 2024

5.4. WebVTT

 The "Web Video Text Tracks Format" (short: WebVTT) is developed by
 the World Wide Web Consortium (W3C) (https://www.w3.org/). Its
 specifications are freely available (https://w3c.github.io/webvtt/).

 The guiding principles for the storage of WebVTT in Matroska are:

 * Consistency: store data in a similar way to other subtitle codecs
 * Simplicity: making decoding and remuxing as easy as possible for
 existing infrastructures
 * Completeness: keeping as much data as possible from the original
 WebVTT file

5.4.1. Storage of WebVTT in Matroska

5.4.1.1. CodecID: codec identification

 The CodecID to use is S_TEXT/WEBVTT.

5.4.1.2. CodecPrivate: storage of global WebVTT blocks

 This element contains all global blocks before the first subtitle
 entry. This starts at the "WEBVTT" file identification marker but
 excludes the optional byte order mark.

5.4.1.3. Storage of non-global WebVTT blocks

 Non-global WebVTT blocks (e.g., "NOTE") before a WebVTT Cue Text are
 stored in Matroska’s BlockAddition element together with the Matroska
 Block containing the WebVTT Cue Text these blocks precede (see below
 for the actual format).

5.4.1.4. Storage of Cues in Matroska blocks

 Each WebVTT Cue Text is stored directly in the Matroska Block.

 A muxer MUST change all WebVTT Cue Timestamps present within the Cue
 Text to be relative to the Matroska Block’s timestamp.

 The Cue’s start timestamp is used as the Matroska Block’s timestamp.

 The difference between the Cue’s end timestamp and its start
 timestamp is used as the Matroska Block’s duration.

Lhomme, et al. Expires 30 July 2024 [Page 42]

Internet-Draft Matroska Codec January 2024

5.4.1.5. BlockAdditions: storing non-global WebVTT blocks, Cue Settings
 Lists and Cue identifiers

 Each Matroska Block may be accompanied by one BlockAdditions element.
 Its format is as follows:

 1. The first line contains the WebVTT Cue Text’s optional Cue
 Settings List followed by one line feed character (U+0x000a).
 The Cue Settings List may be empty, in which case the line
 consists of the line feed character only.
 2. The second line contains the WebVTT Cue Text’s optional Cue
 Identifier followed by one line feed character (U+0x000a). The
 line may be empty indicating that there was no Cue Identifier in
 the source file, in which case the line consists of the line feed
 character only.
 3. The third and all following lines contain all WebVTT Comment
 Blocks that precede the current WebVTT Cue Block. These may be
 absent.

 If there is no Matroska BlockAddition element stored together with
 the Matroska Block, then all three components (Cue Settings List, Cue
 Identifier, Cue Comments) MUST be assumed to be absent.

5.4.2. Examples of transformation

 Here’s an example how a WebVTT is transformed.

5.4.2.1. Example WebVTT file

 Let’s take the following example file:

 WEBVTT with text after the signature

 STYLE
 ::cue {
 background-image: linear-gradient(to bottom, dimgray, lightgray);
 color: papayawhip;
 }
 /* Style blocks cannot use blank lines nor "dash dash greater \
 than" */

 NOTE comment blocks can be used between style blocks.

 STYLE
 ::cue(b) {
 color: peachpuff;
 }

Lhomme, et al. Expires 30 July 2024 [Page 43]

Internet-Draft Matroska Codec January 2024

 REGION
 id:bill
 width:40%
 lines:3
 regionanchor:0%,100%
 viewportanchor:10%,90%
 scroll:up

 NOTE
 Notes always span a whole block and can cover multiple
 lines. Like this one.
 An empty line ends the block.

 hello
 00:00:00.000 --> 00:00:10.000
 Example entry 1: Hello world.

 NOTE style blocks cannot appear after the first cue.

 00:00:25.000 --> 00:00:35.000
 Example entry 2: Another entry.
 This one has multiple lines.

 00:01:03.000 --> 00:01:06.500 position:90% align:right size:35%
 Example entry 3: That stuff to the right of the timestamps are cue \
 settings.

 00:03:10.000 --> 00:03:20.000
 Example entry 4: Entries can even include timestamps.
 For example:<00:03:15.000>This becomes visible five seconds
 after the first part.

5.4.2.2. Example of CodecPrivate

 The resulting CodecPrivate element will look like this:

Lhomme, et al. Expires 30 July 2024 [Page 44]

Internet-Draft Matroska Codec January 2024

 WEBVTT with text after the signature

 STYLE
 ::cue {
 background-image: linear-gradient(to bottom, dimgray, lightgray);
 color: papayawhip;
 }
 /* Style blocks cannot use blank lines nor "dash dash greater \
 than" */

 NOTE comment blocks can be used between style blocks.

 STYLE
 ::cue(b) {
 color: peachpuff;
 }

 REGION
 id:bill
 width:40%
 lines:3
 regionanchor:0%,100%
 viewportanchor:10%,90%
 scroll:up

 NOTE
 Notes always span a whole block and can cover multiple
 lines. Like this one.
 An empty line ends the block.

5.4.2.3. Storage of Cue 1

 Example Cue 1: timestamp 00:00:00.000, duration 00:00:10.000, Block’s
 content:

 Example entry 1: Hello world.

 BlockAddition’s content starts with one empty line as there’s no Cue
 Settings List:

 hello

5.4.2.4. Storage of Cue 2

 Example Cue 2: timestamp 00:00:25.000, duration 00:00:10.000, Block’s
 content:

Lhomme, et al. Expires 30 July 2024 [Page 45]

Internet-Draft Matroska Codec January 2024

 Example entry 2: Another entry.
 This one has multiple lines.

 BlockAddition’s content starts with two empty lines as there’s
 neither a Cue Settings List nor a Cue Identifier:

 NOTE style blocks cannot appear after the first cue.

5.4.2.5. Storage of Cue 3

 Example Cue 3: timestamp 00:01:03.000, duration 00:00:03.500, Block’s
 content:

 Example entry 3: That stuff to the right of the timestamps are cue \
 settings.

 BlockAddition’s content ends with an empty line as there’s no Cue
 Identifier and there were no WebVTT Comment blocks:

 position:90% align:right size:35%

5.4.2.6. Storage of Cue 4

 Example Cue 4: timestamp 00:03:10.000, duration 00:00:10.000, Block’s
 content:

 Example entry 4: Entries can even include timestamps. For
 example:00:00:05.000 (00:00:05.000)This becomes visible five seconds
 after the first part.

 This Block does not need a BlockAddition as the Cue did not contain
 an Identifier, nor a Settings List, and it wasn’t preceded by Comment
 blocks.

5.4.3. Storage of WebVTT in Matroska vs. WebM

 Note: the storage of WebVTT in Matroska is not the same as the design
 document for storage of WebVTT in WebM. There are several reasons
 for this including but not limited to: the WebM document is old (from
 February 2012) and was based on an earlier draft of WebVTT and
 ignores several parts that were added to WebVTT later; WebM does
 still not support subtitles at all (http://www.webmproject.org/docs/
 container/); the proposal suggests splitting the information across
 multiple tracks making demuxer’s and remuxer’s life very difficult.

Lhomme, et al. Expires 30 July 2024 [Page 46]

Internet-Draft Matroska Codec January 2024

5.5. HDMV presentation graphics subtitles

 The specifications for the HDMV presentation graphics subtitle format
 (short: HDMV PGS) can be found in the document "Blu-ray Disc Read-
 Only Format; Part 3 (U+2014) Audio Visual Basic Specifications" in
 section 9.14 "HDMV graphics streams".

5.5.1. Storage of HDMV presentation graphics subtitles

 The CodecID to use is S_HDMV/PGS. A CodecPrivate element is not
 used.

5.5.1.1. Storage of HDMV PGS Segments in Matroska Blocks

 Each HDMV PGS Segment (short: Segment) will be stored in a Matroska
 Block. A Segment is the data structure described in section 9.14.2.1
 "Segment coding structure and parameters" of the Blu-ray
 specifications.

 Each Segment contains a presentation timestamp. This timestamp will
 be used as the timestamp for the Matroska Block.

 A Segment is normally shown until a subsequent Segment is
 encountered. Therefore, the Matroska Block MAY have no Duration. In
 that case, a player MUST display a Segment within a Matroska Block
 until the next Segment is encountered.

 A muxer MAY use a Duration, e.g., by calculating the distance between
 two subsequent Segments. If a Matroska Block has a Duration, a
 player MUST display that Segment only for the duration of the Block’s
 Duration.

5.6. HDMV text subtitles

 The specifications for the HDMV text subtitle format (short: HDMV
 TextST) can be found in the document "Blu-ray Disc Read-Only Format;
 Part 3 (U+2014) Audio Visual Basic Specifications" in section 9.15
 "HDMV text subtitle streams".

5.6.1. Storage of HDMV text subtitles

 The CodecID to use is S_HDMV/TEXTST.

 A CodecPrivate Element is required. It MUST contain the stream’s
 Dialog Style Segment as described in section 9.15.4.2 "Dialog Style
 Segment" of the Blu-ray specifications.

Lhomme, et al. Expires 30 July 2024 [Page 47]

Internet-Draft Matroska Codec January 2024

5.6.1.1. Storage of HDMV TextST Dialog Presentation Segments in
 Matroska Blocks

 Each HDMV Dialog Presentation Segment (short: Segment) will be stored
 in a Matroska Block. A Segment is the data structure described in
 section 9.15.4.3 "Dialog presentation segment" of the Blu-ray
 specifications.

 Each Segment contains a start and an end presentation timestamp
 (short: start PTS & end PTS). The start PTS will be used as the
 timestamp for the Matroska Block. The Matroska Block MUST have a
 Duration, and that Duration is the difference between the end PTS and
 the start PTS.

 A player MUST use the Matroska Block’s timestamp and Duration instead
 of the Segment’s start and end PTS for determining when and how long
 to show the Segment.

5.6.1.2. Character set

 When TextST subtitles are stored inside Matroska, the only allowed
 character set is UTF-8.

 Each HDMV text subtitle stream in a Blu-ray can use one of a handful
 of character sets. This information is not stored in the MPEG2
 Transport Stream itself but in the accompanying Clip Information
 file.

 Therefore, a muxer MUST parse the accompanying Clip Information file.
 If the information indicates a character set other than UTF-8, it
 MUST re-encode all text Dialog Presentation Segments from the
 indicated character set to UTF-8 prior to storing them in Matroska.

5.7. Digital Video Broadcasting (DVB) subtitles

 The specifications for the Digital Video Broadcasting subtitle
 bitstream format (short: DVB subtitles) can be found in the document
 "ETSI EN 300 743 - Digital Video Broadcasting (DVB); Subtitling
 systems". The storage of DVB subtitles in MPEG transport streams is
 specified in the document "ETSI EN 300 468 - Digital Video
 Broadcasting (DVB); Specification for Service Information (SI) in DVB
 systems".

Lhomme, et al. Expires 30 July 2024 [Page 48]

Internet-Draft Matroska Codec January 2024

5.7.1. Storage of DVB subtitles

5.7.1.1. CodecID

 The CodecID to use is S_DVBSUB.

5.7.1.2. CodecPrivate

 The CodecPrivate element is five bytes long and has the following
 structure:

 * 2 bytes: composition page ID (bit string, left bit first)
 * 2 bytes: ancillary page ID (bit string, left bit first)
 * 1 byte: subtitling type (bit string, left bit first)

 The semantics of these bytes are the same as the ones described in
 section 6.2.41 "Subtitling descriptor" of ETSI EN 300 468.

5.7.1.3. Storage of DVB subtitles in Matroska Blocks

 Each Matroska Block consists of one or more DVB Subtitle Segments as
 described in segment 7.2 "Syntax and semantics of the subtitling
 segment" of ETSI EN 300 743.

 Each Matroska Block SHOULD have a Duration indicating how long the
 DVB Subtitle Segments in that Block SHOULD be displayed.

5.8. ARIB (ISDB) subtitles

 The specifications for the ARIB B-24 subtitle bitstream format
 (short: ARIB subtitles) and its storage in MPEG transport streams can
 be found in the documents [ARIB.STD-B24], [ARIB.STD-B10], and
 [ARIB.TR-B14].

5.8.1. Storage of ARIB subtitles

5.8.1.1. CodecID

 The CodecID to use is S_ARIBSUB.

5.8.1.2. CodecPrivate

 The CodecPrivate element is three bytes long and has the following
 structure:

 * 1 byte: component tag (bit string, left bit first)
 * 2 bytes: data component ID (bit string, left bit first)

Lhomme, et al. Expires 30 July 2024 [Page 49]

Internet-Draft Matroska Codec January 2024

 The semantics of the component tag are the same as those described in
 [ARIB.STD-B10], part 2, Annex J. The semantics of the data component
 ID are the same as those described in [ARIB.TR-B14], fascicle 2, Vol.
 3, Section 2, 4.2.8.1.

5.8.1.3. Storage of ARIB subtitles in Matroska Blocks

 Each Matroska Block consists of a single synchronized PES data
 structure as described in chapter 5 "Independent PES transmission
 protocol" of [ARIB.STD-B24], volume 3, with a
 Synchronized_PES_data_byte block containing one or more ISDB Caption
 Data Groups as described in chapter 9 "Transmission of caption and
 superimpose" of [ARIB.STD-B24], volume 1, part 3. All of the Caption
 Statement Data Groups in a given Matroska Track MUST use the same
 language index.

 A Data Group is normally shown until a subsequent Group provides
 instructions to clear it. Therefore, the Matroska Block SHOULD NOT
 have a Duration. A player SHOULD display a Data Group within a
 Matroska Block until its internal duration elapses, or until a
 subsequent Data Group removes it.

6. Block Additional Mapping

 Extra data or metadata can be added to each Block using
 BlockAdditional data. Each BlockAdditional contains a BlockAddID
 that identifies the kind of data it contains. When the BlockAddID is
 set to "1" the contents of the BlockAdditional Element are define by
 the Codec Mappings defines; see Section 4.1.5. When the BlockAddID
 is set a value greater than "1", then the contents of the
 BlockAdditional Element are defined by the BlockAdditionalMapping
 Element, within the associated Track Element, where the BlockAddID
 Element of BlockAdditional Element equals the BlockAddIDValue of the
 associated Track’s BlockAdditionalMapping Element. That
 BlockAdditionalMapping Element identifies a particular Block
 Additional Mapping by the BlockAddIDType.

 The following XML depicts a use of a Block Additional Mapping to
 associate a timecode value with a Block:

Lhomme, et al. Expires 30 July 2024 [Page 50]

Internet-Draft Matroska Codec January 2024

 <Segment>
 <!--Mandatory elements ommitted for readability-->
 <Tracks>
 <TrackEntry>
 <TrackNumber>1</TrackNumber>
 <TrackUID>568001708</TrackUID>
 <TrackType>1</TrackType>
 <BlockAdditionalMapping>
 <BlockAddIDValue>2</BlockAddIDValue><!--arbitrary value
 used in BlockAddID-->
 <BlockAddIDName>timecode</BlockAddIDName>
 <BlockAddIDType>12</BlockAddIDType>
 </BlockAdditionalMapping>
 <CodecID>V_FFV1</CodecID>
 <Video>
 <PixelWidth>1920</PixelWidth>
 <PixelHeight>1080</PixelHeight>
 </Video>
 </TrackEntry>
 </Tracks>
 <Cluster>
 <Timestamp>3000</Timestamp>
 <BlockGroup>
 <Block>{binary video frame}</Block>
 <BlockAdditions>
 <BlockMore>
 <BlockAddID>2</BlockAddID><!--arbitrary value from
 BlockAdditionalMapping-->
 <BlockAdditional>01:00:00:00</BlockAdditional>
 </BlockMore>
 </BlockAdditions>
 </BlockGroup>
 </Cluster>
 </Segment>

 Block Additional Mappings detail how additional data MAY be stored in
 the BlockMore Element with a BlockAdditionMapping Element, within the
 Track Element, which identifies the BlockAdditional content. Block
 Additional Mappings define the BlockAddIDType value reserved to
 identify that type of data as well as providing an optional label
 stored within the BlockAddIDName Element. When the Block Additional
 Mapping is dependent on additional contextual information, then the
 Mapping SHOULD describe how such additional contextual information is
 stored within the BlockAddIDExtraData Element.

 The following Block Additional Mappings are defined.

Lhomme, et al. Expires 30 July 2024 [Page 51]

Internet-Draft Matroska Codec January 2024

6.1. Summary of Assigned BlockAddIDType Values

 For convenience, the following table shows the assigned
 BlockAddIDType values along with the BlockAddIDName and Citation.

 +================+========================+=============+
 | BlockAddIDType | BlockAddIDName | Citation |
 +================+========================+=============+
 | 121 | SMPTE ST 12-1 timecode | Section 6.2 |
 +----------------+------------------------+-------------+

 Table 4

6.2. SMPTE ST 12-1 Timecode

6.2.1. Timecode Description

 SMPTE ST 12-1 timecode values can be stored in the BlockMore Element
 to associate the content of a Matroska Block with a particular
 timecode value. If the Block uses Lacing, the timecode value is
 associated with the first frame of the Lace.

 The Block Additional Mapping contains a full binary representation of
 a 64 bit SMPTE timecode value stored in big-endian format and
 expressed exactly as defined in Section 8 and 9 of SMPTE 12M [ST12].
 For convenience, here are the bit assignments for a SMPTE ST 12-1
 binary representation as described in Section 6.2 of [RFC5484]:

 +===============+========================+
 | Bit Positions | Label |
 +===============+========================+
 | 0--3 | Units of frames |
 +---------------+------------------------+
 | 4--7 | First binary group |
 +---------------+------------------------+
 | 8--9 | Tens of frames |
 +---------------+------------------------+
 | 10 | Drop frame flag |
 +---------------+------------------------+
 | 11 | Color frame flag |
 +---------------+------------------------+
 | 12--15 | Second binary group |
 +---------------+------------------------+
 | 16--19 | Units of seconds |
 +---------------+------------------------+
 | 20--23 | Third binary group |
 +---------------+------------------------+
 | 24--26 | Tens of seconds |

Lhomme, et al. Expires 30 July 2024 [Page 52]

Internet-Draft Matroska Codec January 2024

 +---------------+------------------------+
 | 27 | Polarity correction |
 +---------------+------------------------+
 | 28--31 | Fourth binary group |
 +---------------+------------------------+
 | 32--35 | Units of minutes |
 +---------------+------------------------+
 | 36--39 | Fifth binary group |
 +---------------+------------------------+
 | 40--42 | Tens of minutes |
 +---------------+------------------------+
 | 43 | Binary group flag BGF0 |
 +---------------+------------------------+
 | 44--47 | Sixth binary group |
 +---------------+------------------------+
 | 48--51 | Units of hours |
 +---------------+------------------------+
 | 52--55 | Seventh binary group |
 +---------------+------------------------+
 | 56--57 | Tens of hours |
 +---------------+------------------------+
 | 58 | Binary group flag BGF1 |
 +---------------+------------------------+
 | 59 | Binary group flag BGF2 |
 +---------------+------------------------+
 | 60--63 | Eighth binary group |
 +---------------+------------------------+

 Table 5

 For example, a timecode value of "07:32:54;18" can be expressed as a
 64 bit SMPTE 12M value as:

 10000000 01100000 01100000 01010000
 00100000 00110000 01110000 00000000

6.2.2. BlockAddIDType

 The BlockAddIDType value reserved for timecode is "121".

6.2.3. BlockAddIDName

 The BlockAddIDName value reserved for timecode is "SMPTE ST 12-1
 timecode".

Lhomme, et al. Expires 30 July 2024 [Page 53]

Internet-Draft Matroska Codec January 2024

6.2.4. BlockAddIDExtraData

 BlockAddIDExtraData is unused within this block additional mapping.

7. Security Considerations

 This document inherits security considerations from the EBML
 [RFC8794] and Matroska [Matroska] documents.

8. IANA Considerations

 To be determined.

9. Normative References

 [ARIB.STD-B10]
 ARIB, "Service Information for Digital Broadcasting
 System", 5 December 2019,
 <https://www.arib.or.jp/english/std_tr/broadcasting/desc/
 std-b10.html>.

 [ARIB.STD-B24]
 ARIB, "Data Coding and Transmission Specification for
 Digital Broadcasting", 6 October 2022,
 <https://www.arib.or.jp/english/std_tr/broadcasting/desc/
 std-b24.html>.

 [ARIB.TR-B14]
 ARIB, "Operational Guidelines for Digital Terrestrial
 Television Broadcasting", 6 October 2022,
 <https://www.arib.or.jp/english/std_tr/broadcasting/desc/
 tr-b14.html>.

 [DolbyVisionWithinIso]
 Dolby, "Dolby Vision Streams Within the ISO Base MediaFile
 Format", 7 February 2020,
 <https://www.dolby.com/us/en/technologies/dolby-vision/
 dolby-vision-bitstreams-within-the-iso-base-media-file-
 format-v2.1.2.pdf>.

 [IEEE.1857-10]
 IEEE, "IEEE Standard for Third Generation Video Coding", 9
 November 2021,
 <https://standards.ieee.org/standard/1857_10-2021.html>.

Lhomme, et al. Expires 30 July 2024 [Page 54]

Internet-Draft Matroska Codec January 2024

 [IEEE.1857-4]
 IEEE, "IEEE Standard for Second-Generation IEEE 1857 Video
 Coding", 23 October 2018,
 <https://standards.ieee.org/standard/1857_4-2018.html>.

 [IEEE.754] IEEE, "IEEE Standard for Binary Floating-Point
 Arithmetic", 13 June 2019,
 <https://standards.ieee.org/standard/754-2019.html>.

 [ISO.14496-15]
 International Organization for Standardization,
 "Information technology Coding of audio-visual objects
 Part 15: Carriage of network abstraction layer (NAL) unit
 structured video in ISO base media file format",
 ISO Standard 14496, 2014.

 [Matroska] Lhomme, S., Bunkus, M., and D. Rice, "Media Container
 Specifications", Work in Progress, Internet-Draft, draft-
 ietf-cellar-matroska-10, 1 May 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cellar-
 matroska-10>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC6386] Bankoski, J., Koleszar, J., Quillio, L., Salonen, J.,
 Wilkins, P., and Y. Xu, "VP8 Data Format and Decoding
 Guide", RFC 6386, DOI 10.17487/RFC6386, November 2011,
 <https://www.rfc-editor.org/info/rfc6386>.

 [RFC6648] Saint-Andre, P., Crocker, D., and M. Nottingham,
 "Deprecating the "X-" Prefix and Similar Constructs in
 Application Protocols", BCP 178, RFC 6648,
 DOI 10.17487/RFC6648, June 2012,
 <https://www.rfc-editor.org/info/rfc6648>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Lhomme, et al. Expires 30 July 2024 [Page 55]

Internet-Draft Matroska Codec January 2024

 [RFC8794] Lhomme, S., Rice, D., and M. Bunkus, "Extensible Binary
 Meta Language", RFC 8794, DOI 10.17487/RFC8794, July 2020,
 <https://www.rfc-editor.org/info/rfc8794>.

 [ST12] SMPTE, "Time and Control Code", ST ST 12-1:2014, DOI
 10.5594/SMPTE.ST12-1.2014, 20 February 2014,
 <http://ieeexplore.ieee.org/document/7291029/>.

 [WAVEFORMATEX]
 Microsoft, "WAVEFORMATEX structure", 4 April 2021,
 <https://docs.microsoft.com/en-
 us/windows/win32/api/mmeapi/ns-mmeapi-waveformatex>.

10. Informative References

 [AtracAES] Sony Corporate Research Laboratories, "ATRAC: Adaptive
 Transform Acoustic Coding for MiniDisc", 1 October 1992,
 <https://www.minidisc.wiki/technology/atrac/aes>.

 [atracdenc]
 Cherednik, D., "atracdenc - ATRAC1 and ATRAC3 Decoder/
 Encoder", 12 October 2022,
 <https://github.com/dcherednik/atracdenc>.

 [DVD-Video]
 DVD Forum, "DVD-Books: Part 3 DVD-Video Book", 1 November
 1995, <http://www.dvdforum.org/>.

 [RFC5484] Singer, D., "Associating Time-Codes with RTP Streams",
 RFC 5484, DOI 10.17487/RFC5484, March 2009,
 <https://www.rfc-editor.org/info/rfc5484>.

Authors’ Addresses

 Steve Lhomme
 Email: slhomme@matroska.org

 Moritz Bunkus
 Email: moritz@bunkus.org

 Dave Rice
 Email: dave@dericed.com

Lhomme, et al. Expires 30 July 2024 [Page 56]

CELLAR Group S. Lhomme
Internet-Draft
Intended status: Standards Track M. Bunkus
Expires: 30 July 2024
 D. Rice
 27 January 2024

 Matroska Media Container Control Track Specifications
 draft-ietf-cellar-control-04

Abstract

 This document defines the Control Track usage found in the Matroska
 container.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 30 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Lhomme, et al. Expires 30 July 2024 [Page 1]

Internet-Draft Matroska Control Track January 2024

Table of Contents

 1. Introduction . 2
 2. Status of this document 2
 3. Security Considerations 2
 4. IANA Considerations . 2
 5. Notation and Conventions 3
 6. Edition Flags . 3
 6.1. EditionFlagHidden . 3
 6.2. EditionFlagDefault 4
 6.3. Default Edition . 4
 7. Chapter Flags . 6
 7.1. ChapterFlagEnabled 6
 8. Matroska Schema . 6
 8.1. Segment . 6
 8.1.1. Chapters . 7
 8.1.1.1. EditionEntry 7
 9. Menu Specifications . 8
 9.1. Requirements . 8
 9.1.1. Highlights/Hotspots 8
 9.1.2. Playback features 9
 9.1.3. Player requirements 9
 9.2. Working Graph . 9
 10. Normative References . 9
 11. Informative References 10
 Authors’ Addresses . 10

1. Introduction

2. Status of this document

 This document is a work-in-progress specification defining the
 Matroska file format as part of the IETF Cellar working group
 (https://datatracker.ietf.org/wg/cellar/charter/). It uses basic
 elements and concept already defined in the Matroska specifications
 defined by this workgroup [Matroska].

3. Security Considerations

 This document inherits security considerations from the EBML
 [RFC8794] and Matroska [Matroska] documents.

4. IANA Considerations

 To be determined.

Lhomme, et al. Expires 30 July 2024 [Page 2]

Internet-Draft Matroska Control Track January 2024

5. Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

6. Edition Flags

6.1. EditionFlagHidden

 When the EditionFlagHidden flag is set to false it means the Edition
 is visible and selectable in a Matroska Player. All ChapterAtoms
 Elements MUST be interpreted with their own ChapterFlagHidden flags.

 +===================+=======+======+=========+
 | ChapterFlagHidden | False | True | visible |
 +===================+=======+======+=========+
 | Chapter 1 | X | | yes |
 +-------------------+-------+------+---------+
 | Chapter 2 | | X | no |
 +-------------------+-------+------+---------+

 Table 1: ChapterAtom visibility to the user

 When the EditionFlagHidden flag is set to true the Edition is hidden
 and SHOULD NOT be selectable in a Matroska Player. If all Editions
 EditionFlagHidden flags are set to true, there is no visible Edition.
 In this case all ChapterAtoms Elements MUST also be interpreted as if
 their ChapterFlagHidden flag is also set to true, regardless with
 their own ChapterFlagHidden flags.

 +===================+=======+======+=========+
 | ChapterFlagHidden | False | True | visible |
 +===================+=======+======+=========+
 | Chapter 1 | X | | no |
 +-------------------+-------+------+---------+
 | Chapter 2 | | X | no |
 +-------------------+-------+------+---------+

 Table 2: ChapterAtom visibility in hidden
 editions

Lhomme, et al. Expires 30 July 2024 [Page 3]

Internet-Draft Matroska Control Track January 2024

6.2. EditionFlagDefault

 It is RECOMMENDED that no more than one Edition have an
 EditionFlagDefault Flag set to true. The first Edition with both the
 EditionFlagDefault Flag set to true and the EditionFlagHidden Flag
 set to false is the Default Edition. When all EditionFlagDefault
 Flags are set to false, then the first Edition with the
 EditionFlagHidden Flag set to false is the Default Edition. The
 Default Edition is the edition that should be used for playback by
 default.

6.3. Default Edition

 The Default Edition is the Edition that a Matroska Player SHOULD use
 for playback by default.

 The first Edition with both the EditionFlagDefault flag set to true
 and the EditionFlagHidden flag set to false is the Default Edition.
 When all EditionFlagDefault flags are set to false and all
 EditionFlagHidden flag set to true, then the first Edition is the
 Default Edition. When all EditionFlagHidden flags are set to true,
 then the first Edition with the EditionFlagDefault flag set to true
 is the Default Edition. When all EditionFlagDefault flags are set to
 false, then the first Edition with the EditionFlagHidden flag set to
 false is the Default Edition. When there is no Edition with a
 EditionFlagDefault flag are set to true and a EditionFlagHidden flags
 are set to false, then the first Edition with the EditionFlagHidden
 flag set to false is the Default Edition.

 In other words, in case the Default Edition is not obvious, the first
 Edition with a EditionFlagHidden flag set to false SHOULD be
 preferred.

 +===========+============+=============+=================+
 | Edition | FlagHidden | FlagDefault | Default Edition |
 +===========+============+=============+=================+
 | Edition 1 | true | true | |
 +-----------+------------+-------------+-----------------+
 | Edition 2 | true | true | |
 +-----------+------------+-------------+-----------------+
 | Edition 3 | false | true | X |
 +-----------+------------+-------------+-----------------+

 Table 3: Default edition, some visible, all default

Lhomme, et al. Expires 30 July 2024 [Page 4]

Internet-Draft Matroska Control Track January 2024

 +===========+============+=============+=================+
 | Edition | FlagHidden | FlagDefault | Default Edition |
 +===========+============+=============+=================+
 | Edition 1 | true | false | X |
 +-----------+------------+-------------+-----------------+
 | Edition 2 | true | false | |
 +-----------+------------+-------------+-----------------+
 | Edition 3 | true | false | |
 +-----------+------------+-------------+-----------------+

 Table 4: Default edition, all hidden, no default

 +===========+============+=============+=================+
 | Edition | FlagHidden | FlagDefault | Default Edition |
 +===========+============+=============+=================+
 | Edition 1 | true | false | |
 +-----------+------------+-------------+-----------------+
 | Edition 2 | true | true | X |
 +-----------+------------+-------------+-----------------+
 | Edition 3 | true | false | |
 +-----------+------------+-------------+-----------------+

 Table 5: Default edition, all hidden, with default

 +===========+============+=============+=================+
 | Edition | FlagHidden | FlagDefault | Default Edition |
 +===========+============+=============+=================+
 | Edition 1 | true | false | |
 +-----------+------------+-------------+-----------------+
 | Edition 2 | false | false | X |
 +-----------+------------+-------------+-----------------+
 | Edition 3 | false | false | |
 +-----------+------------+-------------+-----------------+

 Table 6: Default edition, some visible, no default

 +===========+============+=============+=================+
 | Edition | FlagHidden | FlagDefault | Default Edition |
 +===========+============+=============+=================+
 | Edition 1 | true | false | |
 +-----------+------------+-------------+-----------------+
 | Edition 2 | true | true | |
 +-----------+------------+-------------+-----------------+
 | Edition 3 | false | false | X |
 +-----------+------------+-------------+-----------------+

 Table 7: Default edition, some visible, some default

Lhomme, et al. Expires 30 July 2024 [Page 5]

Internet-Draft Matroska Control Track January 2024

7. Chapter Flags

 If a Control Track toggles the parent’s ChapterFlagHidden flag to
 false, then only the parent ChapterAtom and its second child
 ChapterAtom MUST be interpreted as if ChapterFlagHidden is set to
 false. The first child ChapterAtom, which has the ChapterFlagHidden
 flag set to true, retains its value until its value is toggled to
 false by a Control Track.

 The ChapterFlagEnabled value can be toggled by control tracks.

7.1. ChapterFlagEnabled

 If the ChapterFlagEnabled flag is set to false a Matroska Player MUST
 NOT use this Chapter and all his Nested Chapters. For Simple
 Chapters, a Matroska Player MAY display this enabled Chapter with a
 marker in the timeline. For Ordered Chapters a Matroska Player MUST
 use the duration of this enabled Chapter.

 +==========================+====================+======+
 | Chapter + Nested Chapter | ChapterFlagEnabled | used |
 +==========================+====================+======+
 | Chapter 1 | true | yes |
 +--------------------------+--------------------+------+
 | +Nested Chapter 1.1 | true | yes |
 +--------------------------+--------------------+------+
 | +Nested Chapter 1.2 | false | no |
 +--------------------------+--------------------+------+
 | ++Nested Chapter 1.2.1 | true | no |
 +--------------------------+--------------------+------+
 | ++Nested Chapter 1.2.2 | false | no |
 +--------------------------+--------------------+------+
 | Chapter 2 | false | no |
 +--------------------------+--------------------+------+
 | +Nested Chapter 2.1 | true | no |
 +--------------------------+--------------------+------+
 | +Nested Chapter 2.2 | true | no |
 +--------------------------+--------------------+------+

 Table 8

8. Matroska Schema

 Extra elements used to handle Control Tracks and advanced selection
 features:

8.1. Segment

Lhomme, et al. Expires 30 July 2024 [Page 6]

Internet-Draft Matroska Control Track January 2024

8.1.1. Chapters

8.1.1.1. EditionEntry

8.1.1.1.1. EditionFlagHidden Element

 id / type / default: 0x45BD / uinteger / 0
 range: 0-1
 path: \Segment\Chapters\EditionEntry\EditionFlagHidden
 minOccurs / maxOccurs: 1 / 1
 definition: Set to 1 if an edition is hidden. Hidden editions
 SHOULD NOT be available to the user interface (but still to
 Control Tracks; see Section 7 on Chapter flags).

8.1.1.1.1.1. ChapterFlagEnabled Element

 id / type / default: 0x4598 / uinteger / 1
 range: 0-1
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterFlagEnabled
 minOccurs / maxOccurs: 1 / 1
 definition: Set to 1 if the chapter is enabled. It can be enabled/
 disabled by a Control Track. When disabled, the movie SHOULD skip
 all the content between the TimeStart and TimeEnd of this chapter;
 see Section 7 on Chapter flags.

8.1.1.1.1.2. ChapterTrack Element

 id / type: 0x8F / master
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterTrack
 maxOccurs: 1
 definition: List of tracks on which the chapter applies. If this
 Element is not present, all tracks apply

8.1.1.1.1.3. ChapterTrackUID Element

 id / type: 0x89 / uinteger
 range: not 0
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterTrack\Chapt
 erTrackUID
 minOccurs: 1
 definition: UID of the Track to apply this chapter to. In the
 absence of a control track, choosing this chapter will select the
 listed Tracks and deselect unlisted tracks. Absence of this
 Element indicates that the Chapter SHOULD be applied to any
 currently used Tracks.

Lhomme, et al. Expires 30 July 2024 [Page 7]

Internet-Draft Matroska Control Track January 2024

9. Menu Specifications

 This document is a _draft of the Menu system_ that will be the
 default one in Matroska. As it will just be composed of a Control
 Track, it will be seen as a "codec" and could be replaced later by
 something else if needed.

 A menu is like what you see on DVDs [DVD-Video], when you have some
 screens to select the audio format, subtitles or scene selection.

9.1. Requirements

 What we’ll try to have is a system that can do almost everything done
 on a DVD, or more, or better, or drop the unused features if
 necessary.

 As the name suggests, a Control Track is a track that can control the
 playback of the file and/or all the playback features. To make it as
 simple as possible for Matroska Players, the Control Track will just
 give orders to the Matroska Player and get the actions associated
 with the highlights/hotspots.

9.1.1. Highlights/Hotspots

 A highlight is basically a rectangle/key associated with an action
 UID. When that rectangle/key is activated, the Matroska Player send
 the UID of the action to the Control Track handler (codec). The fact
 that it can also be a key means that even for audio only files, a
 keyboard shortcut or button panel could be used for menus. But in
 that case, the hotspot will have to be associated with a name to
 display.

 This highlight is sent from the Control Track to the Matroska Player.
 Then the Matroska Player has to handle that highlight until it’s
 deactivated; see Section 9.1.2.

 The highlight contains a UID of the action, a displayable name (UTF-
 8), an associated key (list of keys to be defined, probably
 up/down/left/right/select), a screen position/range and an image to
 display. The image will be displayed either when the user place the
 mouse over the rectangle (or any other shape), or when an option of
 the screen is selected (not activated). There could be a second
 image used when the option is activated. And there could be a third
 image that can serve as background. This way you could have a still
 image (like in some DVDs [DVD-Video]) for the menu and behind that
 image blank video (small bitrate).

Lhomme, et al. Expires 30 July 2024 [Page 8]

Internet-Draft Matroska Control Track January 2024

 When a highlight is activated by the user, the Matroska Player has to
 send the UID of the action to the Control Track. Then the Control
 Track codec will handle the action and possibly give new orders to
 the Matroska Player.

 The format used for storing images SHOULD be extensible. For the
 moment we’ll use PNG and BMP, both with alpha channel.

9.1.2. Playback features

 All the following features will be sent from the Control Track to the
 Matroska Player :

 * Jump to chapter (UID, prev, next, number)
 * Disable all tracks of a kind (audio, video, subtitle)
 * Enable track UID (the kind doesn’t matter)
 * Define/Disable a highlight
 * Enable/Disable jumping
 * Enable/Disable track selection of a kind
 * Select Edition ID (see chapters)
 * Pause playback
 * Stop playback
 * Enable/Disable a Chapter UID
 * Hide/Unhide a Chapter UID

 All the actions will be written in a normal Matroska track, with a
 timestamp. A "Menu Frame" SHOULD be able to contain more that one
 action/highlight for a given timestamp. (to be determined, EBML
 format structure)

9.1.3. Player requirements

 Some Matroska Players might not support the control track. That mean
 they will play the active/looped parts as part of the data. So I
 suggest putting the active/looped parts of a movie at the end of a
 movie. When a Menu-aware Matroska Player encounter the default
 Control Track of a Matroska file, the first order SHOULD be to jump
 at the start of the active/looped part of the movie.

9.2. Working Graph

 Matroska Source file -> Control Track <-> Player.
 -> other tracks -> rendered

10. Normative References

Lhomme, et al. Expires 30 July 2024 [Page 9]

Internet-Draft Matroska Control Track January 2024

 [Matroska] Lhomme, S., Bunkus, M., and D. Rice, "Media Container
 Specifications", Work in Progress, Internet-Draft, draft-
 ietf-cellar-matroska-10, 1 May 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cellar-
 matroska-10>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8794] Lhomme, S., Rice, D., and M. Bunkus, "Extensible Binary
 Meta Language", RFC 8794, DOI 10.17487/RFC8794, July 2020,
 <https://www.rfc-editor.org/info/rfc8794>.

11. Informative References

 [DVD-Video]
 DVD Forum, "DVD-Books: Part 3 DVD-Video Book", 1 November
 1995, <http://www.dvdforum.org/>.

Authors’ Addresses

 Steve Lhomme
 Email: slhomme@matroska.org

 Moritz Bunkus
 Email: moritz@bunkus.org

 Dave Rice
 Email: dave@dericed.com

Lhomme, et al. Expires 30 July 2024 [Page 10]

cellar M. Niedermayer
Internet-Draft
Intended status: Standards Track D. Rice
Expires: 20 July 2024
 J. Martinez
 17 January 2024

 FFV1 Video Coding Format Version 4
 draft-ietf-cellar-ffv1-v4-22

Abstract

 This document defines FFV1, a lossless, intra-frame video encoding
 format. FFV1 is designed to efficiently compress video data in a
 variety of pixel formats. Compared to uncompressed video, FFV1
 offers storage compression, frame fixity, and self-description, which
 makes FFV1 useful as a preservation or intermediate video format.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 20 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Niedermayer, et al. Expires 20 July 2024 [Page 1]

Internet-Draft FFV1 January 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 2. Notation and Conventions 4
 2.1. Definitions . 5
 2.2. Conventions . 5
 2.2.1. Pseudocode . 5
 2.2.2. Arithmetic Operators 6
 2.2.3. Assignment Operators 6
 2.2.4. Comparison Operators 7
 2.2.5. Mathematical Functions 7
 2.2.6. Order of Operation Precedence 8
 2.2.7. Range . 8
 2.2.8. NumBytes . 8
 2.2.9. Bitstream Functions 9
 3. Sample Coding . 9
 3.1. Border . 9
 3.2. Samples . 10
 3.3. Median Predictor . 11
 3.3.1. Exception . 11
 3.4. Quantization Table Sets 11
 3.5. Context . 12
 3.6. Quantization Table Set Indexes 12
 3.7. Color Spaces . 13
 3.7.1. YCbCr . 13
 3.7.2. RGB . 13
 3.8. Coding of the Sample Difference 15
 3.8.1. Range Coding Mode 15
 3.8.2. Golomb Rice Mode 23
 4. Bitstream . 29
 4.1. Quantization Table Set 30
 4.1.1. quant_tables . 31
 4.1.2. context_count . 31
 4.2. Parameters . 31
 4.2.1. version . 33
 4.2.2. micro_version . 33
 4.2.3. coder_type . 34
 4.2.4. state_transition_delta 35
 4.2.5. colorspace_type 35

Niedermayer, et al. Expires 20 July 2024 [Page 2]

Internet-Draft FFV1 January 2024

 4.2.6. chroma_planes . 36
 4.2.7. bits_per_raw_sample 36
 4.2.8. log2_h_chroma_subsample 37
 4.2.9. log2_v_chroma_subsample 37
 4.2.10. extra_plane . 37
 4.2.11. num_h_slices . 37
 4.2.12. num_v_slices . 38
 4.2.13. quant_table_set_count 38
 4.2.14. states_coded . 38
 4.2.15. initial_state_delta 38
 4.2.16. ec . 39
 4.2.17. intra . 39
 4.3. Configuration Record 39
 4.3.1. reserved_for_future_use 40
 4.3.2. configuration_record_crc_parity 40
 4.3.3. Mapping FFV1 into Containers 40
 4.4. Frame . 41
 4.5. Slice . 42
 4.6. Slice Header . 43
 4.6.1. slice_x . 44
 4.6.2. slice_y . 44
 4.6.3. slice_width . 44
 4.6.4. slice_height . 44
 4.6.5. quant_table_set_index_count 45
 4.6.6. quant_table_set_index 45
 4.6.7. picture_structure 45
 4.6.8. sar_num . 45
 4.6.9. sar_den . 46
 4.6.10. reset_contexts 46
 4.6.11. slice_coding_mode 46
 4.7. Slice Content . 46
 4.7.1. primary_color_count 47
 4.7.2. plane_pixel_height 47
 4.7.3. slice_pixel_height 47
 4.7.4. slice_pixel_y . 47
 4.8. Line . 48
 4.8.1. plane_pixel_width 48
 4.8.2. slice_pixel_width 48
 4.8.3. slice_pixel_x . 48
 4.8.4. sample_difference 49
 4.9. Slice Footer . 49
 4.9.1. slice_size . 49
 4.9.2. error_status . 49
 4.9.3. slice_crc_parity 50
 5. Restrictions . 50
 6. Security Considerations 51
 7. IANA Considerations . 51
 7.1. Media Type Definition 51

Niedermayer, et al. Expires 20 July 2024 [Page 3]

Internet-Draft FFV1 January 2024

 8. Changelog . 52
 9. References . 53
 9.1. Normative References 53
 9.2. Informative References 53
 Appendix A. Multithreaded Decoder Implementation Suggestions . . 55
 Appendix B. Future Handling of Some Streams Created by
 Nonconforming Encoders 55
 Appendix C. FFV1 Implementations 56
 C.1. FFmpeg FFV1 Codec . 56
 C.2. FFV1 Decoder in Go 56
 C.3. MediaConch . 56
 Authors’ Addresses . 57

1. Introduction

 This document describes FFV1, a lossless video encoding format. The
 design of FFV1 considers the storage of image characteristics, data
 fixity, and the optimized use of encoding time and storage
 requirements. FFV1 is designed to support a wide range of lossless
 video applications such as long-term audiovisual preservation,
 scientific imaging, screen recording, and other video encoding
 scenarios that seek to avoid the generational loss of lossy video
 encodings.

 This document defines a version 4 of FFV1. Prior versions of FFV1
 are defined within [I-D.ietf-cellar-ffv1].

 This document assumes familiarity with mathematical and coding
 concepts such as Range encoding [Range-Encoding] and YCbCr color
 spaces [YCbCr].

 This specification describes the valid bitstream and how to decode
 it. Nonconformant bitstreams and the nonconformant handling of
 bitstreams are outside this specification. A decoder can perform any
 action that it deems appropriate for an invalid bitstream: reject the
 bitstream, attempt to perform error concealment, or re-download or
 use a redundant copy of the invalid part.

2. Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Niedermayer, et al. Expires 20 July 2024 [Page 4]

Internet-Draft FFV1 January 2024

2.1. Definitions

 FFV1: The chosen name of this video encoding format, which is the
 short version of "FF Video 1". The letters "FF" come from
 "FFmpeg", which is the name of the reference decoder whose first
 letters originally meant "Fast Forward".
 Container: A format that encapsulates Frames (see Section 4.4) and
 (when required) a Configuration Record into a bitstream.
 Sample: The smallest addressable representation of a color component
 or a luma component in a Frame. Examples of Sample are Luma (Y),
 Blue-difference Chroma (Cb), Red-difference Chroma (Cr),
 Transparency, Red, Green, and Blue.
 Symbol: A value stored in the bitstream, which is defined and
 decoded through one of the methods described in Table 4.
 Line: A discrete component of a static image composed of Samples
 that represent a specific quantification of Samples of that image.
 Plane: A discrete component of a static image composed of Lines that
 represent a specific quantification of Lines of that image.
 Pixel: The smallest addressable representation of a color in a
 Frame. It is composed of one or more Samples.
 MSB: Most Significant Bit, the bit that can cause the largest change
 in magnitude of the symbol.
 VLC: Variable Length Code, a code that maps source symbols to a
 variable number of bits.
 RGB: A reference to the method of storing the value of a pixel by
 using three numeric values that represent Red, Green, and Blue.
 YCbCr: A reference to the method of storing the value of a pixel by
 using three numeric values that represent the luma of the pixel
 (Y) and the chroma of the pixel (Cb and Cr). The term YCbCr is
 used for historical reasons and currently references any color
 space relying on one luma Sample and two chroma Samples, e.g.,
 YCbCr (luma, blue-difference chroma, red-difference chroma),
 YCgCo, or ICtCp (intensity, blue-yellow, red-green).
 TBA: To Be Announced. Used in reference to the development of
 future iterations of the FFV1 specification.

2.2. Conventions

2.2.1. Pseudocode

 The FFV1 bitstream is described in this document using pseudocode.
 Note that the pseudocode is used to illustrate the structure of FFV1
 and is not intended to specify any particular implementation. The
 pseudocode used is based upon the C programming language
 [ISO.9899.2018] and uses its if/else, while, and for keywords as well
 as functions defined within this document.

Niedermayer, et al. Expires 20 July 2024 [Page 5]

Internet-Draft FFV1 January 2024

 In some instances, pseudocode is presented in a two-column format
 such as shown in Figure 1. In this form, the type column provides a
 symbol as defined in Table 4 that defines the storage of the data
 referenced in that same line of pseudocode.

pseudocode	type
 ExamplePseudoCode() { |
 value | ur
 } |

 Figure 1: A depiction of type-labeled pseudocode used within this
 document.

2.2.2. Arithmetic Operators

 Note: the operators and the order of precedence are the same as used
 in the C programming language [ISO.9899.2018], with the exception of
 >> (removal of implementation-defined behavior) and ^ (power instead
 of XOR) operators, which are redefined within this section.

 a + b means a plus b.

 a - b means a minus b.

 -a means negation of a.

 a * b means a multiplied by b.

 a / b means a divided by b.

 a ^ b means a raised to the b-th power.

 a & b means bitwise "and" of a and b.

 a | b means bitwise "or" of a and b.

 a >> b means arithmetic right shift of the two’s complement integer
 representation of a by b binary digits. This is equivalent to
 dividing a by 2, b times, with rounding toward negative infinity.

 a << b means arithmetic left shift of the two’s complement integer
 representation of a by b binary digits.

2.2.3. Assignment Operators

 a = b means a is assigned b.

Niedermayer, et al. Expires 20 July 2024 [Page 6]

Internet-Draft FFV1 January 2024

 a++ is equivalent to a is assigned a + 1.

 a-- is equivalent to a is assigned a - 1.

 a += b is equivalent to a is assigned a + b.

 a -= b is equivalent to a is assigned a - b.

 a *= b is equivalent to a is assigned a * b.

2.2.4. Comparison Operators

 a > b is true when a is greater than b.

 a >= b is true when a is greater than or equal to b.

 a < b is true when a is less than b.

 a <= b is true when a is less than or equal b.

 a == b is true when a is equal to b.

 a != b is true when a is not equal to b.

 a && b is true when both a is true and b is true.

 a || b is true when either a is true or b is true.

 !a is true when a is not true.

 a ? b : c if a is true, then b, otherwise c.

2.2.5. Mathematical Functions

 floor(a) means the largest integer less than or equal to a.

 ceil(a) means the smallest integer greater than or equal to a.

 sign(a) extracts the sign of a number, i.e., if a < 0 then -1, else
 if a > 0 then 1, else 0.

 abs(a) means the absolute value of a, i.e., abs(a) = sign(a) * a.

 log2(a) means the base-two logarithm of a.

 min(a,b) means the smaller of two values a and b.

 max(a,b) means the larger of two values a and b.

Niedermayer, et al. Expires 20 July 2024 [Page 7]

Internet-Draft FFV1 January 2024

 median(a,b,c) means the numerical middle value in a data set of a, b,
 and c, i.e., a+b+c-min(a,b,c)-max(a,b,c).

 a ==> b means a implies b.

 a <==> b means a ==> b , b ==> a.

 a_b means the b-th value of a sequence of a.

 a_(b,c) means the ’b,c’-th value of a sequence of a.

2.2.6. Order of Operation Precedence

 When order of precedence is not indicated explicitly by use of
 parentheses, operations are evaluated in the following order (from
 top to bottom, operations of same precedence being evaluated from
 left to right). This order of operations is based on the order of
 operations used in Standard C.

 a++, a--
 !a, -a
 a ^ b
 a * b, a / b
 a + b, a - b
 a << b, a >> b
 a < b, a <= b, a > b, a >= b
 a == b, a != b
 a & b
 a | b
 a && b
 a || b
 a ? b : c
 a = b, a += b, a -= b, a *= b

2.2.7. Range

 a...b means any value from a to b, inclusive.

2.2.8. NumBytes

 NumBytes is a nonnegative integer that expresses the size in 8-bit
 octets of a particular FFV1 Configuration Record or Frame. FFV1
 relies on its container to store the NumBytes values; see
 Section 4.3.3.

Niedermayer, et al. Expires 20 July 2024 [Page 8]

Internet-Draft FFV1 January 2024

2.2.9. Bitstream Functions

2.2.9.1. remaining_bits_in_bitstream

 remaining_bits_in_bitstream(NumBytes) means the count of remaining
 bits after the pointer in that Configuration Record or Frame. It is
 computed from the NumBytes value multiplied by 8 minus the count of
 bits of that Configuration Record or Frame already read by the
 bitstream parser.

2.2.9.2. remaining_symbols_in_syntax

 remaining_symbols_in_syntax() is true as long as the range coder has
 not consumed all the given input bytes.

2.2.9.3. byte_aligned

 byte_aligned() is true if remaining_bits_in_bitstream(NumBytes) is
 a multiple of 8, otherwise false.

2.2.9.4. get_bits

 get_bits(i) is the action to read the next i bits in the bitstream,
 from most significant bit to least significant bit, and to return the
 corresponding value. The pointer is increased by i.

3. Sample Coding

 For each Slice (as described in Section 4.5) of a Frame, the Planes,
 Lines, and Samples are coded in an order determined by the color
 space (see Section 3.7). Each Sample is predicted by the median
 predictor as described in Section 3.3 from other Samples within the
 same Plane, and the difference is stored using the method described
 in Section 3.8.

3.1. Border

 A border is assumed for each coded Slice for the purpose of the
 median predictor and context according to the following rules:

 * One column of Samples to the left of the coded Slice is assumed as
 identical to the Samples of the leftmost column of the coded Slice
 shifted down by one row. The value of the topmost Sample of the
 column of Samples to the left of the coded Slice is assumed to be
 0.
 * One column of Samples to the right of the coded Slice is assumed
 as identical to the Samples of the rightmost column of the coded
 Slice.

Niedermayer, et al. Expires 20 July 2024 [Page 9]

Internet-Draft FFV1 January 2024

 * An additional column of Samples to the left of the coded Slice and
 two rows of Samples above the coded Slice are assumed to be 0.

 Figure 2 depicts a Slice of nine Samples a,b,c,d,e,f,g,h,i in a
 three-by-three arrangement along with its assumed border.

 +---+---+---+---+---+---+---+---+
 | 0 | 0 | | 0 | 0 | 0 | | 0 |
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | | 0 | 0 | 0 | | 0 |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | | a | b | c | | c |
 +---+---+---+---+---+---+---+---+
 | 0 | a | | d | e | f | | f |
 +---+---+---+---+---+---+---+---+
 | 0 | d | | g | h | i | | i |
 +---+---+---+---+---+---+---+---+

 Figure 2: A depiction of FFV1’s assumed border for a set of
 example Samples.

3.2. Samples

 Relative to any Sample X, six other relatively positioned Samples
 from the coded Samples and presumed border are identified according
 to the labels used in Figure 3. The labels for these relatively
 positioned Samples are used within the median predictor and context.

 +---+---+---+---+
 | | | T | |
 +---+---+---+---+
 | |tl | t |tr |
 +---+---+---+---+
 | L | l | X | |
 +---+---+---+---+

 Figure 3: A depiction of how relatively positioned Samples are
 referenced within this document.

 The labels for these relative Samples are made of the first letters
 of the words Top, Left, and Right.

Niedermayer, et al. Expires 20 July 2024 [Page 10]

Internet-Draft FFV1 January 2024

3.3. Median Predictor

 The prediction for any Sample value at position X may be computed
 based upon the relative neighboring values of l, t, and tl via this
 equation:

 median(l, t, l + t - tl)

 Note that this prediction template is also used in [ISO.14495-1.1999]
 and [HuffYUV].

3.3.1. Exception

 If colorspace_type == 0 && bits_per_raw_sample == 16 && (coder_type
 == 1 || coder_type == 2) (see Section 4.2.5, Section 4.2.7, and
 Section 4.2.3), the following median predictor MUST be used:

 median(left16s, top16s, left16s + top16s - diag16s)

 where:

 left16s = l >= 32768 ? (l - 65536) : l
 top16s = t >= 32768 ? (t - 65536) : t
 diag16s = tl >= 32768 ? (tl - 65536) : tl

 Background: a two’s complement 16-bit signed integer was used for
 storing Sample values in all known implementations of FFV1 bitstream
 (see Appendix C). So in some circumstances, the most significant bit
 was wrongly interpreted (used as a sign bit instead of the 16th bit
 of an unsigned integer). Note that when the issue was discovered,
 the only impacted configuration of all known implementations was the
 16-bit YCbCr with no pixel transformation and with the range coder
 coder type, as the other potentially impacted configurations (e.g.,
 the 15/16-bit JPEG 2000 Reversible Color Transform (RCT)
 [ISO.15444-1.2019] with range coder or the 16-bit content with the
 Golomb Rice coder type) were not implemented. Meanwhile, the 16-bit
 JPEG 2000 RCT with range coder was deployed without this issue in one
 implementation and validated by one conformance checker. It is
 expected (to be confirmed) that this exception for the median
 predictor will be removed in the next version of the FFV1 bitstream.

3.4. Quantization Table Sets

 Quantization Tables are used on Sample Differences (see Section 3.8),
 so Quantized Sample Differences are stored in the bitstream.

Niedermayer, et al. Expires 20 July 2024 [Page 11]

Internet-Draft FFV1 January 2024

 The FFV1 bitstream contains one or more Quantization Table Sets.
 Each Quantization Table Set contains exactly five Quantization Tables
 with each Quantization Table corresponding to one of the five
 Quantized Sample Differences. For each Quantization Table, both the
 number of quantization steps and their distribution are stored in the
 FFV1 bitstream; each Quantization Table has exactly 256 entries, and
 the eight least significant bits of the Quantized Sample Difference
 are used as an index:

 Q_(j)[k] = quant_tables[i][j][k&255]

 Figure 4: Description of the mapping from sample differences to the
 corresponding Quantized Sample Differences.

 In this formula, i is the Quantization Table Set index, j is the
 Quantized Table index, and k is the Quantized Sample Difference (see
 Section 4.1.1).

3.5. Context

 Relative to any Sample X, the Quantized Sample Differences L-l, l-tl,
 tl-t, T-t, and t-tr are used as context:

 context = Q_(0)[l - tl] +
 Q_(1)[tl - t] +
 Q_(2)[t - tr] +
 Q_(3)[L - l] +
 Q_(4)[T - t]

 Figure 5: Description of the computing of the Context.

 If context >= 0 then context is used, and the difference between the
 Sample and its predicted value is encoded as is; else -context is
 used, and the difference between the Sample and its predicted value
 is encoded with a flipped sign.

3.6. Quantization Table Set Indexes

 For each Plane of each Slice, a Quantization Table Set is selected
 from an index:

 * For Y Plane, quant_table_set_index[0] index is used.
 * For Cb and Cr Planes, quant_table_set_index[1] index is used.
 * For extra Plane, quant_table_set_index[(version <= 3 ||
 chroma_planes) ? 2 : 1] index is used.

Niedermayer, et al. Expires 20 July 2024 [Page 12]

Internet-Draft FFV1 January 2024

 Background: in the first implementations of the FFV1 bitstream, the
 index for Cb and Cr Planes was stored even if it was not used
 (chroma_planes set to 0), this index is kept for version <= 3 in
 order to keep compatibility with FFV1 bitstreams in the wild.

3.7. Color Spaces

 FFV1 supports several color spaces. The count of allowed coded
 Planes and the meaning of the extra Plane are determined by the
 selected color space.

 The FFV1 bitstream interleaves data in an order determined by the
 color space. In YCbCr for each Plane, each Line is coded from top to
 bottom, and for each Line, each Sample is coded from left to right.
 In JPEG 2000 RCT for each Line from top to bottom, each Plane is
 coded, and for each Plane, each Sample is encoded from left to right.

3.7.1. YCbCr

 This color space allows one to four Planes.

 The Cb and Cr Planes are optional, but if they are used, then they
 MUST be used together. Omitting the Cb and Cr Planes codes the
 frames in gray scale without color data.

 An optional transparency Plane can be used to code transparency data.

 An FFV1 Frame using YCbCr MUST use one of the following arrangements:

 * Y
 * Y, Transparency
 * Y, Cb, Cr
 * Y, Cb, Cr, Transparency

 The Y Plane MUST be coded first. If the Cb and Cr Planes are used,
 then they MUST be coded after the Y Plane. If a transparency Plane
 is used, then it MUST be coded last.

3.7.2. RGB

 This color space allows three or four Planes.

 An optional transparency Plane can be used to code transparency data.

 JPEG 2000 RCT is a Reversible Color Transform that codes RGB (Red,
 Green, Blue) Planes losslessly in a modified YCbCr color space
 [ISO.15444-1.2019]. Reversible pixel transformations between YCbCr
 and RGB use the following formulae:

Niedermayer, et al. Expires 20 July 2024 [Page 13]

Internet-Draft FFV1 January 2024

 Cb = b - g
 Cr = r - g
 Y = g + (Cb + Cr) >> 2

 Figure 6: Description of the transformation of pixels from RGB
 color space to coded, modified YCbCr color space.

 g = Y - (Cb + Cr) >> 2
 r = Cr + g
 b = Cb + g

 Figure 7: Description of the transformation of pixels from coded,
 modified YCbCr color space to RGB color space.

 Cb and Cr are positively offset by 1 << bits_per_raw_sample after the
 conversion from RGB to the modified YCbCr, and they are negatively
 offset by the same value before the conversion from the modified
 YCbCr to RGB in order to have only nonnegative values after the
 conversion.

 When FFV1 uses the JPEG 2000 RCT, the horizontal Lines are
 interleaved to improve caching efficiency since it is most likely
 that the JPEG 2000 RCT will immediately be converted to RGB during
 decoding. The interleaved coding order is also Y, then Cb, then Cr,
 and then, if used, transparency.

 As an example, a Frame that is two pixels wide and two pixels high
 could comprise the following structure:

 +------------------------+------------------------+
 | Pixel(1,1) | Pixel(2,1) |
 | Y(1,1) Cb(1,1) Cr(1,1) | Y(2,1) Cb(2,1) Cr(2,1) |
 +------------------------+------------------------+
 | Pixel(1,2) | Pixel(2,2) |
 | Y(1,2) Cb(1,2) Cr(1,2) | Y(2,2) Cb(2,2) Cr(2,2) |
 +------------------------+------------------------+

 In JPEG 2000 RCT, the coding order is left to right and then top to
 bottom, with values interleaved by Lines and stored in this order:

 Y(1,1) Y(2,1) Cb(1,1) Cb(2,1) Cr(1,1) Cr(2,1) Y(1,2) Y(2,2) Cb(1,2)
 Cb(2,2) Cr(1,2) Cr(2,2)

3.7.2.1. RGB Exception

 If bits_per_raw_sample is between 9 and 15 inclusive and extra_plane
 is 0, the following formulae for reversible conversions between YCbCr
 and RGB MUST be used instead of the ones above:

Niedermayer, et al. Expires 20 July 2024 [Page 14]

Internet-Draft FFV1 January 2024

 Cb = g - b
 Cr = r - b
 Y = b + (Cb + Cr) >> 2

 Figure 8: Description of the transformation of pixels from RGB
 color space to coded, modified YCbCr color space (in case of
 exception).

 b = Y - (Cb + Cr) >> 2
 r = Cr + b
 g = Cb + b

 Figure 9: Description of the transformation of pixels from coded,
 modified YCbCr color space to RGB color space (in case of
 exception).

 Background: At the time of this writing, in all known implementations
 of the FFV1 bitstream, when bits_per_raw_sample was between 9 and 15
 inclusive and extra_plane was 0, Green Blue Red (GBR) Planes were
 used as Blue Green Red (BGR) Planes during both encoding and
 decoding. Meanwhile, 16-bit JPEG 2000 RCT was implemented without
 this issue in one implementation and validated by one conformance
 checker. Methods to address this exception for the transform are
 under consideration for the next version of the FFV1 bitstream.

3.8. Coding of the Sample Difference

 Instead of coding the n+1 bits of the Sample Difference with Huffman
 or Range coding (or n+2 bits, in the case of JPEG 2000 RCT), only the
 n (or n+1, in the case of JPEG 2000 RCT) least significant bits are
 used, since this is sufficient to recover the original Sample. In
 Figure 10, the term bits represents bits_per_raw_sample + 1 for JPEG
 2000 RCT or bits_per_raw_sample otherwise:

 coder_input = ((sample_difference + 2 ^ (bits - 1)) &
 (2 ^ bits - 1)) - 2 ^ (bits - 1)

 Figure 10: Description of the coding of the Sample Difference in
 the bitstream.

3.8.1. Range Coding Mode

 Early experimental versions of FFV1 used the Context-Adaptive Binary
 Arithmetic Coding (CABAC) coder from H.264 as defined in
 [ISO.14496-10.2020], but due to the uncertain patent/royalty
 situation, as well as its slightly worse performance, CABAC was
 replaced by a range coder based on an algorithm defined by G. Nigel
 N. Martin in 1979 [Range-Encoding].

Niedermayer, et al. Expires 20 July 2024 [Page 15]

Internet-Draft FFV1 January 2024

3.8.1.1. Range Binary Values

 To encode binary digits efficiently, a range coder is used. A range
 coder encodes a series of binary symbols by using a probability
 estimation within each context. The sizes of each of the two
 subranges are proportional to their estimated probability. The
 Quantization Table is used to choose the context used from the
 surrounding image sample values for the case of coding the Sample
 Differences. The coding of integers is done by coding multiple
 binary values. The range decoder will read bytes until it can
 determine into which subrange the input falls to return the next
 binary symbol.

 To describe Range coding for FFV1, the following values are used:

 C_i the i-th context.
 B_i the i-th byte of the bytestream.
 R_i the Range at the i-th symbol.
 r_i the boundary between two subranges of R_i: a subrange of r_i
 values and a subrange R_i - r_i values.
 L_i the Low value of the Range at the i-th symbol.
 l_i a temporary variable to carry over or adjust the Low value of
 the Range between range coding operations.
 t_i a temporary variable to transmit subranges between range coding
 operations.
 b_i the i-th range-coded binary value.
 S_(0, i) the i-th initial state.
 j_n the length of the bytestream encoding n binary symbols.

 The following range coder state variables are initialized to the
 following values. The Range is initialized to a value of 65,280
 (expressed in base 16 as 0xFF00) as depicted in Figure 11. The Low
 is initialized according to the value of the first two bytes as
 depicted in Figure 12. j_i tracks the length of the bytestream
 encoding while incrementing from an initial value of j_0 to a final
 value of j_n. j_0 is initialized to 2 as depicted in Figure 13.

 R_(0) = 65280

 Figure 11: The initial value for the Range.

 L_(0) = 2 ^ 8 * B_(0) + B_(1)

 Figure 12: The initial value for Low is set according to the
 first two bytes of the bytestream.

 j_(0) = 2

Niedermayer, et al. Expires 20 July 2024 [Page 16]

Internet-Draft FFV1 January 2024

 Figure 13: The initial value for j, the length of the bytestream
 encoding.

 The following equations define how the range coder variables evolve
 as it reads or writes symbols.

 r_(i) = floor((R_(i) * S_(i, C_(i))) / 2 ^ 8)

 Figure 14: This formula shows the positioning of range split
 based on the state.

 b_(i) = 0 <==>
 L_(i) < R_(i) - r_(i) ==>
 S_(i + 1, C_(i)) = zero_state_(S_(i, C_(i))) AND
 l_(i) = L_(i) AND
 t_(i) = R_(i) - r_(i)

 b_(i) = 1 <==>
 L_(i) >= R_(i) - r_(i) ==>
 S_(i + 1, C_(i)) = one_state_(S_(i, C_(i))) AND
 l_(i) = L_(i) - R_(i) + r_(i) AND
 t_(i) = r_(i)

 Figure 15: This formula shows the linking of the decoded symbol
 (represented as b_i), the updated state (represented as
 S_(i+1,C_(i))), and the updated range (represented as a range
 from l_i to t_i).

 C_(i) != k ==> S_(i + 1, k) = S_(i, k)

 Figure 16: If the value of k is unequal to the i-th value of
 context, in other words, if the state is unchanged from the last
 symbol coding, then the value of the state is carried over to the
 next symbol coding.

 t_(i) < 2 ^ 8 ==>
 R_(i + 1) = 2 ^ 8 * t_(i) AND
 L_(i + 1) = 2 ^ 8 * l_(i) + B_(j_(i)) AND
 j_(i + 1) = j_(i) + 1

 t_(i) >= 2 ^ 8 ==>
 R_(i + 1) = t_(i) AND
 L_(i + 1) = l_(i) AND
 j_(i + 1) = j_(i)

 Figure 17: This formula shows the linking of the range coder with
 the reading or writing of the bytestream.

Niedermayer, et al. Expires 20 July 2024 [Page 17]

Internet-Draft FFV1 January 2024

 range = 0xFF00;
 end = 0;
 low = get_bits(16);
 if (low >= range) {
 low = range;
 end = 1;
 }

 Figure 18: A pseudocode description of the initialization of
 range coder variables in Range binary mode.

 refill() {
 if (range < 256) {
 range = range * 256;
 low = low * 256;
 if (!end) {
 c.low += get_bits(8);
 if (remaining_bits_in_bitstream(NumBytes) == 0) {
 end = 1;
 }
 }
 }
 }

 Figure 19: A pseudocode description of refilling the binary value
 buffer of the range coder.

 get_rac(state) {
 rangeoff = (range * state) / 256;
 range -= rangeoff;
 if (low < range) {
 state = zero_state[state];
 refill();
 return 0;
 } else {
 low -= range;
 state = one_state[state];
 range = rangeoff;
 refill();
 return 1;
 }
 }

 Figure 20: A pseudocode description of the read of a binary value
 in Range binary mode.

Niedermayer, et al. Expires 20 July 2024 [Page 18]

Internet-Draft FFV1 January 2024

3.8.1.1.1. Termination

 The range coder can be used in three modes:

 * In Open mode when decoding, every symbol the reader attempts to
 read is available. In this mode, arbitrary data can have been
 appended without affecting the range coder output. This mode is
 not used in FFV1.

 * In Closed mode, the length in bytes of the bytestream is provided
 to the range decoder. Bytes beyond the length are read as 0 by
 the range decoder. This is generally one byte shorter than the
 Open mode.

 * In Sentinel mode, the exact length in bytes is not known, and thus
 the range decoder MAY read into the data that follows the range-
 coded bytestream by one byte. In Sentinel mode, the end of the
 range-coded bytestream is a binary symbol with state 129, which
 value SHALL be discarded. After reading this symbol, the range
 decoder will have read one byte beyond the end of the range-coded
 bytestream. This way the byte position of the end can be
 determined. Bytestreams written in Sentinel mode can be read in
 Closed mode if the length can be determined. In this case, the
 last (sentinel) symbol will be read uncorrupted and be of value 0.

 The above describes the range decoding. Encoding is defined as any
 process that produces a decodable bytestream.

 There are three places where range coder termination is needed in
 FFV1. The first is in the Configuration Record, which in this case
 the size of the range coded bytestream is known and handled as Closed
 mode. The second is the switch from the Slice Header, which is range
 coded to Golomb-coded Slices as Sentinel mode. The third is the end
 of range-coded Slices, which need to terminate before the CRC at
 their end. This can be handled as Sentinel mode or as Closed mode if
 the CRC position has been determined.

3.8.1.2. Range Non Binary Values

 To encode scalar integers, it would be possible to encode each bit
 separately and use the past bits as context. However, that would
 mean 255 contexts per 8-bit symbol, which is not only a waste of
 memory but also requires more past data to reach a reasonably good
 estimate of the probabilities. Alternatively, it would also be
 possible to assume a Laplacian distribution and only dealing with its
 variance and mean (as in Huffman coding). However, for maximum
 flexibility and simplicity, the chosen method uses a single symbol to
 encode if a number is 0, and if the number is nonzero, it encodes the

Niedermayer, et al. Expires 20 July 2024 [Page 19]

Internet-Draft FFV1 January 2024

 number using its exponent, mantissa, and sign. The exact contexts
 used are best described by Figure 21.

 int get_symbol(RangeCoder *c, uint8_t *state, int is_signed) {
 if (get_rac(c, state + 0) {
 return 0;
 }

 int e = 0;
 while (get_rac(c, state + 1 + min(e, 9)) { //1..10
 e++;
 }

 int a = 1;
 for (int i = e - 1; i >= 0; i--) {
 a = a * 2 + get_rac(c, state + 22 + min(i, 9)); // 22..31
 }

 if (!is_signed) {
 return a;
 }

 if (get_rac(c, state + 11 + min(e, 10))) { //11..21
 return -a;
 } else {
 return a;
 }
 }

 Figure 21: A pseudocode description of the contexts of Range
 nonbinary values.

 get_symbol is used for the read out of sample_difference indicated in
 Figure 10.

 get_rac returns a boolean, computed from the bytestream as described
 by the formula found in Figure 14 and by the pseudocode found in
 Figure 20.

3.8.1.3. Initial Values for the Context Model

 When the keyframe value (see Section 4.4) value is 1, all range coder
 state variables are set to their initial state.

Niedermayer, et al. Expires 20 July 2024 [Page 20]

Internet-Draft FFV1 January 2024

3.8.1.4. State Transition Table

 In this model, a state transition table is used, indicating to which
 state the decoder will move to, based on the current state and the
 value extracted from Figure 20.

 one_state_(i) =
 default_state_transition_(i) + state_transition_delta_(i)

 Figure 22: Description of the coding of the state transition
 table for a get_rac readout value of 0.

 zero_state_(i) = 256 - one_state_(256-i)

 Figure 23: Description of the coding of the state transition
 table for a get_rac readout value of 1.

3.8.1.5. default_state_transition

 By default, the following state transition table is used:

Niedermayer, et al. Expires 20 July 2024 [Page 21]

Internet-Draft FFV1 January 2024

 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27,

 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42,

 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57,

 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,

 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,

 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99,100,101,102,103,

 104,105,106,107,108,109,110,111,112,113,114,114,115,116,117,118,

 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,133,

 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,

 150,151,152,152,153,154,155,156,157,158,159,160,161,162,163,164,

 165,166,167,168,169,170,171,171,172,173,174,175,176,177,178,179,

 180,181,182,183,184,185,186,187,188,189,190,190,191,192,194,194,

 195,196,197,198,199,200,201,202,202,204,205,206,207,208,209,209,

 210,211,212,213,215,215,216,217,218,219,220,220,222,223,224,225,

 226,227,227,229,229,230,231,232,234,234,235,236,237,238,239,240,

 241,242,243,244,245,246,247,248,248, 0, 0, 0, 0, 0, 0, 0,

 Figure 24: Default state transition table for Range coding.

3.8.1.6. Alternative State Transition Table

 The alternative state transition table has been built using iterative
 minimization of frame sizes and generally performs better than the
 default. To use it, the coder_type (see Section 4.2.3) MUST be set
 to 2, and the difference to the default MUST be stored in the
 Parameters, see Section 4.2. At the time of this writing, the
 reference implementation of FFV1 in FFmpeg uses Figure 25 by default
 when Range coding is used.

Niedermayer, et al. Expires 20 July 2024 [Page 22]

Internet-Draft FFV1 January 2024

 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,

 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,

 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,

 53, 74, 55, 57, 58, 58, 74, 60,101, 61, 62, 84, 66, 66, 68, 69,

 87, 82, 71, 97, 73, 73, 82, 75,111, 77, 94, 78, 87, 81, 83, 97,

 85, 83, 94, 86, 99, 89, 90, 99,111, 92, 93,134, 95, 98,105, 98,

 105,110,102,108,102,118,103,106,106,113,109,112,114,112,116,125,

 115,116,117,117,126,119,125,121,121,123,145,124,126,131,127,129,

 165,130,132,138,133,135,145,136,137,139,146,141,143,142,144,148,

 147,155,151,149,151,150,152,157,153,154,156,168,158,162,161,160,

 172,163,169,164,166,184,167,170,177,174,171,173,182,176,180,178,

 175,189,179,181,186,183,192,185,200,187,191,188,190,197,193,196,

 197,194,195,196,198,202,199,201,210,203,207,204,205,206,208,214,

 209,211,221,212,213,215,224,216,217,218,219,220,222,228,223,225,

 226,224,227,229,240,230,231,232,233,234,235,236,238,239,237,242,

 241,243,242,244,245,246,247,248,249,250,251,252,252,253,254,255,

 Figure 25: Alternative state transition table for Range coding.

3.8.2. Golomb Rice Mode

 The end of the bitstream of the Frame is padded with zeroes until the
 bitstream contains a multiple of eight bits.

3.8.2.1. Signed Golomb Rice Codes

 This coding mode uses Golomb Rice codes. The VLC is split into two
 parts: the prefix and suffix. The prefix stores the most significant
 bits or indicates if the symbol is too large to be stored (this is
 known as the ESC case. The suffix either stores the k least
 significant bits or stores the whole number in the ESC case.

Niedermayer, et al. Expires 20 July 2024 [Page 23]

Internet-Draft FFV1 January 2024

 int get_ur_golomb(k) {
 for (prefix = 0; prefix < 12; prefix++) {
 if (get_bits(1)) {
 return get_bits(k) + (prefix << k);
 }
 }
 return get_bits(bits) + 11;
 }

 Figure 26: A pseudocode description of the read of an unsigned
 integer in Golomb Rice mode.

 int get_sr_golomb(k) {
 v = get_ur_golomb(k);
 if (v & 1) return - (v >> 1) - 1;
 else return (v >> 1);
 }

 Figure 27: A pseudocode description of the read of a signed
 integer in Golomb Rice mode.

3.8.2.1.1. Prefix

 +================+=======+
 | bits | value |
 +================+=======+
 | 1 | 0 |
 +----------------+-------+
 | 01 | 1 |
 +----------------+-------+
 | ... | ... |
 +----------------+-------+
 | 0000 0000 01 | 9 |
 +----------------+-------+
 | 0000 0000 001 | 10 |
 +----------------+-------+
 | 0000 0000 0001 | 11 |
 +----------------+-------+
 | 0000 0000 0000 | ESC |
 +----------------+-------+

 Table 1: Description
 of the coding of the
 prefix of signed
 Golomb Rice codes.

Niedermayer, et al. Expires 20 July 2024 [Page 24]

Internet-Draft FFV1 January 2024

 ESC is an ESCape symbol to indicate that the symbol to be stored is
 too large for normal storage and that an alternate storage method is
 used.

3.8.2.1.2. Suffix

 +=========+==+
 +=========+==+
 | non ESC | the k least significant bits MSB first |
 +---------+--+
 | ESC | the value - 11, in MSB first order |
 +---------+--+

 Table 2: Description of the coding of the suffix
 of signed Golomb Rice codes.

 ESC MUST NOT be used if the value can be coded as non-ESC.

3.8.2.1.3. Examples

 Table 3 shows practical examples of how signed Golomb Rice codes are
 decoded based on the series of bits extracted from the bitstream as
 described by the method above:

 +=====+=======================+=======+
 | k | bits | value |
 +=====+=======================+=======+
 | 0 | 1 | 0 |
 +-----+-----------------------+-------+
 | 0 | 001 | 2 |
 +-----+-----------------------+-------+
 | 2 | 1 00 | 0 |
 +-----+-----------------------+-------+
 | 2 | 1 10 | 2 |
 +-----+-----------------------+-------+
 | 2 | 01 01 | 5 |
 +-----+-----------------------+-------+
 | any | 000000000000 10000000 | 139 |
 +-----+-----------------------+-------+

 Table 3: Examples of decoded,
 signed Golomb Rice codes.

Niedermayer, et al. Expires 20 July 2024 [Page 25]

Internet-Draft FFV1 January 2024

3.8.2.2. Run Mode

 Run mode is entered when the context is 0 and left as soon as a
 nonzero difference is found. The Sample Difference is identical to
 the predicted one. The run and the first different Sample Difference
 are coded are coded as defined in Section 3.8.2.4.1.

3.8.2.2.1. Run Length Coding

 The run value is encoded in two parts. The prefix part stores the
 more significant part of the run as well as adjusting the run_index
 that determines the number of bits in the less significant part of
 the run. The second part of the value stores the less significant
 part of the run as it is. The run_index is reset to zero for each
 Plane and Slice.

 log2_run[41] = {
 0, 0, 0, 0, 1, 1, 1, 1,
 2, 2, 2, 2, 3, 3, 3, 3,
 4, 4, 5, 5, 6, 6, 7, 7,
 8, 9,10,11,12,13,14,15,
 16,17,18,19,20,21,22,23,
 24,
 };

 if (run_count == 0 && run_mode == 1) {
 if (get_bits(1)) {
 run_count = 1 << log2_run[run_index];
 if (x + run_count <= w) {
 run_index++;
 }
 } else {
 if (log2_run[run_index]) {
 run_count = get_bits(log2_run[run_index]);
 } else {
 run_count = 0;
 }
 if (run_index) {
 run_index--;
 }
 run_mode = 2;
 }
 }

 The log2_run array is also used within [ISO.14495-1.1999].

Niedermayer, et al. Expires 20 July 2024 [Page 26]

Internet-Draft FFV1 January 2024

3.8.2.3. Sign Extension

 sign_extend is the function of increasing the number of bits of an
 input binary number in two’s complement signed number representation
 while preserving the input number’s sign (positive/negative) and
 value, in order to fit in the output bit width. It MAY be computed
 with the following:

 sign_extend(input_number, input_bits) {
 negative_bias = 1 << (input_bits - 1);
 bits_mask = negative_bias - 1;
 output_number = input_number & bits_mask; // Remove negative bit
 is_negative = input_number & negative_bias; // Test negative bit
 if (is_negative)
 output_number -= negative_bias;
 return output_number
 }

3.8.2.4. Scalar Mode

 Each difference is coded with the per context mean prediction removed
 and a per context value for k.

Niedermayer, et al. Expires 20 July 2024 [Page 27]

Internet-Draft FFV1 January 2024

 get_vlc_symbol(state) {
 i = state->count;
 k = 0;
 while (i < state->error_sum) {
 k++;
 i += i;
 }

 v = get_sr_golomb(k);

 if (2 * state->drift < -state->count) {
 v = -1 - v;
 }

 ret = sign_extend(v + state->bias, bits);

 state->error_sum += abs(v);
 state->drift += v;

 if (state->count == 128) {
 state->count >>= 1;
 state->drift >>= 1;
 state->error_sum >>= 1;
 }
 state->count++;
 if (state->drift <= -state->count) {
 state->bias = max(state->bias - 1, -128);

 state->drift = max(state->drift + state->count,
 -state->count + 1);
 } else if (state->drift > 0) {
 state->bias = min(state->bias + 1, 127);

 state->drift = min(state->drift - state->count, 0);
 }

 return ret;
 }

3.8.2.4.1. Golomb Rice Sample Difference Coding

 Level coding is identical to the normal difference coding with the
 exception that the 0 value is removed as it cannot occur:

 diff = get_vlc_symbol(context_state);
 if (diff >= 0) {
 diff++;
 }

Niedermayer, et al. Expires 20 July 2024 [Page 28]

Internet-Draft FFV1 January 2024

 Note that this is different from JPEG-LS (lossless JPEG), which
 doesn’t use prediction in run mode and uses a different encoding and
 context model for the last difference. On a small set of test
 Samples, the use of prediction slightly improved the compression
 rate.

3.8.2.5. Initial Values for the VLC Context State

 When keyframe (see Section 4.4) value is 1, all VLC coder state
 variables are set to their initial state.

 drift = 0;
 error_sum = 4;
 bias = 0;
 count = 1;

4. Bitstream

 An FFV1 bitstream is composed of a series of one or more Frames and
 (when required) a Configuration Record.

 Within the following subsections, pseudocode as described in
 Section 2.2.1, is used to explain the structure of each FFV1
 bitstream component. Table 4 lists symbols used to annotate that
 pseudocode in order to define the storage of the data referenced in
 that line of pseudocode.

 +========+==+
 | symbol | definition |
 +========+==+
 | u(n) | Unsigned, big-endian integer symbol using n bits |
 +--------+--+
 | br | Boolean (1-bit) symbol that is range coded with |
 | | the method described in Section 3.8.1.1 |
 +--------+--+
 | ur | Unsigned scalar symbol that is range coded with |
 | | the method described in Section 3.8.1.2 |
 +--------+--+
 | sr | Signed scalar symbol that is range coded with |
 | | the method described in Section 3.8.1.2 |
 +--------+--+
 | sd | Sample difference symbol that is coded with the |
 | | method described in Section 3.8 |
 +--------+--+

 Table 4: Definition of pseudocode symbols for this document.

Niedermayer, et al. Expires 20 July 2024 [Page 29]

Internet-Draft FFV1 January 2024

 The following MUST be provided by external means during the
 initialization of the decoder:

 frame_pixel_width is defined as Frame width in pixels.

 frame_pixel_height is defined as Frame height in pixels.

 Default values at the decoder initialization phase:

 ConfigurationRecordIsPresent is set to 0.

4.1. Quantization Table Set

 The Quantization Table Sets store a sequence of values that are equal
 to one less than the count of equal concurrent entries for each set
 of equal concurrent entries within the first half of the table
 (represented as <tt>len - 1</tt> in the pseudocode below) using the
 method described in Section 3.8.1.2. The second half doesnt need to
 be stored as it is identical to the first with flipped sign. scale
 and len_count[i][j] are temporary values used for the computing
 of context_count[i] and are not used outside Quantization Table Set
 pseudocode.

 Example:

 Table: 0 0 1 1 1 1 2 2 -2 -2 -2 -1 -1 -1 -1 0

 Stored values: 1, 3, 1

 QuantizationTableSet has its own initial states, all set to 128.

pseudocode	type
 QuantizationTableSet(i) { |
 scale = 1 |
 for (j = 0; j < MAX_CONTEXT_INPUTS; j++) { |
 QuantizationTable(i, j, scale) |
 scale *= 2 * len_count[i][j] - 1 |
 } |
 context_count[i] = ceil(scale / 2) |
 } |

 MAX_CONTEXT_INPUTS is 5.

Niedermayer, et al. Expires 20 July 2024 [Page 30]

Internet-Draft FFV1 January 2024

pseudocode	type
 QuantizationTable(i, j, scale) { |
 v = 0 |
 for (k = 0; k < 128;) { |
 len - 1 | ur
 for (n = 0; n < len; n++) { |
 quant_tables[i][j][k] = scale * v |
 k++ |
 } |
 v++ |
 } |
 for (k = 1; k < 128; k++) { |
 quant_tables[i][j][256 - k] = \ |
 -quant_tables[i][j][k] |
 } |
 quant_tables[i][j][128] = \ |
 -quant_tables[i][j][127] |
 len_count[i][j] = v |
 } |

4.1.1. quant_tables

 quant_tables[i][j][k] indicates the Quantization Table value of
 the Quantized Sample Difference k of the Quantization Table j of the
 Quantization Table Set i.

4.1.2. context_count

 context_count[i] indicates the count of contexts for Quantization
 Table Set i. context_count[i] MUST be less than or equal to 32768.

4.2. Parameters

 The Parameters section contains significant characteristics about the
 decoding configuration used for all instances of Frame (in FFV1
 version 0 and 1) or the whole FFV1 bitstream (other versions),
 including the stream version, color configuration, and quantization
 tables. Figure 28 describes the contents of the bitstream.

 Parameters has its own initial states, all set to 128.

Niedermayer, et al. Expires 20 July 2024 [Page 31]

Internet-Draft FFV1 January 2024

pseudocode	type
 Parameters() { |
 version | ur
 if (version >= 3) { |
 micro_version | ur
 } |
 coder_type | ur
 if (coder_type > 1) { |
 for (i = 1; i < 256; i++) { |
 state_transition_delta[i] | sr
 } |
 } |
 colorspace_type | ur
 if (version >= 1) { |
 bits_per_raw_sample | ur
 } |
 chroma_planes | br
 log2_h_chroma_subsample | ur
 log2_v_chroma_subsample | ur
 extra_plane | br
 if (version >= 3) { |
 num_h_slices - 1 | ur
 num_v_slices - 1 | ur
 quant_table_set_count | ur
 } |
 for (i = 0; i < quant_table_set_count; i++) { |
 QuantizationTableSet(i) |
 } |
 if (version >= 3) { |
 for (i = 0; i < quant_table_set_count; i++) { |
 states_coded | br
 if (states_coded) { |
 for (j = 0; j < context_count[i]; j++) { |
 for (k = 0; k < CONTEXT_SIZE; k++) { |
 initial_state_delta[i][j][k] | sr
 } |
 } |
 } |
 } |
 ec | ur
 intra | ur
 } |
 } |

 Figure 28: A pseudocode description of the bitstream contents.

 CONTEXT_SIZE is 32.

Niedermayer, et al. Expires 20 July 2024 [Page 32]

Internet-Draft FFV1 January 2024

4.2.1. version

 version specifies the version of the FFV1 bitstream.

 Each version is incompatible with other versions: decoders SHOULD
 reject FFV1 bitstreams due to an unknown version.

 Decoders SHOULD reject FFV1 bitstreams with version <= 1 &&
 ConfigurationRecordIsPresent == 1.

 Decoders SHOULD reject FFV1 bitstreams with version >= 3 &&
 ConfigurationRecordIsPresent == 0.

 +=======+=========================+
 | value | version |
 +=======+=========================+
 | 0 | FFV1 version 0 |
 +-------+-------------------------+
 | 1 | FFV1 version 1 |
 +-------+-------------------------+
 | 2 | reserved* |
 +-------+-------------------------+
 | 3 | FFV1 version 3 |
 +-------+-------------------------+
 | 4 | FFV1 version 4 |
 +-------+-------------------------+
 | Other | reserved for future use |
 +-------+-------------------------+

 Table 5: The definitions for
 version values.

 * Version 2 was experimental and this document does not describe it.

4.2.2. micro_version

 micro_version specifies the micro-version of the FFV1 bitstream.

 After a version is considered stable (a micro-version value is
 assigned to be the first stable variant of a specific version), each
 new micro-version after this first stable variant is compatible with
 the previous micro-version: decoders SHOULD NOT reject FFV1
 bitstreams due to an unknown micro-version equal or above the micro-
 version considered as stable.

 Meaning of micro_version for version 3:

Niedermayer, et al. Expires 20 July 2024 [Page 33]

Internet-Draft FFV1 January 2024

 +=======+=========================+
 | value | micro_version |
 +=======+=========================+
 | 0...3 | reserved* |
 +-------+-------------------------+
 | 4 | first stable variant |
 +-------+-------------------------+
 | Other | reserved for future use |
 +-------+-------------------------+

 Table 6: The definitions for
 micro_version values for FFV1
 version 3.

 * Development versions may be incompatible with the stable variants.

 Meaning of micro_version for version 4 (note: at the time of writing
 of this specification, version 4 is not considered stable so the
 first stable micro_version value is to be announced in the future):

 +=========+=========================+
 | value | micro_version |
 +=========+=========================+
 | 0...TBA | reserved* |
 +---------+-------------------------+
 | TBA | first stable variant |
 +---------+-------------------------+
 | Other | reserved for future use |
 +---------+-------------------------+

 Table 7: The definitions for
 micro_version values for FFV1
 version 4.

 * Development versions which may be incompatible with the stable
 variants.

4.2.3. coder_type

 coder_type specifies the coder used.

Niedermayer, et al. Expires 20 July 2024 [Page 34]

Internet-Draft FFV1 January 2024

 +=======+===+
 | value | coder used |
 +=======+===+
 | 0 | Golomb Rice |
 +-------+---+
 | 1 | Range coder with default state transition table |
 +-------+---+
 | 2 | Range coder with custom state transition table |
 +-------+---+
 | Other | reserved for future use |
 +-------+---+

 Table 8: The definitions for coder_type values.

 Restrictions:

 If coder_type is 0, then bits_per_raw_sample SHOULD NOT be > 8.

 Background: At the time of this writing, there is no known
 implementation of FFV1 bitstream supporting the Golomb Rice algorithm
 with bits_per_raw_sample greater than eight, and range coder is
 preferred.

4.2.4. state_transition_delta

 state_transition_delta specifies the range coder custom state
 transition table.

 If state_transition_delta is not present in the FFV1 bitstream, all
 range coder custom state transition table elements are assumed to be
 0.

4.2.5. colorspace_type

 colorspace_type specifies the color space encoded, the pixel
 transformation used by the encoder, the extra Plane content, as well
 as interleave method.

Niedermayer, et al. Expires 20 July 2024 [Page 35]

Internet-Draft FFV1 January 2024

 +=======+==============+================+==============+============+
 | value | color space | pixel | extra Plane | interleave |
 | | encoded | transformation | content | method |
 +=======+==============+================+==============+============+
 | 0 | YCbCr | None | Transparency | Plane then |
 | | | | | Line |
 +-------+--------------+----------------+--------------+------------+
 | 1 | RGB | JPEG 2000 RCT | Transparency | Line then |
 | | | | | Plane |
 +-------+--------------+----------------+--------------+------------+
Other	reserved	reserved for	reserved for	reserved
	for future	future use	future use	for future
	use			use
 +-------+--------------+----------------+--------------+------------+

 Table 9: The definitions for colorspace_type values.

 FFV1 bitstreams with colorspace_type == 1 && (chroma_planes != 1 ||
 log2_h_chroma_subsample != 0 || log2_v_chroma_subsample != 0) are not
 part of this specification.

4.2.6. chroma_planes

 chroma_planes indicates if chroma (color) Planes are present.

 +=======+===============================+
 | value | presence |
 +=======+===============================+
 | 0 | chroma Planes are not present |
 +-------+-------------------------------+
 | 1 | chroma Planes are present |
 +-------+-------------------------------+

 Table 10: The definitions for
 chroma_planes values.

4.2.7. bits_per_raw_sample

 bits_per_raw_sample indicates the number of bits for each Sample.
 Inferred to be 8 if not present.

Niedermayer, et al. Expires 20 July 2024 [Page 36]

Internet-Draft FFV1 January 2024

 +=======+=================================+
 | value | bits for each sample |
 +=======+=================================+
 | 0 | reserved* |
 +-------+---------------------------------+
 | Other | the actual bits for each Sample |
 +-------+---------------------------------+

 Table 11: The definitions for
 bits_per_raw_sample values.

 * Encoders MUST NOT store bits_per_raw_sample = 0. Decoders SHOULD
 accept and interpret bits_per_raw_sample = 0 as 8.

4.2.8. log2_h_chroma_subsample

 log2_h_chroma_subsample indicates the subsample factor, stored in
 powers to which the number 2 is raised, between luma and chroma width
 (chroma_width = 2 ^ -log2_h_chroma_subsample * luma_width).

4.2.9. log2_v_chroma_subsample

 log2_v_chroma_subsample indicates the subsample factor, stored in
 powers to which the number 2 is raised, between luma and chroma
 height (chroma_height = 2 ^ -log2_v_chroma_subsample * luma_height).

4.2.10. extra_plane

 extra_plane indicates if an extra Plane is present.

 +=======+============================+
 | value | presence |
 +=======+============================+
 | 0 | extra Plane is not present |
 +-------+----------------------------+
 | 1 | extra Plane is present |
 +-------+----------------------------+

 Table 12: The definitions for
 extra_plane values.

4.2.11. num_h_slices

 num_h_slices indicates the number of horizontal elements of the Slice
 raster.

 Inferred to be 1 if not present.

Niedermayer, et al. Expires 20 July 2024 [Page 37]

Internet-Draft FFV1 January 2024

4.2.12. num_v_slices

 num_v_slices indicates the number of vertical elements of the Slice
 raster.

 Inferred to be 1 if not present.

4.2.13. quant_table_set_count

 quant_table_set_count indicates the number of Quantization
 Table Sets. quant_table_set_count MUST be less than or equal to 8.

 Inferred to be 1 if not present.

 MUST NOT be 0.

4.2.14. states_coded

 states_coded indicates if the respective Quantization Table Set has
 the initial states coded.

 Inferred to be 0 if not present.

 +=======+================================+
 | value | initial states |
 +=======+================================+
 | 0 | initial states are not present |
 | | and are assumed to be all 128 |
 +-------+--------------------------------+
 | 1 | initial states are present |
 +-------+--------------------------------+

 Table 13: The definitions for
 states_coded values.

4.2.15. initial_state_delta

 initial_state_delta[i][j][k] indicates the initial range coder
 state, and it is encoded using k as context index for the range coder
 and the following pseudocode:

 pred = j ? initial_states[i][j - 1][k] : 128

 Figure 29: Predictor value for the coding of initial_state_delta[
 i][j][k].

 initial_state[i][j][k] =
 (pred + initial_state_delta[i][j][k]) & 255

Niedermayer, et al. Expires 20 July 2024 [Page 38]

Internet-Draft FFV1 January 2024

 Figure 30: Description of the coding of initial_state_delta[i][
 j][k].

4.2.16. ec

 ec indicates the error detection/correction type.

 +=======+===+
 | value | error detection/correction type |
 +=======+===+
 | 0 | 32-bit CRC in ConfigurationRecord |
 +-------+---+
 | 1 | 32-bit CRC in Slice and ConfigurationRecord |
 +-------+---+
 | Other | reserved for future use |
 +-------+---+

 Table 14: The definitions for ec values.

4.2.17. intra

 intra indicates the constraint on keyframe in each instance of Frame.

 Inferred to be 0 if not present.

 +=======+===+
 | value | relationship |
 +=======+===+
 | 0 | keyframe can be 0 or 1 (non keyframes or keyframes) |
 +-------+---+
 | 1 | keyframeMUST be 1 (keyframes only) |
 +-------+---+
 | Other | reserved for future use |
 +-------+---+

 Table 15: The definitions for intra values.

4.3. Configuration Record

 In the case of a FFV1 bitstream with version >= 3, a Configuration
 Record is stored in the underlying container as described in
 Section 4.3.3. It contains the Parameters used for all instances of
 Frame. The size of the Configuration Record, NumBytes, is supplied
 by the underlying container.

Niedermayer, et al. Expires 20 July 2024 [Page 39]

Internet-Draft FFV1 January 2024

pseudocode	type
 ConfigurationRecord(NumBytes) { |
 ConfigurationRecordIsPresent = 1 |
 Parameters() |
 while (remaining_symbols_in_syntax(NumBytes - 4)) { |
 reserved_for_future_use | br/ur/sr
 } |
 configuration_record_crc_parity | u(32)
 } |

4.3.1. reserved_for_future_use

 reserved_for_future_use is a placeholder for future updates of this
 specification.

 Encoders conforming to this version of this specification SHALL NOT
 write reserved_for_future_use.

 Decoders conforming to this version of this specification SHALL
 ignore reserved_for_future_use.

4.3.2. configuration_record_crc_parity

 configuration_record_crc_parity is 32 bits that are chosen so that
 the Configuration Record as a whole has a CRC remainder of zero.

 This is equivalent to storing the CRC remainder in the 32-bit parity.

 The CRC generator polynomial used is described in Section 4.9.3.

4.3.3. Mapping FFV1 into Containers

 This Configuration Record can be placed in any file format that
 supports Configuration Records, fitting as much as possible with how
 the file format stores Configuration Records. The Configuration
 Record storage place and NumBytes are currently defined and supported
 for the following formats:

4.3.3.1. Audio Video Interleave (AVI) File Format

 The Configuration Record extends the stream format chunk ("AVI ",
 "hdlr", "strl", "strf") with the ConfigurationRecord bitstream.

 See [AVI] for more information about chunks.

Niedermayer, et al. Expires 20 July 2024 [Page 40]

Internet-Draft FFV1 January 2024

 NumBytes is defined as the size, in bytes, of the "strf" chunk
 indicated in the chunk header minus the size of the stream format
 structure.

4.3.3.2. ISO Base Media File Format

 The Configuration Record extends the sample description box ("moov",
 "trak", "mdia", "minf", "stbl", "stsd") with a "glbl" box that
 contains the ConfigurationRecord bitstream. See [ISO.14496-12.2020]
 for more information about boxes.

 NumBytes is defined as the size, in bytes, of the "glbl" box
 indicated in the box header minus the size of the box header.

4.3.3.3. NUT File Format

 The codec_specific_data element (in stream_header packet) contains
 the ConfigurationRecord bitstream. See [NUT] for more information
 about elements.

 NumBytes is defined as the size, in bytes, of the codec_specific_data
 element as indicated in the "length" field of codec_specific_data.

4.3.3.4. Matroska File Format

 FFV1 SHOULD use V_FFV1 as the Matroska Codec ID. For FFV1 versions 2
 or less, the Matroska CodecPrivate Element SHOULD NOT be used. For
 FFV1 versions 3 or greater, the Matroska CodecPrivate Element MUST
 contain the FFV1 Configuration Record structure and no other data.
 See [I-D.ietf-cellar-matroska] for more information about elements.

 NumBytes is defined as the Element Data Size of the CodecPrivate
 Element.

4.4. Frame

 A Frame is an encoded representation of a complete static image. The
 whole Frame is provided by the underlaying container.

 A Frame consists of the keyframe field, Parameters (if version <= 1),
 and a sequence of independent Slices. The pseudocode below describes
 the contents of a Frame.

 The keyframe field has its own initial state, set to 128.

Niedermayer, et al. Expires 20 July 2024 [Page 41]

Internet-Draft FFV1 January 2024

pseudocode	type
 Frame(NumBytes) { |
 keyframe | br
 if (keyframe && !ConfigurationRecordIsPresent { |
 Parameters() |
 } |
 while (remaining_bits_in_bitstream(NumBytes)) { |
 Slice() |
 } |
 } |

 The following is an architecture overview of Slices in a Frame:

 +---+
 | first Slice header |
 +---+
 | first Slice content |
 +---+
 | first Slice footer |
 +---+
 | --- |
 +---+
 | second Slice header |
 +---+
 | second Slice content |
 +---+
 | second Slice footer |
 +---+
 | --- |
 +---+
 | ... |
 +---+
 | --- |
 +---+
 | last Slice header |
 +---+
 | last Slice content |
 +---+
 | last Slice footer |
 +---+

4.5. Slice

 A Slice is an independent, spatial subsection of a Frame that is
 encoded separately from another region of the same Frame. The use of
 more than one Slice per Frame provides opportunities for taking
 advantage of multithreaded encoding and decoding.

Niedermayer, et al. Expires 20 July 2024 [Page 42]

Internet-Draft FFV1 January 2024

 A Slice consists of a Slice Header (when relevant), a Slice Content,
 and a Slice Footer (when relevant). The pseudocode below describes
 the contents of a Slice.

pseudocode	type
 Slice() { |
 if (version >= 3) { |
 SliceHeader() |
 } |
 SliceContent() |
 if (coder_type == 0) { |
 while (!byte_aligned()) { |
 padding | u(1)
 } |
 } |
 if (version <= 1) { |
 while (remaining_bits_in_bitstream(NumBytes) != 0) {|
 reserved | u(1)
 } |
 } |
 if (version >= 3) { |
 SliceFooter() |
 } |
 } |

 padding specifies a bit without any significance and used only for
 byte alignment. padding MUST be 0.

 reserved specifies a bit without any significance in this
 specification but may have a significance in a later revision of this
 specification.

 Encoders SHOULD NOT fill reserved.

 Decoders SHOULD ignore reserved.

4.6. Slice Header

 A Slice Header provides information about the decoding configuration
 of the Slice, such as its spatial position, size, and aspect ratio.
 The pseudocode below describes the contents of the Slice Header.

 Slice Header has its own initial states, all set to 128.

Niedermayer, et al. Expires 20 July 2024 [Page 43]

Internet-Draft FFV1 January 2024

pseudocode	type
 SliceHeader() { |
 slice_x | ur
 slice_y | ur
 slice_width - 1 | ur
 slice_height - 1 | ur
 for (i = 0; i < quant_table_set_index_count; i++) { |
 quant_table_set_index[i] | ur
 } |
 picture_structure | ur
 sar_num | ur
 sar_den | ur
 if (version >= 4) { |
 reset_contexts | br
 slice_coding_mode | ur
 } |
 } |

4.6.1. slice_x

 slice_x indicates the x position on the Slice raster formed by
 num_h_slices.

 Inferred to be 0 if not present.

4.6.2. slice_y

 slice_y indicates the y position on the Slice raster formed by
 num_v_slices.

 Inferred to be 0 if not present.

4.6.3. slice_width

 slice_width indicates the width on the Slice raster formed by
 num_h_slices.

 Inferred to be 1 if not present.

4.6.4. slice_height

 slice_height indicates the height on the Slice raster formed by
 num_v_slices.

 Inferred to be 1 if not present.

Niedermayer, et al. Expires 20 July 2024 [Page 44]

Internet-Draft FFV1 January 2024

4.6.5. quant_table_set_index_count

 quant_table_set_index_count is defined as the following:

 1 + ((chroma_planes || version <= 3) ? 1 : 0)
 + (extra_plane ? 1 : 0)

4.6.6. quant_table_set_index

 quant_table_set_index indicates the Quantization Table Set index to
 select the Quantization Table Set and the initial states for the
 Slice Content.

 Inferred to be 0 if not present.

4.6.7. picture_structure

 picture_structure specifies the temporal and spatial relationship of
 each Line of the Frame.

 Inferred to be 0 if not present.

 +=======+=========================+
 | value | picture structure used |
 +=======+=========================+
 | 0 | unknown |
 +-------+-------------------------+
 | 1 | top field first |
 +-------+-------------------------+
 | 2 | bottom field first |
 +-------+-------------------------+
 | 3 | progressive |
 +-------+-------------------------+
 | Other | reserved for future use |
 +-------+-------------------------+

 Table 16: The definitions for
 picture_structure values.

4.6.8. sar_num

 sar_num specifies the Sample aspect ratio numerator.

 Inferred to be 0 if not present.

 A value of 0 means that aspect ratio is unknown.

 Encoders MUST write 0 if the Sample aspect ratio is unknown.

Niedermayer, et al. Expires 20 July 2024 [Page 45]

Internet-Draft FFV1 January 2024

 If sar_den is 0, decoders SHOULD ignore the encoded value and
 consider that sar_num is 0.

4.6.9. sar_den

 sar_den specifies the Sample aspect ratio denominator.

 Inferred to be 0 if not present.

 A value of 0 means that aspect ratio is unknown.

 Encoders MUST write 0 if the Sample aspect ratio is unknown.

 If sar_num is 0, decoders SHOULD ignore the encoded value and
 consider that sar_den is 0.

4.6.10. reset_contexts

 reset_contexts indicates if Slice contexts MUST be reset.

 Inferred to be 0 if not present.

4.6.11. slice_coding_mode

 slice_coding_mode indicates the Slice coding mode.

 Inferred to be 0 if not present.

 +=======+=============================+
 | value | Slice coding mode |
 +=======+=============================+
 | 0 | Range Coding or Golomb Rice |
 +-------+-----------------------------+
 | 1 | raw PCM |
 +-------+-----------------------------+
 | Other | reserved for future use |
 +-------+-----------------------------+

 Table 17: The definitions for
 slice_coding_mode values.

4.7. Slice Content

 A Slice Content contains all Line elements part of the Slice.

 Depending on the configuration, Line elements are ordered by Plane
 then by row (YCbCr) or by row then by Plane (RGB).

Niedermayer, et al. Expires 20 July 2024 [Page 46]

Internet-Draft FFV1 January 2024

pseudocode	type
 SliceContent() { |
 if (colorspace_type == 0) { |
 for (p = 0; p < primary_color_count; p++) { |
 for (y = 0; y < plane_pixel_height[p]; y++) { |
 Line(p, y) |
 } |
 } |
 } else if (colorspace_type == 1) { |
 for (y = 0; y < slice_pixel_height; y++) { |
 for (p = 0; p < primary_color_count; p++) { |
 Line(p, y) |
 } |
 } |
 } |
 } |

4.7.1. primary_color_count

 primary_color_count is defined as the following:

 1 + (chroma_planes ? 2 : 0) + (extra_plane ? 1 : 0)

4.7.2. plane_pixel_height

 plane_pixel_height[p] is the height in pixels of Plane p of the
 Slice. It is defined as the following:

 chroma_planes == 1 && (p == 1 || p == 2)
 ? ceil(slice_pixel_height / (1 << log2_v_chroma_subsample))
 : slice_pixel_height

4.7.3. slice_pixel_height

 slice_pixel_height is the height in pixels of the Slice. It is
 defined as the following:

 floor(
 (slice_y + slice_height)
 * slice_pixel_height
 / num_v_slices
) - slice_pixel_y.

4.7.4. slice_pixel_y

 slice_pixel_y is the Slice vertical position in pixels. It is
 defined as the following:

Niedermayer, et al. Expires 20 July 2024 [Page 47]

Internet-Draft FFV1 January 2024

 floor(slice_y * frame_pixel_height / num_v_slices)

4.8. Line

 A Line is a list of the Sample Differences (relative to the
 predictor) of primary color components. The pseudocode below
 describes the contents of the Line.

pseudocode	type
 Line(p, y) { |
 if (colorspace_type == 0) { |
 for (x = 0; x < plane_pixel_width[p]; x++) { |
 sample_difference[p][y][x] | sd
 } |
 } else if (colorspace_type == 1) { |
 for (x = 0; x < slice_pixel_width; x++) { |
 sample_difference[p][y][x] | sd
 } |
 } |
 } |

4.8.1. plane_pixel_width

 plane_pixel_width[p] is the width in pixels of Plane p of the
 Slice. It is defined as the following:

 chroma_planes == 1 && (p == 1 || p == 2)
 ? ceil(slice_pixel_width / (1 << log2_h_chroma_subsample))
 : slice_pixel_width.

4.8.2. slice_pixel_width

 slice_pixel_width is the width in pixels of the Slice. It is defined
 as the following:

 floor(
 (slice_x + slice_width)
 * slice_pixel_width
 / num_h_slices
) - slice_pixel_x

4.8.3. slice_pixel_x

 slice_pixel_x is the Slice horizontal position in pixels. It is
 defined as the following:

 floor(slice_x * frame_pixel_width / num_h_slices)

Niedermayer, et al. Expires 20 July 2024 [Page 48]

Internet-Draft FFV1 January 2024

4.8.4. sample_difference

 sample_difference[p][y][x] is the Sample Difference for Sample
 at Plane p, y position y, and x position x. The Sample value is
 computed based on median predictor and context described in
 Section 3.2.

4.9. Slice Footer

 A Slice Footer provides information about Slice size and (optionally)
 parity. The pseudocode below describes the contents of the Slice
 Footer.

 Note: Slice Footer is always byte aligned.

pseudocode	type
 SliceFooter() { |
 slice_size | u(24)
 if (ec) { |
 error_status | u(8)
 slice_crc_parity | u(32)
 } |
 } |

4.9.1. slice_size

 slice_size indicates the size of the Slice in bytes.

 Note: this allows finding the start of Slices before previous Slices
 have been fully decoded and allows parallel decoding as well as error
 resilience.

4.9.2. error_status

 error_status specifies the error status.

Niedermayer, et al. Expires 20 July 2024 [Page 49]

Internet-Draft FFV1 January 2024

 +=======+======================================+
 | value | error status |
 +=======+======================================+
 | 0 | no error |
 +-------+--------------------------------------+
 | 1 | Slice contains a correctable error |
 +-------+--------------------------------------+
 | 2 | Slice contains a uncorrectable error |
 +-------+--------------------------------------+
 | Other | reserved for future use |
 +-------+--------------------------------------+

 Table 18: The definitions for error_status
 values.

4.9.3. slice_crc_parity

 slice_crc_parity is 32 bits that are chosen so that the Slice as a
 whole has a CRC remainder of 0.

 This is equivalent to storing the CRC remainder in the 32-bit parity.

 The CRC generator polynomial used is the standard IEEE CRC polynomial
 (0x104C11DB7) with initial value 0, without pre-inversion, and
 without post-inversion.

5. Restrictions

 To ensure that fast multithreaded decoding is possible, starting with
 version 3 and if frame_pixel_width * frame_pixel_height is more than
 101376, slice_width * slice_height MUST be less or equal to
 num_h_slices * num_v_slices / 4. Note: 101376 is the frame size in
 pixels of a 352x288 frame also known as CIF (Common Intermediate
 Format) frame size format.

 For each Frame, each position in the Slice raster MUST be filled by
 one and only one Slice of the Frame (no missing Slice position and no
 Slice overlapping).

 For each Frame with a keyframe value of 0, each Slice MUST have the
 same value of slice_x, slice_y, slice_width, and slice_height as a
 Slice in the previous Frame, except if reset_contexts is 1.

Niedermayer, et al. Expires 20 July 2024 [Page 50]

Internet-Draft FFV1 January 2024

6. Security Considerations

 Like any other codec (such as [RFC6716]), FFV1 should not be used
 with insecure ciphers or cipher modes that are vulnerable to known
 plaintext attacks. Some of the header bits as well as the padding
 are easily predictable.

 Implementations of the FFV1 codec need to take appropriate security
 considerations into account. Those related to denial of service are
 outlined in Section 2.1 of [RFC4732]. It is extremely important for
 the decoder to be robust against malicious payloads. Malicious
 payloads MUST NOT cause the decoder to overrun its allocated memory
 or to take an excessive amount of resources to decode. An overrun in
 allocated memory could lead to arbitrary code execution by an
 attacker. The same applies to the encoder, even though problems in
 encoders are typically rarer. Malicious video streams MUST NOT cause
 the encoder to misbehave because this would allow an attacker to
 attack transcoding gateways. A frequent security problem in image
 and video codecs is failure to check for integer overflows. An
 example is allocating frame_pixel_width * frame_pixel_height in pixel
 count computations without considering that the multiplication result
 may have overflowed the range of the arithmetic type. The range
 coder could, if implemented naively, read one byte over the end. The
 implementation MUST ensure that no read outside allocated and
 initialized memory occurs.

 None of the content carried in FFV1 is intended to be executable.

7. IANA Considerations

 IANA has registered the following values.

7.1. Media Type Definition

 This registration is done using the template defined in [RFC6838] and
 following [RFC4855].

 Type name: video

 Subtype name: FFV1

 Required parameters: None.

 Optional parameters: These parameters are used to signal the
 capabilities of a receiver implementation. These parameters MUST
 NOT be used for any other purpose.

 version: The version of the FFV1 encoding as defined by

Niedermayer, et al. Expires 20 July 2024 [Page 51]

Internet-Draft FFV1 January 2024

 Section 4.2.1.
 micro_version: The micro_version of the FFV1 encoding as defined
 by Section 4.2.2.
 coder_type: The coder_type of the FFV1 encoding as defined by
 Section 4.2.3.
 colorspace_type: The colorspace_type of the FFV1 encoding as
 defined by Section 4.2.5.
 bits_per_raw_sample: The bits_per_raw_sample of the FFV1 encoding
 as defined by Section 4.2.7.
 max_slices: The value of max_slices is an integer indicating the
 maximum count of Slices within a Frame of the FFV1 encoding.

 Encoding considerations: This media type is defined for
 encapsulation in several audiovisual container formats and
 contains binary data; see Section 4.3.3. This media type is
 framed binary data; see Section 4.8 of [RFC6838].

 Security considerations: See Section 6 of this document.

 Interoperability considerations: None.

 Published specification: RFC XXXX.

 [RFC Editor: Upon publication as an RFC, please replace "XXXX" with
 the number assigned to this document and remove this note.]

 Applications that use this media type: Any application that requires
 the transport of lossless video can use this media type. Some
 examples are, but not limited to, screen recording, scientific
 imaging, and digital video preservation.
 Fragment identifier considerations: N/A.
 Additional information: None.
 Person & email address to contact for further information: Michael N
 iedermayer (michael@niedermayer.cc
 (mailto:michael@niedermayer.cc))
 Intended usage: COMMON
 Restrictions on usage: None.
 Author: Dave Rice (dave@dericed.com (mailto:dave@dericed.com))
 Change controller: IETF CELLAR Working Group delegated from the
 IESG.

8. Changelog

 See https://github.com/FFmpeg/FFV1/commits/master
 (https://github.com/FFmpeg/FFV1/commits/master)

 [RFC Editor: Please remove this Changelog section prior to
 publication.]

Niedermayer, et al. Expires 20 July 2024 [Page 52]

Internet-Draft FFV1 January 2024

9. References

9.1. Normative References

 [ISO.9899.2018]
 International Organization for Standardization,
 "Information technology - Programming languages - C", ISO/
 IEC 9899:2018, June 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4732] Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
 Denial-of-Service Considerations", RFC 4732,
 DOI 10.17487/RFC4732, December 2006,
 <https://www.rfc-editor.org/info/rfc4732>.

 [RFC4855] Casner, S., "Media Type Registration of RTP Payload
 Formats", RFC 4855, DOI 10.17487/RFC4855, February 2007,
 <https://www.rfc-editor.org/info/rfc4855>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [AddressSanitizer]
 Clang Project, "AddressSanitizer", Clang 12 documentation,
 <https://clang.llvm.org/docs/AddressSanitizer.html>.

 [AVI] Microsoft, "AVI RIFF File Reference",
 <https://docs.microsoft.com/en-
 us/windows/win32/directshow/avi-riff-file-reference>.

 [FFV1GO] Buitenhuis, D., "FFV1 Decoder in Go", 2019,
 <https://github.com/dwbuiten/go-ffv1>.

 [HuffYUV] Rudiak-Gould, B., "HuffYUV revisited", December 2003,
 <https://web.archive.org/web/20040402121343/
 http://cultact-server.novi.dk/kpo/huffyuv/huffyuv.html>.

Niedermayer, et al. Expires 20 July 2024 [Page 53]

Internet-Draft FFV1 January 2024

 [I-D.ietf-cellar-ffv1]
 Niedermayer, M., Rice, D., and J. Martinez, "FFV1 Video
 Coding Format Versions 0, 1, and 3", Work in Progress,
 Internet-Draft, draft-ietf-cellar-ffv1-20, 23 February
 2021, <https://datatracker.ietf.org/doc/html/draft-ietf-
 cellar-ffv1-20>.

 [I-D.ietf-cellar-matroska]
 Lhomme, S., Bunkus, M., and D. Rice, "Matroska Media
 Container Format Specifications", Work in Progress,
 Internet-Draft, draft-ietf-cellar-matroska-21, 22 October
 2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
 cellar-matroska-21>.

 [ISO.14495-1.1999]
 International Organization for Standardization,
 "Information technology -- Lossless and near-lossless
 compression of continuous-tone still images: Baseline",
 ISO/IEC 14495-1:1999, December 1999.

 [ISO.14496-10.2020]
 International Organization for Standardization,
 "Information technology -- Coding of audio-visual objects
 -- Part 10: Advanced Video Coding", ISO/IEC 14496-10:2020,
 December 2020.

 [ISO.14496-12.2020]
 International Organization for Standardization,
 "Information technology -- Coding of audio-visual objects
 -- Part 12: ISO base media file format", ISO/IEC
 14496-12:2020, December 2020.

 [ISO.15444-1.2019]
 International Organization for Standardization,
 "Information technology -- JPEG 2000 image coding system:
 Core coding system", ISO/IEC 15444-1:2019, October 2019.

 [MediaConch]
 MediaArea.net, "MediaConch", 2018,
 <https://mediaarea.net/MediaConch>.

 [NUT] Niedermayer, M., "NUT Open Container Format", December
 2013, <https://ffmpeg.org/˜michael/nut.txt>.

Niedermayer, et al. Expires 20 July 2024 [Page 54]

Internet-Draft FFV1 January 2024

 [Range-Encoding]
 Martin, G. N. N., "Range encoding: an algorithm for
 removing redundancy from a digitised message", Proceedings
 of the Conference on Video and Data Recording, Institution
 of Electronic and Radio Engineers, Hampshire, England,
 July 1979.

 [REFIMPL] Niedermayer, M., "The reference FFV1 implementation / the
 FFV1 codec in FFmpeg",
 <https://ffmpeg.org/doxygen/trunk/ffv1_8h.html>.

 [RFC6716] Valin, JM., Vos, K., and T. Terriberry, "Definition of the
 Opus Audio Codec", RFC 6716, DOI 10.17487/RFC6716,
 September 2012, <https://www.rfc-editor.org/info/rfc6716>.

 [Valgrind] Valgrind Developers, "Valgrind website",
 <https://valgrind.org/>.

 [YCbCr] Wikipedia, "YCbCr", 25 May 2021,
 <https://en.wikipedia.org/w/
 index.php?title=YCbCr&oldid=1025097882>.

Appendix A. Multithreaded Decoder Implementation Suggestions

 This appendix is informative.

 The FFV1 bitstream is parsable in two ways: in sequential order as
 described in this document or with the pre-analysis of the footer of
 each Slice. Each Slice footer contains a slice_size field so the
 boundary of each Slice is computable without having to parse the
 Slice content. That allows multithreading as well as independence of
 Slice content (a bitstream error in a Slice header or Slice content
 has no impact on the decoding of the other Slices).

 After having checked the keyframe field, a decoder SHOULD parse
 slice_size fields, from slice_size of the last Slice at the end of
 the Frame up to slice_size of the first Slice at the beginning of the
 Frame before parsing Slices, in order to have Slice boundaries. A
 decoder MAY fall back on sequential order e.g., in case of a
 corrupted Frame (e.g., frame size unknown or slice_size of Slices not
 coherent) or if there is no possibility of seeking into the stream.

Appendix B. Future Handling of Some Streams Created by Nonconforming
 Encoders

 This appendix is informative.

Niedermayer, et al. Expires 20 July 2024 [Page 55]

Internet-Draft FFV1 January 2024

 Some bitstreams were found with 40 extra bits corresponding to
 error_status and slice_crc_parity in the reserved bits of Slice. Any
 revision of this specification should avoid adding 40 bits of content
 after SliceContent if version == 0 or version == 1, otherwise a
 decoder conforming to the revised specification could not distinguish
 between a revised bitstream and such buggy bitstream in the wild.

Appendix C. FFV1 Implementations

 This appendix provides references to a few notable implementations of
 FFV1.

C.1. FFmpeg FFV1 Codec

 This reference implementation [REFIMPL] contains no known buffer
 overflow or cases where a specially crafted packet or video segment
 could cause a significant increase in CPU load.

 The reference implementation [REFIMPL] was validated in the following
 conditions:

 * Sending the decoder valid packets generated by the reference
 encoder and verifying that the decoder’s output matches the
 encoder’s input.
 * Sending the decoder packets generated by the reference encoder and
 then subjected to random corruption.
 * Sending the decoder random packets that are not FFV1.

 In all of the conditions above, the decoder and encoder was run
 inside the Valgrind memory debugger [Valgrind] as well as the Clang
 AddressSanitizer [AddressSanitizer], which tracks reads and writes to
 invalid memory regions as well as the use of uninitialized memory.
 There were no errors reported on any of the tested conditions.

C.2. FFV1 Decoder in Go

 An FFV1 decoder [FFV1GO] was written in Go by Derek Buitenhuis during
 the work to develop this document.

C.3. MediaConch

 The developers of the MediaConch project [MediaConch] created an
 independent FFV1 decoder as part of that project to validate FFV1
 bitstreams. This work led to the discovery of three conflicts
 between existing FFV1 implementations and draft versions of this
 document. These issues are addressed by Section 3.3.1,
 Section 3.7.2.1, and Appendix B.

Niedermayer, et al. Expires 20 July 2024 [Page 56]

Internet-Draft FFV1 January 2024

Authors’ Addresses

 Michael Niedermayer
 Email: michael@niedermayer.cc

 Dave Rice
 Email: dave@dericed.com

 Jérôme Martinez
 Email: jerome@mediaarea.net

Niedermayer, et al. Expires 20 July 2024 [Page 57]

cellar M.Q.C. van Beurden
Internet-Draft
Intended status: Standards Track A. Weaver
Expires: 17 July 2024 14 January 2024

 Free Lossless Audio Codec
 draft-ietf-cellar-flac-14

Abstract

 This document defines the Free Lossless Audio Codec (FLAC) format and
 its streamable subset. FLAC is designed to reduce the amount of
 computer storage space needed to store digital audio signals without
 losing information in doing so (i.e., lossless). FLAC is free in the
 sense that its specification is open and its reference implementation
 is open-source. Compared to other lossless (audio) coding formats,
 FLAC is a format with low complexity and can be coded to and from
 with little computing resources. Decoding of FLAC has seen many
 independent implementations on many different platforms, and both
 encoding and decoding can be implemented without needing floating-
 point arithmetic.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 17 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.

van Beurden & Weaver Expires 17 July 2024 [Page 1]

Internet-Draft FLAC January 2024

 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 2. Notation and Conventions 4
 3. Definitions . 5
 4. Conceptual overview . 7
 4.1. Blocking . 8
 4.2. Interchannel Decorrelation 8
 4.3. Prediction . 9
 4.4. Residual Coding . 10
 5. Format principles . 11
 6. Format layout overview 13
 7. Streamable subset . 14
 8. File-level metadata . 15
 8.1. Metadata block header 15
 8.2. Streaminfo . 16
 8.3. Padding . 19
 8.4. Application . 19
 8.5. Seektable . 20
 8.5.1. Seekpoint . 21
 8.6. Vorbis comment . 21
 8.6.1. Standard field names 22
 8.6.2. Channel mask . 23
 8.7. Cuesheet . 25
 8.7.1. Cuesheet track 27
 8.8. Picture . 28
 9. Frame structure . 32
 9.1. Frame header . 33
 9.1.1. Block size bits 33
 9.1.2. Sample rate bits 34
 9.1.3. Channels bits . 35
 9.1.4. Bit depth bits 37
 9.1.5. Coded number . 37
 9.1.6. Uncommon block size 39
 9.1.7. Uncommon sample rate 39
 9.1.8. Frame header CRC 40
 9.2. Subframes . 40
 9.2.1. Subframe header 40
 9.2.2. Wasted bits per sample 41
 9.2.3. Constant subframe 42
 9.2.4. Verbatim subframe 42
 9.2.5. Fixed predictor subframe 42

van Beurden & Weaver Expires 17 July 2024 [Page 2]

Internet-Draft FLAC January 2024

 9.2.6. Linear predictor subframe 44
 9.2.7. Coded residual 46
 9.3. Frame footer . 49
 10. Container mappings . 49
 10.1. Ogg mapping . 49
 10.2. Matroska mapping . 51
 10.3. ISO Base Media File Format (MP4) mapping 51
 11. Implementation status . 52
 12. Security Considerations 52
 13. IANA Considerations . 55
 13.1. Media type registration 55
 13.2. Application ID Registry 56
 14. Acknowledgments . 58
 15. References . 59
 15.1. Normative References 59
 15.2. Informative References 60
 Appendix A. Numerical considerations 62
 A.1. Determining the necessary data type size 63
 A.2. Stereo decorrelation 63
 A.3. Prediction . 64
 A.4. Residual . 65
 A.5. Rice coding . 66
 Appendix B. Past format changes 66
 B.1. Addition of blocking strategy bit 66
 B.2. Restriction of encoded residual samples 67
 B.3. Addition of 5-bit Rice parameters 67
 B.4. Restriction of LPC shift to non-negative values 68
 Appendix C. Interoperability considerations 68
 C.1. Features outside of the streamable subset 68
 C.2. Variable block size 68
 C.3. 5-bit Rice parameter 69
 C.4. Rice escape code . 69
 C.5. Uncommon block size 69
 C.6. Uncommon bit depth 69
 C.7. Multi-channel audio and uncommon sample rates 70
 C.8. Changing audio properties mid-stream 71
 Appendix D. Examples . 71
 D.1. Decoding example 1 72
 D.1.1. Example file 1 in hexadecimal representation 72
 D.1.2. Example file 1 in binary representation 72
 D.1.3. Signature and streaminfo 72
 D.1.4. Audio frames . 74
 D.2. Decoding example 2 76
 D.2.1. Example file 2 in hexadecimal representation 76
 D.2.2. Example file 2 in binary representation (only audio
 frames) . 77
 D.2.3. Streaminfo metadata block 78
 D.2.4. Seektable . 78

van Beurden & Weaver Expires 17 July 2024 [Page 3]

Internet-Draft FLAC January 2024

 D.2.5. Vorbis comment 79
 D.2.6. Padding . 80
 D.2.7. First audio frame 81
 D.2.8. Second audio frame 87
 D.2.9. MD5 checksum verification 90
 D.3. Decoding example 3 90
 D.3.1. Example file 3 in hexadecimal representation 90
 D.3.2. Example file 3 in binary representation (only audio
 frame) . 90
 D.3.3. Streaminfo metadata block 90
 D.3.4. Audio frame . 91
 Authors’ Addresses . 96

1. Introduction

 This document defines the FLAC format and its streamable subset.
 FLAC files and streams can code for pulse-code modulated (PCM) audio
 with 1 to 8 channels, sample rates from 1 up to 1048575 hertz and bit
 depths from 4 up to 32 bits. Most tools for coding to and decoding
 from the FLAC format have been optimized for CD-audio, which is PCM
 audio with 2 channels, a sample rate of 44.1 kHz, and a bit depth of
 16 bits.

 FLAC is able to achieve lossless compression because samples in audio
 signals tend to be highly correlated with their close neighbors. In
 contrast with general-purpose compressors, which often use
 dictionaries, do run-length coding, or exploit long-term repetition,
 FLAC removes redundancy solely in the very short term, looking back
 at at most 32 samples.

 The coding methods provided by the FLAC format work best on PCM audio
 signals, of which the samples have a signed representation and are
 centered around zero. Audio signals in which samples have an
 unsigned representation must be transformed to a signed
 representation as described in this document in order to achieve
 reasonable compression. The FLAC format is not suited for
 compressing audio that is not PCM.

2. Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

van Beurden & Weaver Expires 17 July 2024 [Page 4]

Internet-Draft FLAC January 2024

 Values expressed as u(n) represent unsigned big-endian integer using
 n bits. Values expressed as s(n) represent signed big-endian integer
 using n bits, signed two’s complement. Where necessary n is
 expressed as an equation using * (multiplication), / (division), +
 (addition), or - (subtraction). An inclusive range of the number of
 bits expressed is represented with an ellipsis, such as u(m...n).

 While the FLAC format can store digital audio as well as other
 digital signals, this document uses terminology specific to digital
 audio. The use of more generic terminology was deemed less clear, so
 a reader interested in non-audio use of the FLAC format is expected
 to make the translation from audio-specific terms to more generic
 terminology.

3. Definitions

 * *Lossless compression*: reducing the amount of computer storage
 space needed to store data without needing to remove or
 irreversibly alter any of this data in doing so. In other words,
 decompressing losslessly compressed information returns exactly
 the original data.

 * *Lossy compression*: like lossless compression, but instead
 removing, irreversibly altering, or only approximating information
 for the purpose of further reducing the amount of computer storage
 space needed. In other words, decompressing lossy compressed
 information returns an approximation of the original data.

 * *Block*: A (short) section of linear pulse-code modulated audio
 with one or more channels.

 * *Subblock*: All samples within a corresponding block for one
 channel. One or more subblocks form a block, and all subblocks in
 a certain block contain the same number of samples.

 * *Frame*: A frame header, one or more subframes, and a frame
 footer. It encodes the contents of a corresponding block.

 * *Subframe*: An encoded subblock. All subframes within a frame
 code for the same number of samples. When interchannel
 decorrelation is used, a subframe can correspond to either the
 (per-sample) average of two subblocks or the (per-sample)
 difference between two subblocks, instead of to a subblock
 directly, see Section 4.2.

van Beurden & Weaver Expires 17 July 2024 [Page 5]

Internet-Draft FLAC January 2024

 * *Interchannel samples*: A sample count that applies to all
 channels. For example, one second of 44.1 kHz audio has 44100
 interchannel samples, meaning each channel has that number of
 samples.

 * *Block size*: The number of interchannel samples contained in a
 block or coded in a frame.

 * *Bit depth* or *bits per sample*: the number of bits used to
 contain each sample. This MUST be the same for all subblocks in a
 block but MAY be different for different subframes in a frame
 because of interchannel decorrelation. (See Section 4.2 for
 details on interchannel decorrelation)

 * *Predictor*: a model used to predict samples in an audio signal
 based on past samples. FLAC uses such predictors to remove
 redundancy in a signal in order to be able to compress it.

 * *Linear predictor*: a predictor using linear prediction (see
 [LinearPrediction]). This is also called *linear predictive
 coding (LPC)*. With a linear predictor, each prediction is a
 linear combination of past samples, hence the name. A linear
 predictor has a causal discrete-time finite impulse response (see
 [FIR]).

 * *Muxing*: short for multiplexing, combining several streams or
 files into a single stream or file. In the context of this
 document, muxing more specifically refers to embedding a FLAC
 stream in a container as described in Section 10.

 * *Fixed predictor*: a linear predictor in which the model
 parameters are the same across all FLAC files, and thus do not
 need to be stored.

 * *Predictor order*: the number of past samples that a predictor
 uses. For example, a 4th order predictor uses the 4 samples
 directly preceding a certain sample to predict it. In FLAC,
 samples used in a predictor are always consecutive, and are always
 the samples directly before the sample that is being predicted.

 * *Residual*: The audio signal that remains after a predictor has
 been subtracted from a subblock. If the predictor has been able
 to remove redundancy from the signal, the samples of the remaining
 signal (the *residual samples*) will have, on average, a smaller
 numerical value than the original signal.

van Beurden & Weaver Expires 17 July 2024 [Page 6]

Internet-Draft FLAC January 2024

 * *Rice code*: A variable-length code (see [VarLengthCode]) that
 compresses data by making use of the observation that, after using
 an effective predictor, most residual samples are closer to zero
 than the original samples, while still allowing for a small part
 of the samples to be much larger.

4. Conceptual overview

 Similar to many other audio coders, a FLAC file is encoded following
 the steps below. On decoding a FLAC file, these steps are undone in
 reverse order, i.e., from bottom to top.

 * *Blocking* (see Section 4.1). The input is split up into many
 contiguous blocks.

 * *Interchannel Decorrelation* (see Section 4.2). In the case of
 stereo streams, the FLAC format allows for transforming the left-
 right signal into a mid-side signal, a left-side signal or a side-
 right signal to remove redundancy between channels. Choosing
 between any of these transformations is done independently for
 each block.

 * *Prediction* (see Section 4.3). To remove redundancy in a signal,
 a predictor is stored for each subblock or its transformation as
 formed in the previous step. A predictor consists of a simple
 mathematical description that can be used, as the name implies, to
 predict a certain sample from the samples that preceded it. As
 this prediction is rarely exact, the error of this prediction is
 passed on to the next stage. The predictor of each subblock is
 completely independent from other subblocks. Since the methods of
 prediction are known to both the encoder and decoder, only the
 parameters of the predictor need to be included in the compressed
 stream. If no usable predictor can be found for a certain
 subblock, the signal is stored uncompressed and the next stage is
 skipped.

 * *Residual Coding* (see Section 4.4). As the predictor does not
 describe the signal exactly, the difference between the original
 signal and the predicted signal (called the error or residual
 signal) is coded losslessly. If the predictor is effective, the
 residual signal will require fewer bits per sample than the
 original signal. FLAC uses Rice coding, a subset of Golomb
 coding, with either 4-bit or 5-bit parameters to code the residual
 signal.

 In addition, FLAC specifies a metadata system (see Section 8), which
 allows arbitrary information about the stream to be included at the
 beginning of the stream.

van Beurden & Weaver Expires 17 July 2024 [Page 7]

Internet-Draft FLAC January 2024

4.1. Blocking

 The block size used for audio data has a direct effect on the
 compression ratio. If the block size is too small, the resulting
 large number of frames means that a disproportionate amount of bytes
 will be spent on frame headers. If the block size is too large, the
 characteristics of the signal may vary so much that the encoder will
 be unable to find a good predictor. In order to simplify encoder/
 decoder design, FLAC imposes a minimum block size of 16 samples,
 except for the last block, and a maximum block size of 65535 samples.
 The last block is allowed to be smaller than 16 samples to be able to
 match the length of the encoded audio without using padding.

 While the block size does not have to be constant in a FLAC file, it
 is often difficult to find the optimal arrangement of block sizes for
 maximum compression. Because of this, the FLAC format explicitly
 stores whether a file has a constant or a variable block size
 throughout the stream, and stores a block number instead of a sample
 number to slightly improve compression if a stream has a constant
 block size.

4.2. Interchannel Decorrelation

 In many audio files, channels are correlated. The FLAC format can
 exploit this correlation in stereo files by not directly coding
 subblocks into subframes, but instead coding an average of all
 samples in both subblocks (a mid channel) or the difference between
 all samples in both subblocks (a side channel). The following
 combinations are possible:

 * *Independent*. All channels are coded independently. All non-
 stereo files MUST be encoded this way.

 * *Mid-side*. A left and right subblock are converted to mid and
 side subframes. To calculate a sample for a mid subframe, the
 corresponding left and right samples are summed and the result is
 shifted right by 1 bit. To calculate a sample for a side
 subframe, the corresponding right sample is subtracted from the
 corresponding left sample. On decoding, all mid channel samples
 have to be shifted left by 1 bit. Also, if a side channel sample
 is odd, 1 has to be added to the corresponding mid channel sample
 after it has been shifted left by one bit. To reconstruct the
 left channel, the corresponding samples in the mid and side
 subframes are added and the result shifted right by 1 bit, while
 for the right channel the side channel has to be subtracted from
 the mid channel and the result shifted right by 1 bit.

van Beurden & Weaver Expires 17 July 2024 [Page 8]

Internet-Draft FLAC January 2024

 * *Left-side*. The left subblock is coded and the left and right
 subblocks are used to code a side subframe. The side subframe is
 constructed in the same way as for mid-side. To decode, the right
 subblock is restored by subtracting the samples in the side
 subframe from the corresponding samples in the the left subframe.

 * *Side-right*. The left and right subblocks are used to code a side
 subframe and the right subblock is coded. The side subframe is
 constructed in the same way as for mid-side. To decode, the left
 subblock is restored by adding the samples in the side subframe to
 the corresponding samples in the right subframe.

 The side channel needs one extra bit of bit depth as the subtraction
 can produce sample values twice as large as the maximum possible in
 any given bit depth. The mid channel in mid-side stereo does not
 need one extra bit, as it is shifted right one bit. The right shift
 of the mid channel does not lead to lossy behavior, because an odd
 sample in the mid subframe must always be accompanied by a
 corresponding odd sample in the side subframe, which means the lost
 least-significant bit can be restored by taking it from the sample in
 the side subframe.

4.3. Prediction

 The FLAC format has four methods for modeling the input signal:

 1. *Verbatim*. Samples are stored directly, without any modeling.
 This method is used for inputs with little correlation, like
 white noise. Since the raw signal is not actually passed through
 the residual coding stage (it is added to the stream ’verbatim’),
 this method is different from using a zero-order fixed predictor.

 2. *Constant*. A single sample value is stored. This method is used
 whenever a signal is pure DC ("digital silence"), i.e., a
 constant value throughout.

 3. *Fixed predictor*. Samples are predicted with one of five fixed
 (i.e., predefined) predictors, and the error of this prediction
 is processed by the residual coder. These fixed predictors are
 well suited for predicting simple waveforms. Since the
 predictors are fixed, no predictor coefficients are stored. From
 a mathematical point of view, the predictors work by
 extrapolating the signal from the previous samples. The number
 of previous samples used is equal to the predictor order. For
 more information, see Section 9.2.5.

van Beurden & Weaver Expires 17 July 2024 [Page 9]

Internet-Draft FLAC January 2024

 4. *Linear predictor*. Samples are predicted using past samples and
 a set of predictor coefficients, and the error of this prediction
 is processed by the residual coder. Compared to a fixed
 predictor, using a generic linear predictor adds overhead as
 predictor coefficients need to be stored. Therefore, this method
 of prediction is best suited for predicting more complex
 waveforms, where the added overhead is offset by space savings in
 the residual coding stage resulting from more accurate
 prediction. A linear predictor in FLAC has two parameters
 besides the predictor coefficients and the predictor order: the
 number of bits with which each coefficient is stored (the
 coefficient precision) and a prediction right shift. A
 prediction is formed by taking the sum of multiplying each
 predictor coefficient with the corresponding past sample, and
 dividing that sum by applying the specified right shift. For
 more information, see Section 9.2.6.

 A FLAC encoder is free to select any of the above methods to model
 the input. However, to ensure lossless coding, the following
 exceptions apply:

 * When the samples that need to be stored do not all have the same
 value (i.e., the signal is not constant), a constant subframe
 cannot be used.
 * When an encoder is unable to find a fixed or linear predictor for
 which all residual samples are representable in 32-bit signed
 integers as stated in Section 9.2.7, a verbatim subframe is used.

 For more information on fixed and linear predictors, see
 [HPL-1999-144] and [robinson-tr156].

4.4. Residual Coding

 If a subframe uses a predictor to approximate the audio signal, a
 residual is stored to ’correct’ the approximation to the exact value.
 When an effective predictor is used, the average numerical value of
 the residual samples is smaller than that of the samples before
 prediction. While having smaller values on average, it is possible
 that a few ’outlier’ residual samples are much larger than any of the
 original samples. Sometimes these outliers even exceed the range the
 bit depth of the original audio offers.

 To be able to efficiently code such a stream of relatively small
 numbers with an occasional outlier, Rice coding (a subset of Golomb
 coding) is used. Depending on how small the numbers are that have to
 be coded, a Rice parameter is chosen. The numerical value of each
 residual sample is split into two parts by dividing it by 2^(Rice
 parameter), creating a quotient and a remainder. The quotient is

van Beurden & Weaver Expires 17 July 2024 [Page 10]

Internet-Draft FLAC January 2024

 stored in unary form, the remainder in binary form. If indeed most
 residual samples are close to zero and a suitable Rice parameter is
 chosen, this form of coding, with a so-called variable-length code,
 uses fewer bits than the residual in unencoded form.

 As Rice codes can only handle unsigned numbers, signed numbers are
 zigzag encoded to a so-called folded residual. See Section 9.2.7 for
 a more thorough explanation.

 Quite often, the optimal Rice parameter varies over the course of a
 subframe. To accommodate this, the residual can be split up into
 partitions, where each partition has its own Rice parameter. To keep
 overhead and complexity low, the number of partitions used in a
 subframe is limited to powers of two.

 The FLAC format uses two forms of Rice coding, which only differ in
 the number of bits used for encoding the Rice parameter, either 4 or
 5 bits.

5. Format principles

 FLAC has no format version information, but it does contain reserved
 space in several places. Future versions of the format MAY use this
 reserved space safely without breaking the format of older streams.
 Older decoders MAY choose to abort decoding when encountering data
 encoded using methods they do not recognize. Apart from reserved
 patterns, the format specifies forbidden patterns in certain places,
 meaning that the patterns MUST NOT appear in any bitstream. They are
 listed in the following table.

van Beurden & Weaver Expires 17 July 2024 [Page 11]

Internet-Draft FLAC January 2024

 +===+=============+
 | Description | Reference |
 +===+=============+
 | Metadata block type 127 | Section 8.1 |
 +---+-------------+
 | Minimum and maximum block sizes smaller | Section 8.2 |
 | than 16 in streaminfo metadata block | |
 +---+-------------+
 | Sample rate bits 0b1111 | Section |
 | | 9.1.2 |
 +---+-------------+
 | Uncommon blocksize 65536 | Section |
 | | 9.1.6 |
 +---+-------------+
 | Predictor coefficient precision bits | Section |
 | 0b1111 | 9.2.6 |
 +---+-------------+
 | Negative predictor right shift | Section |
 | | 9.2.6 |
 +---+-------------+

 Table 1

 All numbers used in a FLAC bitstream are integers, there are no
 floating-point representations. All numbers are big-endian coded,
 except the field lengths used in Vorbis comments (see Section 8.6),
 which are little-endian coded. This exception for Vorbis comments is
 to keep as much commonality as possible with Vorbis comments as used
 by the Vorbis codec (see [Vorbis]). All numbers are unsigned except
 linear predictor coefficients, the linear prediction shift (see
 Section 9.2.6), and numbers that directly represent samples, which
 are signed. None of these restrictions apply to application metadata
 blocks or to Vorbis comment field contents.

 All samples encoded to and decoded from the FLAC format MUST be in a
 signed representation.

 There are several ways to convert unsigned sample representations to
 signed sample representations, but the coding methods provided by the
 FLAC format work best on audio signals of which the numerical values
 of the samples are centered around zero, i.e., have no DC offset. In
 most unsigned audio formats, signals are centered around halfway the
 range of the unsigned integer type used. If that is the case,
 converting sample representations by first copying the number to a
 signed integer with sufficient range and then subtracting half of the
 range of the unsigned integer type, results in a signal with samples
 centered around 0.

van Beurden & Weaver Expires 17 July 2024 [Page 12]

Internet-Draft FLAC January 2024

 Unary coding in a FLAC bitstream is done with zero bits terminated
 with a one bit, e.g., the number 5 is coded unary as 0b000001. This
 prevents the frame sync code from appearing in unary coded numbers.

 When a FLAC file contains data that is forbidden or otherwise not
 valid, decoder behavior is left unspecified. A decoder MAY choose to
 stop decoding upon encountering such data. Examples of such data are

 * One or more decoded sample values exceed the range offered by the
 bit depth as coded for that frame. E.g., in a frame with a bit
 depth of 8 bits, any samples not in the inclusive range from -128
 to 127 are not valid.
 * The number of wasted bits (see Section 9.2.2) used by a subframe
 is such that the bit depth of that subframe (see Section 9.2.3 for
 a description of subframe bit depth) equals zero or is negative.
 * A frame header CRC (see Section 9.1.8) or frame footer CRC (see
 Section 9.3) does not validate.
 * One of the forbidden bit patterns described in Table 1 above is
 used.

6. Format layout overview

 A FLAC bitstream consists of the fLaC (i.e., 0x664C6143) marker at
 the beginning of the stream, followed by a mandatory metadata block
 (called the STREAMINFO block), any number of other metadata blocks,
 and then the audio frames.

 FLAC supports 127 kinds of metadata blocks; currently, 7 kinds are
 defined in Section 8.

 The audio data is composed of one or more audio frames. Each frame
 consists of a frame header, which contains a sync code, information
 about the frame (like the block size, sample rate and number of
 channels), and an 8-bit CRC. The frame header also contains either
 the sample number of the first sample in the frame (for variable
 block size streams), or the frame number (for fixed block size
 streams). This allows for fast, sample-accurate seeking to be
 performed. Following the frame header are encoded subframes, one for
 each channel. The frame is then zero-padded to a byte boundary and
 finished with a frame footer containing a checksum for the frame.
 Each subframe has its own header that specifies how the subframe is
 encoded.

van Beurden & Weaver Expires 17 July 2024 [Page 13]

Internet-Draft FLAC January 2024

 In order to allow a decoder to start decoding at any place in the
 stream, each frame starts with a byte-aligned 15-bit sync code.
 However, since it is not guaranteed that the sync code does not
 appear elsewhere in the frame, the decoder can check that it synced
 correctly by parsing the rest of the frame header and validating the
 frame header CRC.

 Furthermore, to allow a decoder to start decoding at any place in the
 stream even without having received a streaminfo metadata block, each
 frame header contains some basic information about the stream. This
 information includes sample rate, bits per sample, number of
 channels, etc. Since the frame header is overhead, it has a direct
 effect on the compression ratio. To keep the frame header as small
 as possible, FLAC uses lookup tables for the most commonly used
 values for frame properties. When a certain property has a value
 that is not covered by the lookup table, the decoder is directed to
 find the value of that property (for example, the sample rate) at the
 end of the frame header or in the streaminfo metadata block. If a
 frame header refers to the streaminfo metadata block, the file is not
 ’streamable’, see Section 7 for details. By using lookup tables, the
 file is streamable and the frame header size small for the most
 common forms of audio data.

 Individual subframes (one for each channel) are coded separately
 within a frame, and appear serially in the stream. In other words,
 the encoded audio data is NOT channel-interleaved. This reduces
 decoder complexity at the cost of requiring larger decode buffers.
 Each subframe has its own header specifying the attributes of the
 subframe, like prediction method and order, residual coding
 parameters, etc. Each subframe header is followed by the encoded
 audio data for that channel.

7. Streamable subset

 The FLAC format specifies a subset of itself as the FLAC streamable
 subset. The purpose of this is to ensure that any streams encoded
 according to this subset are truly "streamable", meaning that a
 decoder that cannot seek within the stream can still pick up in the
 middle of the stream and start decoding. It also makes hardware
 decoder implementations more practical by limiting the encoding
 parameters in such a way that decoder buffer sizes and other resource
 requirements can be easily determined. The streamable subset makes
 the following limitations on what MAY be used in the stream:

 * The sample rate bits (see Section 9.1.2) in the frame header MUST
 be 0b0001-0b1110, i.e., the frame header MUST NOT refer to the
 streaminfo metadata block to describe the sample rate.

van Beurden & Weaver Expires 17 July 2024 [Page 14]

Internet-Draft FLAC January 2024

 * The bit depth bits (see Section 9.1.4) in the frame header MUST be
 0b001-0b111, i.e., the frame header MUST NOT refer to the
 streaminfo metadata block to describe the bit depth.
 * The stream MUST NOT contain blocks with more than 16384
 interchannel samples, i.e., the maximum block size must not be
 larger than 16384.
 * Audio with a sample rate less than or equal to 48000 Hz MUST NOT
 be contained in blocks with more than 4608 interchannel samples,
 i.e., the maximum block size used for this audio must not be
 larger than 4608.
 * Linear prediction subframes (see Section 9.2.6) containing audio
 with a sample rate less than or equal to 48000 Hz MUST have a
 predictor order less than or equal to 12, i.e., the subframe type
 bits in the subframe header (see Section 9.2.1) MUST NOT be
 0b101100-0b111111.
 * The Rice partition order (see Section 9.2.7) MUST be less than or
 equal to 8.
 * The channel ordering MUST be equal to one defined in
 Section 9.1.3, i.e., the FLAC file MUST NOT need a
 WAVEFORMATEXTENSIBLE_CHANNEL_MASK tag to describe the channel
 ordering. See Section 8.6.2 for details.

8. File-level metadata

 At the start of a FLAC file or stream, following the fLaC ASCII file
 signature, one or more metadata blocks MUST be present before any
 audio frames appear. The first metadata block MUST be a streaminfo
 block.

8.1. Metadata block header

 Each metadata block starts with a 4 byte header. The first bit in
 this header flags whether a metadata block is the last one: it is a 0
 when other metadata blocks follow, otherwise it is a 1. The 7
 remaining bits of the first header byte contain the type of the
 metadata block as an unsigned number between 0 and 126 according to
 the following table. A value of 127 (i.e., 0b1111111) is forbidden.
 The three bytes that follow code for the size of the metadata block
 in bytes, excluding the 4 header bytes, as an unsigned number coded
 big-endian.

van Beurden & Weaver Expires 17 July 2024 [Page 15]

Internet-Draft FLAC January 2024

 +=========+==+
 | Value | Metadata block type |
 +=========+==+
 | 0 | Streaminfo |
 +---------+--+
 | 1 | Padding |
 +---------+--+
 | 2 | Application |
 +---------+--+
 | 3 | Seektable |
 +---------+--+
 | 4 | Vorbis comment |
 +---------+--+
 | 5 | Cuesheet |
 +---------+--+
 | 6 | Picture |
 +---------+--+
 | 7 - 126 | reserved |
 +---------+--+
 | 127 | forbidden, to avoid confusion with a frame sync code |
 +---------+--+

 Table 2

8.2. Streaminfo

 The streaminfo metadata block has information about the whole stream,
 like sample rate, number of channels, total number of samples, etc.
 It MUST be present as the first metadata block in the stream. Other
 metadata blocks MAY follow. There MUST be no more than one
 streaminfo metadata block per FLAC stream.

 If the streaminfo metadata block contains incorrect or incomplete
 information, decoder behavior is left unspecified (i.e., up to the
 decoder implementation). A decoder MAY choose to stop further
 decoding when the information supplied by the streaminfo metadata
 block turns out to be incorrect or contains forbidden values. A
 decoder accepting information from the streaminfo block (most-
 significantly the maximum frame size, maximum block size, number of
 audio channels, number of bits per sample, and total number of
 samples) without doing further checks during decoding of audio frames
 could be vulnerable to buffer overflows. See also Section 12.

 The following table describes the streaminfo metadata block,
 excluding the metadata block header.

van Beurden & Weaver Expires 17 July 2024 [Page 16]

Internet-Draft FLAC January 2024

 +========+===+
 | Data | Description |
 +========+===+
 | u(16) | The minimum block size (in samples) used in the |
 | | stream, excluding the last block. |
 +--------+---+
 | u(16) | The maximum block size (in samples) used in the |
 | | stream. |
 +--------+---+
 | u(24) | The minimum frame size (in bytes) used in the |
 | | stream. A value of 0 signifies that the value |
 | | is not known. |
 +--------+---+
 | u(24) | The maximum frame size (in bytes) used in the |
 | | stream. A value of 0 signifies that the value |
 | | is not known. |
 +--------+---+
 | u(20) | Sample rate in Hz. |
 +--------+---+
 | u(3) | (number of channels)-1. FLAC supports from 1 |
 | | to 8 channels. |
 +--------+---+
 | u(5) | (bits per sample)-1. FLAC supports from 4 to |
 | | 32 bits per sample. |
 +--------+---+
 | u(36) | Total number of interchannel samples in the |
 | | stream. A value of zero here means the number |
 | | of total samples is unknown. |
 +--------+---+
 | u(128) | MD5 checksum of the unencoded audio data. This |
 | | allows the decoder to determine if an error |
 | | exists in the audio data even when, despite the |
 | | error, the bitstream itself is valid. A value |
 | | of 0 signifies that the value is not known. |
 +--------+---+

 Table 3

 The minimum block size and the maximum block size MUST be in the
 16-65535 range. The minimum block size MUST be equal to or less than
 the maximum block size.

van Beurden & Weaver Expires 17 July 2024 [Page 17]

Internet-Draft FLAC January 2024

 Any frame but the last one MUST have a block size equal to or greater
 than the minimum block size and MUST have a block size equal to or
 lesser than the maximum block size. The last frame MUST have a block
 size equal to or lesser than the maximum block size, it does not have
 to comply to the minimum block size because the block size of that
 frame must be able to accommodate the length of the audio data the
 stream contains.

 If the minimum block size is equal to the maximum block size, the
 file contains a fixed block size stream, as the minimum block size
 excludes the last block. Note that in the case of a stream with a
 variable block size, the actual maximum block size MAY be smaller
 than the maximum block size listed in the streaminfo block, and the
 actual smallest block size excluding the last block MAY be larger
 than the minimum block size listed in the streaminfo block. This is
 because the encoder has to write these fields before receiving any
 input audio data, and cannot know beforehand what block sizes it will
 use, only between what bounds these will be chosen.

 The sample rate MUST NOT be 0 when the FLAC file contains audio. A
 sample rate of 0 MAY be used when non-audio is represented. This is
 useful if data is encoded that is not along a time axis, or when the
 sample rate of the data lies outside the range that FLAC can
 represent in the streaminfo metadata block. If a sample rate of 0 is
 used it is recommended to store the meaning of the encoded content in
 a Vorbis comment field (see Section 8.6) or an application metadata
 block (see Section 8.4). This document does not define such
 metadata.

 The MD5 checksum is computed by applying the MD5 message-digest
 algorithm in [RFC1321]. The message to this algorithm consists of
 all the samples of all channels interleaved, represented in signed,
 little-endian form. This interleaving is on a per-sample basis, so
 for a stereo file this means first the first sample of the first
 channel, then the first sample of the second channel, then the second
 sample of the first channel etc. Before computing the checksum, all
 samples must be byte-aligned. If the bit depth is not a whole number
 of bytes, the value of each sample is sign extended to the next whole
 number of bytes.

 So, in the case of a 2-channel stream with 6-bit samples, bits will
 be lined up as follows.

van Beurden & Weaver Expires 17 July 2024 [Page 18]

Internet-Draft FLAC January 2024

 SSAAAAAASSBBBBBBSSCCCCCC
 ^ ^ ^ ^ ^ ^
 | | | | | Bits of 2nd sample of 1st channel
 | | | | Sign extension bits of 2nd sample of 2nd channel
 | | | Bits of 1st sample of 2nd channel
 | | Sign extension bits of 1st sample of 2nd channel
 | Bits of 1st sample of 1st channel
 Sign extention bits of 1st sample of 1st channel

 As another example, in the case of a 1-channel with 12-bit samples,
 bits are lined up as follows, showing the little-endian byte order

 AAAAAAAASSSSAAAABBBBBBBBSSSSBBBB
 ^ ^ ^ ^ ^ ^
 | | | | | Most-significant 4 bits of 2nd sample
 | | | | Sign extension bits of 2nd sample
 | | | Least-significant 8 bits of 2nd sample
 | | Most-significant 4 bits of 1st sample
 | Sign extension bits of 1st sample
 Least-significant 8 bits of 1st sample

8.3. Padding

 The padding metadata block allows for an arbitrary amount of padding.
 This block is useful when it is known that metadata will be edited
 after encoding; the user can instruct the encoder to reserve a
 padding block of sufficient size so that when metadata is added, it
 will simply overwrite the padding (which is relatively quick) instead
 of having to insert it into the existing file (which would normally
 require rewriting the entire file). There MAY be one or more padding
 metadata blocks per FLAC stream.

 +======+==+
 | Data | Description |
 +======+==+
 | u(n) | n ’0’ bits (n MUST be a multiple of 8, i.e., a whole |
 | | number of bytes, and MAY be zero). n is 8 times the |
 | | size described in the metadata block header. |
 +------+--+

 Table 4

8.4. Application

 The application metadata block is for use by third-party
 applications. The only mandatory field is a 32-bit identifier. An
 ID registry is being maintained at https://xiph.org/flac/id.html
 (https://xiph.org/flac/id.html).

van Beurden & Weaver Expires 17 July 2024 [Page 19]

Internet-Draft FLAC January 2024

 +=======+==+
 | Data | Description |
 +=======+==+
 | u(32) | Registered application ID. |
 +-------+--+
 | u(n) | Application data (n MUST be a multiple of 8, i.e., |
 | | a whole number of bytes) n is 8 times the size |
 | | described in the metadata block header, minus the |
 | | 32 bits already used for the application ID. |
 +-------+--+

 Table 5

 Application IDs are registered with the IANA, see Section 13.2.

8.5. Seektable

 The seektable metadata block can be used to store seek points. It is
 possible to seek to any given sample in a FLAC stream without a seek
 table, but the delay can be unpredictable since the bitrate may vary
 widely within a stream. By adding seek points to a stream, this
 delay can be significantly reduced. There MUST NOT be more than one
 seektable metadata block in a stream, but the table can have any
 number of seek points.

 Each seek point takes 18 bytes, so a seek table with 1% resolution
 within a stream adds less than 2 kilobyte of data. The number of
 seek points is implied by the size described in the metadata block
 header, i.e., equal to size / 18. There is also a special
 ’placeholder’ seekpoint that will be ignored by decoders but can be
 used to reserve space for future seek point insertion.

 +============+=============================+
 | Data | Description |
 +============+=============================+
 | Seekpoints | Zero or more seek points as |
 | | defined in Section 8.5.1. |
 +------------+-----------------------------+

 Table 6

van Beurden & Weaver Expires 17 July 2024 [Page 20]

Internet-Draft FLAC January 2024

 A seektable is generally not usable for seeking in a FLAC file
 embedded in a container (see Section 10), as such containers usually
 interleave FLAC data with other data and the offsets used in
 seekpoints are those of an unmuxed FLAC stream. Also, containers
 often provide their own seeking methods. It is, however, possible to
 store the seektable in the container along with other metadata when
 muxing a FLAC file, so this stored seektable can be restored when
 demuxing the FLAC stream into a standalone FLAC file.

8.5.1. Seekpoint

 +=======+==+
 | Data | Description |
 +=======+==+
 | u(64) | Sample number of the first sample in the target frame, |
 | | or 0xFFFFFFFFFFFFFFFF for a placeholder point. |
 +-------+--+
 | u(64) | Offset (in bytes) from the first byte of the first frame |
 | | header to the first byte of the target frame’s header. |
 +-------+--+
 | u(16) | Number of samples in the target frame. |
 +-------+--+

 Table 7

 NOTES

 * For placeholder points, the second and third field values are
 undefined.
 * Seek points within a table MUST be sorted in ascending order by
 sample number.
 * Seek points within a table MUST be unique by sample number, with
 the exception of placeholder points.
 * The previous two notes imply that there MAY be any number of
 placeholder points, but they MUST all occur at the end of the
 table.
 * The sample offsets are those of an unmuxed FLAC stream. The
 offsets MUST NOT be updated on muxing to reflect the new offsets
 of FLAC frames in a container.

8.6. Vorbis comment

 A Vorbis comment metadata block contains human-readable information
 coded in UTF-8. The name Vorbis comment points to the fact that the
 Vorbis codec stores such metadata in almost the same way, see
 [Vorbis]. A Vorbis comment metadata block consists of a vendor
 string optionally followed by a number of fields, which are pairs of
 field names and field contents. Many users refer to these fields as

van Beurden & Weaver Expires 17 July 2024 [Page 21]

Internet-Draft FLAC January 2024

 FLAC tags or simply as tags. A FLAC file MUST NOT contain more than
 one Vorbis comment metadata block.

 In a Vorbis comment metadata block, the metadata block header is
 directly followed by 4 bytes containing the length in bytes of the
 vendor string as an unsigned number coded little-endian. The vendor
 string follows UTF-8 coded, and is not terminated in any way.

 Following the vendor string are 4 bytes containing the number of
 fields that are in the Vorbis comment block, stored as an unsigned
 number, coded little-endian. If this number is non-zero, it is
 followed by the fields themselves, each of which is stored with a 4
 byte length. First, the 4 byte field length in bytes is stored as an
 unsigned number, coded little-endian. The field itself is, like the
 vendor string, UTF-8 coded, not terminated in any way.

 Each field consists of a field name and a field content, separated by
 an = character. The field name MUST only consist of UTF-8 code
 points U+0020 through U+007E, excluding U+003D, which is the =
 character. In other words, the field name can contain all printable
 ASCII characters except the equals sign. The evaluation of the field
 names MUST be case insensitive, so U+0041 through 0+005A (A-Z) MUST
 be considered equivalent to U+0061 through U+007A (a-z) respectively.
 The field contents can contain any UTF-8 character.

 Note that the Vorbis comment as used in Vorbis allows for on the
 order of 2^64 bytes of data whereas the FLAC metadata block is
 limited to 2^24 bytes. Given the stated purpose of Vorbis comments,
 i.e., human-readable textual information, the FLAC metadata block
 limit is unlikely to be restrictive. Also note that the 32-bit field
 lengths are coded little-endian, as opposed to the usual big-endian
 coding of fixed-length integers in the rest of the FLAC format.

8.6.1. Standard field names

 Only one standard field name is defined: the channel mask field, in
 Section 8.6.2. No other field names are defined because the
 applicability of any field name is strongly tied to the content it is
 associated with. For example, field names useful for describing
 files that contain a single work of music would be unusable when
 labeling archived broadcasts, recordings of any kind, or a collection
 of music works. Even when describing a single work of music,
 different conventions exist depending on the kind of music:
 orchestral music differs from music by solo artists or bands.

van Beurden & Weaver Expires 17 July 2024 [Page 22]

Internet-Draft FLAC January 2024

 Despite the fact that no field names are formally defined, there is a
 general trend among devices and software capable of FLAC playback
 that are meant to play music. Most of those recognize at least the
 following field names:

 * Title: name of the current work.
 * Artist: name of the artist generally responsible for the current
 work. For orchestral works, this is usually the composer;
 otherwise, it is often the performer.
 * Album: name of the collection the current work belongs to.

 For a more comprehensive list of possible field names suited for
 describing a single work of music in various genres, the list of tags
 used in the MusicBrainz project, see [MusicBrainz], is suggested.

8.6.2. Channel mask

 Besides fields containing information about the work itself, one
 field is defined for technical reasons, of which the field name is
 WAVEFORMATEXTENSIBLE_CHANNEL_MASK. This field is used to communicate
 that the channels in a file differ from the default channels defined
 in Section 9.1.3. For example, by default, a FLAC file containing
 two channels is interpreted to contain a left and right channel, but
 with this field, it is possible to describe different channel
 contents.

 The channel mask consists of flag bits indicating which channels are
 present. The flags only signal which channels are present, not in
 which order, so if a file has to be encoded in which channels are
 ordered differently, they have to be reordered. This mask is stored
 with a hexadecimal representation, preceded by 0x, see the examples
 below. Please note that a file in which the channel order is defined
 through the WAVEFORMATEXTENSIBLE_CHANNEL_MASK is not streamable (see
 Section 7), as the field is not found in each frame header. The mask
 bits can be found in the following table.

van Beurden & Weaver Expires 17 July 2024 [Page 23]

Internet-Draft FLAC January 2024

 +============+=============================+
 | Bit number | Channel description |
 +============+=============================+
 | 0 | Front left |
 +------------+-----------------------------+
 | 1 | Front right |
 +------------+-----------------------------+
 | 2 | Front center |
 +------------+-----------------------------+
 | 3 | Low-frequency effects (LFE) |
 +------------+-----------------------------+
 | 4 | Back left |
 +------------+-----------------------------+
 | 5 | Back right |
 +------------+-----------------------------+
 | 6 | Front left of center |
 +------------+-----------------------------+
 | 7 | Front right of center |
 +------------+-----------------------------+
 | 8 | Back center |
 +------------+-----------------------------+
 | 9 | Side left |
 +------------+-----------------------------+
 | 10 | Side right |
 +------------+-----------------------------+
 | 11 | Top center |
 +------------+-----------------------------+
 | 12 | Top front left |
 +------------+-----------------------------+
 | 13 | Top front center |
 +------------+-----------------------------+
 | 14 | Top front right |
 +------------+-----------------------------+
 | 15 | Top rear left |
 +------------+-----------------------------+
 | 16 | Top rear center |
 +------------+-----------------------------+
 | 17 | Top rear right |
 +------------+-----------------------------+

 Table 8

 Following are three examples:

 * If a file has a single channel, being a LFE channel, the Vorbis
 comment field is WAVEFORMATEXTENSIBLE_CHANNEL_MASK=0x8.

van Beurden & Weaver Expires 17 July 2024 [Page 24]

Internet-Draft FLAC January 2024

 * If a file has four channels, being front left, front right, top
 front left, and top front right, the Vorbis comment field is
 WAVEFORMATEXTENSIBLE_CHANNEL_MASK=0x5003.
 * If an input has four channels, being back center, top front
 center, front center, and top rear center in that order, they have
 to be reordered to front center, back center, top front center and
 top rear center. The Vorbis comment field added is
 WAVEFORMATEXTENSIBLE_CHANNEL_MASK=0x12104.

 WAVEFORMATEXTENSIBLE_CHANNEL_MASK fields MAY be padded with zeros,
 for example, 0x0008 for a single LFE channel. Parsing of
 WAVEFORMATEXTENSIBLE_CHANNEL_MASK fields MUST be case-insensitive for
 both the field name and the field contents.

 A WAVEFORMATEXTENSIBLE_CHANNEL_MASK field of 0x0 can be used to
 indicate that none of the audio channels of a file correlate with
 speaker positions. This is the case when audio needs to be decoded
 into speaker positions (e.g., Ambisonics B-format audio) or when a
 multitrack recording is contained.

 It is possible for a WAVEFORMATEXTENSIBLE_CHANNEL_MASK field to code
 for fewer channels than are present in the audio. If that is the
 case, the remaining channels SHOULD NOT be rendered by a playback
 application unfamiliar with their purpose. For example, the
 Ambisonics UHJ format is compatible with stereo playback: its first
 two channels can be played back on stereo equipment, but all four
 channels together can be decoded into surround sound. For that
 example, the Vorbis comment field
 WAVEFORMATEXTENSIBLE_CHANNEL_MASK=0x3 would be set, indicating the
 first two channels are front left and front right, and other channels
 do not correlate with speaker positions directly.

 If audio channels not assigned to any speaker are contained and
 decoding to speaker positions is possible, it is recommended to
 provide metadata on how this decoding should take place in another
 Vorbis comment field or an application metadata block. This document
 does not define such metadata.

8.7. Cuesheet

 To either store the track and index point structure of a Compact Disc
 Digital Audio (CD-DA) along with its audio or to provide a mechanism
 to store locations of interest within a FLAC file, a cuesheet
 metadata block can be used. Certain aspects of this metadata block
 follow directly from the CD-DA specification, called Red Book, which
 is standardized as [IEC.60908.1999]. The description below is
 complete and further reference to [IEC.60908.1999] is not needed to
 implement this metadata block.

van Beurden & Weaver Expires 17 July 2024 [Page 25]

Internet-Draft FLAC January 2024

 The structure of a cuesheet metadata block is enumerated in the
 following table.

 +============+==+
 | Data | Description |
 +============+==+
 | u(128*8) | Media catalog number, in ASCII |
 | | printable characters 0x20-0x7E. |
 +------------+--+
 | u(64) | Number of lead-in samples. |
 +------------+--+
 | u(1) | 1 if the cuesheet corresponds to a |
 | | CD-DA, else 0. |
 +------------+--+
 | u(7+258*8) | Reserved. All bits MUST be set to |
 | | zero. |
 +------------+--+
 | u(8) | Number of tracks in this cuesheet. |
 +------------+--+
Cuesheet	A number of structures as specified
tracks	in Section 8.7.1 equal to the number
	of tracks specified previously.
 +------------+--+

 Table 9

 If the media catalog number is less than 128 bytes long, it is right-
 padded with 0x00 bytes. For CD-DA, this is a thirteen digit number,
 followed by 115 0x00 bytes.

 The number of lead-in samples has meaning only for CD-DA cuesheets;
 for other uses, it should be 0. For CD-DA, the lead-in is the TRACK
 00 area where the table of contents is stored; more precisely, it is
 the number of samples from the first sample of the media to the first
 sample of the first index point of the first track. According to
 [IEC.60908.1999], the lead-in MUST be silence and CD grabbing
 software does not usually store it; additionally, the lead-in MUST be
 at least two seconds but MAY be longer. For these reasons, the lead-
 in length is stored here so that the absolute position of the first
 track can be computed. Note that the lead-in stored here is the
 number of samples up to the first index point of the first track, not
 necessarily to INDEX 01 of the first track; even the first track MAY
 have INDEX 00 data.

van Beurden & Weaver Expires 17 July 2024 [Page 26]

Internet-Draft FLAC January 2024

 The number of tracks MUST be at least 1, as a cuesheet block MUST
 have a lead-out track. For CD-DA, this number MUST be no more than
 100 (99 regular tracks and one lead-out track). The lead-out track
 is always the last track in the cuesheet. For CD-DA, the lead-out
 track number MUST be 170 as specified by [IEC.60908.1999], otherwise
 it MUST be 255.

8.7.1. Cuesheet track

 +=============+===+
 | Data | Description |
 +=============+===+
u(64)	Track offset of the first index point in
	samples, relative to the beginning of the
	FLAC audio stream.
+-------------+---+	
u(8)	Track number.
+-------------+---+	
u(12*8)	Track ISRC.
+-------------+---+	
u(1)	The track type: 0 for audio, 1 for non-audio.
	This corresponds to the CD-DA Q-channel
	control bit 3.
+-------------+---+	
u(1)	The pre-emphasis flag: 0 for no pre-emphasis,
	1 for pre-emphasis. This corresponds to the
	CD-DA Q-channel control bit 5.
+-------------+---+	
u(6+13*8)	Reserved. All bits MUST be set to zero.
+-------------+---+	
u(8)	The number of track index points.
+-------------+---+	
Cuesheet	For all tracks except the lead-out track, a
track index	number of structures as specified in
points	Section 8.7.1.1 equal to the number of index
	points specified previously.
 +-------------+---+

 Table 10

 Note that the track offset differs from the one in CD-DA, where the
 track’s offset in the TOC is that of the track’s INDEX 01 even if
 there is an INDEX 00. For CD-DA, the track offset MUST be evenly
 divisible by 588 samples (588 samples = 44100 samples/s * 1/75 s).

van Beurden & Weaver Expires 17 July 2024 [Page 27]

Internet-Draft FLAC January 2024

 A track number of 0 is not allowed, because the CD-DA specification
 reserves this for the lead-in. For CD-DA the number MUST be 1-99, or
 170 for the lead-out; for non-CD-DA, the track number MUST be 255 for
 the lead-out. It is recommended to start with track 1 and increase
 sequentially. Track numbers MUST be unique within a cuesheet.

 The track ISRC (International Standard Recording Code) is a 12-digit
 alphanumeric code; see [ISRC-handbook]. A value of 12 ASCII 0x00
 characters MAY be used to denote the absence of an ISRC.

 There MUST be at least one index point in every track in a cuesheet
 except for the lead-out track, which MUST have zero. For CD-DA, the
 number of index points MUST NOT be more than 100.

8.7.1.1. Cuesheet track index point

 +========+====================================+
 | Data | Description |
 +========+====================================+
 | u(64) | Offset in samples, relative to the |
 | | track offset, of the index point. |
 +--------+------------------------------------+
 | u(8) | The track index point number. |
 +--------+------------------------------------+
 | u(3*8) | Reserved. All bits MUST be set to |
 | | zero. |
 +--------+------------------------------------+

 Table 11

 For CD-DA, the track index point offset MUST be evenly divisible by
 588 samples (588 samples = 44100 samples/s * 1/75 s). Note that the
 offset is from the beginning of the track, not the beginning of the
 audio data.

 For CD-DA, a track index point number of 0 corresponds to the track
 pre-gap. The first index point in a track MUST have a number of 0 or
 1, and subsequently, index point numbers MUST increase by 1. Index
 point numbers MUST be unique within a track.

8.8. Picture

 The picture metadata block contains image data of a picture in some
 way belonging to the audio contained in the FLAC file. Its format is
 derived from the APIC frame in the ID3v2 specification, see [ID3v2].
 However, contrary to the APIC frame in ID3v2, the media type and
 description are prepended with a 4-byte length field instead of being
 0x00 delimited strings. A FLAC file MAY contain one or more picture

van Beurden & Weaver Expires 17 July 2024 [Page 28]

Internet-Draft FLAC January 2024

 metadata blocks.

 Note that while the length fields for media type, description, and
 picture data are 4 bytes in length and could in theory code for a
 size up to 4 GiB, the total metadata block size cannot exceed what
 can be described by the metadata block header, i.e., 16 MiB.

 Instead of picture data, the picture metadata block can also contain
 an URI as described in [RFC3986].

 The structure of a picture metadata block is enumerated in the
 following table.

 +========+==+
 | Data | Description |
 +========+==+
 | u(32) | The picture type according to next table |
 +--------+--+
 | u(32) | The length of the media type string in bytes. |
 +--------+--+
u(n*8)	The media type string as specified by [RFC2046],
	or the text string --> to signify that the data
	part is a URI of the picture instead of the
	picture data itself. This field must be in
	printable ASCII characters 0x20-0x7E.
+--------+--+	
u(32)	The length of the description string in bytes.
+--------+--+	
u(n*8)	The description of the picture, in UTF-8.
+--------+--+	
u(32)	The width of the picture in pixels.
+--------+--+	
u(32)	The height of the picture in pixels.
+--------+--+	
u(32)	The color depth of the picture in bits per
	pixel.
+--------+--+	
u(32)	For indexed-color pictures (e.g., GIF), the
	number of colors used, or 0 for non-indexed
	pictures.
+--------+--+	
u(32)	The length of the picture data in bytes.
+--------+--+	
u(n*8)	The binary picture data.
 +--------+--+

 Table 12

van Beurden & Weaver Expires 17 July 2024 [Page 29]

Internet-Draft FLAC January 2024

 The height, width, color depth, and ’number of colors’ fields are for
 informational purposes only. Applications MUST NOT use them in
 decoding the picture or deciding how to display it, but MAY use them
 to decide whether to process a block or not (e.g., when selecting
 between different picture blocks) and MAY show them to the user. If
 a picture has no concept for any of these fields (e.g., vector images
 may not have a height or width in pixels) or the content of any field
 is unknown, the affected fields MUST be set to zero.

 The following table contains all the defined picture types. Values
 other than those listed in the table are reserved. There MAY only be
 one each of picture types 1 and 2 in a file. In general practice,
 many FLAC playback devices and software display the contents of a
 picture metadata block with picture type 3 (front cover) during
 playback, if present.

van Beurden & Weaver Expires 17 July 2024 [Page 30]

Internet-Draft FLAC January 2024

 +=======+===+
 | Value | Picture type |
 +=======+===+
 | 0 | Other |
 +-------+---+
 | 1 | PNG file icon of 32x32 pixels, see [RFC2083] |
 +-------+---+
 | 2 | General file icon |
 +-------+---+
 | 3 | Front cover |
 +-------+---+
 | 4 | Back cover |
 +-------+---+
 | 5 | Liner notes page |
 +-------+---+
 | 6 | Media label (e.g., CD, Vinyl or Cassette label) |
 +-------+---+
 | 7 | Lead artist, lead performer, or soloist |
 +-------+---+
 | 8 | Artist or performer |
 +-------+---+
 | 9 | Conductor |
 +-------+---+
 | 10 | Band or orchestra |
 +-------+---+
 | 11 | Composer |
 +-------+---+
 | 12 | Lyricist or text writer |
 +-------+---+
 | 13 | Recording location |
 +-------+---+
 | 14 | During recording |
 +-------+---+
 | 15 | During performance |
 +-------+---+
 | 16 | Movie or video screen capture |
 +-------+---+
 | 17 | A bright colored fish |
 +-------+---+
 | 18 | Illustration |
 +-------+---+
 | 19 | Band or artist logotype |
 +-------+---+
 | 20 | Publisher or studio logotype |
 +-------+---+

 Table 13

van Beurden & Weaver Expires 17 July 2024 [Page 31]

Internet-Draft FLAC January 2024

 The origin and use of value 17, "A bright colored fish", is unclear.
 This was copied to maintain compatibility with ID3v2. Applications
 are discouraged from offering this value to users when embedding a
 picture.

 If not a picture but a URI is contained in this block, the following
 points apply:

 * The URI can be either in absolute or relative form. If an URI is
 in relative form, it is related to the URI of the FLAC content
 processed.
 * Applications MUST obtain explicit user approval to retrieve images
 via remote protocols and to retrieve local images not located in
 the same directory as the FLAC file being processed.
 * Applications supporting linked images MUST handle unavailability
 of URIs gracefully. They MAY report unavailability to the user.
 * Applications MAY reject processing URIs for any reason, in
 particular for security or privacy reasons.

9. Frame structure

 Directly after the last metadata block, one or more frames follow.
 Each frame consists of a frame header, one or more subframes, padding
 zero bits to achieve byte-alignment, and a frame footer. The number
 of subframes in each frame is equal to the number of audio channels.

 Each frame header stores the audio sample rate, number of bits per
 sample, and number of channels independently of the streaminfo
 metadata block and other frame headers. This was done to permit
 multicasting of FLAC files, but it also allows these properties to
 change mid-stream. Because not all environments in which FLAC
 decoders are used are able to cope with changes to these properties
 during playback, a decoder MAY choose to stop decoding on such a
 change. A decoder that does not check for such a change could be
 vulnerable to buffer overflows. See also Section 12.

van Beurden & Weaver Expires 17 July 2024 [Page 32]

Internet-Draft FLAC January 2024

 Note that storing audio with changing audio properties in FLAC
 results in various practical problems. For example, these changes of
 audio properties must happen on a frame boundary, or the process will
 not be lossless. When a variable block size is chosen to accommodate
 this, note that blocks smaller than 16 samples are not allowed and it
 is therefore not possible to store an audio stream in which these
 properties change within 16 samples of the last change or the start
 of the file. Also, since the streaminfo metadata block can only
 accommodate a single set of properties, it is only valid for part of
 such an audio stream. Instead, it is RECOMMENDED to store an audio
 stream with changing properties in FLAC encapsulated in a container
 capable of handling such changes, as these do not suffer from the
 mentioned limitations. See Section 10 for details.

9.1. Frame header

 Each frame MUST start on a byte boundary and starts with the 15-bit
 frame sync code 0b111111111111100. Following the sync code is the
 blocking strategy bit, which MUST NOT change during the audio stream.
 The blocking strategy bit is 0 for a fixed block size stream or 1 for
 a variable block size stream. If the blocking strategy is known, a
 decoder can include this bit when searching for the start of a frame
 to reduce the possibility of encountering a false positive, as the
 first two bytes of a frame are either 0xFFF8 for a fixed block size
 stream or 0xFFF9 for a variable block size stream.

9.1.1. Block size bits

 Following the frame sync code and blocking strategy bit are 4 bits
 (the first 4 bits of the third byte of each frame) referred to as the
 block size bits. Their value relates to the block size according to
 the following table, where v is the value of the 4 bits as an
 unsigned number. If the block size bits code for an uncommon block
 size, this is stored after the coded number, see Section 9.1.6.

van Beurden & Weaver Expires 17 July 2024 [Page 33]

Internet-Draft FLAC January 2024

 +=================+===+
 | Value | Block size |
 +=================+===+
 | 0b0000 | reserved |
 +-----------------+---+
 | 0b0001 | 192 |
 +-----------------+---+
 | 0b0010 - 0b0101 | 144 * (2^v), i.e., 576, 1152, 2304, or 4608 |
 +-----------------+---+
 | 0b0110 | uncommon block size minus 1 stored as an |
 | | 8-bit number |
 +-----------------+---+
 | 0b0111 | uncommon block size minus 1 stored as a |
 | | 16-bit number |
 +-----------------+---+
 | 0b1000 - 0b1111 | 2^v, i.e., 256, 512, 1024, 2048, 4096, |
 | | 8192, 16384, or 32768 |
 +-----------------+---+

 Table 14

9.1.2. Sample rate bits

 The next 4 bits (the last 4 bits of the third byte of each frame),
 referred to as the sample rate bits, contain the sample rate of the
 audio according to the following table. If the sample rate bits code
 for an uncommon sample rate, this is stored after the uncommon block
 size or after the coded number if no uncommon block size was used.
 See Section 9.1.7.

van Beurden & Weaver Expires 17 July 2024 [Page 34]

Internet-Draft FLAC January 2024

 +========+==+
 | Value | Sample rate |
 +========+==+
 | 0b0000 | sample rate only stored in the |
 | | streaminfo metadata block |
 +--------+--+
 | 0b0001 | 88.2 kHz |
 +--------+--+
 | 0b0010 | 176.4 kHz |
 +--------+--+
 | 0b0011 | 192 kHz |
 +--------+--+
 | 0b0100 | 8 kHz |
 +--------+--+
 | 0b0101 | 16 kHz |
 +--------+--+
 | 0b0110 | 22.05 kHz |
 +--------+--+
 | 0b0111 | 24 kHz |
 +--------+--+
 | 0b1000 | 32 kHz |
 +--------+--+
 | 0b1001 | 44.1 kHz |
 +--------+--+
 | 0b1010 | 48 kHz |
 +--------+--+
 | 0b1011 | 96 kHz |
 +--------+--+
 | 0b1100 | uncommon sample rate in kHz stored |
 | | as an 8-bit number |
 +--------+--+
 | 0b1101 | uncommon sample rate in Hz stored |
 | | as a 16-bit number |
 +--------+--+
 | 0b1110 | uncommon sample rate in Hz divided |
 | | by 10, stored as a 16-bit number |
 +--------+--+
 | 0b1111 | forbidden |
 +--------+--+

 Table 15

9.1.3. Channels bits

 The next 4 bits (the first 4 bits of the fourth byte of each frame),
 referred to as the channels bits, contain both the number of channels
 of the audio as well as any stereo decorrelation used according to
 the following table.

van Beurden & Weaver Expires 17 July 2024 [Page 35]

Internet-Draft FLAC January 2024

 If a channel layout different than the ones listed in the following
 table is used, this can be signaled with a
 WAVEFORMATEXTENSIBLE_CHANNEL_MASK tag in a Vorbis comment metadata
 block, see Section 8.6.2 for details. Note that even when such a
 different channel layout is specified with a
 WAVEFORMATEXTENSIBLE_CHANNEL_MASK and the channel ordering in the
 following table is overridden, the channels bits still contain the
 actual number of channels coded in the frame. For details on the way
 left/side, right/side, and mid/side stereo are coded, see
 Section 4.2.

 +==========+==+
 | Value | Channels |
 +==========+==+
 | 0b0000 | 1 channel: mono |
 +----------+--+
 | 0b0001 | 2 channels: left, right |
 +----------+--+
 | 0b0010 | 3 channels: left, right, center |
 +----------+--+
 | 0b0011 | 4 channels: front left, front right, back left, |
 | | back right |
 +----------+--+
 | 0b0100 | 5 channels: front left, front right, front center, |
 | | back/surround left, back/surround right |
 +----------+--+
 | 0b0101 | 6 channels: front left, front right, front center, |
 | | LFE, back/surround left, back/surround right |
 +----------+--+
 | 0b0110 | 7 channels: front left, front right, front center, |
 | | LFE, back center, side left, side right |
 +----------+--+
 | 0b0111 | 8 channels: front left, front right, front center, |
 | | LFE, back left, back right, side left, side right |
 +----------+--+
 | 0b1000 | 2 channels, left, right, stored as left/side |
 | | stereo |
 +----------+--+
 | 0b1001 | 2 channels, left, right, stored as right/side |
 | | stereo |
 +----------+--+
 | 0b1010 | 2 channels, left, right, stored as mid/side stereo |
 +----------+--+
 | 0b1011 - | reserved |
 | 0b1111 | |
 +----------+--+

 Table 16

van Beurden & Weaver Expires 17 July 2024 [Page 36]

Internet-Draft FLAC January 2024

9.1.4. Bit depth bits

 The next 3 bits (bits 5, 6 and 7 of each fourth byte of each frame)
 contain the bit depth of the audio according to the following table.

 +=======+==+
 | Value | Bit depth |
 +=======+==+
 | 0b000 | bit depth only stored in the streaminfo metadata block |
 +-------+--+
 | 0b001 | 8 bits per sample |
 +-------+--+
 | 0b010 | 12 bits per sample |
 +-------+--+
 | 0b011 | reserved |
 +-------+--+
 | 0b100 | 16 bits per sample |
 +-------+--+
 | 0b101 | 20 bits per sample |
 +-------+--+
 | 0b110 | 24 bits per sample |
 +-------+--+
 | 0b111 | 32 bits per sample |
 +-------+--+

 Table 17

 The next bit is reserved and MUST be zero.

9.1.5. Coded number

 Following the reserved bit (starting at the fifth byte of the frame)
 is either a sample or a frame number, which will be referred to as
 the coded number. When dealing with variable block size streams, the
 sample number of the first sample in the frame is encoded. When the
 file contains a fixed block size stream, the frame number is encoded.
 See Section 9.1 on the blocking strategy bit which signals whether a
 stream is a fixed block size stream or a variable block size stream.
 Also see Appendix B.1.

 The coded number is stored in a variable length code like UTF-8 as
 defined in [RFC3629], but extended to a maximum of 36 bits unencoded,
 7 bytes encoded.

 When a frame number is encoded, the value MUST NOT be larger than
 what fits a value of 31 bits unencoded or 6 bytes encoded. Please
 note that as most general purpose UTF-8 encoders and decoders follow
 [RFC3629], they will not be able to handle these extended codes.

van Beurden & Weaver Expires 17 July 2024 [Page 37]

Internet-Draft FLAC January 2024

 Furthermore, while UTF-8 is specifically used to encode characters,
 FLAC uses it to encode numbers instead. To encode or decode a coded
 number, follow the procedures of Section 3 of [RFC3629], but instead
 of using a character number, use a frame or sample number, and
 instead of the table in Section 3 of [RFC3629], use the extended
 table below.

 +============================+=====================================+
 | Number range (hexadecimal) | Octet sequence (binary) |
 +============================+=====================================+
 | 0000 0000 0000 - | 0xxxxxxx |
 | 0000 0000 007F | |
 +----------------------------+-------------------------------------+
 | 0000 0000 0080 - | 110xxxxx 10xxxxxx |
 | 0000 0000 07FF | |
 +----------------------------+-------------------------------------+
 | 0000 0000 0800 - | 1110xxxx 10xxxxxx 10xxxxxx |
 | 0000 0000 FFFF | |
 +----------------------------+-------------------------------------+
 | 0000 0001 0000 - | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx |
 | 0000 001F FFFF | |
 +----------------------------+-------------------------------------+
 | 0000 0020 0000 - | 111110xx 10xxxxxx 10xxxxxx 10xxxxxx |
 | 0000 03FF FFFF | 10xxxxxx |
 +----------------------------+-------------------------------------+
 | 0000 0400 0000 - | 1111110x 10xxxxxx 10xxxxxx 10xxxxxx |
 | 0000 7FFF FFFF | 10xxxxxx 10xxxxxx |
 +----------------------------+-------------------------------------+
 | 0000 8000 0000 - | 11111110 10xxxxxx 10xxxxxx 10xxxxxx |
 | 000F FFFF FFFF | 10xxxxxx 10xxxxxx 10xxxxxx |
 +----------------------------+-------------------------------------+

 Table 18

 If the coded number is a frame number, it MUST be equal to the number
 of frames preceding the current frame. If the coded number is a
 sample number, it MUST be equal to the number of samples preceding
 the current frame. In a stream where these requirements are not met,
 seeking is not (reliably) possible.

 For example, a frame that belongs to a variable block size stream and
 has exactly 51 billion samples preceding it, has its coded number
 constructed as follows.

van Beurden & Weaver Expires 17 July 2024 [Page 38]

Internet-Draft FLAC January 2024

 Octets 1-5
 0b11111110 0b10101111 0b10011111 0b10110101 0b10100011
 ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^
 | | | Bits 18-13
 | | Bits 24-19
 | Bits 30-25
 Bits 36-31

 Octets 6-7
 0b10111000 0b10000000
 ^^^^^^ ^^^^^^
 | Bits 6-1
 Bits 12-7

 A decoder that relies on the coded number during seeking could be
 vulnerable to buffer overflows or getting stuck in an infinite loop
 if it seeks in a stream where the coded numbers are not strictly
 increasing or otherwise not valid. See also Section 12.

9.1.6. Uncommon block size

 If the block size bits defined earlier in this section were 0b0110 or
 0b0111 (uncommon block size minus 1 stored), this follows the coded
 number as either an 8-bit or a 16-bit unsigned number coded big-
 endian. A value of 65535 (corresponding to a block size of 65536) is
 forbidden and MUST NOT be used, because such a block size cannot be
 represented in the streaminfo metadata block. A value from 0 up to
 (and including) 14, which corresponds to a block size from 1 to 15,
 is only valid for the last frame in a stream and MUST NOT be used for
 any other frame. See also Section 8.2.

9.1.7. Uncommon sample rate

 Following the uncommon block size (or the coded number if no uncommon
 block size is stored) is the sample rate, if the sample rate bits
 were 0b1100, 0b1101, or 0b1110 (uncommon sample rate stored), as
 either an 8-bit or a 16-bit unsigned number coded big-endian.

 The sample rate MUST NOT be 0 when the subframe contains audio. A
 sample rate of 0 MAY be used when non-audio is represented. See
 Section 8.2 for details.

van Beurden & Weaver Expires 17 July 2024 [Page 39]

Internet-Draft FLAC January 2024

9.1.8. Frame header CRC

 Finally, after either the frame/sample number, an uncommon block
 size, or an uncommon sample rate, depending on whether the latter two
 are stored, is an 8-bit CRC. This CRC is initialized with 0 and has
 the polynomial x^8 + x^2 + x^1 + x^0. This CRC covers the whole
 frame header before the CRC, including the sync code.

9.2. Subframes

 Following the frame header are a number of subframes equal to the
 number of audio channels. Note that as subframes contain a bitstream
 that does not necessarily has to be a whole number of bytes, only the
 first subframe always starts at a byte boundary.

9.2.1. Subframe header

 Each subframe starts with a header. The first bit of the header MUST
 be 0, followed by 6 bits describing which subframe type is used
 according to the following table, where v is the value of the 6 bits
 as an unsigned number.

 +=====================+===+
 | Value | Subframe type |
 +=====================+===+
 | 0b000000 | Constant subframe |
 +---------------------+---+
 | 0b000001 | Verbatim subframe |
 +---------------------+---+
 | 0b000010 - 0b000111 | reserved |
 +---------------------+---+
 | 0b001000 - 0b001100 | Subframe with a fixed predictor of order |
 | | v-8, i.e., 0, 1, 2, 3 or 4 |
 +---------------------+---+
 | 0b001101 - 0b011111 | reserved |
 +---------------------+---+
 | 0b100000 - 0b111111 | Subframe with a linear predictor of order |
 | | v-31, i.e., 1 through 32 (inclusive) |
 +---------------------+---+

 Table 19

 Following the subframe type bits is a bit that flags whether the
 subframe uses any wasted bits (see Section 9.2.2). If it is 0, the
 subframe doesn’t use any wasted bits and the subframe header is
 complete. If it is 1, the subframe does use wasted bits and the
 number of used wasted bits follows unary coded.

van Beurden & Weaver Expires 17 July 2024 [Page 40]

Internet-Draft FLAC January 2024

9.2.2. Wasted bits per sample

 Most uncompressed audio file formats can only store audio samples
 with a bit depth that is an integer number of bytes. Samples of
 which the bit depth is not an integer number of bytes are usually
 stored in such formats by padding them with least-significant zero
 bits to a bit depth that is an integer number of bytes. For example,
 shifting a 14-bit sample right by 2 pads it to a 16-bit sample, which
 then has two zero least-significant bits. In this specification,
 these least-significant zero bits are referred to as wasted bits per
 sample or simply wasted bits. They are wasted in the sense that they
 contain no information, but are stored anyway.

 The FLAC format can optionally take advantage of these wasted bits by
 signaling their presence and coding the subframe without them. To do
 this, the wasted bits per sample flag in a subframe header is set to
 0 and the number of wasted bits per sample (k) minus 1 follows the
 flag in an unary encoding. For example, if k is 3, 0b001 follows.
 If k = 0, the wasted bits per sample flag is 0 and no unary coded k
 follows. In this document, if a subframe header signals a certain
 number of wasted bits, it is said it ’uses’ these wasted bits.

 If a subframe uses wasted bits (i.e., k is not equal to 0), samples
 are coded ignoring k least-significant bits. For example, if a frame
 not employing stereo decorrelation specifies a sample size of 16 bits
 per sample in the frame header and k of a subframe is 3, samples in
 the subframe are coded as 13 bits per sample. For more details, see
 Section 9.2.3 on how the bit depth of a subframe is calculated. A
 decoder MUST add k least-significant zero bits by shifting left
 (padding) after decoding a subframe sample. If the frame has left/
 side, right/side, or mid/side stereo, a decoder MUST perform padding
 on the subframes before restoring the channels to left and right.
 The number of wasted bits per sample MUST be such that the resulting
 number of bits per sample (of which the calculation is explained in
 Section 9.2.3) is larger than zero.

van Beurden & Weaver Expires 17 July 2024 [Page 41]

Internet-Draft FLAC January 2024

 Besides audio files that have a certain number of wasted bits for the
 whole file, there exist audio files in which the number of wasted
 bits varies. There are DVD-Audio discs in which blocks of samples
 have had their least-significant bits selectively zeroed to slightly
 improve the compression of their otherwise lossless Meridian Lossless
 Packing codec, see [MLP]. There are also audio processors like
 lossyWAV, see [lossyWAV], which zero a number of least-sigificant
 bits for a block of samples, increasing the compression in a non-
 lossless way. Because of this, the number of wasted bits k MAY
 change between frames and MAY differ between subframes. If the
 number of wasted bits changes halfway through a subframe (e.g., the
 first part has 2 wasted bits and the second part has 4 wasted bits)
 the subframe uses the lowest number of wasted bits, as otherwise non-
 zero bits would be discarded and the process would not be lossless.

9.2.3. Constant subframe

 In a constant subframe, only a single sample is stored. This sample
 is stored as an integer number coded big-endian, signed two’s
 complement. The number of bits used to store this sample depends on
 the bit depth of the current subframe. The bit depth of a subframe
 is equal to the bit depth as coded in the frame header (see
 Section 9.1.4), minus the number of used wasted bits coded in the
 subframe header (see Section 9.2.2). If a subframe is a side
 subframe (see Section 4.2), the bit depth of that subframe is
 increased by 1 bit.

9.2.4. Verbatim subframe

 A verbatim subframe stores all samples unencoded in sequential order.
 See Section 9.2.3 on how a sample is stored unencoded. The number of
 samples that need to be stored in a subframe is given by the block
 size in the frame header.

9.2.5. Fixed predictor subframe

 Five different fixed predictors are defined in the following table,
 one for each prediction order 0 through 4. In the table is also a
 derivation, which explains the rationale for choosing these fixed
 predictors.

van Beurden & Weaver Expires 17 July 2024 [Page 42]

Internet-Draft FLAC January 2024

 +=======+==================================+======================+
 | Order | Prediction | Derivation |
 +=======+==================================+======================+
 | 0 | 0 | N/A |
 +-------+----------------------------------+----------------------+
 | 1 | a(n-1) | N/A |
 +-------+----------------------------------+----------------------+
 | 2 | 2 * a(n-1) - a(n-2) | a(n-1) + a’(n-1) |
 +-------+----------------------------------+----------------------+
 | 3 | 3 * a(n-1) - 3 * a(n-2) + a(n-3) | a(n-1) + a’(n-1) + |
 | | | a’’(n-1) |
 +-------+----------------------------------+----------------------+
 | 4 | 4 * a(n-1) - 6 * a(n-2) + 4 * | a(n-1) + a’(n-1) + |
 | | a(n-3) - a(n-4) | a’’(n-1) + a’’’(n-1) |
 +-------+----------------------------------+----------------------+

 Table 20

 Where

 * n is the number of the sample being predicted.
 * a(n) is the sample being predicted.
 * a(n-1) is the sample before the one being predicted.
 * a’(n-1) is the difference between the previous sample and the
 sample before that, i.e., a(n-1) - a(n-2). This is the closest
 available first-order discrete derivative.
 * a’’(n-1) is a’(n-1) - a’(n-2) or the closest available second-
 order discrete derivative.
 * a’’’(n-1) is a’’(n-1) - a’’(n-2) or the closest available third-
 order discrete derivative.

 As a predictor makes use of samples preceding the sample that is
 predicted, it can only be used when enough samples are known. As
 each subframe in FLAC is coded completely independently, the first
 few samples in each subframe cannot be predicted. Therefore, a
 number of so-called warm-up samples equal to the predictor order is
 stored. These are stored unencoded, bypassing the predictor and
 residual coding stages. See Section 9.2.3 on how samples are stored
 unencoded. The table below defines how a fixed predictor subframe
 appears in the bitstream.

van Beurden & Weaver Expires 17 July 2024 [Page 43]

Internet-Draft FLAC January 2024

 +==========+===+
 | Data | Description |
 +==========+===+
 | s(n) | Unencoded warm-up samples (n = subframe’s |
 | | bits per sample * predictor order). |
 +----------+---+
 | Coded | Coded residual as defined in |
 | residual | Section 9.2.7 |
 +----------+---+

 Table 21

 As the fixed predictors are specified, they do not have to be stored.
 The fixed predictor order, which is stored in the subframe header,
 specifies which predictor is used.

 To encode a signal with a fixed predictor, each sample has the
 corresponding prediction subtracted and sent to the residual coder.
 To decode a signal with a fixed predictor, the residual is decoded,
 and then the prediction can be added for each sample. This means
 that decoding is necessarily a sequential process within a subframe,
 as for each sample, enough fully decoded previous samples are needed
 to calculate the prediction.

 For fixed predictor order 0, the prediction is always 0, thus each
 residual sample is equal to its corresponding input or decoded
 sample. The difference between a fixed predictor with order 0 and a
 verbatim subframe, is that a verbatim subframe stores all samples
 unencoded, while a fixed predictor with order 0 has all its samples
 processed by the residual coder.

 The first order fixed predictor is comparable to how DPCM encoding
 works, as the resulting residual sample is the difference between the
 corresponding sample and the sample before it. The higher order
 fixed predictors can be understood as polynomials fitted to the
 previous samples.

9.2.6. Linear predictor subframe

 Whereas fixed predictors are well suited for simple signals, using a
 (non-fixed) linear predictor on more complex signals can improve
 compression by making the residual samples even smaller. There is a
 certain trade-off however, as storing the predictor coefficients
 takes up space as well.

 In the FLAC format, a predictor is defined by up to 32 predictor
 coefficients and a shift. To form a prediction, each coefficient is
 multiplied by its corresponding past sample, the results are summed,

van Beurden & Weaver Expires 17 July 2024 [Page 44]

Internet-Draft FLAC January 2024

 and this sum is then shifted. To encode a signal with a linear
 predictor, each sample has the corresponding prediction subtracted
 and sent to the residual coder. To decode a signal with a linear
 predictor, the residual is decoded, and then the prediction can be
 added for each sample. This means that decoding MUST be a sequential
 process within a subframe, as for each sample, enough decoded samples
 are needed to calculate the prediction.

 The table below defines how a linear predictor subframe appears in
 the bitstream.

 +==========+==+
 | Data | Description |
 +==========+==+
 | s(n) | Unencoded warm-up samples (n = |
 | | subframe’s bits per sample * lpc order). |
 +----------+--+
 | u(4) | (Predictor coefficient precision in |
 | | bits)-1 (NOTE: 0b1111 is forbidden). |
 +----------+--+
 | s(5) | Prediction right shift needed in bits. |
 +----------+--+
 | s(n) | Predictor coefficients (n = predictor |
 | | coefficient precision * lpc order). |
 +----------+--+
 | Coded | Coded residual as defined in |
 | residual | Section 9.2.7 |
 +----------+--+

 Table 22

 See Section 9.2.3 on how the warm-up samples are stored unencoded.
 The predictor coefficients are stored as an integer number coded big-
 endian, signed two’s complement, where the number of bits needed for
 each coefficient is defined by the predictor coefficient precision.
 While the prediction right shift is signed two’s complement, this
 number MUST NOT be negative, see Appendix B.4 for an explanation why
 this is.

 Please note that the order in which the predictor coefficients appear
 in the bitstream corresponds to which *past* sample they belong to.
 In other words, the order of the predictor coefficients is opposite
 to the chronological order of the samples. So, the first predictor
 coefficient has to be multiplied with the sample directly before the
 sample that is being predicted, the second predictor coefficient has
 to be multiplied with the sample before that, etc.

van Beurden & Weaver Expires 17 July 2024 [Page 45]

Internet-Draft FLAC January 2024

9.2.7. Coded residual

 The first two bits in a coded residual indicate which coding method
 is used. See the table below.

 +=============+===+
 | Value | Description |
 +=============+===+
 | 0b00 | partitioned Rice code with 4-bit parameters |
 +-------------+---+
 | 0b01 | partitioned Rice code with 5-bit parameters |
 +-------------+---+
 | 0b10 - 0b11 | reserved |
 +-------------+---+

 Table 23

 Both defined coding methods work the same way, but differ in the
 number of bits used for Rice parameters. The 4 bits that directly
 follow the coding method bits form the partition order, which is an
 unsigned number. The rest of the coded residual consists of
 2^(partition order) partitions. For example, if the 4 bits are
 0b1000, the partition order is 8 and the residual is split up into
 2^8 = 256 partitions.

 Each partition contains a certain number of residual samples. The
 number of residual samples in the first partition is equal to (block
 size >> partition order) - predictor order, i.e., the block size
 divided by the number of partitions minus the predictor order. In
 all other partitions, the number of residual samples is equal to
 (block size >> partition order).

 The partition order MUST be such that the block size is evenly
 divisible by the number of partitions. This means, for example, that
 for all odd block sizes, only partition order 0 is allowed. The
 partition order also MUST be such that the (block size >> partition
 order) is larger than the predictor order. This means, for example,
 that with a block size of 4096 and a predictor order of 4, the
 partition order cannot be larger than 9.

van Beurden & Weaver Expires 17 July 2024 [Page 46]

Internet-Draft FLAC January 2024

 Each partition starts with a parameter. If the coded residual of a
 subframe is one with 4-bit Rice parameters (see the table at the
 start of this section), the first 4 bits of each partition are either
 a Rice parameter or an escape code. These 4 bits indicate an escape
 code if they are 0b1111, otherwise they contain the Rice parameter as
 an unsigned number. If the coded residual of the current subframe is
 one with 5-bit Rice parameters, the first 5 bits of each partition
 indicate an escape code if they are 0b11111, otherwise, they contain
 the Rice parameter as an unsigned number as well.

9.2.7.1. Escaped partition

 If an escape code was used, the partition does not contain a
 variable-length Rice coded residual, but a fixed-length unencoded
 residual. Directly following the escape code are 5 bits containing
 the number of bits with which each residual sample is stored, as an
 unsigned number. The residual samples themselves are stored signed
 two’s complement. For example, when a partition is escaped and each
 residual sample is stored with 3 bits, the number -1 is represented
 as 0b111.

 Note that it is possible that the number of bits with which each
 sample is stored is 0, which means all residual samples in that
 partition have a value of 0 and that no bits are used to store the
 samples. In that case, the partition contains nothing except the
 escape code and 0b00000.

9.2.7.2. Rice code

 If a Rice parameter was provided for a certain partition, that
 partition contains a Rice coded residual. The residual samples,
 which are signed numbers, are represented by unsigned numbers in the
 Rice code. For positive numbers, the representation is the number
 doubled, for negative numbers, the representation is the number
 multiplied by -2 and has 1 subtracted. This representation of signed
 numbers is also known as zigzag encoding. The zigzag encoded
 residual is called the folded residual.

 Each folded residual sample is then split into two parts, a most-
 significant part and a least-significant part. The Rice parameter at
 the start of each partition determines where that split lies: it is
 the number of bits in the least-significant part. Each residual
 sample is then stored by coding the most-significant part as unary,
 followed by the least-significant part as binary.

 For example, take a partition with Rice parameter 3 containing a
 folded residual sample with 38 as its value, which is 0b100110 in
 binary. The most-significant part is 0b100 (4) and is stored unary

van Beurden & Weaver Expires 17 July 2024 [Page 47]

Internet-Draft FLAC January 2024

 as 0b00001. The least-significant part is 0b110 (6) and is stored as
 is. The Rice code word is thus 0b00001110. The Rice code words for
 all residual samples in a partition are stored consecutively.

 To decode a Rice code word, zero bits must be counted until
 encountering a one bit, after which a number of bits given by the
 Rice parameter must be read. The count of zero bits is shifted left
 by the Rice parameter (i.e., multiplied by 2 raised to the power Rice
 parameter) and bitwise ORed with (i.e., added to) the read value.
 This is the folded residual value. An even folded residual value is
 shifted right 1 bit (i.e., divided by two) to get the (unfolded)
 residual value. An odd folded residual value is shifted right 1 bit
 and then has all bits flipped (1 added to and divided by -2) to get
 the (unfolded) residual value, subject to negative numbers being
 signed two’s complement on the decoding machine.

 Appendix D shows decoding of a complete coded residual.

9.2.7.3. Residual sample value limit

 All residual sample values MUST be representable in the range offered
 by a 32-bit integer, signed one’s complement. Equivalently, all
 residual sample values MUST fall in the range offered by a 32-bit
 integer signed two’s complement excluding the most negative possible
 value of that range. This means residual sample values MUST NOT have
 an absolute value equal to, or larger than, 2 to the power 31. A
 FLAC encoder MUST make sure of this. If a FLAC encoder is, for a
 certain subframe, unable to find a suitable predictor for which all
 residual samples fall within said range, it MUST default to writing a
 verbatim subframe. Appendix A explains in which circumstances
 residual samples are already implicitly representable in said range
 and thus an additional check is not needed.

 The reason for this limit is to ensure that decoders can use 32-bit
 integers when processing residuals, simplifying decoding. The reason
 the most negative value of a 32-bit int signed two’s complement is
 specifically excluded is to prevent decoders from having to implement
 specific handling of that value, as it cannot be negated within a
 32-bit signed int, and most library routines calculating an absolute
 value have undefined behavior on processing that value.

van Beurden & Weaver Expires 17 July 2024 [Page 48]

Internet-Draft FLAC January 2024

9.3. Frame footer

 Following the last subframe is the frame footer. If the last
 subframe is not byte aligned (i.e., the number of bits required to
 store all subframes put together is not divisible by 8), zero bits
 are added until byte alignment is reached. Following this is a
 16-bit CRC, initialized with 0, with the polynomial x^16 + x^15 + x^2
 + x^0. This CRC covers the whole frame excluding the 16-bit CRC,
 including the sync code.

10. Container mappings

 The FLAC format can be used without any container, as it already
 provides for the most basic features normally associated with a
 container. However, the functionality this basic container provides
 is rather limited, and for more advanced features, like combining
 FLAC audio with video, it needs to be encapsulated by a more capable
 container. This presents a problem: because of these container
 features, the FLAC format mixes data that belongs to the encoded data
 (like block size and sample rate) with data that belongs to the
 container (like checksum and timecode). The choice was made to
 encapsulate FLAC frames as they are, which means some data will be
 duplicated and potentially deviating between the FLAC frames and the
 encapsulating container.

 As FLAC frames are completely independent of each other, container
 format features handling dependencies do not need to be used. For
 example, all FLAC frames embedded in Matroska are marked as keyframes
 when they are stored in a SimpleBlock, and tracks in an MP4 file
 containing only FLAC frames do not need a sync sample box.

10.1. Ogg mapping

 The Ogg container format is defined in [RFC3533]. The first packet
 of a logical bitstream carrying FLAC data is structured according to
 the following table.

van Beurden & Weaver Expires 17 July 2024 [Page 49]

Internet-Draft FLAC January 2024

 +=========+===+
 | Data | Description |
 +=========+===+
 | 5 | Bytes 0x7F 0x46 0x4C 0x41 0x43 (as also defined by |
 | bytes | [RFC5334]) |
 +---------+---+
 | 2 | Version number of the FLAC-in-Ogg mapping. These bytes |
 | bytes | are 0x01 0x00, meaning version 1.0 of the mapping. |
 +---------+---+
 | 2 | Number of header packets (excluding the first header |
 | bytes | packet) as an unsigned number coded big-endian. |
 +---------+---+
 | 4 | The fLaC signature |
 | bytes | |
 +---------+---+
 | 4 | A metadata block header for the streaminfo block |
 | bytes | |
 +---------+---+
 | 34 | A streaminfo metadata block |
 | bytes | |
 +---------+---+

 Table 24

 The number of header packets MAY be 0, which means the number of
 packets that follow is unknown. This first packet MUST NOT share a
 Ogg page with any other packets. This means the first page of a
 logical stream of FLAC-in-Ogg is always 79 bytes.

 Following the first packet are one or more header packets, each of
 which contains a single metadata block. The first of these packets
 SHOULD be a Vorbis comment metadata block, for historic reasons.
 This is contrary to unencapsulated FLAC streams, where the order of
 metadata blocks is not important except for the streaminfo block and
 where a Vorbis comment metadata block is optional.

 Following the header packets are audio packets. Each audio packet
 contains a single FLAC frame. The first audio packet MUST start on a
 new Ogg page, i.e., the last metadata block MUST finish its page
 before any audio packets are encapsulated.

van Beurden & Weaver Expires 17 July 2024 [Page 50]

Internet-Draft FLAC January 2024

 The granule position of all pages containing header packets MUST be
 0. For pages containing audio packets, the granule position is the
 number of the last sample contained in the last completed packet in
 the frame. The sample numbering considers interchannel samples. If
 a page contains no packet end (e.g., when it only contains the start
 of a large packet, which continues on the next page), then the
 granule position is set to the maximum value possible, i.e., 0xFF
 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF.

 The granule position of the first audio data page with a completed
 packet MAY be larger than the number of samples contained in packets
 that complete on that page. In other words, the apparent sample
 number of the first sample in the stream following from the granule
 position and the audio data MAY be larger than 0. This allows, for
 example, a server to cast a live stream to several clients that
 joined at different moments, without rewriting the granule position
 for each client.

 If an audio stream is encoded where audio properties (sample rate,
 number of channels, or bit depth) change at some point in the stream,
 this should be dealt with by finishing encoding of the current Ogg
 stream and starting a new Ogg stream, concatenated to the previous
 one. This is called chaining in Ogg. See the Ogg specification
 [RFC3533] for details.

10.2. Matroska mapping

 The Matroska container format is defined in
 [I-D.ietf-cellar-matroska]. The codec ID (EBML path
 \Segment\Tracks\TrackEntry\CodecID) assigned to signal tracks
 carrying FLAC data is A_FLAC in ASCII. All FLAC data before the
 first audio frame (i.e., the fLaC ASCII signature and all metadata
 blocks) is stored as CodecPrivate data (EBML path
 \Segment\Tracks\TrackEntry\CodecPrivate).

 Each FLAC frame (including all of its subframes) is treated as a
 single frame in the Matroska context.

 If an audio stream is encoded where audio properties (sample rate,
 number of channels, or bit depth) change at some point in the stream,
 this should be dealt with by finishing the current Matroska segment
 and starting a new one with the new properties.

10.3. ISO Base Media File Format (MP4) mapping

 The full encapsulation definition of FLAC audio in MP4 files was
 deemed too extensive to include in this document. A definition
 document can be found at [FLAC-in-MP4-specification].

van Beurden & Weaver Expires 17 July 2024 [Page 51]

Internet-Draft FLAC January 2024

11. Implementation status

 Note to RFC Editor - please remove this entire section before
 publication, as well as the reference to RFC 7942.

 This section records the status of known implementations of the FLAC
 format, and is based on a proposal described in [RFC7942]. Please
 note that the listing of any individual implementation here does not
 imply endorsement by the IETF. Furthermore, no effort has been spent
 to verify the information presented here that was supplied by IETF
 contributors. This is not intended as, and must not be construed to
 be, a catalog of available implementations or their features.
 Readers are advised to note that other implementations may exist.

 A reference encoder and decoder implementation of the FLAC format
 exists, known as libFLAC, maintained by Xiph.Org. It can be found at
 https://xiph.org/flac/ (https://xiph.org/flac/) Note that while all
 libFLAC components are licensed under 3-clause BSD, the flac and
 metaflac command line tools often supplied together with libFLAC are
 licensed under GPL.

 Another completely independent implementation of both encoder and
 decoder of the FLAC format is available in libavcodec, maintained by
 FFmpeg, licensed under LGPL 2.1 or later. It can be found at
 https://ffmpeg.org/ (https://ffmpeg.org/)

 A list of other implementations and an overview of which parts of the
 format they implement can be found at [FLAC-wiki-implementations].

12. Security Considerations

 Like any other codec (such as [RFC6716]), FLAC should not be used
 with insecure ciphers or cipher modes that are vulnerable to known
 plaintext attacks. Some of the header bits as well as the padding
 are easily predictable.

 Implementations of the FLAC codec need to take appropriate security
 considerations into account. Section 2.1 of [RFC4732] provides
 general information on DoS attacks on end-systems and describes some
 mitigation strategies. Areas of concern specific to FLAC follow.

van Beurden & Weaver Expires 17 July 2024 [Page 52]

Internet-Draft FLAC January 2024

 It is extremely important for the decoder to be robust against
 malformed payloads. Payloads that do not conform to this
 specification MUST NOT cause the decoder to overrun its allocated
 memory or take an excessive amount of resources to decode. An
 overrun in allocated memory could lead to arbitrary code execution by
 an attacker. The same applies to the encoder, even though problems
 with encoders are typically rarer. Malformed audio streams MUST NOT
 cause the encoder to misbehave because this would allow an attacker
 to attack transcoding gateways.

 As with all compression algorithms, both encoding and decoding can
 produce an output much larger than the input. For decoding, the most
 extreme possible case of this is a frame with eight constant
 subframes of block size 65535 and coding for 32-bit PCM. This frame
 is only 49 bytes in size, but codes for more than 2 megabytes of
 uncompressed PCM data. For encoding, it is possible to have an even
 larger size increase, although such behavior is generally considered
 faulty. This happens if the encoder chooses a rice parameter that
 does not fit with the residual that has to be encoded. In such a
 case, very long unary coded symbols can appear, in the most extreme
 case, more than 4 gigabytes per sample. Decoder and encoder
 implementors are advised to take precautions to prevent excessive
 resource utilization in such cases.

 Where metadata is handled, implementors are advised to either
 thoroughly test the handling of extreme cases or impose reasonable
 limits beyond the limits of this specification document. For
 example, a single Vorbis comment metadata block can contain millions
 of valid fields. It is unlikely such a limit is ever reached except
 in a potentially malicious file. Likewise, the media type and
 description of a picture metadata block can be millions of characters
 long, despite there being no reasonable use of such contents. One
 possible use case for very long character strings is in lyrics, which
 can be stored in Vorbis comment metadata block fields.

 Various kinds of metadata blocks contain length fields or field
 counts. While reading a block following these lengths or counts, a
 decoder MUST make sure higher-level lengths or counts (most
 importantly, the length field of the metadata block itself) are not
 exceeded. As some of these length fields code string lengths, memory
 for which must be allocated, parsers MUST first verify that a block
 is valid before allocating memory based on its contents, except when
 explicitly instructed to salvage data from a malformed file.

 Metadata blocks can also contain references, e.g., the picture
 metadata block can contain a URI. When following an URI, the
 security considerations of [RFC3986] apply. Applications MUST obtain
 explicit user approval to retrieve resources via remote protocols.

van Beurden & Weaver Expires 17 July 2024 [Page 53]

Internet-Draft FLAC January 2024

 Following external URIs introduces a tracking risk from on-path
 observers and the operator of the service hosting the URI. Likewise,
 the choice of scheme, if it isnt protected like https, could also
 introduce integrity attacks by an on-path observer. A malicious
 operator of the service hosting the URI can return arbitrary content
 that the parser will read. Also, such retrievals can be used in a
 DDoS attack when the URI points to a potential victim. Therefore,
 applications need to ask user approval for each retrieval
 individually, take extra precautions when parsing retrieved data, and
 cache retrieved resources. Applications MUST obtain explicit user
 approval to retrieve local resources not located in the same
 directory as the FLAC file being processed. Since relative URIs are
 permitted, applications MUST guard against directory traversal
 attacks and guard against a violation of a same-origin policy if such
 a policy is being enforced.

 Seeking in a FLAC stream that is not in a container relies on the
 coded number in frame headers and optionally a seektable metadata
 block. Parsers MUST employ thorough checks on whether a found coded
 number or seekpoint is at all possible, e.g., whether it is within
 bounds and not directly contradicting any other coded number or
 seekpoint that the seeking process relies on. Without these checks,
 seeking might get stuck in an infinite loop when numbers in frames
 are non-consecutive or otherwise not valid, which could be used in
 denial of service attacks.

 Implementors are advised to employ fuzz testing combined with
 different sanitizers on FLAC decoders to find security problems.
 Ignoring the results of CRC checks improves the efficiency of decoder
 fuzz testing.

 See [FLAC-decoder-testbench] for a non-exhaustive list of FLAC files
 with extreme configurations that lead to crashes or reboots on some
 known implementations. Besides providing a starting point for
 security testing, this set of files can also be used to test
 conformance with this specification.

 FLAC files may contain executable code, although the FLAC format is
 not designed for it and it is uncommon. One use case where FLAC is
 occasionally used to store executable code is when compressing images
 of mixed mode CDs, which contain both audio and non-audio data, of
 which the non-audio portion can contain executable code. In that
 case, the executable code is stored as if it were audio and is
 potentially obscured. Of course, it is also possible to store
 executable code as metadata, for example as a vorbis comment with
 help of a binary-to-text encoding or directly in an application
 metadata block. Applications MUST NOT execute code contained in FLAC
 files or present parts of FLAC files as executable code to the user,

van Beurden & Weaver Expires 17 July 2024 [Page 54]

Internet-Draft FLAC January 2024

 except when an application has that explicit purpose, e.g.,
 applications reading FLAC files as disc images and presenting it as
 virtual disc drive.

13. IANA Considerations

 This document registers one new media type, "audio/flac", as defined
 in the following section, and creates a new IANA registry.

13.1. Media type registration

 The following information serves as the registration form for the
 "audio/flac" media type. This media type is applicable for FLAC
 audio that is not packaged in a container as described in Section 10.
 FLAC audio packaged in such a container will take on the media type
 of that container, for example, audio/ogg when packaged in an Ogg
 container, or video/mp4 when packaged in an MP4 container alongside a
 video track.

 Type name: audio

 Subtype name: flac

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: as per THISRFC

 Security considerations: see the security considerations in Section
 12 of THISRFC

 Interoperability considerations: see the descriptions of past format
 changes in Appendix B of THISRFC

 Published specification: THISRFC

 Applications that use this media type: ffmpeg, apache, firefox

 Fragment identifier considerations: none

 Additional information:

 Deprecated alias names for this type: audio/x-flac

 Magic number(s): fLaC

 File extension(s): flac

van Beurden & Weaver Expires 17 July 2024 [Page 55]

Internet-Draft FLAC January 2024

 Macintosh file type code(s): none

 Uniform Type Identifier: org.xiph.flac conforms to public.audio

 Windows Clipboard Format Name: audio/flac

 Person & email address to contact for further information:
 IETF CELLAR WG cellar@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: IETF CELLAR WG

 Change controller: Internet Engineering Task Force
 (mailto:iesg@ietf.org)

 Provisional registration? (standards tree only): NO

13.2. Application ID Registry

 This document creates a new IANA registry called the "FLAC
 Application Metadata Block ID" registry. The values correspond to
 the 32-bit identifier described in Section 8.4.

 To register a new Application ID in this registry, one needs an
 Application ID, a description, optionally a reference to a document
 describing the Application ID and a Change Controller (IETF or email
 of registrant). The Application IDs are to be allocated according to
 the "First Come First Served" policy [RFC8126], so that there is no
 impediment to registering any Application IDs the FLAC community
 encounters, especially if they were used in audio files but were not
 registered when the audio files were encoded. An Application ID can
 be any 32-bit value, but is often composed of 4 ASCII characters, to
 be human-readable.

 The FLAC Application Metadata Block ID registry is assigned the
 following initial values, taken from the registration page at
 xiph.org (see [ID-registration-page]), which is no longer being
 maintained as it is replaced by this registry.

 +===========+==========+===========+====================+==========+
Application	ASCII	Description	Specification	Change
ID	rendition			controller
	(if			
	available)			
 +===========+==========+===========+====================+==========+

van Beurden & Weaver Expires 17 July 2024 [Page 56]

Internet-Draft FLAC January 2024

 |0x41544348 |ATCH |FlacFile | [FlacFile] |IETF |
 +-----------+----------+-----------+--------------------+----------+
 |0x42534F4C |BSOL |beSolo | |IETF |
 +-----------+----------+-----------+--------------------+----------+
 |0x42554753 |BUGS |Bugs Player| |IETF |
 +-----------+----------+-----------+--------------------+----------+
 |0x43756573 |Cues |GoldWave | |IETF |
 | | |cue points | | |
 +-----------+----------+-----------+--------------------+----------+
 |0x46696361 |Fica |CUE | |IETF |
 | | |Splitter | | |
 +-----------+----------+-----------+--------------------+----------+
 |0x46746F6C |Ftol |flac-tools | |IETF |
 +-----------+----------+-----------+--------------------+----------+
 |0x4D4F5442 |MOTB |MOTB | |IETF |
 | | |MetaCzar | | |
 +-----------+----------+-----------+--------------------+----------+
 |0x4D505345 |MPSE |MP3 Stream | |IETF |
 | | |Editor | | |
 +-----------+----------+-----------+--------------------+----------+
0x4D754D4C	MuML	MusicML:		IETF
		Music		
		Metadata		
		Language		
+-----------+----------+-----------+--------------------+----------+				
0x52494646	RIFF	Sound		IETF
		Devices		
		RIFF chunk		
		storage		
+-----------+----------+-----------+--------------------+----------+				
0x5346464C	SFFL	Sound Font		IETF
		FLAC		
+-----------+----------+-----------+--------------------+----------+				
0x534F4E59	SONY	Sony		IETF
		Creative		
		Software		
+-----------+----------+-----------+--------------------+----------+				
0x5351455A	SQEZ	flacsqueeze		IETF
+-----------+----------+-----------+--------------------+----------+				
0x54745776	TtWv	TwistedWave		IETF
+-----------+----------+-----------+--------------------+----------+				
0x55495453	UITS	UITS		IETF
		Embedding		
		tools		
+-----------+----------+-----------+--------------------+----------+				
0x61696666	aiff	FLAC AIFF	[Foreign-metadata]	IETF
		chunk		
		storage		

van Beurden & Weaver Expires 17 July 2024 [Page 57]

Internet-Draft FLAC January 2024

 +-----------+----------+-----------+--------------------+----------+
 |0x696D6167 |imag |flac-image | |IETF |
 +-----------+----------+-----------+--------------------+----------+
0x7065656D	peem	Parseable		IETF
		Embedded		
		Extensible		
		Metadata		
+-----------+----------+-----------+--------------------+----------+				
0x71667374	qfst	QFLAC		IETF
		Studio		
+-----------+----------+-----------+--------------------+----------+				
0x72696666	riff	FLAC RIFF	[Foreign-metadata]	IETF
		chunk		
		storage		
+-----------+----------+-----------+--------------------+----------+				
0x74756E65	tune	TagTuner		IETF
+-----------+----------+-----------+--------------------+----------+				
0x773634C0	w64	FLAC Wave64	[Foreign-metadata]	IETF
		chunk		
		storage		
+-----------+----------+-----------+--------------------+----------+				
0x78626174	xbat	XBAT		IETF
+-----------+----------+-----------+--------------------+----------+				
0x786D6364	xmcd	xmcd		IETF
 +-----------+----------+-----------+--------------------+----------+

 Table 25

14. Acknowledgments

 FLAC owes much to the many people who have advanced the audio
 compression field so freely. For instance:

 * A. J. Robinson for his work on Shorten; his paper (see
 [robinson-tr156]) is a good starting point on some of the basic
 methods used by FLAC. FLAC trivially extends and improves the
 fixed predictors, LPC coefficient quantization, and Rice coding
 used in Shorten.
 * S. W. Golomb and Robert F. Rice; their universal codes are used
 by FLAC’s entropy coder, see [Rice].
 * N. Levinson and J. Durbin; the FLAC reference encoder (see
 Section 11) uses an algorithm developed and refined by them for
 determining the LPC coefficients from the autocorrelation
 coefficients, see [Durbin].
 * And of course, Claude Shannon, see [Shannon].

van Beurden & Weaver Expires 17 July 2024 [Page 58]

Internet-Draft FLAC January 2024

 The FLAC format, the FLAC reference implementation, and this document
 were originally developed by Josh Coalson. While many others have
 contributed since, this original effort is deeply appreciated.

15. References

15.1. Normative References

 [I-D.ietf-cellar-matroska]
 Lhomme, S., Bunkus, M., and D. Rice, "Matroska Media
 Container Format Specifications", Work in Progress,
 Internet-Draft, draft-ietf-cellar-matroska-21, 22 October
 2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
 cellar-matroska-21>.

 [ISRC-handbook]
 International ISRC Registration Authority, "International
 Standard Recording Code (ISRC) Handbook, 4th edition",
 2021, <https://www.ifpi.org/isrc_handbook/>.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <https://www.rfc-editor.org/info/rfc1321>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/info/rfc2046>.

 [RFC2083] Boutell, T., "PNG (Portable Network Graphics)
 Specification Version 1.0", RFC 2083,
 DOI 10.17487/RFC2083, March 1997,
 <https://www.rfc-editor.org/info/rfc2083>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3533] Pfeiffer, S., "The Ogg Encapsulation Format Version 0",
 RFC 3533, DOI 10.17487/RFC3533, May 2003,
 <https://www.rfc-editor.org/info/rfc3533>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

van Beurden & Weaver Expires 17 July 2024 [Page 59]

Internet-Draft FLAC January 2024

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

15.2. Informative References

 [Durbin] Durbin, J., "The Fitting of Time-Series Models",
 DOI 10.2307/1401322, December 1959,
 <https://www.jstor.org/stable/1401322>.

 [FIR] "Finite impulse response - Wikipedia",
 <https://en.wikipedia.org/wiki/Finite_impulse_response>.

 [FLAC-decoder-testbench]
 "FLAC decoder testbench", commit aa7b0c6, August 2023,
 <https://github.com/ietf-wg-cellar/flac-test-files>.

 [FLAC-in-MP4-specification]
 Montgomery, C., "Encapsulation of FLAC in ISO Base Media
 File Format", commit 78d85dd, July 2022,
 <https://github.com/xiph/flac/blob/master/doc/
 isoflac.txt>.

 [FLAC-specification-github]
 "FLAC specification github repository",
 <https://github.com/ietf-wg-cellar/flac-specification>.

 [FLAC-wiki-implementations]
 "FLAC specification wiki: Implementations",
 <https://github.com/ietf-wg-cellar/flac-
 specification/wiki/Implementations>.

 [FLAC-wiki-interoperability]
 "FLAC specification wiki: Interoperability
 considerations", <https://github.com/ietf-wg-cellar/flac-
 specification/wiki/Interoperability-considerations>.

 [FlacFile] "FlacFile", October 2007,
 <https://web.archive.org/web/20071023070305/
 http://firestuff.org:80/flacfile/>.

van Beurden & Weaver Expires 17 July 2024 [Page 60]

Internet-Draft FLAC January 2024

 [Foreign-metadata]
 "Specification of foreign metadata storage in FLAC",
 November 2023,
 <https://github.com/xiph/flac/blob/master/doc/
 foreign_metadata_storage.md>.

 [HPL-1999-144]
 Hans, M. and RW. Schafer, "Lossless Compression of Digital
 Audio", DOI 10.1109/79.939834, November 1999,
 <https://www.hpl.hp.com/techreports/1999/HPL-
 1999-144.pdf>.

 [ID-registration-page]
 "FLAC - ID Registry", <https://xiph.org/flac/id.html>.

 [ID3v2] Nilsson, M., "id3v2.4.0-frames.txt", November 2000,
 <https://web.archive.org/web/20220903174949/
 https://id3.org/id3v2.4.0-frames>.

 [IEC.60908.1999]
 International Electrotechnical Commission, "Audio
 recording - Compact disc digital audio system",
 IEC International standard 60908 second edition, 1999.

 [LinearPrediction]
 "Linear prediction - Wikipedia",
 <https://en.wikipedia.org/wiki/Linear_prediction>.

 [MLP] Gerzon, MA., Craven, PG., Stuart, JR., Law, MJ., and RJ.
 Wilson, "The MLP Lossless Compression System", September
 1999,
 <https://www.aes.org/e-lib/online/browse.cfm?elib=8082>.

 [MusicBrainz]
 MusicBrainz, "Tags & Variables - MusicBrainz Picard v2.10
 documentation", <https://picard-
 docs.musicbrainz.org/en/variables/variables.html>.

 [RFC4732] Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
 Denial-of-Service Considerations", RFC 4732,
 DOI 10.17487/RFC4732, December 2006,
 <https://www.rfc-editor.org/info/rfc4732>.

 [RFC5334] Goncalves, I., Pfeiffer, S., and C. Montgomery, "Ogg Media
 Types", RFC 5334, DOI 10.17487/RFC5334, September 2008,
 <https://www.rfc-editor.org/info/rfc5334>.

van Beurden & Weaver Expires 17 July 2024 [Page 61]

Internet-Draft FLAC January 2024

 [RFC6716] Valin, JM., Vos, K., and T. Terriberry, "Definition of the
 Opus Audio Codec", RFC 6716, DOI 10.17487/RFC6716,
 September 2012, <https://www.rfc-editor.org/info/rfc6716>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,
 RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [Rice] Rice, RF. and JR. Plaunt, "Adaptive Variable-Length Coding
 for Efficient Compression of Spacecraft Television Data",
 DOI 10.1109/TCOM.1971.1090789, December 1971,
 <https://ieeexplore.ieee.org/document/1090789>.

 [Shannon] Shannon, CE., "Communication in the Presence of Noise",
 DOI 10.1109/JRPROC.1949.232969, January 1949,
 <https://ieeexplore.ieee.org/document/1697831>.

 [VarLengthCode]
 "Variable-length code - Wikipedia",
 <https://en.wikipedia.org/wiki/Variable-length_code>.

 [Vorbis] Xiph.Org, "Ogg Vorbis I format specification: comment
 field and header specification",
 <https://xiph.org/vorbis/doc/v-comment.html>.

 [lossyWAV] "lossyWAV - Hydrogenaudio Knowledgebase",
 <https://wiki.hydrogenaud.io/index.php?title=LossyWAV>.

 [robinson-tr156]
 Robinson, T., "SHORTEN: Simple lossless and near-lossless
 waveform compression", December 1994,
 <https://mi.eng.cam.ac.uk/reports/abstracts/
 robinson_tr156.html>.

Appendix A. Numerical considerations

 In order to maintain lossless behavior, all arithmetic used in
 encoding and decoding sample values must be done with integer data
 types to eliminate the possibility of introducing rounding errors
 associated with floating-point arithmetic. Use of floating-point
 representations in analysis (e.g., finding a good predictor or Rice
 parameter) is not a concern, as long as the process of using the
 found predictor and Rice parameter to encode audio samples is
 implemented with only integer math.

van Beurden & Weaver Expires 17 July 2024 [Page 62]

Internet-Draft FLAC January 2024

 Furthermore, the possibility of integer overflow can be eliminated by
 using large enough data types. Choosing a 64-bit signed data type
 for all arithmetic involving sample values would make sure the
 possibility for overflow is eliminated, but usually smaller data
 types are chosen for increased performance, especially in embedded
 devices. This appendix provides guidelines for choosing the
 appropriate data type for each step of encoding and decoding FLAC
 files.

 In this appendix, signed data types are signed two’s complement.

A.1. Determining the necessary data type size

 To find the smallest data type size that is guaranteed not to
 overflow for a certain sequence of arithmetic operations, the
 combination of values producing the largest possible result should be
 considered.

 If, for example, two 16-bit signed integers are added, the largest
 possible result forms if both values are the largest number that can
 be represented with a 16-bit signed integer. To store the result, a
 signed integer data type with at least 17 bits is needed. Similarly,
 when adding 4 of these values, 18 bits are needed; when adding 8, 19
 bits are needed, etc. In general, the number of bits necessary when
 adding numbers together is increased by the log base 2 of the number
 of values rounded up to the nearest integer. So, when adding 18
 unknown values stored in 8 bit signed integers, we need a signed
 integer data type of at least 13 bits to store the result, as the log
 base 2 of 18 rounded up is 5.

 When multiplying two numbers, the number of bits needed for the
 result is the size of the first number plus the size of the second
 number. If, for example, a 16-bit signed integer is multiplied by
 another 16-bit signed integer, the result needs at least 32 bits to
 be stored without overflowing. To show this in practice, the largest
 signed value that can be stored in 4 bits is -8. (-8)*(-8) is 64,
 which needs at least 8 bits (signed) to store.

A.2. Stereo decorrelation

 When stereo decorrelation is used, the side channel will have one
 extra bit of bit depth, see Section 4.2.

 This means that while 16-bit signed integers have sufficient range to
 store samples from a fully decoded FLAC frame with a bit depth of 16
 bits, the decoding of a side subframe in such a file will need a data
 type with at least 17 bits to store decoded subframe samples before
 undoing stereo decorrelation.

van Beurden & Weaver Expires 17 July 2024 [Page 63]

Internet-Draft FLAC January 2024

 Most FLAC decoders store decoded (subframe) samples as 32-bit values,
 which is sufficient for files with bit depths up to (and including)
 31 bits.

A.3. Prediction

 A prediction (which is used to calculate the residual on encoding or
 added to the residual to calculate the sample value on decoding) is
 formed by multiplying and summing preceding sample values. In order
 to eliminate the possibility of integer overflow, the combination of
 preceding sample values and predictor coefficients producing the
 largest possible value should be considered.

 To determine the size of the data type needed to calculate either a
 residual sample (on encoding) or an audio sample value (on decoding)
 in a fixed predictor subframe, the maximal possible value for these
 is calculated as described in Appendix A.1 in the following table.
 For example: if a frame codes for 16-bit audio and has some form of
 stereo decorrelation, the subframe coding for the side channel would
 need 16+1+3 bits if a third order fixed predictor is used.

 +=======+==============================+===============+=======+
 | Order | Calculation of residual | Sample values | Extra |
 | | | summed | bits |
 +=======+==============================+===============+=======+
 | 0 | a(n) | 1 | 0 |
 +-------+------------------------------+---------------+-------+
 | 1 | a(n) - a(n-1) | 2 | 1 |
 +-------+------------------------------+---------------+-------+
 | 2 | a(n) - 2 * a(n-1) + a(n-2) | 4 | 2 |
 +-------+------------------------------+---------------+-------+
 | 3 | a(n) - 3 * a(n-1) + 3 * | 8 | 3 |
 | | a(n-2) - a(n-3) | | |
 +-------+------------------------------+---------------+-------+
 | 4 | a(n) - 4 * a(n-1) + 6 * | 16 | 4 |
 | | a(n-2) - 4 * a(n-3) + a(n-4) | | |
 +-------+------------------------------+---------------+-------+

 Table 26

 Where

 * n is the number of the sample being predicted.
 * a(n) is the sample being predicted.
 * a(n-1) is the sample before the one being predicted, a(n-2) is the
 sample before that, etc.

van Beurden & Weaver Expires 17 July 2024 [Page 64]

Internet-Draft FLAC January 2024

 For subframes with a linear predictor, the calculation is a little
 more complicated. Each prediction is the sum of several
 multiplications. Each of these multiply a sample value with a
 predictor coefficient. The extra bits needed can be calculated by
 adding the predictor coefficient precision (in bits) to the bit depth
 of the audio samples. To account for the summing of these
 multiplications, the log base 2 of the predictor order rounded up is
 added.

 For example, if the sample bit depth of the source is 24, the current
 subframe encodes a side channel (see Section 4.2), the predictor
 order is 12, and the predictor coefficient precision is 15 bits, the
 minimum required size of the used signed integer data type is at
 least (24 + 1) + 15 + ceil(log2(12)) = 44 bits. As another example,
 with a side-channel subframe bit depth of 16, a predictor order of 8,
 and a predictor coefficient precision of 12 bits, the minimum
 required size of the used signed integer data type is (16 + 1) + 12 +
 ceil(log2(8)) = 32 bits.

A.4. Residual

 As stated in Section 9.2.7, an encoder must make sure residual
 samples are representable by a 32-bit integer, signed two’s
 complement, excluding the most negative value. Continuing as in the
 previous section, it is possible to calculate when residual samples
 already implicitly fit and when an additional check is needed. This
 implicit fit is achieved when residuals would fit a theoretical
 31-bit signed int, as that satisfies both of the mentioned criteria.
 When this implicit fit is not achieved, all residual values must be
 calculated and checked individually.

 For the residual of a fixed predictor, the maximum residual sample
 size was already calculated in the previous section. However, for a
 linear predictor, the prediction is shifted right by a certain
 amount. The number of bits needed for the residual is the number of
 bits calculated in the previous section, reduced by the prediction
 right shift, and increased by one bit to account for the subtraction
 of the prediction from the current sample on encoding.

 Taking the last example of the previous section, where 32 bits were
 needed for the prediction, the required data type size for the
 residual samples in case of a right shift of 10 bits would be 32 - 10
 + 1 = 23 bits, which means it is not necessary to perform the
 aforementioned check.

van Beurden & Weaver Expires 17 July 2024 [Page 65]

Internet-Draft FLAC January 2024

 As another example, when encoding 32-bit PCM with fixed predictors,
 all predictor orders must be checked. While the 0-order fixed
 predictor is guaranteed to have residual samples that fit a 32-bit
 signed int, it might produce a residual sample value that is the most
 negative representable value of that 32-bit signed int.

 Note that on decoding, while the residual sample values are limited
 to the aforementioned range, the predictions are not. This means
 that while the decoding of the residual samples can happen fully in
 32-bit signed integers, decoders must be sure to execute the addition
 of each residual sample to its accompanying prediction with a wide
 enough signed integer data type like on encoding.

A.5. Rice coding

 When folding (i.e., zig-zag encoding) the residual sample values, no
 extra bits are needed when the absolute value of each residual sample
 is first stored in an unsigned data type of the size of the last
 step, then doubled, and then has one subtracted depending on whether
 the residual sample was positive or negative. Many implementations,
 however, choose to require one extra bit of data type size so zig-zag
 encoding can happen in one step and without a cast instead of the
 procedure described in the previous sentence.

Appendix B. Past format changes

 This informational appendix documents the changes made to the FLAC
 format over the years. This information might be of use when
 encountering FLAC files that were made with software following the
 format as it was before the changes documented in this appendix.

 The FLAC format was first specified in December 2000 and the
 bitstream format was considered frozen with the release of FLAC (the
 reference encoder/decoder) 1.0 in July 2001. Only changes made since
 this first stable release are considered in this appendix. Changes
 made to the FLAC streamable subset definition (see Section 7) are not
 considered.

B.1. Addition of blocking strategy bit

 Perhaps the largest backwards incompatible change to the
 specification was published in July 2007. Before this change,
 variable block size streams were not explicitly marked as such by a
 flag bit in the frame header. A decoder had two ways to detect a
 variable block size stream, either by comparing the minimum and
 maximum block size in the STREAMINFO metadata block (which are equal
 for a fixed block size stream), or, if a decoder did not receive a
 STREAMINFO metadata block, by detecting a change of block size during

van Beurden & Weaver Expires 17 July 2024 [Page 66]

Internet-Draft FLAC January 2024

 a stream, which could in theory not happen at all. As the meaning of
 the coded number in the frame header depends on whether or not a
 stream is variable block size, this presented a problem: the meaning
 of the coded number could not be reliably determined. To fix this
 problem, one of the reserved bits was changed to be used as a
 blocking strategy bit. See also Section 9.1.

 Along with the addition of a new flag, the meaning of the block size
 bits (see Section 9.1.1) was subtly changed. Initially, block size
 bits patterns 0b0001-0b0101 and 0b1000-0b1111 could only be used for
 fixed block size streams, while 0b0110 and 0b0111 could be used for
 both fixed block size and variable block size streams. With the
 change, these restrictions were lifted, and patterns 0b0001-0b1111
 are now used for both variable block size and fixed block size
 streams.

B.2. Restriction of encoded residual samples

 Another change to the specification was deemed necessary during
 standardization by the CELLAR working group of the IETF. As
 specified in Section 9.2.7 a limit is imposed on residual samples.
 This limit was not specified prior to the IETF standardization
 effort. However, as far as was known to the working group, no FLAC
 encoder at that time produced FLAC files containing residual samples
 exceeding this limit. This is mostly because it is very unlikely to
 encounter residual samples exceeding this limit when encoding 24-bit
 PCM, and encoding of PCM with higher bit depths was not yet
 implemented in any known encoder. In fact, these FLAC encoders would
 produce corrupt files upon being triggered to produce such residual
 samples and it is unlikely any non-experimental encoder would ever do
 so, even when presented with crafted material. Therefore, it was not
 expected that existing implementations would be rendered non-
 compliant by this change.

B.3. Addition of 5-bit Rice parameters

 One significant addition to the format was the residual coding method
 using 5-bit Rice parameters. Prior to publication of this addition
 in July 2007, there was only one residual coding method specified, a
 partitioned Rice code with 4-bit Rice parameters. The range offered
 by this coding method proved too small when encoding 24-bit PCM,
 therefore, a second residual coding method was specified, identical
 to the first but with 5-bit Rice parameters.

van Beurden & Weaver Expires 17 July 2024 [Page 67]

Internet-Draft FLAC January 2024

B.4. Restriction of LPC shift to non-negative values

 As stated in Section 9.2.6, the predictor right shift is a number
 signed two’s complement, which MUST NOT be negative. This is because
 right shifting a number by a negative amount is undefined behavior in
 the C programming language standard. The intended behavior was that
 a positive number would be a right shift and a negative number would
 be a left shift. The FLAC reference encoder was changed in 2007 to
 not generate LPC subframes with a negative predictor right shift, as
 it turned out that the use of such subframes would only very rarely
 provide any benefit, and the decoders that were already widely in use
 at that point were not able to handle such subframes.

Appendix C. Interoperability considerations

 As documented in Appendix B, there have been some changes and
 additions to the FLAC format. Additionally, implementation of
 certain features of the FLAC format took many years, meaning early
 decoder implementations could not be tested against files with these
 features. Finally, many lower-quality FLAC decoders only implement
 just enough features required for playback of the most common FLAC
 files.

 This appendix provides some considerations for encoder
 implementations aiming to create highly compatible files. As this
 topic is one that might change after this document is finished,
 consult [FLAC-wiki-interoperability] for more up-to-date information.

C.1. Features outside of the streamable subset

 As described in Section 7, FLAC specifies a subset of its
 capabilities as the FLAC streamable subset. Certain decoders may
 choose to only decode FLAC files conforming to the limitations
 imposed by the streamable subset. Therefore, maximum compatibility
 with decoders is achieved when the limitations of the FLAC streamable
 subset are followed when creating FLAC files.

C.2. Variable block size

 Because it is often difficult to find the optimal arrangement of
 block sizes for maximum compression, most encoders choose to create
 files with a fixed block size. Because of this, many decoder
 implementations receive minimal use when handling variable block size
 streams, and this can reveal bugs or reveal that implementations do
 not decode them at all. Furthermore, as explained in Appendix B.1,
 there have been some changes to the way variable block size streams
 were encoded. Because of this, maximum compatibility with decoders
 is achieved when FLAC files are created using fixed block size

van Beurden & Weaver Expires 17 July 2024 [Page 68]

Internet-Draft FLAC January 2024

 streams.

C.3. 5-bit Rice parameter

 As the addition of the 5-bit Rice parameter, as described in
 Appendix B.3, occurred quite a few years after the FLAC format was
 first introduced, some early decoders might not be able to decode
 files containing such Rice parameters. The introduction of this was
 specifically aimed at improving compression of 24-bit PCM audio, and
 compression of 16-bit PCM audio only rarely benefits from using 5-bit
 Rice parameters. Therefore, maximum compatibility with decoders is
 achieved when FLAC files containing audio with a bit depth of 16 bits
 or lower are created without any use of 5-bit Rice parameters.

C.4. Rice escape code

 Escaped Rice partitions are seldom used, as it turned out their use
 provides only a very small compression improvement. As many encoders
 therefore do not use these by default or are not capable of producing
 them at all, it is likely that many decoder implementations are not
 able to decode them correctly. Therefore, maximum compatibility with
 decoders is achieved when FLAC files are created without any use of
 escaped Rice partitions.

C.5. Uncommon block size

 For unknown reasons, some decoders have chosen to support only common
 block sizes for all but the last block of a stream. Therefore,
 maximum compatibility with decoders is achieved when creating FLAC
 files using common block sizes, as listed in Section 9.1.1, for all
 but the last block of a stream.

C.6. Uncommon bit depth

 Most audio is stored in bit depths that are a whole number of bytes,
 e.g., 8, 16 or 24 bit. There is however audio with different bit
 depths. A few examples:

 * DVD-Audio has the possibility to store 20 bit PCM audio.
 * DAT and DV can store 12 bit PCM audio.
 * NICAM-728 samples at 14 bit, which is companded to 10 bit.
 * 8-bit µ-law can be losslessly converted to 14 bit (Linear) PCM.
 * 8-bit A-law can be losslessly converted to 13 bit (Linear) PCM.

 The FLAC format can contain these bit depths directly, but because
 they are uncommon, some decoders are not able to process the
 resulting files correctly. It is possible to store these formats in
 a FLAC file with a more common bit depth without sacrificing

van Beurden & Weaver Expires 17 July 2024 [Page 69]

Internet-Draft FLAC January 2024

 compression by padding each sample with zero bits to a bit depth that
 is a whole byte. The FLAC format can efficiently compress these
 wasted bits. See Section 9.2.2 for details.

 Therefore, maximum compatibility with decoders is achieved when FLAC
 files are created by padding samples of such audio with zero bits to
 the bit depth that is the next whole number of bytes.

 In cases where the original signal is already padded, this operation
 cannot be reversed losslessly without knowing the original bit depth.
 To leave no ambiguity, the original bit depth needs to be stored, for
 example, in a vorbis comment field, by storing the header of the
 original file, or in a description of the file. The choice of a
 suitable method is left to the implementer.

 Besides audio with a ’non-whole byte’ bit depth, some decoder
 implementations have chosen to only accept FLAC files coding for PCM
 audio with a bit depth of 16 bit. Many implementations support bit
 depths up to 24 bit but no higher. Consult
 [FLAC-wiki-interoperability] for more up-to-date information.

C.7. Multi-channel audio and uncommon sample rates

 Many FLAC audio players are unable to render multi-channel audio or
 audio with an uncommon sample rate. While this is not a concern
 specific to the FLAC format, it is of note when requiring maximum
 compatibility with decoders. Unlike the previously mentioned
 interoperability considerations, this is one where compatibility
 cannot be improved without sacrificing the lossless nature of the
 FLAC format.

 From a non-exhaustive inquiry, it seems that a non-negligible amount
 of players, especially hardware players, do not support audio with 3
 or more channels or sample rates other than those considered common,
 see Section 9.1.2.

 For those players that do support and are able to render multi-
 channel audio, many do not parse and use the
 WAVEFORMATEXTENSIBLE_CHANNEL_MASK tag (see Section 8.6.2). This too
 is an interoperability consideration where compatibility cannot be
 improved without sacrificing the lossless nature of the FLAC format.

van Beurden & Weaver Expires 17 July 2024 [Page 70]

Internet-Draft FLAC January 2024

C.8. Changing audio properties mid-stream

 Each FLAC frame header stores the audio sample rate, number of bits
 per sample, and number of channels independently of the streaminfo
 metadata block and other frame headers. This was done to permit
 multicasting of FLAC files, but it also allows these properties to
 change mid-stream. However, many FLAC decoders do not handle such
 changes, as few other formats are capable of holding such streams and
 changing playback properties during playback is often not possible
 without interrupting playback. Also, as explained in Section 9,
 using this feature of FLAC results in various practical problems.

 However, even when storing an audio stream with changing properties
 in FLAC encapsulated in a container capable of handling such changes,
 as recommended in Section 9, many decoders are not able to decode
 such a stream correctly. Therefore, maximum compatibility with
 decoders is achieved when FLAC files are created with a single set of
 audio properties, in which the properties coded in the streaminfo
 metadata block (see Section 8.2) and the properties coded in all
 frame headers (see Section 9.1) are the same. This can be achieved
 by splitting up an input stream with changing audio properties at the
 points where these properties change into separate streams or files.

Appendix D. Examples

 This informational appendix contains short example FLAC files that
 are decoded step by step. These examples provide a more engaging way
 to understand the FLAC format than the formal specification. The
 text explaining these examples assumes the reader has at least
 cursorily read the specification and that the reader refers to the
 specification for explanation of the terminology used. These
 examples mostly focus on the layout of several metadata blocks and
 subframe types and the implications of certain aspects (for example,
 wasted bits and stereo decorrelation) on this layout.

 The examples feature files generated by various FLAC encoders. These
 are presented in hexadecimal or binary format, followed by tables and
 text referring to various features by their starting bit positions in
 these representations. Each starting position (shortened to ’start’
 in the tables) is a hexadecimal byte position and a start bit within
 that byte, separated by a plus sign. Counts for these start at zero.
 For example, a feature starting at the 3rd bit of the 17th byte is
 referred to as starting at 0x10+2. The files that are explored in
 these examples can be found at [FLAC-specification-github].

van Beurden & Weaver Expires 17 July 2024 [Page 71]

Internet-Draft FLAC January 2024

 All data in this appendix has been thoroughly verified. However, as
 this appendix is informational, if any information here conflicts
 with statements in the formal specification, the latter takes
 precedence.

D.1. Decoding example 1

 This very short example FLAC file codes for PCM audio that has two
 channels, each containing one sample. The focus of this example is
 on the essential parts of a FLAC file.

D.1.1. Example file 1 in hexadecimal representation

 00000000: 664c 6143 8000 0022 1000 1000 fLaC..."....
 0000000c: 0000 0f00 000f 0ac4 42f0 0000 B...
 00000018: 0001 3e84 b418 07dc 6903 0758 ..>.....i..X
 00000024: 6a3d ad1a 2e0f fff8 6918 0000 j=......i...
 00000030: bf03 58fd 0312 8baa 9a ..X......

D.1.2. Example file 1 in binary representation

 00000000: 01100110 01001100 01100001 01000011 fLaC
 00000004: 10000000 00000000 00000000 00100010 ..."
 00000008: 00010000 00000000 00010000 00000000
 0000000c: 00000000 00000000 00001111 00000000
 00000010: 00000000 00001111 00001010 11000100
 00000014: 01000010 11110000 00000000 00000000 B...
 00000018: 00000000 00000001 00111110 10000100 ..>.
 0000001c: 10110100 00011000 00000111 11011100
 00000020: 01101001 00000011 00000111 01011000 i..X
 00000024: 01101010 00111101 10101101 00011010 j=..
 00000028: 00101110 00001111 11111111 11111000
 0000002c: 01101001 00011000 00000000 00000000 i...
 00000030: 10111111 00000011 01011000 11111101 ..X.
 00000034: 00000011 00010010 10001011 10101010
 00000038: 10011010

D.1.3. Signature and streaminfo

 The first 4 bytes of the file contain the fLaC file signature.
 Directly following it is a metadata block. The signature and the
 first metadata block header are broken down in the following table.

van Beurden & Weaver Expires 17 July 2024 [Page 72]

Internet-Draft FLAC January 2024

 +========+=========+============+===========================+
 | Start | Length | Contents | Description |
 +========+=========+============+===========================+
 | 0x00+0 | 4 bytes | 0x664C6143 | fLaC |
 +--------+---------+------------+---------------------------+
 | 0x04+0 | 1 bit | 0b1 | Last metadata block |
 +--------+---------+------------+---------------------------+
 | 0x04+1 | 7 bits | 0b0000000 | Streaminfo metadata block |
 +--------+---------+------------+---------------------------+
 | 0x05+0 | 3 bytes | 0x000022 | Length 34 byte |
 +--------+---------+------------+---------------------------+

 Table 27

 As the header indicates that this is the last metadata block, the
 position of the first audio frame can now be calculated as the
 position of the first byte after the metadata block header + the
 length of the block, i.e., 8+34 = 42 or 0x2a. As can be seen, 0x2a
 indeed contains the frame sync code for fixed block size streams,
 0xfff8.

 The streaminfo metadata block contents are broken down in the
 following table.

 +========+==========+====================+=========================+
 | Start | Length | Contents | Description |
 +========+==========+====================+=========================+
 | 0x08+0 | 2 bytes | 0x1000 | Min. block size 4096 |
 +--------+----------+--------------------+-------------------------+
 | 0x0a+0 | 2 bytes | 0x1000 | Max. block size 4096 |
 +--------+----------+--------------------+-------------------------+
 | 0x0c+0 | 3 bytes | 0x00000f | Min. frame size 15 byte |
 +--------+----------+--------------------+-------------------------+
 | 0x0f+0 | 3 bytes | 0x00000f | Max. frame size 15 byte |
 +--------+----------+--------------------+-------------------------+
 | 0x12+0 | 20 bits | 0x0ac4, 0b0100 | Sample rate 44100 hertz |
 +--------+----------+--------------------+-------------------------+
 | 0x14+4 | 3 bits | 0b001 | 2 channels |
 +--------+----------+--------------------+-------------------------+
 | 0x14+7 | 5 bits | 0b01111 | Sample bit depth 16 |
 +--------+----------+--------------------+-------------------------+
 | 0x15+4 | 36 bits | 0b0000, 0x00000001 | Total no. of samples 1 |
 +--------+----------+--------------------+-------------------------+
 | 0x1a | 16 bytes | (...) | MD5 checksum |
 +--------+----------+--------------------+-------------------------+

 Table 28

van Beurden & Weaver Expires 17 July 2024 [Page 73]

Internet-Draft FLAC January 2024

 The minimum and maximum block size are both 4096. This was
 apparently the block size the encoder planned to use, but as only 1
 interchannel sample was provided, no frames with 4096 samples are
 actually present in this file.

 Note that anywhere a number of samples is mentioned (block size,
 total number of samples, sample rate), interchannel samples are
 meant.

 The MD5 checksum (starting at 0x1a) is 0x3e84 b418 07dc 6903 0758
 6a3d ad1a 2e0f. This will be validated after decoding the samples.

D.1.4. Audio frames

 The frame header starts at position 0x2a and is broken down in the
 following table.

 +========+=========+=================+===================+
 | Start | Length | Contents | Description |
 +========+=========+=================+===================+
 | 0x2a+0 | 15 bits | 0xff, 0b1111100 | frame sync |
 +--------+---------+-----------------+-------------------+
 | 0x2b+7 | 1 bit | 0b0 | blocking strategy |
 +--------+---------+-----------------+-------------------+
 | 0x2c+0 | 4 bits | 0b0110 | 8-bit block size |
 | | | | further down |
 +--------+---------+-----------------+-------------------+
 | 0x2c+4 | 4 bits | 0b1001 | sample rate 44.1 |
 | | | | kHz |
 +--------+---------+-----------------+-------------------+
 | 0x2d+0 | 4 bits | 0b0001 | stereo, no |
 | | | | decorrelation |
 +--------+---------+-----------------+-------------------+
 | 0x2d+4 | 3 bits | 0b100 | bit depth 16 bit |
 +--------+---------+-----------------+-------------------+
 | 0x2d+7 | 1 bit | 0b0 | mandatory 0 bit |
 +--------+---------+-----------------+-------------------+
 | 0x2e+0 | 1 byte | 0x00 | frame number 0 |
 +--------+---------+-----------------+-------------------+
 | 0x2f+0 | 1 byte | 0x00 | block size 1 |
 +--------+---------+-----------------+-------------------+
 | 0x30+0 | 1 byte | 0xbf | frame header CRC |
 +--------+---------+-----------------+-------------------+

 Table 29

van Beurden & Weaver Expires 17 July 2024 [Page 74]

Internet-Draft FLAC January 2024

 As the stream is a fixed block size stream, the number at 0x2e
 contains a frame number. As the value is smaller than 128, only 1
 byte is used for the encoding.

 At byte 0x31, the first subframe starts, which is broken down in the
 following table.

 +========+=========+================+=========================+
 | Start | Length | Contents | Description |
 +========+=========+================+=========================+
 | 0x31+0 | 1 bit | 0b0 | mandatory 0 bit |
 +--------+---------+----------------+-------------------------+
 | 0x31+1 | 6 bits | 0b000001 | verbatim subframe |
 +--------+---------+----------------+-------------------------+
 | 0x31+7 | 1 bit | 0b1 | wasted bits used |
 +--------+---------+----------------+-------------------------+
 | 0x32+0 | 2 bits | 0b01 | 2 wasted bits used |
 +--------+---------+----------------+-------------------------+
 | 0x32+2 | 14 bits | 0b011000, 0xfd | 14-bit unencoded sample |
 +--------+---------+----------------+-------------------------+

 Table 30

 As the wasted bits flag is 1 in this subframe, an unary coded number
 follows. Starting at 0x32, we see 0b01, which unary codes for 1,
 meaning this subframe uses 2 wasted bits.

 As this is a verbatim subframe, the subframe only contains unencoded
 sample values. With a block size of 1, it contains only a single
 sample. The bit depth of the audio is 16 bits, but as the subframe
 header signals the use of 2 wasted bits, only 14 bits are stored. As
 no stereo decorrelation is used, a bit depth increase for the side
 channel is not applicable. So, the next 14 bits (starting at
 position 0x32+2) contain the unencoded sample coded big-endian,
 signed two’s complement. The value reads 0b011000 11111101, or 6397.
 This value needs to be shifted left by 2 bits, to account for the
 wasted bits. The value is then 0b011000 11111101 00, or 25588.

 The second subframe starts at 0x34, and is broken down in the
 following table.

van Beurden & Weaver Expires 17 July 2024 [Page 75]

Internet-Draft FLAC January 2024

 +========+=========+==============+=========================+
 | Start | Length | Contents | Description |
 +========+=========+==============+=========================+
 | 0x34+0 | 1 bit | 0b0 | mandatory 0 bit |
 +--------+---------+--------------+-------------------------+
 | 0x34+1 | 6 bits | 0b000001 | verbatim subframe |
 +--------+---------+--------------+-------------------------+
 | 0x34+7 | 1 bit | 0b1 | wasted bits used |
 +--------+---------+--------------+-------------------------+
 | 0x35+0 | 4 bits | 0b0001 | 4 wasted bits used |
 +--------+---------+--------------+-------------------------+
 | 0x35+4 | 12 bits | 0b0010, 0x8b | 12-bit unencoded sample |
 +--------+---------+--------------+-------------------------+

 Table 31

 Here the wasted bits flag is also one, but the unary coded number
 that follows it is 4 bit long, indicating the use of 4 wasted bits.
 This means the sample is stored in 12 bits. The sample value is
 0b0010 10001011, or 651. This value now has to be shifted left by 4
 bits, i.e., 0b0010 10001011 0000 or 10416.

 At this point, we would undo stereo decorrelation if that was
 applicable.

 As the last subframe ends byte-aligned, no padding bits follow it.
 The next 2 bytes, starting at 0x38, contain the frame CRC. As this
 is the only frame in the file, the file ends with the CRC.

 To validate the MD5 checksum, we line up the samples interleaved,
 byte-aligned, little endian, signed two’s complement. The first
 sample, with value 25588, translates to 0xf463, the second sample,
 with value 10416, translates to 0xb028. When computing the MD5
 checksum with 0xf463b028 as input, we get the MD5 checksum found in
 the header, so decoding was lossless.

D.2. Decoding example 2

 This FLAC file is larger than the first example, but still contains
 very little audio. The focus of this example is on decoding a
 subframe with a fixed predictor and a coded residual, but it also
 contains a very short seektable, a Vorbis comment metadata block, and
 a padding metadata block.

D.2.1. Example file 2 in hexadecimal representation

van Beurden & Weaver Expires 17 July 2024 [Page 76]

Internet-Draft FLAC January 2024

 00000000: 664c 6143 0000 0022 0010 0010 fLaC..."....
 0000000c: 0000 1700 0044 0ac4 42f0 0000 D..B...
 00000018: 0013 d5b0 5649 75e9 8b8d 8b93 VIu.....
 00000024: 0422 757b 8103 0300 0012 0000 ."u{........
 00000030: 0000 0000 0000 0000 0000 0000
 0000003c: 0000 0010 0400 003a 2000 0000 : ...
 00000048: 7265 6665 7265 6e63 6520 6c69 reference li
 00000054: 6246 4c41 4320 312e 332e 3320 bFLAC 1.3.3
 00000060: 3230 3139 3038 3034 0100 0000 20190804....
 0000006c: 0e00 0000 5449 544c 453d d7a9 TITLE=..
 00000078: d79c d795 d79d 8100 0006 0000
 00000084: 0000 0000 fff8 6998 000f 9912 i.....
 00000090: 0867 0162 3d14 4299 8f5d f70d .g.b=.B..]..
 0000009c: 6fe0 0c17 caeb 2100 0ee7 a77a o.....!....z
 000000a8: 24a1 590c 1217 b603 097b 784f $.Y......{xO
 000000b4: aa9a 33d2 85e0 70ad 5b1b 4851 ..3...p.[.HQ
 000000c0: b401 0d99 d2cd 1a68 f1e6 b810 h....
 000000cc: fff8 6918 0102 a402 c382 c40b ..i.........
 000000d8: c14a 03ee 48dd 03b6 7c13 30 .J..H...|.0

D.2.2. Example file 2 in binary representation (only audio frames)

 00000088: 11111111 11111000 01101001 10011000 ..i.
 0000008c: 00000000 00001111 10011001 00010010
 00000090: 00001000 01100111 00000001 01100010 .g.b
 00000094: 00111101 00010100 01000010 10011001 =.B.
 00000098: 10001111 01011101 11110111 00001101 .]..
 0000009c: 01101111 11100000 00001100 00010111 o...
 000000a0: 11001010 11101011 00100001 00000000 ..!.
 000000a4: 00001110 11100111 10100111 01111010 ...z
 000000a8: 00100100 10100001 01011001 00001100 $.Y.
 000000ac: 00010010 00010111 10110110 00000011
 000000b0: 00001001 01111011 01111000 01001111 .{xO
 000000b4: 10101010 10011010 00110011 11010010 ..3.
 000000b8: 10000101 11100000 01110000 10101101 ..p.
 000000bc: 01011011 00011011 01001000 01010001 [.HQ
 000000c0: 10110100 00000001 00001101 10011001
 000000c4: 11010010 11001101 00011010 01101000 ...h
 000000c8: 11110001 11100110 10111000 00010000
 000000cc: 11111111 11111000 01101001 00011000 ..i.
 000000d0: 00000001 00000010 10100100 00000010
 000000d4: 11000011 10000010 11000100 00001011
 000000d8: 11000001 01001010 00000011 11101110 .J..
 000000dc: 01001000 11011101 00000011 10110110 H...
 000000e0: 01111100 00010011 00110000 |.0

van Beurden & Weaver Expires 17 July 2024 [Page 77]

Internet-Draft FLAC January 2024

D.2.3. Streaminfo metadata block

 Most of the streaminfo block, including its header, is the same as in
 example 1, so only parts that are different are listed in the
 following table.

 +========+=========+============+=============================+
 | Start | Length | Contents | Description |
 +========+=========+============+=============================+
 | 0x04+0 | 1 bit | 0b0 | Not the last metadata block |
 +--------+---------+------------+-----------------------------+
 | 0x08+0 | 2 bytes | 0x0010 | Min. block size 16 |
 +--------+---------+------------+-----------------------------+
 | 0x0a+0 | 2 bytes | 0x0010 | Max. block size 16 |
 +--------+---------+------------+-----------------------------+
 | 0x0c+0 | 3 bytes | 0x000017 | Min. frame size 23 byte |
 +--------+---------+------------+-----------------------------+
 | 0x0f+0 | 3 bytes | 0x000044 | Max. frame size 68 byte |
 +--------+---------+------------+-----------------------------+
 | 0x15+4 | 36 bits | 0b0000, | Total no. of samples 19 |
 | | | 0x00000013 | |
 +--------+---------+------------+-----------------------------+
 | 0x1a | 16 | (...) | MD5 checksum |
 | | bytes | | |
 +--------+---------+------------+-----------------------------+

 Table 32

 This time, the minimum and maximum block sizes are reflected in the
 file: there is one block of 16 samples, the last block (which has 3
 samples) is not considered for the minimum block size. The MD5
 checksum is 0xd5b0 5649 75e9 8b8d 8b93 0422 757b 8103, this will be
 verified at the end of this example.

D.2.4. Seektable

 The seektable metadata block only holds one entry. It is not really
 useful here, as it points to the first frame, but it is enough for
 this example. The seektable metadata block is broken down in the
 following table.

van Beurden & Weaver Expires 17 July 2024 [Page 78]

Internet-Draft FLAC January 2024

 +========+========+====================+================+
 | Start | Length | Contents | Description |
 +========+========+====================+================+
 | 0x2a+0 | 1 bit | 0b0 | Not the last |
 | | | | metadata block |
 +--------+--------+--------------------+----------------+
 | 0x2a+1 | 7 bits | 0b0000011 | Seektable |
 | | | | metadata block |
 +--------+--------+--------------------+----------------+
 | 0x2b+0 | 3 | 0x000012 | Length 18 byte |
 | | bytes | | |
 +--------+--------+--------------------+----------------+
 | 0x2e+0 | 8 | 0x0000000000000000 | Seekpoint to |
 | | bytes | | sample 0 |
 +--------+--------+--------------------+----------------+
 | 0x36+0 | 8 | 0x0000000000000000 | Seekpoint to |
 | | bytes | | offset 0 |
 +--------+--------+--------------------+----------------+
 | 0x3e+0 | 2 | 0x0010 | Seekpoint to |
 | | bytes | | block size 16 |
 +--------+--------+--------------------+----------------+

 Table 33

D.2.5. Vorbis comment

 The Vorbis comment metadata block contains the vendor string and a
 single comment. It is broken down in the following table.

van Beurden & Weaver Expires 17 July 2024 [Page 79]

Internet-Draft FLAC January 2024

 +========+==========+============+===============================+
 | Start | Length | Contents | Description |
 +========+==========+============+===============================+
 | 0x40+0 | 1 bit | 0b0 | Not the last metadata block |
 +--------+----------+------------+-------------------------------+
 | 0x40+1 | 7 bits | 0b0000100 | Vorbis comment metadata block |
 +--------+----------+------------+-------------------------------+
 | 0x41+0 | 3 bytes | 0x00003a | Length 58 byte |
 +--------+----------+------------+-------------------------------+
 | 0x44+0 | 4 bytes | 0x20000000 | Vendor string length 32 byte |
 +--------+----------+------------+-------------------------------+
 | 0x48+0 | 32 bytes | (...) | Vendor string |
 +--------+----------+------------+-------------------------------+
 | 0x68+0 | 4 bytes | 0x01000000 | Number of fields 1 |
 +--------+----------+------------+-------------------------------+
 | 0x6c+0 | 4 bytes | 0x0e000000 | Field length 14 byte |
 +--------+----------+------------+-------------------------------+
 | 0x70+0 | 14 bytes | (...) | Field contents |
 +--------+----------+------------+-------------------------------+

 Table 34

 The vendor string is reference libFLAC 1.3.3 20190804, and the field
 contents of the only field is TITLE=. The Vorbis comment field is
 14 bytes but only 10 characters in size, because it contains four
 2-byte characters.

D.2.6. Padding

 The last metadata block is a (very short) padding block.

 +========+=========+================+========================+
 | Start | Length | Contents | Description |
 +========+=========+================+========================+
 | 0x7e+0 | 1 bit | 0b1 | Last metadata block |
 +--------+---------+----------------+------------------------+
 | 0x7e+1 | 7 bits | 0b0000001 | Padding metadata block |
 +--------+---------+----------------+------------------------+
 | 0x7f+0 | 3 bytes | 0x000006 | Length 6 byte |
 +--------+---------+----------------+------------------------+
 | 0x82+0 | 6 bytes | 0x000000000000 | Padding bytes |
 +--------+---------+----------------+------------------------+

 Table 35

van Beurden & Weaver Expires 17 July 2024 [Page 80]

Internet-Draft FLAC January 2024

D.2.7. First audio frame

 The frame header starts at position 0x88 and is broken down in the
 following table.

 +========+=========+=================+===================+
 | Start | Length | Contents | Description |
 +========+=========+=================+===================+
 | 0x88+0 | 15 bits | 0xff, 0b1111100 | frame sync |
 +--------+---------+-----------------+-------------------+
 | 0x89+7 | 1 bit | 0b0 | blocking strategy |
 +--------+---------+-----------------+-------------------+
 | 0x8a+0 | 4 bits | 0b0110 | 8-bit block size |
 | | | | further down |
 +--------+---------+-----------------+-------------------+
 | 0x8a+4 | 4 bits | 0b1001 | sample rate 44.1 |
 | | | | kHz |
 +--------+---------+-----------------+-------------------+
 | 0x8b+0 | 4 bits | 0b1001 | side-right stereo |
 +--------+---------+-----------------+-------------------+
 | 0x8b+4 | 3 bits | 0b100 | bit depth 16 bit |
 +--------+---------+-----------------+-------------------+
 | 0x8b+7 | 1 bit | 0b0 | mandatory 0 bit |
 +--------+---------+-----------------+-------------------+
 | 0x8c+0 | 1 byte | 0x00 | frame number 0 |
 +--------+---------+-----------------+-------------------+
 | 0x8d+0 | 1 byte | 0x0f | block size 16 |
 +--------+---------+-----------------+-------------------+
 | 0x8e+0 | 1 byte | 0x99 | frame header CRC |
 +--------+---------+-----------------+-------------------+

 Table 36

 The first subframe starts at byte 0x8f, it is broken down in the
 following table excluding the coded residual. As this subframe codes
 for a side channel, the bit depth is increased by 1 bit from 16 bit
 to 17 bit. This is most clearly present in the unencoded warm-up
 sample.

van Beurden & Weaver Expires 17 July 2024 [Page 81]

Internet-Draft FLAC January 2024

 +========+=========+=============+===========================+
 | Start | Length | Contents | Description |
 +========+=========+=============+===========================+
 | 0x8f+0 | 1 bit | 0b0 | mandatory 0 bit |
 +--------+---------+-------------+---------------------------+
 | 0x8f+1 | 6 bits | 0b001001 | fixed subframe, 1st order |
 +--------+---------+-------------+---------------------------+
 | 0x8f+7 | 1 bit | 0b0 | no wasted bits used |
 +--------+---------+-------------+---------------------------+
 | 0x90+0 | 17 bits | 0x0867, 0b0 | unencoded warm-up sample |
 +--------+---------+-------------+---------------------------+

 Table 37

 The coded residual is broken down in the following table. All
 quotients are unary coded, all remainders are stored unencoded with a
 number of bits specified by the Rice parameter.

 +========+========+=================+=================+
 | Start | Length | Contents | Description |
 +========+========+=================+=================+
 | 0x92+1 | 2 bits | 0b00 | Rice code with |
 | | | | 4-bit parameter |
 +--------+--------+-----------------+-----------------+
 | 0x92+3 | 4 bits | 0b0000 | Partition order |
 | | | | 0 |
 +--------+--------+-----------------+-----------------+
 | 0x92+7 | 4 bits | 0b1011 | Rice parameter |
 | | | | 11 |
 +--------+--------+-----------------+-----------------+
 | 0x93+3 | 4 bits | 0b0001 | Quotient 3 |
 +--------+--------+-----------------+-----------------+
 | 0x93+7 | 11 | 0b00011110100 | Remainder 244 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0x95+2 | 2 bits | 0b01 | Quotient 1 |
 +--------+--------+-----------------+-----------------+
 | 0x95+4 | 11 | 0b01000100001 | Remainder 545 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0x96+7 | 2 bits | 0b01 | Quotient 1 |
 +--------+--------+-----------------+-----------------+
 | 0x97+1 | 11 | 0b00110011000 | Remainder 408 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0x98+4 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+-----------------+-----------------+
 | 0x98+5 | 11 | 0b11101011101 | Remainder 1885 |

van Beurden & Weaver Expires 17 July 2024 [Page 82]

Internet-Draft FLAC January 2024

 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0x9a+0 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+-----------------+-----------------+
 | 0x9a+1 | 11 | 0b11101110000 | Remainder 1904 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0x9b+4 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+-----------------+-----------------+
 | 0x9b+5 | 11 | 0b10101101111 | Remainder 1391 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0x9d+0 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+-----------------+-----------------+
 | 0x9d+1 | 11 | 0b11000000000 | Remainder 1536 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0x9e+4 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+-----------------+-----------------+
 | 0x9e+5 | 11 | 0b10000010111 | Remainder 1047 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0xa0+0 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+-----------------+-----------------+
 | 0xa0+1 | 11 | 0b10010101110 | Remainder 1198 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0xa1+4 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+-----------------+-----------------+
 | 0xa1+5 | 11 | 0b01100100001 | Remainder 801 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0xa3+0 | 13 | 0b0000000000001 | Quotient 12 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0xa4+5 | 11 | 0b11011100111 | Remainder 1767 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0xa6+0 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+-----------------+-----------------+
 | 0xa6+1 | 11 | 0b01001110111 | Remainder 631 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0xa7+4 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+-----------------+-----------------+
 | 0xa7+5 | 11 | 0b01000100100 | Remainder 548 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+

van Beurden & Weaver Expires 17 July 2024 [Page 83]

Internet-Draft FLAC January 2024

 | 0xa9+0 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+-----------------+-----------------+
 | 0xa9+1 | 11 | 0b01000010101 | Remainder 533 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+
 | 0xaa+4 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+-----------------+-----------------+
 | 0xaa+5 | 11 | 0b00100001100 | Remainder 268 |
 | | bits | | |
 +--------+--------+-----------------+-----------------+

 Table 38

 At this point, the decoder should know it is done decoding the coded
 residual, as it received 16 samples: 1 warm-up sample and 15 residual
 samples. Each residual sample can be calculated from the quotient
 and remainder, and undoing the zig-zag encoding. For example, the
 value of the first zig-zag encoded residual sample is 3 * 2^11 + 244
 = 6388. As this is an even number, the zig-zag encoding is undone by
 dividing by 2, the residual sample value is 3194. This is done for
 all residual samples in the next table.

van Beurden & Weaver Expires 17 July 2024 [Page 84]

Internet-Draft FLAC January 2024

 +==========+===========+=================+=======================+
 | Quotient | Remainder | Zig-zag encoded | Residual sample value |
 +==========+===========+=================+=======================+
 | 3 | 244 | 6388 | 3194 |
 +----------+-----------+-----------------+-----------------------+
 | 1 | 545 | 2593 | -1297 |
 +----------+-----------+-----------------+-----------------------+
 | 1 | 408 | 2456 | 1228 |
 +----------+-----------+-----------------+-----------------------+
 | 0 | 1885 | 1885 | -943 |
 +----------+-----------+-----------------+-----------------------+
 | 0 | 1904 | 1904 | 952 |
 +----------+-----------+-----------------+-----------------------+
 | 0 | 1391 | 1391 | -696 |
 +----------+-----------+-----------------+-----------------------+
 | 0 | 1536 | 1536 | 768 |
 +----------+-----------+-----------------+-----------------------+
 | 0 | 1047 | 1047 | -524 |
 +----------+-----------+-----------------+-----------------------+
 | 0 | 1198 | 1198 | 599 |
 +----------+-----------+-----------------+-----------------------+
 | 0 | 801 | 801 | -401 |
 +----------+-----------+-----------------+-----------------------+
 | 12 | 1767 | 26343 | -13172 |
 +----------+-----------+-----------------+-----------------------+
 | 0 | 631 | 631 | -316 |
 +----------+-----------+-----------------+-----------------------+
 | 0 | 548 | 548 | 274 |
 +----------+-----------+-----------------+-----------------------+
 | 0 | 533 | 533 | -267 |
 +----------+-----------+-----------------+-----------------------+
 | 0 | 268 | 268 | 134 |
 +----------+-----------+-----------------+-----------------------+

 Table 39

 It can be calculated that using a Rice code is, in this case, more
 efficient than storing values unencoded. The Rice code (excluding
 the partition order and parameter) is 199 bits in length. The
 largest residual value (-13172) would need 15 bits to be stored
 unencoded, so storing all 15 samples with 15 bits results in a
 sequence with a length of 225 bits.

 The next step is using the predictor and the residuals to restore the
 sample values. As this subframe uses a fixed predictor with order 1,
 this means adding the residual value to the value of the previous
 sample.

van Beurden & Weaver Expires 17 July 2024 [Page 85]

Internet-Draft FLAC January 2024

 +===========+==============+
 | Residual | Sample value |
 +===========+==============+
 | (warm-up) | 4302 |
 +-----------+--------------+
 | 3194 | 7496 |
 +-----------+--------------+
 | -1297 | 6199 |
 +-----------+--------------+
 | 1228 | 7427 |
 +-----------+--------------+
 | -943 | 6484 |
 +-----------+--------------+
 | 952 | 7436 |
 +-----------+--------------+
 | -696 | 6740 |
 +-----------+--------------+
 | 768 | 7508 |
 +-----------+--------------+
 | -524 | 6984 |
 +-----------+--------------+
 | 599 | 7583 |
 +-----------+--------------+
 | -401 | 7182 |
 +-----------+--------------+
 | -13172 | -5990 |
 +-----------+--------------+
 | -316 | -6306 |
 +-----------+--------------+
 | 274 | -6032 |
 +-----------+--------------+
 | -267 | -6299 |
 +-----------+--------------+
 | 134 | -6165 |
 +-----------+--------------+

 Table 40

 With this, the decoding of the first subframe is complete. The
 decoding of the second subframe is very similar, as it also uses a
 fixed predictor of order 1, so this is left as an exercise for the
 reader, the results are in the next table. The next step is undoing
 stereo decorrelation, which is done in the following table. As the
 stereo decorrelation is side-right, the samples in the right channel
 come directly from the second subframe, while the samples in the left
 channel are found by adding the values of both subframes for each
 sample.

van Beurden & Weaver Expires 17 July 2024 [Page 86]

Internet-Draft FLAC January 2024

 +============+============+========+=======+
 | Subframe 1 | Subframe 2 | Left | Right |
 +============+============+========+=======+
 | 4302 | 6070 | 10372 | 6070 |
 +------------+------------+--------+-------+
 | 7496 | 10545 | 18041 | 10545 |
 +------------+------------+--------+-------+
 | 6199 | 8743 | 14942 | 8743 |
 +------------+------------+--------+-------+
 | 7427 | 10449 | 17876 | 10449 |
 +------------+------------+--------+-------+
 | 6484 | 9143 | 15627 | 9143 |
 +------------+------------+--------+-------+
 | 7436 | 10463 | 17899 | 10463 |
 +------------+------------+--------+-------+
 | 6740 | 9502 | 16242 | 9502 |
 +------------+------------+--------+-------+
 | 7508 | 10569 | 18077 | 10569 |
 +------------+------------+--------+-------+
 | 6984 | 9840 | 16824 | 9840 |
 +------------+------------+--------+-------+
 | 7583 | 10680 | 18263 | 10680 |
 +------------+------------+--------+-------+
 | 7182 | 10113 | 17295 | 10113 |
 +------------+------------+--------+-------+
 | -5990 | -8428 | -14418 | -8428 |
 +------------+------------+--------+-------+
 | -6306 | -8895 | -15201 | -8895 |
 +------------+------------+--------+-------+
 | -6032 | -8476 | -14508 | -8476 |
 +------------+------------+--------+-------+
 | -6299 | -8896 | -15195 | -8896 |
 +------------+------------+--------+-------+
 | -6165 | -8653 | -14818 | -8653 |
 +------------+------------+--------+-------+

 Table 41

 As the second subframe ends byte-aligned, no padding bits follow it.
 Finally, the last 2 bytes of the frame contain the frame CRC.

D.2.8. Second audio frame

 The second audio frame is very similar to the frame decoded in the
 first example, but this time not 1 but 3 samples are present.

 The frame header starts at position 0xcc and is broken down in the
 following table.

van Beurden & Weaver Expires 17 July 2024 [Page 87]

Internet-Draft FLAC January 2024

 +========+=========+=================+===================+
 | Start | Length | Contents | Description |
 +========+=========+=================+===================+
 | 0xcc+0 | 15 bits | 0xff, 0b1111100 | frame sync |
 +--------+---------+-----------------+-------------------+
 | 0xcd+7 | 1 bit | 0b0 | blocking strategy |
 +--------+---------+-----------------+-------------------+
 | 0xce+0 | 4 bits | 0b0110 | 8-bit block size |
 | | | | further down |
 +--------+---------+-----------------+-------------------+
 | 0xce+4 | 4 bits | 0b1001 | sample rate 44.1 |
 | | | | kHz |
 +--------+---------+-----------------+-------------------+
 | 0xcf+0 | 4 bits | 0b0001 | stereo, no |
 | | | | decorrelation |
 +--------+---------+-----------------+-------------------+
 | 0xcf+4 | 3 bits | 0b100 | bit depth 16 bit |
 +--------+---------+-----------------+-------------------+
 | 0xcf+7 | 1 bit | 0b0 | mandatory 0 bit |
 +--------+---------+-----------------+-------------------+
 | 0xd0+0 | 1 byte | 0x01 | frame number 1 |
 +--------+---------+-----------------+-------------------+
 | 0xd1+0 | 1 byte | 0x02 | block size 3 |
 +--------+---------+-----------------+-------------------+
 | 0xd2+0 | 1 byte | 0xa4 | frame header CRC |
 +--------+---------+-----------------+-------------------+

 Table 42

 The first subframe starts at 0xd3+0 and is broken down in the
 following table.

van Beurden & Weaver Expires 17 July 2024 [Page 88]

Internet-Draft FLAC January 2024

 +========+=========+==========+=========================+
 | Start | Length | Contents | Description |
 +========+=========+==========+=========================+
 | 0xd3+0 | 1 bit | 0b0 | mandatory 0 bit |
 +--------+---------+----------+-------------------------+
 | 0xd3+1 | 6 bits | 0b000001 | verbatim subframe |
 +--------+---------+----------+-------------------------+
 | 0xd3+7 | 1 bit | 0b0 | no wasted bits used |
 +--------+---------+----------+-------------------------+
 | 0xd4+0 | 16 bits | 0xc382 | 16-bit unencoded sample |
 +--------+---------+----------+-------------------------+
 | 0xd6+0 | 16 bits | 0xc40b | 16-bit unencoded sample |
 +--------+---------+----------+-------------------------+
 | 0xd8+0 | 16 bits | 0xc14a | 16-bit unencoded sample |
 +--------+---------+----------+-------------------------+

 Table 43

 The second subframe starts at 0xda+0 and is broken down in the
 following table.

 +========+=========+===================+=========================+
 | Start | Length | Contents | Description |
 +========+=========+===================+=========================+
 | 0xda+0 | 1 bit | 0b0 | mandatory 0 bit |
 +--------+---------+-------------------+-------------------------+
 | 0xda+1 | 6 bits | 0b000001 | verbatim subframe |
 +--------+---------+-------------------+-------------------------+
 | 0xda+7 | 1 bit | 0b1 | wasted bits used |
 +--------+---------+-------------------+-------------------------+
 | 0xdb+0 | 1 bit | 0b1 | 1 wasted bit used |
 +--------+---------+-------------------+-------------------------+
 | 0xdb+1 | 15 bits | 0b110111001001000 | 15-bit unencoded sample |
 +--------+---------+-------------------+-------------------------+
 | 0xdd+0 | 15 bits | 0b110111010000001 | 15-bit unencoded sample |
 +--------+---------+-------------------+-------------------------+
 | 0xde+7 | 15 bits | 0b110110110011111 | 15-bit unencoded sample |
 +--------+---------+-------------------+-------------------------+

 Table 44

 As this subframe uses wasted bits, the 15-bit unencoded samples need
 to be shifted left by 1 bit. For example, sample 1 is stored as
 -4536 and becomes -9072 after shifting left 1 bit.

 As the last subframe does not end on byte alignment, 2 padding bits
 are added before the 2 byte frame CRC follows at 0xe1+0.

van Beurden & Weaver Expires 17 July 2024 [Page 89]

Internet-Draft FLAC January 2024

D.2.9. MD5 checksum verification

 All samples in the file have been decoded, we can now verify the MD5
 checksum. All sample values must be interleaved and stored signed,
 coded little-endian. The result of this follows in groups of 12
 samples (i.e., 6 interchannel samples) per line.

 0x8428 B617 7946 3129 5E3A 2722 D445 D128 0B3D B723 EB45 DF28
 0x723f 1E25 9D46 4929 B841 7026 5747 B829 8F43 8127 AEC7 14DF
 0x9FC4 41DD 54C7 E4DE A5C4 40DD 1EC6 33DE 82C3 90DC 0BC4 02DD
 0x4AC1 3EDB

 The MD5 checksum of this is indeed the same as the one found in the
 streaminfo metadata block.

D.3. Decoding example 3

 This example is once again a very short FLAC file. The focus of this
 example is on decoding a subframe with a linear predictor and a coded
 residual with more than one partition.

D.3.1. Example file 3 in hexadecimal representation

 00000000: 664c 6143 8000 0022 1000 1000 fLaC..."....
 0000000c: 0000 1f00 001f 07d0 0070 0000 p..
 00000018: 0018 f8f9 e396 f5cb cfc6 dc80
 00000024: 7f99 7790 6b32 fff8 6802 0017 ..w.k2..h...
 00000030: e944 004f 6f31 3d10 47d2 27cb .D.Oo1=.G.’.
 0000003c: 6d09 0831 452b dc28 2222 8057 m..1E+.("".W
 00000048: a3 .

D.3.2. Example file 3 in binary representation (only audio frame)

 0000002a: 11111111 11111000 01101000 00000010 ..h.
 0000002e: 00000000 00010111 11101001 01000100 ...D
 00000032: 00000000 01001111 01101111 00110001 .Oo1
 00000036: 00111101 00010000 01000111 11010010 =.G.
 0000003a: 00100111 11001011 01101101 00001001 ’.m.
 0000003e: 00001000 00110001 01000101 00101011 .1E+
 00000042: 11011100 00101000 00100010 00100010 .(""
 00000046: 10000000 01010111 10100011 .W.

D.3.3. Streaminfo metadata block

 Most of the streaminfo metadata block, including its header, is the
 same as in example 1, so only parts that are different are listed in
 the following table.

van Beurden & Weaver Expires 17 July 2024 [Page 90]

Internet-Draft FLAC January 2024

 +========+==========+====================+=========================+
 | Start | Length | Contents | Description |
 +========+==========+====================+=========================+
 | 0x0c+0 | 3 bytes | 0x00001f | Min. frame size 31 byte |
 +--------+----------+--------------------+-------------------------+
 | 0x0f+0 | 3 bytes | 0x00001f | Max. frame size 31 byte |
 +--------+----------+--------------------+-------------------------+
 | 0x12+0 | 20 bits | 0x07d0, 0x0000 | Sample rate 32000 hertz |
 +--------+----------+--------------------+-------------------------+
 | 0x14+4 | 3 bits | 0b000 | 1 channel |
 +--------+----------+--------------------+-------------------------+
 | 0x14+7 | 5 bits | 0b00111 | Sample bit depth 8 bit |
 +--------+----------+--------------------+-------------------------+
 | 0x15+4 | 36 bits | 0b0000, 0x00000018 | Total no. of samples 24 |
 +--------+----------+--------------------+-------------------------+
 | 0x1a | 16 bytes | (...) | MD5 checksum |
 +--------+----------+--------------------+-------------------------+

 Table 45

D.3.4. Audio frame

 The frame header starts at position 0x2a and is broken down in the
 following table.

van Beurden & Weaver Expires 17 July 2024 [Page 91]

Internet-Draft FLAC January 2024

 +========+=========+=================+===================+
 | Start | Length | Contents | Description |
 +========+=========+=================+===================+
 | 0x2a+0 | 15 bits | 0xff, 0b1111100 | Frame sync |
 +--------+---------+-----------------+-------------------+
 | 0x2b+7 | 1 bit | 0b0 | blocking strategy |
 +--------+---------+-----------------+-------------------+
 | 0x2c+0 | 4 bits | 0b0110 | 8-bit block size |
 | | | | further down |
 +--------+---------+-----------------+-------------------+
 | 0x2c+4 | 4 bits | 0b1000 | Sample rate 32 |
 | | | | kHz |
 +--------+---------+-----------------+-------------------+
 | 0x2d+0 | 4 bits | 0b0000 | Mono audio (1 |
 | | | | channel) |
 +--------+---------+-----------------+-------------------+
 | 0x2d+4 | 3 bits | 0b001 | Bit depth 8 bit |
 +--------+---------+-----------------+-------------------+
 | 0x2d+7 | 1 bit | 0b0 | Mandatory 0 bit |
 +--------+---------+-----------------+-------------------+
 | 0x2e+0 | 1 byte | 0x00 | Frame number 0 |
 +--------+---------+-----------------+-------------------+
 | 0x2f+0 | 1 byte | 0x17 | Block size 24 |
 +--------+---------+-----------------+-------------------+
 | 0x30+0 | 1 byte | 0xe9 | Frame header CRC |
 +--------+---------+-----------------+-------------------+

 Table 46

 The first and only subframe starts at byte 0x31, it is broken down in
 the following table, without the coded residual.

van Beurden & Weaver Expires 17 July 2024 [Page 92]

Internet-Draft FLAC January 2024

 +========+========+==========+=====================+
 | Start | Length | Contents | Description |
 +========+========+==========+=====================+
 | 0x31+0 | 1 bit | 0b0 | Mandatory 0 bit |
 +--------+--------+----------+---------------------+
 | 0x31+1 | 6 bits | 0b100010 | Linear prediction |
 | | | | subframe, 3rd order |
 +--------+--------+----------+---------------------+
 | 0x31+7 | 1 bit | 0b0 | No wasted bits used |
 +--------+--------+----------+---------------------+
 | 0x32+0 | 8 bits | 0x00 | Unencoded warm-up |
 | | | | sample 0 |
 +--------+--------+----------+---------------------+
 | 0x33+0 | 8 bits | 0x4f | Unencoded warm-up |
 | | | | sample 79 |
 +--------+--------+----------+---------------------+
 | 0x34+0 | 8 bits | 0x6f | Unencoded warm-up |
 | | | | sample 111 |
 +--------+--------+----------+---------------------+
 | 0x35+0 | 4 bits | 0b0011 | Coefficient |
 | | | | precision 4 bit |
 +--------+--------+----------+---------------------+
 | 0x35+4 | 5 bits | 0b00010 | Prediction right |
 | | | | shift 2 |
 +--------+--------+----------+---------------------+
 | 0x36+1 | 4 bits | 0b0111 | Predictor |
 | | | | coefficient 7 |
 +--------+--------+----------+---------------------+
 | 0x36+5 | 4 bits | 0b1010 | Predictor |
 | | | | coefficient -6 |
 +--------+--------+----------+---------------------+
 | 0x37+1 | 4 bits | 0b0010 | Predictor |
 | | | | coefficient 2 |
 +--------+--------+----------+---------------------+

 Table 47

 The data stream continues with the coded residual, which is broken
 down in the following table. Residual partitions 3 and 4 are left as
 an exercise for the reader.

 +========+========+==========+======================================+
 | Start | Length | Contents | Description |
 +========+========+==========+======================================+
 | 0x37+5 | 2 bits | 0b00 | Rice-coded residual, |
 | | | | 4-bit parameter |
 +--------+--------+----------+--------------------------------------+
 | 0x37+7 | 4 bits | 0b0010 | Partition order 2 |

van Beurden & Weaver Expires 17 July 2024 [Page 93]

Internet-Draft FLAC January 2024

 +--------+--------+----------+--------------------------------------+
 | 0x38+3 | 4 bits | 0b0011 | Rice parameter 3 |
 +--------+--------+----------+--------------------------------------+
 | 0x38+7 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+----------+--------------------------------------+
 | 0x39+0 | 3 bits | 0b110 | Remainder 6 |
 +--------+--------+----------+--------------------------------------+
 | 0x39+3 | 1 bit | 0b1 | Quotient 0 |
 +--------+--------+----------+--------------------------------------+
 | 0x39+4 | 3 bits | 0b001 | Remainder 1 |
 +--------+--------+----------+--------------------------------------+
 | 0x39+7 | 4 bits | 0b0001 | Quotient 3 |
 +--------+--------+----------+--------------------------------------+
 | 0x3a+3 | 3 bits | 0b001 | Remainder 1 |
 +--------+--------+----------+--------------------------------------+
 | 0x3a+6 | 4 bits | 0b1111 | No Rice parameter, |
 | | | | escape code |
 +--------+--------+----------+--------------------------------------+
 | 0x3b+2 | 5 bits | 0b00101 | Partition encoded |
 | | | | with 5 bits |
 +--------+--------+----------+--------------------------------------+
 | 0x3b+7 | 5 bits | 0b10110 | Residual -10 |
 +--------+--------+----------+--------------------------------------+
 | 0x3c+4 | 5 bits | 0b11010 | Residual -6 |
 +--------+--------+----------+--------------------------------------+
 | 0x3d+1 | 5 bits | 0b00010 | Residual 2 |
 +--------+--------+----------+--------------------------------------+
 | 0x3d+6 | 5 bits | 0b01000 | Residual 8 |
 +--------+--------+----------+--------------------------------------+
 | 0x3e+3 | 5 bits | 0b01000 | Residual 8 |
 +--------+--------+----------+--------------------------------------+
 | 0x3f+0 | 5 bits | 0b00110 | Residual 6 |
 +--------+--------+----------+--------------------------------------+
 | 0x3f+5 | 4 bits | 0b0010 | Rice parameter 2 |
 +--------+--------+----------+--------------------------------------+
 | 0x40+1 | 22 | (...) | Residual partition 3 |
 | | bits | | |
 +--------+--------+----------+--------------------------------------+
 | 0x42+7 | 4 bits | 0b0001 | Rice parameter 1 |
 +--------+--------+----------+--------------------------------------+
 | 0x43+3 | 23 | (...) | Residual partition 4 |
 | | bits | | |
 +--------+--------+----------+--------------------------------------+

 Table 48

 The frame ends with 6 padding bits and a 2 byte frame CRC

van Beurden & Weaver Expires 17 July 2024 [Page 94]

Internet-Draft FLAC January 2024

 To decode this subframe, 21 predictions have to be calculated and
 added to their corresponding residuals. This is a sequential
 process: as each prediction uses previous samples, it is not possible
 to start this decoding halfway a subframe or decode a subframe with
 parallel threads.

 The following table breaks down the calculation for each sample. For
 example, the predictor without shift value of row 4 is found by
 applying the predictor with the three warm-up samples: 7*111 - 6*79 +
 2*0 = 303. This value is then shifted right by 2 bits: 303 >> 2 =
 75. Then, the decoded residual sample is added: 75 + 3 = 78.

 +===========+=====================+===========+==============+
 | Residual | Predictor w/o shift | Predictor | Sample value |
 +===========+=====================+===========+==============+
 | (warm-up) | N/A | N/A | 0 |
 +-----------+---------------------+-----------+--------------+
 | (warm-up) | N/A | N/A | 79 |
 +-----------+---------------------+-----------+--------------+
 | (warm-up) | N/A | N/A | 111 |
 +-----------+---------------------+-----------+--------------+
 | 3 | 303 | 75 | 78 |
 +-----------+---------------------+-----------+--------------+
 | -1 | 38 | 9 | 8 |
 +-----------+---------------------+-----------+--------------+
 | -13 | -190 | -48 | -61 |
 +-----------+---------------------+-----------+--------------+
 | -10 | -319 | -80 | -90 |
 +-----------+---------------------+-----------+--------------+
 | -6 | -248 | -62 | -68 |
 +-----------+---------------------+-----------+--------------+
 | 2 | -58 | -15 | -13 |
 +-----------+---------------------+-----------+--------------+
 | 8 | 137 | 34 | 42 |
 +-----------+---------------------+-----------+--------------+
 | 8 | 236 | 59 | 67 |
 +-----------+---------------------+-----------+--------------+
 | 6 | 191 | 47 | 53 |
 +-----------+---------------------+-----------+--------------+
 | 0 | 53 | 13 | 13 |
 +-----------+---------------------+-----------+--------------+
 | -3 | -93 | -24 | -27 |
 +-----------+---------------------+-----------+--------------+
 | -5 | -161 | -41 | -46 |
 +-----------+---------------------+-----------+--------------+
 | -4 | -134 | -34 | -38 |
 +-----------+---------------------+-----------+--------------+
 | -1 | -44 | -11 | -12 |

van Beurden & Weaver Expires 17 July 2024 [Page 95]

Internet-Draft FLAC January 2024

 +-----------+---------------------+-----------+--------------+
 | 1 | 52 | 13 | 14 |
 +-----------+---------------------+-----------+--------------+
 | 1 | 94 | 23 | 24 |
 +-----------+---------------------+-----------+--------------+
 | 4 | 60 | 15 | 19 |
 +-----------+---------------------+-----------+--------------+
 | 2 | 17 | 4 | 6 |
 +-----------+---------------------+-----------+--------------+
 | 2 | -24 | -6 | -4 |
 +-----------+---------------------+-----------+--------------+
 | 2 | -26 | -7 | -5 |
 +-----------+---------------------+-----------+--------------+
 | 0 | 1 | 0 | 0 |
 +-----------+---------------------+-----------+--------------+

 Table 49

 By lining all these samples up, we get the following input for the
 MD5 checksum calculation process.

 0x004F 6F4E 08C3 A6BC F32A 4335 0DE5 D2DA F40E 1813 06FC FB00

 Which indeed results in the MD5 checksum found in the streaminfo
 metadata block.

Authors’ Addresses

 Martijn van Beurden
 Netherlands
 Email: mvanb1@gmail.com

 Andrew Weaver
 Email: theandrewjw@gmail.com

van Beurden & Weaver Expires 17 July 2024 [Page 96]

CELLAR Group S. Lhomme
Internet-Draft
Intended status: Standards Track M. Bunkus
Expires: 24 April 2024
 D. Rice
 22 October 2023

 Matroska Media Container Format Specifications
 draft-ietf-cellar-matroska-21

Abstract

 This document defines the Matroska audiovisual data container
 structure, including definitions of its structural elements, as well
 as its terminology, vocabulary, and application.

 This document updates [RFC8794] to permit the use of a previously
 reserved EBML Element ID.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 24 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Lhomme, et al. Expires 24 April 2024 [Page 1]

Internet-Draft Matroska Format October 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 6
 2. Status of this document 7
 3. Notation and Conventions 7
 4. Matroska Overview . 7
 4.1. Principles . 7
 4.2. Updates to RFC 8794 7
 4.3. Added EBML Constraints 8
 4.4. Design Rules . 9
 4.5. Data Layout . 9
 5. Matroska Schema . 18
 5.1. Segment Element . 18
 5.1.1. SeekHead Element 19
 5.1.1.1. Seek Element 19
 5.1.2. Info Element . 19
 5.1.2.1. SegmentUUID Element 20
 5.1.2.2. SegmentFilename Element 20
 5.1.2.3. PrevUUID Element 20
 5.1.2.4. PrevFilename Element 20
 5.1.2.5. NextUUID Element 21
 5.1.2.6. NextFilename Element 21
 5.1.2.7. SegmentFamily Element 21
 5.1.2.8. ChapterTranslate Element 21
 5.1.2.9. TimestampScale Element 23
 5.1.2.10. Duration Element 23
 5.1.2.11. DateUTC Element 23
 5.1.2.12. Title Element 23
 5.1.2.13. MuxingApp Element 23
 5.1.2.14. WritingApp Element 23
 5.1.3. Cluster Element 24
 5.1.3.1. Timestamp Element 24
 5.1.3.2. Position Element 24
 5.1.3.3. PrevSize Element 24
 5.1.3.4. SimpleBlock Element 24
 5.1.3.5. BlockGroup Element 25
 5.1.4. Tracks Element 28
 5.1.4.1. TrackEntry Element 28
 5.1.5. Cues Element . 67

Lhomme, et al. Expires 24 April 2024 [Page 2]

Internet-Draft Matroska Format October 2023

 5.1.5.1. CuePoint Element 67
 5.1.6. Attachments Element 69
 5.1.6.1. AttachedFile Element 69
 5.1.7. Chapters Element 70
 5.1.7.1. EditionEntry Element 71
 5.1.8. Tags Element . 76
 5.1.8.1. Tag Element 76
 6. Matroska Element Ordering 82
 6.1. Top-Level Elements 82
 6.2. CRC-32 . 83
 6.3. SeekHead . 83
 6.4. Cues (index) . 83
 6.5. Info . 83
 6.6. Chapters Element . 84
 6.7. Attachments . 84
 6.8. Tags . 84
 7. Matroska versioning . 84
 8. Stream Copy . 85
 9. DefaultDecodedFieldDuration 86
 10. Cluster Blocks . 86
 10.1. Block Structure . 87
 10.2. SimpleBlock Structure 88
 10.3. Block Lacing . 90
 10.3.1. No lacing . 90
 10.3.2. Xiph lacing . 91
 10.3.3. EBML lacing . 92
 10.3.4. Fixed-size lacing 94
 10.3.5. Laced Frames Timestamp 94
 10.4. Random Access Points 95
 11. Timestamps . 98
 11.1. Timestamp Ticks . 99
 11.1.1. Matroska Ticks 99
 11.1.2. Segment Ticks 99
 11.1.3. Track Ticks . 100
 11.2. Block Timestamps . 100
 11.3. TimestampScale Rounding 101
 12. Language Codes . 101
 13. Country Codes . 102
 14. Encryption . 102
 15. Image Presentation . 103
 15.1. Cropping . 103
 15.2. Rotation . 104
 16. Segment Position . 104
 16.1. Segment Position Exception 104
 16.2. Example of Segment Position 104
 17. Linked Segments . 105
 17.1. Hard Linking . 106
 17.2. Medium Linking . 108

Lhomme, et al. Expires 24 April 2024 [Page 3]

Internet-Draft Matroska Format October 2023

 17.2.1. Linked-Duration 109
 17.2.2. Linked-Edition 109
 18. Track Flags . 109
 18.1. Default flag . 109
 18.2. Forced flag . 110
 18.3. Hearing-impaired flag 110
 18.4. Visual-impaired flag 110
 18.5. Descriptions flag 110
 18.6. Original flag . 110
 18.7. Commentary flag . 110
 18.8. Track Operation . 110
 18.9. Overlay Track . 111
 18.10. Multi-planar and 3D videos 111
 19. Default track selection 112
 19.1. Audio Selection . 112
 19.2. Subtitle selection 114
 20. Chapters . 116
 20.1. EditionEntry . 116
 20.1.1. EditionFlagDefault 116
 20.1.2. Default Edition 116
 20.1.3. EditionFlagOrdered 117
 20.1.3.1. Ordered-Edition and Matroska Segment-Linking . . 118
 20.2. ChapterAtom . 119
 20.2.1. ChapterTimeStart 119
 20.2.2. ChapterTimeEnd 119
 20.2.3. Nested Chapters 119
 20.2.4. Nested Chapters in Ordered Chapters 120
 20.2.5. ChapterFlagHidden 120
 20.3. Menu features . 121
 20.4. Physical Types . 121
 20.5. Chapter Examples . 122
 20.5.1. Example 1 : basic chaptering 122
 20.5.2. Example 2 : nested chapters 124
 20.5.2.1. The Micronauts "Bleep To Bleep" 124
 21. Attachments . 126
 21.1. Cover Art . 126
 21.2. Font files . 128
 22. Cues . 129
 22.1. Recommendations . 130
 23. Matroska Streaming . 130
 23.1. File Access . 130
 23.2. Livestreaming . 131
 24. Tags . 132
 24.1. Tags Precedence . 132
 24.2. Tag Levels . 133
 25. Implementation Recommendations 133
 25.1. Cluster . 133
 25.2. SeekHead . 133

Lhomme, et al. Expires 24 April 2024 [Page 4]

Internet-Draft Matroska Format October 2023

 25.3. Optimum Layouts . 133
 25.3.1. Optimum layout for a muxer 133
 25.3.2. Optimum layout after editing tags 134
 25.3.3. Optimum layout with Cues at the front 134
 25.3.4. Optimum layout for livestreaming 134
 26. Security Considerations 135
 27. IANA Considerations . 135
 27.1. Matroska Element IDs Registry 136
 27.2. Chapter Codec IDs Registry 152
 27.3. Media Types . 153
 27.3.1. For files containing video tracks 153
 27.3.2. For files containing audio tracks with no video
 tracks . 154
 27.3.3. For files containing a stereoscopic video track . . 154
 28. Annex A: Historic Deprecated Elements 155
 28.1. SilentTracks Element 155
 28.2. SilentTrackNumber Element 156
 28.3. BlockVirtual Element 156
 28.4. ReferenceVirtual Element 156
 28.5. Slices Element . 156
 28.6. TimeSlice Element 156
 28.7. LaceNumber Element 156
 28.8. FrameNumber Element 157
 28.9. BlockAdditionID Element 157
 28.10. Delay Element . 157
 28.11. SliceDuration Element 157
 28.12. ReferenceFrame Element 157
 28.13. ReferenceOffset Element 157
 28.14. ReferenceTimestamp Element 157
 28.15. EncryptedBlock Element 158
 28.16. MinCache Element . 158
 28.17. MaxCache Element . 158
 28.18. TrackOffset Element 158
 28.19. CodecSettings Element 158
 28.20. CodecInfoURL Element 158
 28.21. CodecDownloadURL Element 159
 28.22. CodecDecodeAll Element 159
 28.23. TrackOverlay Element 159
 28.24. AspectRatioType Element 159
 28.25. GammaValue Element 159
 28.26. FrameRate Element 159
 28.27. ChannelPositions Element 160
 28.28. TrickTrackUID Element 160
 28.29. TrickTrackSegmentUID Element 160
 28.30. TrickTrackFlag Element 160
 28.31. TrickMasterTrackUID Element 160
 28.32. TrickMasterTrackSegmentUID Element 160
 28.33. ContentSignature Element 161

Lhomme, et al. Expires 24 April 2024 [Page 5]

Internet-Draft Matroska Format October 2023

 28.34. ContentSigKeyID Element 161
 28.35. ContentSigAlgo Element 161
 28.36. ContentSigHashAlgo Element 161
 28.37. CueRefCluster Element 161
 28.38. CueRefNumber Element 161
 28.39. CueRefCodecState Element 161
 28.40. FileReferral Element 162
 28.41. FileUsedStartTime Element 162
 28.42. FileUsedEndTime Element 162
 28.43. TagDefaultBogus Element 162
 29. Normative References . 162
 30. Informative References 164
 Authors’ Addresses . 166

1. Introduction

 Matroska is an audiovisual data container format. It was derived
 from a project called [MCF], but diverges from it significantly
 because it is based on EBML (Extensible Binary Meta Language)
 [RFC8794], a binary derivative of XML. EBML provides significant
 advantages in terms of future format extensibility, without breaking
 file support in parsers reading the previous versions.

 First, it is essential to clarify exactly "What an Audio/Video
 container is", to avoid any misunderstandings:

 * It is NOT a video or audio compression format (codec)
 * It is an envelope in which there can be many audio, video, and
 subtitles streams, allowing the user to store a complete movie or
 CD in a single file.

 Matroska is designed with the future in mind. It incorporates
 features such as:

 * Fast seeking in the file
 * Chapter entries
 * Full metadata (tags) support
 * Selectable subtitle/audio/video streams
 * Modularly expandable
 * Error resilience (can recover playback even when the stream is
 damaged)
 * Streamable over the internet and local networks (HTTP [RFC9110],
 FTP [RFC0959], SMB [SMB-CIFS], etc.)
 * Menus (like DVDs have [DVD-Video])

Lhomme, et al. Expires 24 April 2024 [Page 6]

Internet-Draft Matroska Format October 2023

2. Status of this document

 This document covers Matroska versions 1, 2, 3 and 4. Matroska v4 is
 the current version. Matroska 1 to 3 are no longer maintained. No
 new elements are expected in files with version numbers 1, 2, or 3.

3. Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document defines specific terms in order to define the format
 and application of Matroska. Specific terms are defined below:

 Matroska: A multimedia container format based on EBML (Extensible
 Binary Meta Language).
 Matroska Reader: A data parser that interprets the semantics of a
 Matroska document and creates a way for programs to use Matroska.
 Matroska Player: A Matroska Reader with a primary purpose of playing
 audiovisual files, including Matroska documents.
 Matroska Writer: A data writer that creates Matroska documents.

4. Matroska Overview

4.1. Principles

 Matroska is a Document Type of EBML (Extensible Binary Meta
 Language). This specification is dependent on the EBML Specification
 [RFC8794]. For an understanding of Matroska’s EBML Schema, see in
 particular the sections of the EBML Specification covering EBML
 Element Types (Section 7), EBML Schema (Section 11.1), and EBML
 Structure (Section 3).

4.2. Updates to RFC 8794

 Because of an oversight, [RFC8794] reserved EBML ID 0x80, which is
 used by deployed Matroska implementations. For this reason, this
 specification updates [RFC8794] to make 0x80 a legal EBML ID.
 Specifically, the following are changed in [RFC8794]:

 * From Errata 7189

 In Section 17.1,

 OLD:

Lhomme, et al. Expires 24 April 2024 [Page 7]

Internet-Draft Matroska Format October 2023

 One-octet Element IDs MUST be between 0x81 and 0xFE. These items are
 valuable because they are short, and they need to be used for
 commonly repeated elements. Element IDs are to be allocated within
 this range according to the "RFC Required" policy [RFC8126].

 The following one-octet Element IDs are RESERVED: 0xFF and 0x80.

 NEW:

 One-octet Element IDs MUST be between 0x80 and 0xFE. These items are
 valuable because they are short, and they need to be used for
 commonly repeated elements. Element IDs are to be allocated within
 this range according to the "RFC Required" policy [RFC8126].

 The following one-octet Element ID is RESERVED: 0xFF.

 * From Errata 7191

 In Section 5,

 OLD:

 +=========================+================+=================+
 | Element ID Octet Length | Range of Valid | Number of Valid |
 | | Element IDs | Element IDs |
 +=========================+================+=================+
 | 1 | 0x81 - 0xFE | 126 |
 +-------------------------+----------------+-----------------+

 NEW:

 +=========================+================+=================+
 | Element ID Octet Length | Range of Valid | Number of Valid |
 | | Element IDs | Element IDs |
 +=========================+================+=================+
 | 1 | 0x80 - 0xFE | 127 |
 +-------------------------+----------------+-----------------+

4.3. Added EBML Constraints

 As an EBML Document Type, Matroska adds the following constraints to
 the EBML specification.

 * The docType of the EBML Header MUST be "matroska".
 * The EBMLMaxIDLength of the EBML Header MUST be 4.
 * The EBMLMaxSizeLength of the EBML Header MUST be between 1 and 8
 inclusive.

Lhomme, et al. Expires 24 April 2024 [Page 8]

Internet-Draft Matroska Format October 2023

4.4. Design Rules

 The Root Element and all Top-Levels Elements MUST use 4 octets for
 their EBML Element ID -- i.e. Segment and direct children of Segment.

 Legacy EBML/Matroska parsers did not handle Empty Elements properly,
 elements present in the file but with a length of zero. They always
 assumed the value was 0 for integers/dates or 0x0p+0, the textual
 expression of floats using the [ISO9899] format, no matter the
 default value of the element which should have been used instead.
 Therefore, Matroska writers MUST NOT use EBML Empty Elements, if the
 element has a default value that is not 0 for integers/dates and
 0x0p+0 for floats.

 When adding new elements to Matroska, these rules apply:

 * A non-mandatory integer/date Element MUST NOT have a default value
 other than 0.
 * A non-mandatory float Element MUST NOT have a default value other
 than 0x0p+0.
 * A non-mandatory string Element MUST NOT have a default value, as
 empty string cannot be defined in the XML Schema.

4.5. Data Layout

 A Matroska file MUST be composed of at least one EBML Document using
 the Matroska Document Type. Each EBML Document MUST start with an
 EBML Header and MUST be followed by the EBML Root Element, defined as
 Segment in Matroska. Matroska defines several Top-Level Elements
 which may occur within the Segment.

 As an example, a simple Matroska file consisting of a single EBML
 Document could be represented like this:

 * EBML Header
 * Segment

 A more complex Matroska file consisting of an EBML Stream (consisting
 of two EBML Documents) could be represented like this:

 * EBML Header
 * Segment
 * EBML Header
 * Segment

 The following diagram represents a simple Matroska file, comprised of
 an EBML Document with an EBML Header, a Segment Element (the Root
 Element), and all eight Matroska Top-Level Elements. In the

Lhomme, et al. Expires 24 April 2024 [Page 9]

Internet-Draft Matroska Format October 2023

 following diagrams of this section, horizontal spacing expresses a
 parent-child relationship between Matroska Elements (e.g., the Info
 Element is contained within the Segment Element) whereas vertical
 alignment represents the storage order within the file.

 +-------------+
 | EBML Header |
 +---------------------------+
Segment	SeekHead

	Info

	Tracks

	Chapters

	Cluster

	Cues

	Attachments

	Tags
 +---------------------------+

 Figure 1: Basic layout of a Matroska file.

 The Matroska EBML Schema defines eight Top-Level Elements:

 * SeekHead (Section 6.3),
 * Info (Section 6.5),
 * Tracks (Section 18),
 * Chapters (Section 20),
 * Cluster (Section 10),
 * Cues (Section 22),
 * Attachments (Section 21),
 * and Tags (Section 6.8).

 The SeekHead Element (also known as MetaSeek) contains an index of
 Top-Level Elements locations within the Segment. Use of the SeekHead
 Element is RECOMMENDED. Without a SeekHead Element, a Matroska
 parser would have to search the entire file to find all of the other
 Top-Level Elements. This is due to Matroska’s flexible ordering
 requirements; for instance, it is acceptable for the Chapters Element
 to be stored after the Cluster Elements.

Lhomme, et al. Expires 24 April 2024 [Page 10]

Internet-Draft Matroska Format October 2023

 +--------------------------------+
SeekHead	Seek	SeekID

		SeekPosition
 +--------------------------------+

 Figure 2: Representation of a SeekHead Element.

 The Info Element contains vital information for identifying the whole
 Segment. This includes the title for the Segment, a randomly
 generated unique identifier, and the unique identifier(s) of any
 linked Segment Elements.

 +-------------------------+
Info	SegmentUUID

	SegmentFilename

	PrevUUID

	PrevFilename

	NextUUID

	NextFilename

	SegmentFamily

	ChapterTranslate

	TimestampScale

	Duration

	DateUTC

	Title

	MuxingApp

 | | WritingApp |
 |-------------------------|

 Figure 3: Representation of an Info Element and its Child Elements.

Lhomme, et al. Expires 24 April 2024 [Page 11]

Internet-Draft Matroska Format October 2023

 The Tracks Element defines the technical details for each track and
 can store the name, number, unique identifier, language, and type
 (audio, video, subtitles, etc.) of each track. For example, the
 Tracks Element MAY store information about the resolution of a video
 track or sample rate of an audio track.

 The Tracks Element MUST identify all the data needed by the codec to
 decode the data of the specified track. However, the data required
 is contingent on the codec used for the track. For example, a Track
 Element for uncompressed audio only requires the audio bit rate to be
 present. A codec such as AC-3 would require that the CodecID Element
 be present for all tracks, as it is the primary way to identify which
 codec to use to decode the track.

Lhomme, et al. Expires 24 April 2024 [Page 12]

Internet-Draft Matroska Format October 2023

 +------------------------------------+
Tracks	TrackEntry	TrackNumber

		TrackUID

		TrackType

		Name

		Language

		CodecID

		CodecPrivate

		CodecName
		----------------------------------+
		Video

		Audio
 | | | | BitDepth |
 |--|

 Figure 4: Representation of the Tracks Element and a selection of its
 Descendant Elements.

Lhomme, et al. Expires 24 April 2024 [Page 13]

Internet-Draft Matroska Format October 2023

 The Chapters Element lists all of the chapters. Chapters are a way
 to set predefined points to jump to in video or audio.

 +---+
Chapters	Edition	EditionUID
	Entry	--------------------
		EditionFlagDefault

		EditionFlagOrdered
		---------------------------------+
		ChapterAtom
 +--+

 Figure 5: Representation of the Chapters Element and a selection
 of its Descendant Elements.

 Cluster Elements contain the content for each track, e.g., video
 frames. A Matroska file SHOULD contain at least one Cluster Element.
 In the rare case it doesn’t, there should be a form of Segment
 linking with other Segments, possibly using Chapters, see Section 17.

 The Cluster Element helps to break up SimpleBlock or BlockGroup
 Elements and helps with seeking and error protection. Every Cluster
 Element MUST contain a Timestamp Element. This SHOULD be the
 Timestamp Element used to play the first Block in the Cluster
 Element, unless a different value is needed to accommodate for more
 Blocks, see Section 11.2.

 Cluster Elements contain one or more block element, such as
 BlockGroup or SimpleBlock elements. In some situations, a Cluster
 Element MAY contain no block element, for example in a live recording
 when no data has been collected.

 A BlockGroup Element MAY contain a Block of data and any information
 relating directly to that Block.

Lhomme, et al. Expires 24 April 2024 [Page 14]

Internet-Draft Matroska Format October 2023

 +--------------------------+
Cluster	Timestamp

	Position

	PrevSize

	SimpleBlock

	BlockGroup
 +--------------------------+

 Figure 6: Representation of a Cluster Element and its immediate
 Child Elements.

 +----------------------------------+
 | Block | Portion of | Data Type |
 | | a Block | - Bit Flag |
 | |--------------------------+
	Header	TrackNumber

		Timestamp

		Flags
		- Gap
		- Lacing
		- Reserved

	Optional	FrameSize

	Data	Frame
 +----------------------------------+

 Figure 7: Representation of the Block Element structure.

 Each Cluster MUST contain exactly one Timestamp Element. The
 Timestamp Element value MUST be stored once per Cluster. The
 Timestamp Element in the Cluster is relative to the entire Segment.
 The Timestamp Element SHOULD be the first Element in the Cluster it
 belongs to, or the second Element if that Cluster contains a CRC-32
 element (Section 6.2)

Lhomme, et al. Expires 24 April 2024 [Page 15]

Internet-Draft Matroska Format October 2023

 Additionally, the Block contains an offset that, when added to the
 Cluster’s Timestamp Element value, yields the Block’s effective
 timestamp. Therefore, timestamp in the Block itself is relative to
 the Timestamp Element in the Cluster. For example, if the Timestamp
 Element in the Cluster is set to 10 seconds and a Block in that
 Cluster is supposed to be played 12 seconds into the clip, the
 timestamp in the Block would be set to 2 seconds.

 The ReferenceBlock in the BlockGroup is used instead of the basic
 "P-frame"/"B-frame" description. Instead of simply saying that this
 Block depends on the Block directly before, or directly afterwards,
 the Timestamp of the necessary Block is used. Because there can be
 as many ReferenceBlock Elements as necessary for a Block, it allows
 for some extremely complex referencing.

 The Cues Element is used to seek when playing back a file by
 providing a temporal index for some of the Tracks. It is similar to
 the SeekHead Element, but used for seeking to a specific time when
 playing back the file. It is possible to seek without this element,
 but it is much more difficult because a Matroska Reader would have to
 ’hunt and peck’ through the file looking for the correct timestamp.

 The Cues Element SHOULD contain at least one CuePoint Element. Each
 CuePoint Element stores the position of the Cluster that contains the
 BlockGroup or SimpleBlock Element. The timestamp is stored in the
 CueTime Element and location is stored in the CueTrackPositions
 Element.

 The Cues Element is flexible. For instance, Cues Element can be used
 to index every single timestamp of every Block or they can be indexed
 selectively.

 +-------------------------------------+
Cues	CuePoint	CueTime

		CueTrackPositions

	CuePoint	CueTime

		CueTrackPositions
 +-------------------------------------+

 Figure 8: Representation of a Cues Element and two levels of its
 Descendant Elements.

 The Attachments Element is for attaching files to a Matroska file
 such as pictures, fonts, webpages, etc.

Lhomme, et al. Expires 24 April 2024 [Page 16]

Internet-Draft Matroska Format October 2023

 +--+
Attachments	AttachedFile	FileDescription

		FileName

		FileMediaType

		FileData

		FileUID

		FileName

		FileReferral

		FileUsedStartTime

		FileUsedEndTime
 +--+

 Figure 9: Representation of an Attachments Element.

 The Tags Element contains metadata that describes the Segment and
 potentially its Tracks, Chapters, and Attachments. Each Track or
 Chapter that those tags applies to has its UID listed in the Tags.
 The Tags contain all extra information about the file: scriptwriter,
 singer, actors, directors, titles, edition, price, dates, genre,
 comments, etc. Tags can contain their values in multiple languages.
 For example, a movie’s "title" Tag might contain both the original
 English title as well as the title it was released as in Germany.

Lhomme, et al. Expires 24 April 2024 [Page 17]

Internet-Draft Matroska Format October 2023

 +---+
Tags	Tag	Targets	TargetTypeValue

			TargetType

			TagTrackUID

			TagEditionUID

			TagChapterUID

			TagAttachmentUID

		SimpleTag	TagName

			TagLanguage

			TagDefault

			TagString

			TagBinary

			SimpleTag
 +---+

 Figure 10: Representation of a Tags Element and three levels of
 its Children Elements.

5. Matroska Schema

 This specification includes an EBML Schema, which defines the
 Elements and structure of Matroska using the EBML Schema elements and
 attributes defined in Section 11.1 of [RFC8794]. The EBML Schema
 defines every valid Matroska element in a manner defined by the EBML
 specification.

 Attributes using their default value like minOccurs, minver, etc. or
 with undefined values like length, maxver, etc. are omitted.

 Here the definition of each Matroska Element is provided.

5.1. Segment Element

 id / type: 0x18538067 / master

 unknownsizeallowed: True

Lhomme, et al. Expires 24 April 2024 [Page 18]

Internet-Draft Matroska Format October 2023

 path: \Segment
 minOccurs / maxOccurs: 1 / 1
 definition: The Root Element that contains all other Top-Level
 Elements; see Section 4.5.

5.1.1. SeekHead Element

 id / type: 0x114D9B74 / master
 path: \Segment\SeekHead
 maxOccurs: 2
 definition: Contains seeking information of Top-Level Elements; see
 Section 4.5.

5.1.1.1. Seek Element

 id / type: 0x4DBB / master
 path: \Segment\SeekHead\Seek
 minOccurs: 1
 definition: Contains a single seek entry to an EBML Element.

5.1.1.1.1. SeekID Element

 id / type: 0x53AB / binary
 length: 4
 path: \Segment\SeekHead\Seek\SeekID
 minOccurs / maxOccurs: 1 / 1
 definition: The binary EBML ID of a Top-Level Element.

5.1.1.1.2. SeekPosition Element

 id / type: 0x53AC / uinteger
 path: \Segment\SeekHead\Seek\SeekPosition
 minOccurs / maxOccurs: 1 / 1
 definition: The Segment Position (Section 16) of a Top-Level
 Element.

5.1.2. Info Element

 id / type: 0x1549A966 / master
 path: \Segment\Info
 minOccurs / maxOccurs: 1 / 1

 recurring: True

 definition: Contains general information about the Segment.

Lhomme, et al. Expires 24 April 2024 [Page 19]

Internet-Draft Matroska Format October 2023

5.1.2.1. SegmentUUID Element

 id / type: 0x73A4 / binary
 length: 16
 path: \Segment\Info\SegmentUUID
 maxOccurs: 1
 definition: A randomly generated unique ID to identify the Segment
 amongst many others (128 bits). It is equivalent to a UUID v4
 [RFC4122] with all bits randomly (or pseudo-randomly) chosen. An
 actual UUID v4 value, where some bits are not random, MAY also be
 used.
 usage notes: If the Segment is a part of a Linked Segment, then this
 Element is REQUIRED. The value of the unique ID MUST contain at
 least one bit set to 1.

5.1.2.2. SegmentFilename Element

 id / type: 0x7384 / utf-8
 path: \Segment\Info\SegmentFilename
 maxOccurs: 1
 definition: A filename corresponding to this Segment.

5.1.2.3. PrevUUID Element

 id / type: 0x3CB923 / binary
 length: 16
 path: \Segment\Info\PrevUUID
 maxOccurs: 1
 definition: An ID to identify the previous Segment of a Linked
 Segment.
 usage notes: If the Segment is a part of a Linked Segment that uses
 Hard Linking (Section 17.1), then either the PrevUUID or the
 NextUUID Element is REQUIRED. If a Segment contains a PrevUUID
 but not a NextUUID, then it MAY be considered as the last Segment
 of the Linked Segment. The PrevUUID MUST NOT be equal to the
 SegmentUUID.

5.1.2.4. PrevFilename Element

 id / type: 0x3C83AB / utf-8
 path: \Segment\Info\PrevFilename
 maxOccurs: 1
 definition: A filename corresponding to the file of the previous
 Linked Segment.
 usage notes: Provision of the previous filename is for display
 convenience, but PrevUUID SHOULD be considered authoritative for
 identifying the previous Segment in a Linked Segment.

Lhomme, et al. Expires 24 April 2024 [Page 20]

Internet-Draft Matroska Format October 2023

5.1.2.5. NextUUID Element

 id / type: 0x3EB923 / binary
 length: 16
 path: \Segment\Info\NextUUID
 maxOccurs: 1
 definition: An ID to identify the next Segment of a Linked Segment.
 usage notes: If the Segment is a part of a Linked Segment that uses
 Hard Linking (Section 17.1), then either the PrevUUID or the
 NextUUID Element is REQUIRED. If a Segment contains a NextUUID
 but not a PrevUUID, then it MAY be considered as the first Segment
 of the Linked Segment. The NextUUID MUST NOT be equal to the
 SegmentUUID.

5.1.2.6. NextFilename Element

 id / type: 0x3E83BB / utf-8
 path: \Segment\Info\NextFilename
 maxOccurs: 1
 definition: A filename corresponding to the file of the next Linked
 Segment.
 usage notes: Provision of the next filename is for display
 convenience, but NextUUID SHOULD be considered authoritative for
 identifying the Next Segment.

5.1.2.7. SegmentFamily Element

 id / type: 0x4444 / binary
 length: 16
 path: \Segment\Info\SegmentFamily
 definition: A unique ID that all Segments of a Linked Segment MUST
 share (128 bits). It is equivalent to a UUID v4 [RFC4122] with
 all bits randomly (or pseudo-randomly) chosen. An actual UUID v4
 value, where some bits are not random, MAY also be used.
 usage notes: If the Segment Info contains a ChapterTranslate
 element, this Element is REQUIRED.

5.1.2.8. ChapterTranslate Element

 id / type: 0x6924 / master
 path: \Segment\Info\ChapterTranslate
 definition: The mapping between this Segment and a segment value in
 the given Chapter Codec.
 rationale: Chapter Codec may need to address different segments, but

Lhomme, et al. Expires 24 April 2024 [Page 21]

Internet-Draft Matroska Format October 2023

 they may not know of the way to identify such segment when stored
 in Matroska. This element and its child elements add a way to map
 the internal segments known to the Chapter Codec to the Segment
 IDs in Matroska. This allows remuxing a file with Chapter Codec
 without changing the content of the codec data, just the Segment
 mapping.

5.1.2.8.1. ChapterTranslateID Element

 id / type: 0x69A5 / binary
 path: \Segment\Info\ChapterTranslate\ChapterTranslateID
 minOccurs / maxOccurs: 1 / 1
 definition: The binary value used to represent this Segment in the
 chapter codec data. The format depends on the ChapProcessCodecID
 used; see Section 5.1.7.1.4.15.

5.1.2.8.2. ChapterTranslateCodec Element

 id / type: 0x69BF / uinteger
 path: \Segment\Info\ChapterTranslate\ChapterTranslateCodec
 minOccurs / maxOccurs: 1 / 1
 definition: This ChapterTranslate applies to this chapter codec of
 the given chapter edition(s); see Section 5.1.7.1.4.15.

 defined values:

 +=======+=================+============================+
 | value | label | definition |
 +=======+=================+============================+
 | 0 | Matroska Script | Chapter commands using the |
 | | | Matroska Script codec. |
 +-------+-----------------+----------------------------+
 | 1 | DVD-menu | Chapter commands using the |
 | | | DVD-like codec. |
 +-------+-----------------+----------------------------+

 Table 1: ChapterTranslateCodec values

5.1.2.8.3. ChapterTranslateEditionUID Element

 id / type: 0x69FC / uinteger
 path: \Segment\Info\ChapterTranslate\ChapterTranslateEditionUID
 definition: Specify a chapter edition UID on which this
 ChapterTranslate applies.
 usage notes: When no ChapterTranslateEditionUID is specified in the
 ChapterTranslate, the ChapterTranslate applies to all chapter
 editions found in the Segment using the given
 ChapterTranslateCodec.

Lhomme, et al. Expires 24 April 2024 [Page 22]

Internet-Draft Matroska Format October 2023

5.1.2.9. TimestampScale Element

 id / type / default: 0x2AD7B1 / uinteger / 1000000
 range: not 0
 path: \Segment\Info\TimestampScale
 minOccurs / maxOccurs: 1 / 1
 definition: Base unit for Segment Ticks and Track Ticks, in
 nanoseconds. A TimestampScale value of 1000000 means scaled
 timestamps in the Segment are expressed in milliseconds; see
 Section 11 on how to interpret timestamps.

5.1.2.10. Duration Element

 id / type: 0x4489 / float
 range: > 0x0p+0
 path: \Segment\Info\Duration
 maxOccurs: 1
 definition: Duration of the Segment, expressed in Segment Ticks
 which is based on TimestampScale; see Section 11.1.

5.1.2.11. DateUTC Element

 id / type: 0x4461 / date
 path: \Segment\Info\DateUTC
 maxOccurs: 1
 definition: The date and time that the Segment was created by the
 muxing application or library.

5.1.2.12. Title Element

 id / type: 0x7BA9 / utf-8
 path: \Segment\Info\Title
 maxOccurs: 1
 definition: General name of the Segment.

5.1.2.13. MuxingApp Element

 id / type: 0x4D80 / utf-8
 path: \Segment\Info\MuxingApp
 minOccurs / maxOccurs: 1 / 1
 definition: Muxing application or library (example: "libmatroska-
 0.4.3").
 usage notes: Include the full name of the application or library
 followed by the version number.

5.1.2.14. WritingApp Element

 id / type: 0x5741 / utf-8

Lhomme, et al. Expires 24 April 2024 [Page 23]

Internet-Draft Matroska Format October 2023

 path: \Segment\Info\WritingApp
 minOccurs / maxOccurs: 1 / 1
 definition: Writing application (example: "mkvmerge-0.3.3").
 usage notes: Include the full name of the application followed by
 the version number.

5.1.3. Cluster Element

 id / type: 0x1F43B675 / master

 unknownsizeallowed: True

 path: \Segment\Cluster
 definition: The Top-Level Element containing the (monolithic) Block
 structure.

5.1.3.1. Timestamp Element

 id / type: 0xE7 / uinteger
 path: \Segment\Cluster\Timestamp
 minOccurs / maxOccurs: 1 / 1
 definition: Absolute timestamp of the cluster, expressed in Segment
 Ticks which is based on TimestampScale; see Section 11.1.
 usage notes: This element SHOULD be the first child element of the
 Cluster it belongs to, or the second if that Cluster contains a
 CRC-32 element (Section 6.2).

5.1.3.2. Position Element

 id / type: 0xA7 / uinteger
 path: \Segment\Cluster\Position
 maxOccurs: 1
 maxver: 4
 definition: The Segment Position of the Cluster in the Segment (0 in
 live streams). It might help to resynchronise offset on damaged
 streams.

5.1.3.3. PrevSize Element

 id / type: 0xAB / uinteger
 path: \Segment\Cluster\PrevSize
 maxOccurs: 1
 definition: Size of the previous Cluster, in octets. Can be useful
 for backward playing.

5.1.3.4. SimpleBlock Element

 id / type: 0xA3 / binary

Lhomme, et al. Expires 24 April 2024 [Page 24]

Internet-Draft Matroska Format October 2023

 path: \Segment\Cluster\SimpleBlock
 minver: 2
 definition: Similar to Block, see Section 10.1, but without all the
 extra information, mostly used to reduced overhead when no extra
 feature is needed; see Section 10.2 on SimpleBlock Structure.

5.1.3.5. BlockGroup Element

 id / type: 0xA0 / master
 path: \Segment\Cluster\BlockGroup
 definition: Basic container of information containing a single Block
 and information specific to that Block.

5.1.3.5.1. Block Element

 id / type: 0xA1 / binary
 path: \Segment\Cluster\BlockGroup\Block
 minOccurs / maxOccurs: 1 / 1
 definition: Block containing the actual data to be rendered and a
 timestamp relative to the Cluster Timestamp; see Section 10.1 on
 Block Structure.

5.1.3.5.2. BlockAdditions Element

 id / type: 0x75A1 / master
 path: \Segment\Cluster\BlockGroup\BlockAdditions
 maxOccurs: 1
 definition: Contain additional binary data to complete the main one;
 see Codec BlockAdditions section of [MatroskaCodec] for more
 information. An EBML parser that has no knowledge of the Block
 structure could still see and use/skip these data.

5.1.3.5.2.1. BlockMore Element

 id / type: 0xA6 / master
 path: \Segment\Cluster\BlockGroup\BlockAdditions\BlockMore
 minOccurs: 1
 definition: Contain the BlockAdditional and some parameters.

5.1.3.5.2.2. BlockAdditional Element

 id / type: 0xA5 / binary
 path: \Segment\Cluster\BlockGroup\BlockAdditions\BlockMore\BlockAddi
 tional
 minOccurs / maxOccurs: 1 / 1
 definition: Interpreted by the codec as it wishes (using the
 BlockAddID).

Lhomme, et al. Expires 24 April 2024 [Page 25]

Internet-Draft Matroska Format October 2023

5.1.3.5.2.3. BlockAddID Element

 id / type / default: 0xEE / uinteger / 1
 range: not 0
 path: \Segment\Cluster\BlockGroup\BlockAdditions\BlockMore\BlockAddI
 D
 minOccurs / maxOccurs: 1 / 1
 definition: An ID to identify how to interpret the BlockAdditional
 data; see Codec BlockAdditions section of [MatroskaCodec] for more
 information. A value of 1 indicates that the meaning of the
 BlockAdditional data is defined by the codec. Any other value
 indicates the meaning of the BlockAdditional data is found in the
 BlockAddIDType found in the TrackEntry.
 usage notes: Each BlockAddID value MUST be unique between all
 BlockMore elements found in a BlockAdditions.
 usage notes: To keep MaxBlockAdditionID as low as possible, small
 values SHOULD be used.

5.1.3.5.3. BlockDuration Element

 id / type: 0x9B / uinteger
 path: \Segment\Cluster\BlockGroup\BlockDuration
 minOccurs / maxOccurs: see implementation notes / 1
 definition: The duration of the Block, expressed in Track Ticks; see
 Section 11.1. The BlockDuration Element can be useful at the end
 of a Track to define the duration of the last frame (as there is
 no subsequent Block available), or when there is a break in a
 track like for subtitle tracks.

 notes:

 +===========+===+
 | attribute | note |
 +===========+===+
 | minOccurs | BlockDuration MUST be set (minOccurs=1) if the |
 | | associated TrackEntry stores a DefaultDuration |
 | | value. |
 +-----------+---+
 | default | When not written and with no DefaultDuration, the |
 | | value is assumed to be the difference between the |
 | | timestamp of this Block and the timestamp of the |
 | | next Block in "display" order (not coding order). |
 +-----------+---+

 Table 2: BlockDuration implementation notes

Lhomme, et al. Expires 24 April 2024 [Page 26]

Internet-Draft Matroska Format October 2023

5.1.3.5.4. ReferencePriority Element

 id / type / default: 0xFA / uinteger / 0
 path: \Segment\Cluster\BlockGroup\ReferencePriority
 minOccurs / maxOccurs: 1 / 1
 definition: This frame is referenced and has the specified cache
 priority. In cache only a frame of the same or higher priority
 can replace this frame. A value of 0 means the frame is not
 referenced.

5.1.3.5.5. ReferenceBlock Element

 id / type: 0xFB / integer
 path: \Segment\Cluster\BlockGroup\ReferenceBlock
 definition: A timestamp value, relative to the timestamp of the
 Block in this BlockGroup, expressed in Track Ticks; see
 Section 11.1. This is used to reference other frames necessary to
 decode this frame. The relative value SHOULD correspond to a
 valid Block this Block depends on. Historically Matroska Writer
 didn’t write the actual Block(s) this Block depends on, but _some_
 Block in the past.

 The value "0" MAY also be used to signify this Block cannot be
 decoded on its own, but without knownledge of which Block is
 necessary. In this case, other ReferenceBlock MUST NOT be found in
 the same BlockGroup.

 If the BlockGroup doesn’t have any ReferenceBlock element, then the
 Block it contains can be decoded without using any other Block data.

5.1.3.5.6. CodecState Element

 id / type: 0xA4 / binary
 path: \Segment\Cluster\BlockGroup\CodecState
 maxOccurs: 1
 minver: 2
 definition: The new codec state to use. Data interpretation is
 private to the codec. This information SHOULD always be
 referenced by a seek entry.

5.1.3.5.7. DiscardPadding Element

 id / type: 0x75A2 / integer
 path: \Segment\Cluster\BlockGroup\DiscardPadding
 maxOccurs: 1
 minver: 4
 definition: Duration of the silent data added to the Block,

Lhomme, et al. Expires 24 April 2024 [Page 27]

Internet-Draft Matroska Format October 2023

 expressed in Matroska Ticks -- i.e., in nanoseconds; see
 Section 11.1 (padding at the end of the Block for positive value,
 at the beginning of the Block for negative value). The duration
 of DiscardPadding is not calculated in the duration of the
 TrackEntry and SHOULD be discarded during playback.

5.1.4. Tracks Element

 id / type: 0x1654AE6B / master
 path: \Segment\Tracks
 maxOccurs: 1

 recurring: True

 definition: A Top-Level Element of information with many tracks
 described.

5.1.4.1. TrackEntry Element

 id / type: 0xAE / master
 path: \Segment\Tracks\TrackEntry
 minOccurs: 1
 definition: Describes a track with all Elements.

5.1.4.1.1. TrackNumber Element

 id / type: 0xD7 / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\TrackNumber
 minOccurs / maxOccurs: 1 / 1
 definition: The track number as used in the Block Header.

5.1.4.1.2. TrackUID Element

 id / type: 0x73C5 / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\TrackUID
 minOccurs / maxOccurs: 1 / 1
 definition: A unique ID to identify the Track.

 stream copy: True (Section 8)

5.1.4.1.3. TrackType Element

 id / type: 0x83 / uinteger
 path: \Segment\Tracks\TrackEntry\TrackType
 minOccurs / maxOccurs: 1 / 1
 definition: The TrackType defines the type of each frame found in

Lhomme, et al. Expires 24 April 2024 [Page 28]

Internet-Draft Matroska Format October 2023

 the Track. The value SHOULD be stored on 1 octet.

 defined values:

 +=======+==========+==+
 | value | label | each frame contains |
 +=======+==========+==+
 | 1 | video | An image. |
 +-------+----------+--+
 | 2 | audio | Audio samples. |
 +-------+----------+--+
 | 3 | complex | A mix of different other TrackType. The |
 | | | codec needs to define how the Matroska |
 | | | Player should interpret such data. |
 +-------+----------+--+
 | 16 | logo | An image to be rendered over the video |
 | | | track(s). |
 +-------+----------+--+
 | 17 | subtitle | Subtitle or closed caption data to be |
 | | | rendered over the video track(s). |
 +-------+----------+--+
 | 18 | buttons | Interactive button(s) to be rendered |
 | | | over the video track(s). |
 +-------+----------+--+
 | 32 | control | Metadata used to control the player of |
 | | | the Matroska Player. |
 +-------+----------+--+
 | 33 | metadata | Timed metadata that can be passed on to |
 | | | the Matroska Player. |
 +-------+----------+--+

 Table 3: TrackType values

 stream copy: True (Section 8)

5.1.4.1.4. FlagEnabled Element

 id / type / default: 0xB9 / uinteger / 1
 range: 0-1
 path: \Segment\Tracks\TrackEntry\FlagEnabled
 minOccurs / maxOccurs: 1 / 1
 minver: 2
 definition: Set to 1 if the track is usable. It is possible to turn
 a not usable track into a usable track using chapter codecs or
 control tracks.

Lhomme, et al. Expires 24 April 2024 [Page 29]

Internet-Draft Matroska Format October 2023

5.1.4.1.5. FlagDefault Element

 id / type / default: 0x88 / uinteger / 1
 range: 0-1
 path: \Segment\Tracks\TrackEntry\FlagDefault
 minOccurs / maxOccurs: 1 / 1
 definition: Set if that track (audio, video or subs) is eligible for
 automatic selection by the player; see Section 19 for more
 details.

5.1.4.1.6. FlagForced Element

 id / type / default: 0x55AA / uinteger / 0
 range: 0-1
 path: \Segment\Tracks\TrackEntry\FlagForced
 minOccurs / maxOccurs: 1 / 1
 definition: Applies only to subtitles. Set if that track is
 eligible for automatic selection by the player if it matches the
 user’s language preference, even if the user’s preferences would
 normally not enable subtitles with the selected audio track; this
 can be used for tracks containing only translations of foreign-
 language audio or onscreen text. See Section 19 for more details.

5.1.4.1.7. FlagHearingImpaired Element

 id / type: 0x55AB / uinteger
 range: 0-1
 path: \Segment\Tracks\TrackEntry\FlagHearingImpaired
 maxOccurs: 1
 minver: 4
 definition: Set to 1 if and only if that track is suitable for users
 with hearing impairments.

5.1.4.1.8. FlagVisualImpaired Element

 id / type: 0x55AC / uinteger
 range: 0-1
 path: \Segment\Tracks\TrackEntry\FlagVisualImpaired
 maxOccurs: 1
 minver: 4
 definition: Set to 1 if and only if that track is suitable for users
 with visual impairments.

5.1.4.1.9. FlagTextDescriptions Element

 id / type: 0x55AD / uinteger
 range: 0-1
 path: \Segment\Tracks\TrackEntry\FlagTextDescriptions

Lhomme, et al. Expires 24 April 2024 [Page 30]

Internet-Draft Matroska Format October 2023

 maxOccurs: 1
 minver: 4
 definition: Set to 1 if and only if that track contains textual
 descriptions of video content.

5.1.4.1.10. FlagOriginal Element

 id / type: 0x55AE / uinteger
 range: 0-1
 path: \Segment\Tracks\TrackEntry\FlagOriginal
 maxOccurs: 1
 minver: 4
 definition: Set to 1 if and only if that track is in the content’s
 original language.

5.1.4.1.11. FlagCommentary Element

 id / type: 0x55AF / uinteger
 range: 0-1
 path: \Segment\Tracks\TrackEntry\FlagCommentary
 maxOccurs: 1
 minver: 4
 definition: Set to 1 if and only if that track contains commentary.

5.1.4.1.12. FlagLacing Element

 id / type / default: 0x9C / uinteger / 1
 range: 0-1
 path: \Segment\Tracks\TrackEntry\FlagLacing
 minOccurs / maxOccurs: 1 / 1
 definition: Set to 1 if the track MAY contain blocks using lacing.
 When set to 0 all blocks MUST have their lacing flags set to No
 lacing; see Section 10.3 on Block Lacing.

5.1.4.1.13. DefaultDuration Element

 id / type: 0x23E383 / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\DefaultDuration
 maxOccurs: 1
 definition: Number of nanoseconds per frame, expressed in Matroska
 Ticks -- i.e., in nanoseconds; see Section 11.1 (frame in the
 Matroska sense -- one Element put into a (Simple)Block).

 stream copy: True (Section 8)

Lhomme, et al. Expires 24 April 2024 [Page 31]

Internet-Draft Matroska Format October 2023

5.1.4.1.14. DefaultDecodedFieldDuration Element

 id / type: 0x234E7A / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\DefaultDecodedFieldDuration
 maxOccurs: 1
 minver: 4
 definition: The period between two successive fields at the output
 of the decoding process, expressed in Matroska Ticks -- i.e., in
 nanoseconds; see Section 11.1. see Section 9 for more information

 stream copy: True (Section 8)

5.1.4.1.15. TrackTimestampScale Element

 id / type / default: 0x23314F / float / 0x1p+0
 range: > 0x0p+0
 path: \Segment\Tracks\TrackEntry\TrackTimestampScale
 minOccurs / maxOccurs: 1 / 1
 maxver: 3
 definition: The scale to apply on this track to work at normal speed
 in relation with other tracks (mostly used to adjust video speed
 when the audio length differs).

 stream copy: True (Section 8)

5.1.4.1.16. MaxBlockAdditionID Element

 id / type / default: 0x55EE / uinteger / 0
 path: \Segment\Tracks\TrackEntry\MaxBlockAdditionID
 minOccurs / maxOccurs: 1 / 1
 definition: The maximum value of BlockAddID (Section 5.1.3.5.2.3).
 A value 0 means there is no BlockAdditions (Section 5.1.3.5.2) for
 this track.

5.1.4.1.17. BlockAdditionMapping Element

 id / type: 0x41E4 / master
 path: \Segment\Tracks\TrackEntry\BlockAdditionMapping
 minver: 4
 definition: Contains elements that extend the track format, by
 adding content either to each frame, with BlockAddID
 (Section 5.1.3.5.2.3), or to the track as a whole with
 BlockAddIDExtraData.

5.1.4.1.17.1. BlockAddIDValue Element

 id / type: 0x41F0 / uinteger

Lhomme, et al. Expires 24 April 2024 [Page 32]

Internet-Draft Matroska Format October 2023

 range: >=2
 path: \Segment\Tracks\TrackEntry\BlockAdditionMapping\BlockAddIDValu
 e
 maxOccurs: 1
 minver: 4
 definition: If the track format extension needs content beside
 frames, the value refers to the BlockAddID (Section 5.1.3.5.2.3),
 value being described.
 usage notes: To keep MaxBlockAdditionID as low as possible, small
 values SHOULD be used.

5.1.4.1.17.2. BlockAddIDName Element

 id / type: 0x41A4 / string
 path: \Segment\Tracks\TrackEntry\BlockAdditionMapping\BlockAddIDName
 maxOccurs: 1
 minver: 4
 definition: A human-friendly name describing the type of
 BlockAdditional data, as defined by the associated Block
 Additional Mapping.

5.1.4.1.17.3. BlockAddIDType Element

 id / type / default: 0x41E7 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\BlockAdditionMapping\BlockAddIDType
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: Stores the registered identifier of the Block Additional
 Mapping to define how the BlockAdditional data should be handled.
 usage notes: If BlockAddIDType is 0, the BlockAddIDValue and
 corresponding BlockAddID values MUST be 1.

5.1.4.1.17.4. BlockAddIDExtraData Element

 id / type: 0x41ED / binary
 path: \Segment\Tracks\TrackEntry\BlockAdditionMapping\BlockAddIDExtr
 aData
 maxOccurs: 1
 minver: 4
 definition: Extra binary data that the BlockAddIDType can use to
 interpret the BlockAdditional data. The interpretation of the
 binary data depends on the BlockAddIDType value and the
 corresponding Block Additional Mapping.

5.1.4.1.18. Name Element

 id / type: 0x536E / utf-8
 path: \Segment\Tracks\TrackEntry\Name

Lhomme, et al. Expires 24 April 2024 [Page 33]

Internet-Draft Matroska Format October 2023

 maxOccurs: 1
 definition: A human-readable track name.

5.1.4.1.19. Language Element

 id / type / default: 0x22B59C / string / eng
 path: \Segment\Tracks\TrackEntry\Language
 minOccurs / maxOccurs: 1 / 1
 definition: The language of the track, in the Matroska languages
 form; see Section 12 on language codes. This Element MUST be
 ignored if the LanguageBCP47 Element is used in the same
 TrackEntry.

5.1.4.1.20. LanguageBCP47 Element

 id / type: 0x22B59D / string
 path: \Segment\Tracks\TrackEntry\LanguageBCP47
 maxOccurs: 1
 minver: 4
 definition: The language of the track, in the [BCP47] form; see
 Section 12 on language codes. If this Element is used, then any
 Language Elements used in the same TrackEntry MUST be ignored.

5.1.4.1.21. CodecID Element

 id / type: 0x86 / string
 path: \Segment\Tracks\TrackEntry\CodecID
 minOccurs / maxOccurs: 1 / 1
 definition: An ID corresponding to the codec, see [MatroskaCodec]
 for more info.

 stream copy: True (Section 8)

5.1.4.1.22. CodecPrivate Element

 id / type: 0x63A2 / binary
 path: \Segment\Tracks\TrackEntry\CodecPrivate
 maxOccurs: 1
 definition: Private data only known to the codec.

 stream copy: True (Section 8)

5.1.4.1.23. CodecName Element

 id / type: 0x258688 / utf-8
 path: \Segment\Tracks\TrackEntry\CodecName
 maxOccurs: 1
 definition: A human-readable string specifying the codec.

Lhomme, et al. Expires 24 April 2024 [Page 34]

Internet-Draft Matroska Format October 2023

5.1.4.1.24. AttachmentLink Element

 id / type: 0x7446 / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\AttachmentLink
 maxOccurs: 1
 maxver: 3
 definition: The UID of an attachment that is used by this codec.
 usage notes: The value MUST match the FileUID value of an attachment
 found in this Segment.

5.1.4.1.25. CodecDelay Element

 id / type / default: 0x56AA / uinteger / 0
 path: \Segment\Tracks\TrackEntry\CodecDelay
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: CodecDelay is The codec-built-in delay, expressed in
 Matroska Ticks -- i.e., in nanoseconds; see Section 11.1. It
 represents the amount of codec samples that will be discarded by
 the decoder during playback. This timestamp value MUST be
 subtracted from each frame timestamp in order to get the timestamp
 that will be actually played. The value SHOULD be small so the
 muxing of tracks with the same actual timestamp are in the same
 Cluster.

 stream copy: True (Section 8)

5.1.4.1.26. SeekPreRoll Element

 id / type / default: 0x56BB / uinteger / 0
 path: \Segment\Tracks\TrackEntry\SeekPreRoll
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: After a discontinuity, SeekPreRoll is the duration of
 the data the decoder MUST decode before the decoded data is valid,
 expressed in Matroska Ticks -- i.e., in nanoseconds; see
 Section 11.1.

 stream copy: True (Section 8)

5.1.4.1.27. TrackTranslate Element

 id / type: 0x6624 / master
 path: \Segment\Tracks\TrackEntry\TrackTranslate
 definition: The mapping between this TrackEntry and a track value in
 the given Chapter Codec.
 rationale: Chapter Codec may need to address content in specific

Lhomme, et al. Expires 24 April 2024 [Page 35]

Internet-Draft Matroska Format October 2023

 track, but they may not know of the way to identify tracks in
 Matroska. This element and its child elements add a way to map
 the internal tracks known to the Chapter Codec to the track IDs in
 Matroska. This allows remuxing a file with Chapter Codec without
 changing the content of the codec data, just the track mapping.

5.1.4.1.27.1. TrackTranslateTrackID Element

 id / type: 0x66A5 / binary
 path: \Segment\Tracks\TrackEntry\TrackTranslate\TrackTranslateTrackI
 D
 minOccurs / maxOccurs: 1 / 1
 definition: The binary value used to represent this TrackEntry in
 the chapter codec data. The format depends on the
 ChapProcessCodecID used; see Section 5.1.7.1.4.15.

5.1.4.1.27.2. TrackTranslateCodec Element

 id / type: 0x66BF / uinteger
 path: \Segment\Tracks\TrackEntry\TrackTranslate\TrackTranslateCodec
 minOccurs / maxOccurs: 1 / 1
 definition: This TrackTranslate applies to this chapter codec of the
 given chapter edition(s); see Section 5.1.7.1.4.15.

 defined values:

 +=======+=================+============================+
 | value | label | definition |
 +=======+=================+============================+
 | 0 | Matroska Script | Chapter commands using the |
 | | | Matroska Script codec. |
 +-------+-----------------+----------------------------+
 | 1 | DVD-menu | Chapter commands using the |
 | | | DVD-like codec. |
 +-------+-----------------+----------------------------+

 Table 4: TrackTranslateCodec values

5.1.4.1.27.3. TrackTranslateEditionUID Element

 id / type: 0x66FC / uinteger
 path: \Segment\Tracks\TrackEntry\TrackTranslate\TrackTranslateEditio
 nUID
 definition: Specify a chapter edition UID on which this
 TrackTranslate applies.
 usage notes: When no TrackTranslateEditionUID is specified in the
 TrackTranslate, the TrackTranslate applies to all chapter editions
 found in the Segment using the given TrackTranslateCodec.

Lhomme, et al. Expires 24 April 2024 [Page 36]

Internet-Draft Matroska Format October 2023

5.1.4.1.28. Video Element

 id / type: 0xE0 / master
 path: \Segment\Tracks\TrackEntry\Video
 maxOccurs: 1
 definition: Video settings.

5.1.4.1.28.1. FlagInterlaced Element

 id / type / default: 0x9A / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\FlagInterlaced
 minOccurs / maxOccurs: 1 / 1
 minver: 2
 definition: Specify whether the video frames in this track are
 interlaced.

 defined values:

 +=======+==============+==========================+
 | value | label | definition |
 +=======+==============+==========================+
 | 0 | undetermined | Unknown status.This |
 | | | value SHOULD be avoided. |
 +-------+--------------+--------------------------+
 | 1 | interlaced | Interlaced frames. |
 +-------+--------------+--------------------------+
 | 2 | progressive | No interlacing. |
 +-------+--------------+--------------------------+

 Table 5: FlagInterlaced values

 stream copy: True (Section 8)

5.1.4.1.28.2. FieldOrder Element

 id / type / default: 0x9D / uinteger / 2
 path: \Segment\Tracks\TrackEntry\Video\FieldOrder
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: Specify the field ordering of video frames in this
 track.

 defined values:

Lhomme, et al. Expires 24 April 2024 [Page 37]

Internet-Draft Matroska Format October 2023

 +=======+==============+===+
 | value | label | definition |
 +=======+==============+===+
 | 0 | progressive | Interlaced frames.This value SHOULD be |
 | | | avoided, setting FlagInterlaced to 2 is |
 | | | sufficient. |
 +-------+--------------+---+
 | 1 | tff | Top field displayed first. Top field |
 | | | stored first. |
 +-------+--------------+---+
 | 2 | undetermined | Unknown field order.This value SHOULD |
 | | | be avoided. |
 +-------+--------------+---+
 | 6 | bff | Bottom field displayed first. Bottom |
 | | | field stored first. |
 +-------+--------------+---+
 | 9 | bff(swapped) | Top field displayed first. Fields are |
 | | | interleaved in storage with the top |
 | | | line of the top field stored first. |
 +-------+--------------+---+
 | 14 | tff(swapped) | Bottom field displayed first. Fields |
 | | | are interleaved in storage with the top |
 | | | line of the top field stored first. |
 +-------+--------------+---+

 Table 6: FieldOrder values

 usage notes: If FlagInterlaced is not set to 1, this Element MUST be
 ignored.

 stream copy: True (Section 8)

5.1.4.1.28.3. StereoMode Element

 id / type / default: 0x53B8 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\StereoMode
 minOccurs / maxOccurs: 1 / 1
 minver: 3
 definition: Stereo-3D video mode. There are some more details in
 Section 18.10.

 restrictions:

Lhomme, et al. Expires 24 April 2024 [Page 38]

Internet-Draft Matroska Format October 2023

 +=======+===+
 | value | label |
 +=======+===+
 | 0 | mono |
 +-------+---+
 | 1 | side by side (left eye first) |
 +-------+---+
 | 2 | top - bottom (right eye is first) |
 +-------+---+
 | 3 | top - bottom (left eye is first) |
 +-------+---+
 | 4 | checkboard (right eye is first) |
 +-------+---+
 | 5 | checkboard (left eye is first) |
 +-------+---+
 | 6 | row interleaved (right eye is first) |
 +-------+---+
 | 7 | row interleaved (left eye is first) |
 +-------+---+
 | 8 | column interleaved (right eye is first) |
 +-------+---+
 | 9 | column interleaved (left eye is first) |
 +-------+---+
 | 10 | anaglyph (cyan/red) |
 +-------+---+
 | 11 | side by side (right eye first) |
 +-------+---+
 | 12 | anaglyph (green/magenta) |
 +-------+---+
 | 13 | both eyes laced in one Block (left eye is first) |
 +-------+---+
 | 14 | both eyes laced in one Block (right eye is first) |
 +-------+---+

 Table 7: StereoMode values

 stream copy: True (Section 8)

5.1.4.1.28.4. AlphaMode Element

 id / type / default: 0x53C0 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\AlphaMode
 minOccurs / maxOccurs: 1 / 1
 minver: 3
 definition: Indicate whether the BlockAdditional Element with

Lhomme, et al. Expires 24 April 2024 [Page 39]

Internet-Draft Matroska Format October 2023

 BlockAddID of "1" contains Alpha data, as defined by to the Codec
 Mapping for the CodecID. Undefined values SHOULD NOT be used as
 the behavior of known implementations is different (considered
 either as 0 or 1).

 defined values:

 +=======+=========+==+
 | value | label | definition |
 +=======+=========+==+
 | 0 | none | The BlockAdditional Element with |
 | | | BlockAddID of "1" does not exist or SHOULD |
 | | | NOT be considered as containing such data. |
 +-------+---------+--+
 | 1 | present | The BlockAdditional Element with |
 | | | BlockAddID of "1" contains alpha channel |
 | | | data. |
 +-------+---------+--+

 Table 8: AlphaMode values

 stream copy: True (Section 8)

5.1.4.1.28.5. OldStereoMode Element

 id / type: 0x53B9 / uinteger
 path: \Segment\Tracks\TrackEntry\Video\OldStereoMode
 maxOccurs: 1
 maxver: 2
 definition: Bogus StereoMode value used in old versions of
 libmatroska.

 restrictions:

 +=======+===========+
 | value | label |
 +=======+===========+
 | 0 | mono |
 +-------+-----------+
 | 1 | right eye |
 +-------+-----------+
 | 2 | left eye |
 +-------+-----------+
 | 3 | both eyes |
 +-------+-----------+

 Table 9: OldStereoMode
 values

Lhomme, et al. Expires 24 April 2024 [Page 40]

Internet-Draft Matroska Format October 2023

 usage notes: This Element MUST NOT be used. It was an incorrect
 value used in libmatroska up to 0.9.0.

5.1.4.1.28.6. PixelWidth Element

 id / type: 0xB0 / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\Video\PixelWidth
 minOccurs / maxOccurs: 1 / 1
 definition: Width of the encoded video frames in pixels.

 stream copy: True (Section 8)

5.1.4.1.28.7. PixelHeight Element

 id / type: 0xBA / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\Video\PixelHeight
 minOccurs / maxOccurs: 1 / 1
 definition: Height of the encoded video frames in pixels.

 stream copy: True (Section 8)

5.1.4.1.28.8. PixelCropBottom Element

 id / type / default: 0x54AA / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\PixelCropBottom
 minOccurs / maxOccurs: 1 / 1
 definition: The number of video pixels to remove at the bottom of
 the image.

 stream copy: True (Section 8)

5.1.4.1.28.9. PixelCropTop Element

 id / type / default: 0x54BB / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\PixelCropTop
 minOccurs / maxOccurs: 1 / 1
 definition: The number of video pixels to remove at the top of the
 image.

 stream copy: True (Section 8)

5.1.4.1.28.10. PixelCropLeft Element

 id / type / default: 0x54CC / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\PixelCropLeft
 minOccurs / maxOccurs: 1 / 1

Lhomme, et al. Expires 24 April 2024 [Page 41]

Internet-Draft Matroska Format October 2023

 definition: The number of video pixels to remove on the left of the
 image.

 stream copy: True (Section 8)

5.1.4.1.28.11. PixelCropRight Element

 id / type / default: 0x54DD / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\PixelCropRight
 minOccurs / maxOccurs: 1 / 1
 definition: The number of video pixels to remove on the right of the
 image.

 stream copy: True (Section 8)

5.1.4.1.28.12. DisplayWidth Element

 id / type: 0x54B0 / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\Video\DisplayWidth
 maxOccurs: 1
 definition: Width of the video frames to display. Applies to the
 video frame after cropping (PixelCrop* Elements).

 notes:

 +===========+===+
 | attribute | note |
 +===========+===+
 | default | If the DisplayUnit of the same TrackEntry is 0, |
 | | then the default value for DisplayWidth is |
 | | equal toPixelWidth - PixelCropLeft - |
 | | PixelCropRight, else there is no default value. |
 +-----------+---+

 Table 10: DisplayWidth implementation notes

 stream copy: True (Section 8)

5.1.4.1.28.13. DisplayHeight Element

 id / type: 0x54BA / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\Video\DisplayHeight
 maxOccurs: 1
 definition: Height of the video frames to display. Applies to the
 video frame after cropping (PixelCrop* Elements).

Lhomme, et al. Expires 24 April 2024 [Page 42]

Internet-Draft Matroska Format October 2023

 notes:

 +===========+==+
 | attribute | note |
 +===========+==+
 | default | If the DisplayUnit of the same TrackEntry is 0, |
 | | then the default value for DisplayHeight is |
 | | equal toPixelHeight - PixelCropTop - |
 | | PixelCropBottom, else there is no default value. |
 +-----------+--+

 Table 11: DisplayHeight implementation notes

 stream copy: True (Section 8)

5.1.4.1.28.14. DisplayUnit Element

 id / type / default: 0x54B2 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\DisplayUnit
 minOccurs / maxOccurs: 1 / 1
 definition: How DisplayWidth & DisplayHeight are interpreted.

 restrictions:

 +=======+======================+
 | value | label |
 +=======+======================+
 | 0 | pixels |
 +-------+----------------------+
 | 1 | centimeters |
 +-------+----------------------+
 | 2 | inches |
 +-------+----------------------+
 | 3 | display aspect ratio |
 +-------+----------------------+
 | 4 | unknown |
 +-------+----------------------+

 Table 12: DisplayUnit values

5.1.4.1.28.15. UncompressedFourCC Element

 id / type: 0x2EB524 / binary
 length: 4
 path: \Segment\Tracks\TrackEntry\Video\UncompressedFourCC
 minOccurs / maxOccurs: see implementation notes / 1
 definition: Specify the uncompressed pixel format used for the

Lhomme, et al. Expires 24 April 2024 [Page 43]

Internet-Draft Matroska Format October 2023

 Track’s data as a FourCC. This value is similar in scope to the
 biCompression value of AVI’s BITMAPINFO [AVIFormat]. There is no
 definitive list of FourCC values, nor an official registry. Some
 common values for YUV pixel formats can be found at [MSYUV8],
 [MSYUV16] and [FourCC-YUV]. Some common values for uncompressed
 RGB pixel formats can be found at [MSRGB] and [FourCC-RGB].

 notes:

 +===========+==+
 | attribute | note |
 +===========+==+
 | minOccurs | UncompressedFourCC MUST be set (minOccurs=1) |
 | | in TrackEntry, when the CodecID Element of |
 | | the TrackEntry is set to "V_UNCOMPRESSED". |
 +-----------+--+

 Table 13: UncompressedFourCC implementation notes

 stream copy: True (Section 8)

5.1.4.1.28.16. Colour Element

 id / type: 0x55B0 / master
 path: \Segment\Tracks\TrackEntry\Video\Colour
 maxOccurs: 1
 minver: 4
 definition: Settings describing the colour format.

 stream copy: True (Section 8)

5.1.4.1.28.17. MatrixCoefficients Element

 id / type / default: 0x55B1 / uinteger / 2
 path: \Segment\Tracks\TrackEntry\Video\Colour\MatrixCoefficients
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: The Matrix Coefficients of the video used to derive luma
 and chroma values from red, green, and blue color primaries. For
 clarity, the value and meanings for MatrixCoefficients are adopted
 from Table 4 of [ITU-H.273].

 restrictions:

Lhomme, et al. Expires 24 April 2024 [Page 44]

Internet-Draft Matroska Format October 2023

 +=======+=======================================+
 | value | label |
 +=======+=======================================+
 | 0 | Identity |
 +-------+---------------------------------------+
 | 1 | ITU-R BT.709 |
 +-------+---------------------------------------+
 | 2 | unspecified |
 +-------+---------------------------------------+
 | 3 | reserved |
 +-------+---------------------------------------+
 | 4 | US FCC 73.682 |
 +-------+---------------------------------------+
 | 5 | ITU-R BT.470BG |
 +-------+---------------------------------------+
 | 6 | SMPTE 170M |
 +-------+---------------------------------------+
 | 7 | SMPTE 240M |
 +-------+---------------------------------------+
 | 8 | YCoCg |
 +-------+---------------------------------------+
 | 9 | BT2020 Non-constant Luminance |
 +-------+---------------------------------------+
 | 10 | BT2020 Constant Luminance |
 +-------+---------------------------------------+
 | 11 | SMPTE ST 2085 |
 +-------+---------------------------------------+
 | 12 | Chroma-derived Non-constant Luminance |
 +-------+---------------------------------------+
 | 13 | Chroma-derived Constant Luminance |
 +-------+---------------------------------------+
 | 14 | ITU-R BT.2100-0 |
 +-------+---------------------------------------+

 Table 14: MatrixCoefficients values

 stream copy: True (Section 8)

5.1.4.1.28.18. BitsPerChannel Element

 id / type / default: 0x55B2 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\Colour\BitsPerChannel
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: Number of decoded bits per channel. A value of 0
 indicates that the BitsPerChannel is unspecified.

 stream copy: True (Section 8)

Lhomme, et al. Expires 24 April 2024 [Page 45]

Internet-Draft Matroska Format October 2023

5.1.4.1.28.19. ChromaSubsamplingHorz Element

 id / type: 0x55B3 / uinteger
 path: \Segment\Tracks\TrackEntry\Video\Colour\ChromaSubsamplingHorz
 maxOccurs: 1
 minver: 4
 definition: The amount of pixels to remove in the Cr and Cb channels
 for every pixel not removed horizontally. Example: For video with
 4:2:0 chroma subsampling, the ChromaSubsamplingHorz SHOULD be set
 to 1.

 stream copy: True (Section 8)

5.1.4.1.28.20. ChromaSubsamplingVert Element

 id / type: 0x55B4 / uinteger
 path: \Segment\Tracks\TrackEntry\Video\Colour\ChromaSubsamplingVert
 maxOccurs: 1
 minver: 4
 definition: The amount of pixels to remove in the Cr and Cb channels
 for every pixel not removed vertically. Example: For video with
 4:2:0 chroma subsampling, the ChromaSubsamplingVert SHOULD be set
 to 1.

 stream copy: True (Section 8)

5.1.4.1.28.21. CbSubsamplingHorz Element

 id / type: 0x55B5 / uinteger
 path: \Segment\Tracks\TrackEntry\Video\Colour\CbSubsamplingHorz
 maxOccurs: 1
 minver: 4
 definition: The amount of pixels to remove in the Cb channel for
 every pixel not removed horizontally. This is additive with
 ChromaSubsamplingHorz. Example: For video with 4:2:1 chroma
 subsampling, the ChromaSubsamplingHorz SHOULD be set to 1 and
 CbSubsamplingHorz SHOULD be set to 1.

 stream copy: True (Section 8)

5.1.4.1.28.22. CbSubsamplingVert Element

 id / type: 0x55B6 / uinteger
 path: \Segment\Tracks\TrackEntry\Video\Colour\CbSubsamplingVert
 maxOccurs: 1
 minver: 4
 definition: The amount of pixels to remove in the Cb channel for

Lhomme, et al. Expires 24 April 2024 [Page 46]

Internet-Draft Matroska Format October 2023

 every pixel not removed vertically. This is additive with
 ChromaSubsamplingVert.

 stream copy: True (Section 8)

5.1.4.1.28.23. ChromaSitingHorz Element

 id / type / default: 0x55B7 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\Colour\ChromaSitingHorz
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: How chroma is subsampled horizontally.

 restrictions:

 +=======+=================+
 | value | label |
 +=======+=================+
 | 0 | unspecified |
 +-------+-----------------+
 | 1 | left collocated |
 +-------+-----------------+
 | 2 | half |
 +-------+-----------------+

 Table 15:
 ChromaSitingHorz values

 stream copy: True (Section 8)

5.1.4.1.28.24. ChromaSitingVert Element

 id / type / default: 0x55B8 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\Colour\ChromaSitingVert
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: How chroma is subsampled vertically.

 restrictions:

Lhomme, et al. Expires 24 April 2024 [Page 47]

Internet-Draft Matroska Format October 2023

 +=======+================+
 | value | label |
 +=======+================+
 | 0 | unspecified |
 +-------+----------------+
 | 1 | top collocated |
 +-------+----------------+
 | 2 | half |
 +-------+----------------+

 Table 16:
 ChromaSitingVert
 values

 stream copy: True (Section 8)

5.1.4.1.28.25. Range Element

 id / type / default: 0x55B9 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\Colour\Range
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: Clipping of the color ranges.

 restrictions:

 +=======+===+
 | value | label |
 +=======+===+
 | 0 | unspecified |
 +-------+---+
 | 1 | broadcast range |
 +-------+---+
 | 2 | full range (no clipping) |
 +-------+---+
 | 3 | defined by MatrixCoefficients / TransferCharacteristics |
 +-------+---+

 Table 17: Range values

 stream copy: True (Section 8)

5.1.4.1.28.26. TransferCharacteristics Element

 id / type / default: 0x55BA / uinteger / 2
 path: \Segment\Tracks\TrackEntry\Video\Colour\TransferCharacteristic
 s
 minOccurs / maxOccurs: 1 / 1

Lhomme, et al. Expires 24 April 2024 [Page 48]

Internet-Draft Matroska Format October 2023

 minver: 4
 definition: The transfer characteristics of the video. For clarity,
 the value and meanings for TransferCharacteristics are adopted
 from Table 3 of [ITU-H.273].

 restrictions:

Lhomme, et al. Expires 24 April 2024 [Page 49]

Internet-Draft Matroska Format October 2023

 +=======+=======================================+
 | value | label |
 +=======+=======================================+
 | 0 | reserved |
 +-------+---------------------------------------+
 | 1 | ITU-R BT.709 |
 +-------+---------------------------------------+
 | 2 | unspecified |
 +-------+---------------------------------------+
 | 3 | reserved2 |
 +-------+---------------------------------------+
 | 4 | Gamma 2.2 curve - BT.470M |
 +-------+---------------------------------------+
 | 5 | Gamma 2.8 curve - BT.470BG |
 +-------+---------------------------------------+
 | 6 | SMPTE 170M |
 +-------+---------------------------------------+
 | 7 | SMPTE 240M |
 +-------+---------------------------------------+
 | 8 | Linear |
 +-------+---------------------------------------+
 | 9 | Log |
 +-------+---------------------------------------+
 | 10 | Log Sqrt |
 +-------+---------------------------------------+
 | 11 | IEC 61966-2-4 |
 +-------+---------------------------------------+
 | 12 | ITU-R BT.1361 Extended Colour Gamut |
 +-------+---------------------------------------+
 | 13 | IEC 61966-2-1 |
 +-------+---------------------------------------+
 | 14 | ITU-R BT.2020 10 bit |
 +-------+---------------------------------------+
 | 15 | ITU-R BT.2020 12 bit |
 +-------+---------------------------------------+
 | 16 | ITU-R BT.2100 Perceptual Quantization |
 +-------+---------------------------------------+
 | 17 | SMPTE ST 428-1 |
 +-------+---------------------------------------+
 | 18 | ARIB STD-B67 (HLG) |
 +-------+---------------------------------------+

 Table 18: TransferCharacteristics values

 stream copy: True (Section 8)

Lhomme, et al. Expires 24 April 2024 [Page 50]

Internet-Draft Matroska Format October 2023

5.1.4.1.28.27. Primaries Element

 id / type / default: 0x55BB / uinteger / 2
 path: \Segment\Tracks\TrackEntry\Video\Colour\Primaries
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: The colour primaries of the video. For clarity, the
 value and meanings for Primaries are adopted from Table 2 of
 [ITU-H.273].

 restrictions:

 +=======+==+
 | value | label |
 +=======+==+
 | 0 | reserved |
 +-------+--+
 | 1 | ITU-R BT.709 |
 +-------+--+
 | 2 | unspecified |
 +-------+--+
 | 3 | reserved2 |
 +-------+--+
 | 4 | ITU-R BT.470M |
 +-------+--+
 | 5 | ITU-R BT.470BG - BT.601 625 |
 +-------+--+
 | 6 | ITU-R BT.601 525 - SMPTE 170M |
 +-------+--+
 | 7 | SMPTE 240M |
 +-------+--+
 | 8 | FILM |
 +-------+--+
 | 9 | ITU-R BT.2020 |
 +-------+--+
 | 10 | SMPTE ST 428-1 |
 +-------+--+
 | 11 | SMPTE RP 432-2 |
 +-------+--+
 | 12 | SMPTE EG 432-2 |
 +-------+--+
 | 22 | EBU Tech. 3213-E - JEDEC P22 phosphors |
 +-------+--+

 Table 19: Primaries values

 stream copy: True (Section 8)

Lhomme, et al. Expires 24 April 2024 [Page 51]

Internet-Draft Matroska Format October 2023

5.1.4.1.28.28. MaxCLL Element

 id / type: 0x55BC / uinteger
 path: \Segment\Tracks\TrackEntry\Video\Colour\MaxCLL
 maxOccurs: 1
 minver: 4
 definition: Maximum brightness of a single pixel (Maximum Content
 Light Level) in candelas per square meter (cd/m^2).

 stream copy: True (Section 8)

5.1.4.1.28.29. MaxFALL Element

 id / type: 0x55BD / uinteger
 path: \Segment\Tracks\TrackEntry\Video\Colour\MaxFALL
 maxOccurs: 1
 minver: 4
 definition: Maximum brightness of a single full frame (Maximum
 Frame-Average Light Level) in candelas per square meter (cd/m^2).

 stream copy: True (Section 8)

5.1.4.1.28.30. MasteringMetadata Element

 id / type: 0x55D0 / master
 path: \Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata
 maxOccurs: 1
 minver: 4
 definition: SMPTE 2086 mastering data.

 stream copy: True (Section 8)

5.1.4.1.28.31. PrimaryRChromaticityX Element

 id / type: 0x55D1 / float
 range: 0x0p+0-0x1p+0
 path: \Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\Prim
 aryRChromaticityX
 maxOccurs: 1
 minver: 4
 definition: Red X chromaticity coordinate, as defined by [CIE-1931].

 stream copy: True (Section 8)

5.1.4.1.28.32. PrimaryRChromaticityY Element

 id / type: 0x55D2 / float
 range: 0x0p+0-0x1p+0

Lhomme, et al. Expires 24 April 2024 [Page 52]

Internet-Draft Matroska Format October 2023

 path: \Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\Prim
 aryRChromaticityY
 maxOccurs: 1
 minver: 4
 definition: Red Y chromaticity coordinate, as defined by [CIE-1931].

 stream copy: True (Section 8)

5.1.4.1.28.33. PrimaryGChromaticityX Element

 id / type: 0x55D3 / float
 range: 0x0p+0-0x1p+0
 path: \Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\Prim
 aryGChromaticityX
 maxOccurs: 1
 minver: 4
 definition: Green X chromaticity coordinate, as defined by
 [CIE-1931].

 stream copy: True (Section 8)

5.1.4.1.28.34. PrimaryGChromaticityY Element

 id / type: 0x55D4 / float
 range: 0x0p+0-0x1p+0
 path: \Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\Prim
 aryGChromaticityY
 maxOccurs: 1
 minver: 4
 definition: Green Y chromaticity coordinate, as defined by
 [CIE-1931].

 stream copy: True (Section 8)

5.1.4.1.28.35. PrimaryBChromaticityX Element

 id / type: 0x55D5 / float
 range: 0x0p+0-0x1p+0
 path: \Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\Prim
 aryBChromaticityX
 maxOccurs: 1
 minver: 4
 definition: Blue X chromaticity coordinate, as defined by
 [CIE-1931].

 stream copy: True (Section 8)

Lhomme, et al. Expires 24 April 2024 [Page 53]

Internet-Draft Matroska Format October 2023

5.1.4.1.28.36. PrimaryBChromaticityY Element

 id / type: 0x55D6 / float
 range: 0x0p+0-0x1p+0
 path: \Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\Prim
 aryBChromaticityY
 maxOccurs: 1
 minver: 4
 definition: Blue Y chromaticity coordinate, as defined by
 [CIE-1931].

 stream copy: True (Section 8)

5.1.4.1.28.37. WhitePointChromaticityX Element

 id / type: 0x55D7 / float
 range: 0x0p+0-0x1p+0
 path: \Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\Whit
 ePointChromaticityX
 maxOccurs: 1
 minver: 4
 definition: White X chromaticity coordinate, as defined by
 [CIE-1931].

 stream copy: True (Section 8)

5.1.4.1.28.38. WhitePointChromaticityY Element

 id / type: 0x55D8 / float
 range: 0x0p+0-0x1p+0
 path: \Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\Whit
 ePointChromaticityY
 maxOccurs: 1
 minver: 4
 definition: White Y chromaticity coordinate, as defined by
 [CIE-1931].

 stream copy: True (Section 8)

5.1.4.1.28.39. LuminanceMax Element

 id / type: 0x55D9 / float
 range: >= 0x0p+0
 path: \Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\Lumi
 nanceMax
 maxOccurs: 1
 minver: 4
 definition: Maximum luminance. Represented in candelas per square

Lhomme, et al. Expires 24 April 2024 [Page 54]

Internet-Draft Matroska Format October 2023

 meter (cd/m^2).

 stream copy: True (Section 8)

5.1.4.1.28.40. LuminanceMin Element

 id / type: 0x55DA / float
 range: >= 0x0p+0
 path: \Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\Lumi
 nanceMin
 maxOccurs: 1
 minver: 4
 definition: Minimum luminance. Represented in candelas per square
 meter (cd/m^2).

 stream copy: True (Section 8)

5.1.4.1.28.41. Projection Element

 id / type: 0x7670 / master
 path: \Segment\Tracks\TrackEntry\Video\Projection
 maxOccurs: 1
 minver: 4
 definition: Describes the video projection details. Used to render
 spherical, VR videos or flipping videos horizontally/vertically.

 stream copy: True (Section 8)

5.1.4.1.28.42. ProjectionType Element

 id / type / default: 0x7671 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\Video\Projection\ProjectionType
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: Describes the projection used for this video track.

 restrictions:

Lhomme, et al. Expires 24 April 2024 [Page 55]

Internet-Draft Matroska Format October 2023

 +=======+=================+
 | value | label |
 +=======+=================+
 | 0 | rectangular |
 +-------+-----------------+
 | 1 | equirectangular |
 +-------+-----------------+
 | 2 | cubemap |
 +-------+-----------------+
 | 3 | mesh |
 +-------+-----------------+

 Table 20:
 ProjectionType values

 stream copy: True (Section 8)

5.1.4.1.28.43. ProjectionPrivate Element

 id / type: 0x7672 / binary
 path: \Segment\Tracks\TrackEntry\Video\Projection\ProjectionPrivate
 maxOccurs: 1
 minver: 4
 definition: Private data that only applies to a specific projection.

 * If ProjectionType equals 0 (Rectangular), then this element MUST
 NOT be present.
 * If ProjectionType equals 1 (Equirectangular), then this element
 MUST be present and contain the same binary data that would be
 stored inside an ISOBMFF Equirectangular Projection Box (’equi’).
 * If ProjectionType equals 2 (Cubemap), then this element MUST be
 present and contain the same binary data that would be stored
 inside an ISOBMFF Cubemap Projection Box (’cbmp’).
 * If ProjectionType equals 3 (Mesh), then this element MUST be
 present and contain the same binary data that would be stored
 inside an ISOBMFF Mesh Projection Box (’mshp’).

 usage notes: ISOBMFF box size and fourcc fields are not included in
 the binary data, but the FullBox version and flag fields are.
 This is to avoid redundant framing information while preserving
 versioning and semantics between the two container formats.

 stream copy: True (Section 8)

5.1.4.1.28.44. ProjectionPoseYaw Element

 id / type / default: 0x7673 / float / 0x0p+0
 range: >= -0xB4p+0, <= 0xB4p+0

Lhomme, et al. Expires 24 April 2024 [Page 56]

Internet-Draft Matroska Format October 2023

 path: \Segment\Tracks\TrackEntry\Video\Projection\ProjectionPoseYaw
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: Specifies a yaw rotation to the projection.

 Value represents a clockwise rotation, in degrees, around the up
 vector. This rotation must be applied before any ProjectionPosePitch
 or ProjectionPoseRoll rotations. The value of this element MUST be
 in the -180 to 180 degree range, both included.

 Setting ProjectionPoseYaw to 180 or -180 degrees, with the
 ProjectionPoseRoll and ProjectionPosePitch set to 0 degrees flips the
 image horizontally.

 stream copy: True (Section 8)

5.1.4.1.28.45. ProjectionPosePitch Element

 id / type / default: 0x7674 / float / 0x0p+0
 range: >= -0x5Ap+0, <= 0x5Ap+0
 path: \Segment\Tracks\TrackEntry\Video\Projection\ProjectionPosePitc
 h
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: Specifies a pitch rotation to the projection.

 Value represents a counter-clockwise rotation, in degrees, around the
 right vector. This rotation must be applied after the
 ProjectionPoseYaw rotation and before the ProjectionPoseRoll
 rotation. The value of this element MUST be in the -90 to 90 degree
 range, both included.

 stream copy: True (Section 8)

5.1.4.1.28.46. ProjectionPoseRoll Element

 id / type / default: 0x7675 / float / 0x0p+0
 range: >= -0xB4p+0, <= 0xB4p+0
 path: \Segment\Tracks\TrackEntry\Video\Projection\ProjectionPoseRoll
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: Specifies a roll rotation to the projection.

 Value represents a counter-clockwise rotation, in degrees, around the
 forward vector. This rotation must be applied after the
 ProjectionPoseYaw and ProjectionPosePitch rotations. The value of
 this element MUST be in the -180 to 180 degree range, both included.

Lhomme, et al. Expires 24 April 2024 [Page 57]

Internet-Draft Matroska Format October 2023

 Setting ProjectionPoseRoll to 180 or -180 degrees, the
 ProjectionPoseYaw to 180 or -180 degrees with ProjectionPosePitch set
 to 0 degrees flips the image vertically.

 Setting ProjectionPoseRoll to 180 or -180 degrees, with the
 ProjectionPoseYaw and ProjectionPosePitch set to 0 degrees flips the
 image horizontally and vertically.

 stream copy: True (Section 8)

5.1.4.1.29. Audio Element

 id / type: 0xE1 / master
 path: \Segment\Tracks\TrackEntry\Audio
 maxOccurs: 1
 definition: Audio settings.

5.1.4.1.29.1. SamplingFrequency Element

 id / type / default: 0xB5 / float / 0x1.f4p+12
 range: > 0x0p+0
 path: \Segment\Tracks\TrackEntry\Audio\SamplingFrequency
 minOccurs / maxOccurs: 1 / 1
 definition: Sampling frequency in Hz.

 stream copy: True (Section 8)

5.1.4.1.29.2. OutputSamplingFrequency Element

 id / type: 0x78B5 / float
 range: > 0x0p+0
 path: \Segment\Tracks\TrackEntry\Audio\OutputSamplingFrequency
 maxOccurs: 1
 definition: Real output sampling frequency in Hz (used for SBR
 techniques).

 notes:

 +===========+==+
 | attribute | note |
 +===========+==+
 | default | The default value for OutputSamplingFrequency of the |
 | | same TrackEntry is equal to the SamplingFrequency. |
 +-----------+--+

 Table 21: OutputSamplingFrequency implementation notes

Lhomme, et al. Expires 24 April 2024 [Page 58]

Internet-Draft Matroska Format October 2023

5.1.4.1.29.3. Channels Element

 id / type / default: 0x9F / uinteger / 1
 range: not 0
 path: \Segment\Tracks\TrackEntry\Audio\Channels
 minOccurs / maxOccurs: 1 / 1
 definition: Numbers of channels in the track.

 stream copy: True (Section 8)

5.1.4.1.29.4. BitDepth Element

 id / type: 0x6264 / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\Audio\BitDepth
 maxOccurs: 1
 definition: Bits per sample, mostly used for PCM.

 stream copy: True (Section 8)

5.1.4.1.30. TrackOperation Element

 id / type: 0xE2 / master
 path: \Segment\Tracks\TrackEntry\TrackOperation
 maxOccurs: 1
 minver: 3
 definition: Operation that needs to be applied on tracks to create
 this virtual track. For more details look at Section 18.8.

 stream copy: True (Section 8)

5.1.4.1.30.1. TrackCombinePlanes Element

 id / type: 0xE3 / master
 path: \Segment\Tracks\TrackEntry\TrackOperation\TrackCombinePlanes
 maxOccurs: 1
 minver: 3
 definition: Contains the list of all video plane tracks that need to
 be combined to create this 3D track

 stream copy: True (Section 8)

5.1.4.1.30.2. TrackPlane Element

 id / type: 0xE4 / master
 path: \Segment\Tracks\TrackEntry\TrackOperation\TrackCombinePlanes\T
 rackPlane
 minOccurs: 1

Lhomme, et al. Expires 24 April 2024 [Page 59]

Internet-Draft Matroska Format October 2023

 minver: 3
 definition: Contains a video plane track that need to be combined to
 create this 3D track

 stream copy: True (Section 8)

5.1.4.1.30.3. TrackPlaneUID Element

 id / type: 0xE5 / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\TrackOperation\TrackCombinePlanes\T
 rackPlane\TrackPlaneUID
 minOccurs / maxOccurs: 1 / 1
 minver: 3
 definition: The trackUID number of the track representing the plane.

 stream copy: True (Section 8)

5.1.4.1.30.4. TrackPlaneType Element

 id / type: 0xE6 / uinteger
 path: \Segment\Tracks\TrackEntry\TrackOperation\TrackCombinePlanes\T
 rackPlane\TrackPlaneType
 minOccurs / maxOccurs: 1 / 1
 minver: 3
 definition: The kind of plane this track corresponds to.

 restrictions:

 +=======+============+
 | value | label |
 +=======+============+
 | 0 | left eye |
 +-------+------------+
 | 1 | right eye |
 +-------+------------+
 | 2 | background |
 +-------+------------+

 Table 22:
 TrackPlaneType values

 stream copy: True (Section 8)

5.1.4.1.30.5. TrackJoinBlocks Element

 id / type: 0xE9 / master
 path: \Segment\Tracks\TrackEntry\TrackOperation\TrackJoinBlocks

Lhomme, et al. Expires 24 April 2024 [Page 60]

Internet-Draft Matroska Format October 2023

 maxOccurs: 1
 minver: 3
 definition: Contains the list of all tracks whose Blocks need to be
 combined to create this virtual track

 stream copy: True (Section 8)

5.1.4.1.30.6. TrackJoinUID Element

 id / type: 0xED / uinteger
 range: not 0
 path: \Segment\Tracks\TrackEntry\TrackOperation\TrackJoinBlocks\Trac
 kJoinUID
 minOccurs: 1
 minver: 3
 definition: The trackUID number of a track whose blocks are used to
 create this virtual track.

 stream copy: True (Section 8)

5.1.4.1.31. ContentEncodings Element

 id / type: 0x6D80 / master
 path: \Segment\Tracks\TrackEntry\ContentEncodings
 maxOccurs: 1
 definition: Settings for several content encoding mechanisms like
 compression or encryption.

 stream copy: True (Section 8)

5.1.4.1.31.1. ContentEncoding Element

 id / type: 0x6240 / master
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding
 minOccurs: 1
 definition: Settings for one content encoding like compression or
 encryption.

 stream copy: True (Section 8)

5.1.4.1.31.2. ContentEncodingOrder Element

 id / type / default: 0x5031 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncodingOrder
 minOccurs / maxOccurs: 1 / 1
 definition: Tell in which order to apply each ContentEncoding of the

Lhomme, et al. Expires 24 April 2024 [Page 61]

Internet-Draft Matroska Format October 2023

 ContentEncodings. The decoder/demuxer MUST start with the
 ContentEncoding with the highest ContentEncodingOrder and work its
 way down to the ContentEncoding with the lowest
 ContentEncodingOrder. This value MUST be unique over for each
 ContentEncoding found in the ContentEncodings of this TrackEntry.

 stream copy: True (Section 8)

5.1.4.1.31.3. ContentEncodingScope Element

 id / type / default: 0x5032 / uinteger / 1
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncodingScope
 minOccurs / maxOccurs: 1 / 1
 definition: A bit field that describes which Elements have been
 modified in this way. Values (big-endian) can be OR’ed.

 defined values:

 +=======+=========+===+
 | value | label | definition |
 +=======+=========+===+
 | 1 | Block | All frame contents, excluding lacing |
 | | | data. |
 +-------+---------+---+
 | 2 | Private | The track’s CodecPrivate data. |
 +-------+---------+---+
 | 4 | Next | The next ContentEncoding (next |
 | | | ContentEncodingOrder. Either the data |
 | | | inside ContentCompression and/or |
 | | | ContentEncryption).This value SHOULD NOT |
 | | | be used as it’s not supported by players. |
 +-------+---------+---+

 Table 23: ContentEncodingScope values

 stream copy: True (Section 8)

5.1.4.1.31.4. ContentEncodingType Element

 id / type / default: 0x5033 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncodingType
 minOccurs / maxOccurs: 1 / 1
 definition: A value describing what kind of transformation is
 applied.

 restrictions:

Lhomme, et al. Expires 24 April 2024 [Page 62]

Internet-Draft Matroska Format October 2023

 +=======+=============+
 | value | label |
 +=======+=============+
 | 0 | Compression |
 +-------+-------------+
 | 1 | Encryption |
 +-------+-------------+

 Table 24:
 ContentEncodingType
 values

 stream copy: True (Section 8)

5.1.4.1.31.5. ContentCompression Element

 id / type: 0x5034 / master
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentCompression
 maxOccurs: 1
 definition: Settings describing the compression used. This Element
 MUST be present if the value of ContentEncodingType is 0 and
 absent otherwise. Each block MUST be decompressable even if no
 previous block is available in order not to prevent seeking.

 stream copy: True (Section 8)

5.1.4.1.31.6. ContentCompAlgo Element

 id / type / default: 0x4254 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentCompression\ContentCompAlgo
 minOccurs / maxOccurs: 1 / 1
 definition: The compression algorithm used.

 defined values:

Lhomme, et al. Expires 24 April 2024 [Page 63]

Internet-Draft Matroska Format October 2023

 +=======+===========+===+
 | value | label | definition |
 +=======+===========+===+
 | 0 | zlib | zlib compression [RFC1950]. |
 +-------+-----------+---+
 | 1 | bzlib | bzip2 compression [BZIP2], SHOULD NOT |
 | | | be used; see usage notes. |
 +-------+-----------+---+
 | 2 | lzo1x | Lempel-Ziv-Oberhumer compression [LZO], |
 | | | SHOULD NOT be used; see usage notes. |
 +-------+-----------+---+
 | 3 | Header | Octets in ContentCompSettings |
 | | Stripping | (Section 5.1.4.1.31.7) have been |
 | | | stripped from each frame. |
 +-------+-----------+---+

 Table 25: ContentCompAlgo values

 usage notes: Compression method "1" (bzlib) and "2" (lzo1x) are
 lacking proper documentation on the format which limits
 implementation possibilities. Due to licensing conflicts on
 commonly available libraries compression methods "2" (lzo1x) does
 not offer widespread interoperability. A Matroska Writer SHOULD
 NOT use these compression methods by default. A Matroska Reader
 MAY support methods "1" and "2" as possible, and SHOULD support
 other methods.

 stream copy: True (Section 8)

5.1.4.1.31.7. ContentCompSettings Element

 id / type: 0x4255 / binary
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentCompression\ContentCompSettings
 maxOccurs: 1
 definition: Settings that might be needed by the decompressor. For
 Header Stripping (ContentCompAlgo=3), the bytes that were removed
 from the beginning of each frames of the track.

 stream copy: True (Section 8)

5.1.4.1.31.8. ContentEncryption Element

 id / type: 0x5035 / master
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncryption
 maxOccurs: 1
 definition: Settings describing the encryption used. This Element

Lhomme, et al. Expires 24 April 2024 [Page 64]

Internet-Draft Matroska Format October 2023

 MUST be present if the value of ContentEncodingType is 1
 (encryption) and MUST be ignored otherwise. A Matroska Player MAY
 support encryption.

 stream copy: True (Section 8)

5.1.4.1.31.9. ContentEncAlgo Element

 id / type / default: 0x47E1 / uinteger / 0
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncryption\ContentEncAlgo
 minOccurs / maxOccurs: 1 / 1
 definition: The encryption algorithm used.

 defined values:

 +=======+===============+===+
 | value | label | definition |
 +=======+===============+===+
 | 0 | Not | The data are not encrypted. |
 | | encrypted | |
 +-------+---------------+---+
 | 1 | DES | Data Encryption Standard (DES) |
 | | | [FIPS.46-3].This value SHOULD be avoided. |
 +-------+---------------+---+
 | 2 | 3DES | Triple Data Encryption Algorithm |
 | | | [SP.800-67].This value SHOULD be avoided. |
 +-------+---------------+---+
 | 3 | Twofish | Twofish Encryption Algorithm [Twofish]. |
 +-------+---------------+---+
 | 4 | Blowfish | Blowfish Encryption Algorithm |
 | | | [Blowfish].This value SHOULD be avoided. |
 +-------+---------------+---+
 | 5 | AES | Advanced Encryption Standard (AES) |
 | | | [FIPS.197]. |
 +-------+---------------+---+

 Table 26: ContentEncAlgo values

 stream copy: True (Section 8)

5.1.4.1.31.10. ContentEncKeyID Element

 id / type: 0x47E2 / binary
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncryption\ContentEncKeyID
 maxOccurs: 1
 definition: For public key algorithms this is the ID of the public

Lhomme, et al. Expires 24 April 2024 [Page 65]

Internet-Draft Matroska Format October 2023

 key the data was encrypted with.

 stream copy: True (Section 8)

5.1.4.1.31.11. ContentEncAESSettings Element

 id / type: 0x47E7 / master
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncryption\ContentEncAESSettings
 maxOccurs: 1
 minver: 4
 definition: Settings describing the encryption algorithm used.

 notes:

 +===========+===+
 | attribute | note |
 +===========+===+
 | maxOccurs | ContentEncAESSettings MUST NOT be set |
 | | (maxOccurs=0) if ContentEncAlgo is not AES (5). |
 +-----------+---+

 Table 27: ContentEncAESSettings implementation notes

 stream copy: True (Section 8)

5.1.4.1.31.12. AESSettingsCipherMode Element

 id / type: 0x47E8 / uinteger
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncryption\ContentEncAESSettings\AESSettingsCipherMode
 minOccurs / maxOccurs: 1 / 1
 minver: 4
 definition: The AES cipher mode used in the encryption.

 defined values:

 +=======+=========+=====================================+
 | value | label | definition |
 +=======+=========+=====================================+
 | 1 | AES-CTR | Counter [SP.800-38A]. |
 +-------+---------+-------------------------------------+
 | 2 | AES-CBC | Cipher Block Chaining [SP.800-38A]. |
 +-------+---------+-------------------------------------+

 Table 28: AESSettingsCipherMode values

 notes:

Lhomme, et al. Expires 24 April 2024 [Page 66]

Internet-Draft Matroska Format October 2023

 +===========+===+
 | attribute | note |
 +===========+===+
 | maxOccurs | AESSettingsCipherMode MUST NOT be set |
 | | (maxOccurs=0) if ContentEncAlgo is not AES (5). |
 +-----------+---+

 Table 29: AESSettingsCipherMode implementation notes

 stream copy: True (Section 8)

5.1.5. Cues Element

 id / type: 0x1C53BB6B / master
 path: \Segment\Cues
 minOccurs / maxOccurs: see implementation notes / 1
 definition: A Top-Level Element to speed seeking access. All
 entries are local to the Segment.

 notes:

 +===========+==+
 | attribute | note |
 +===========+==+
 | minOccurs | This Element SHOULD be set when the Segment is not |
 | | transmitted as a live stream; see Section 23.2. |
 +-----------+--+

 Table 30: Cues implementation notes

5.1.5.1. CuePoint Element

 id / type: 0xBB / master
 path: \Segment\Cues\CuePoint
 minOccurs: 1
 definition: Contains all information relative to a seek point in the
 Segment.

5.1.5.1.1. CueTime Element

 id / type: 0xB3 / uinteger
 path: \Segment\Cues\CuePoint\CueTime
 minOccurs / maxOccurs: 1 / 1
 definition: Absolute timestamp of the seek point, expressed in
 Matroska Ticks -- i.e., in nanoseconds; see Section 11.1.

Lhomme, et al. Expires 24 April 2024 [Page 67]

Internet-Draft Matroska Format October 2023

5.1.5.1.2. CueTrackPositions Element

 id / type: 0xB7 / master
 path: \Segment\Cues\CuePoint\CueTrackPositions
 minOccurs: 1
 definition: Contain positions for different tracks corresponding to
 the timestamp.

5.1.5.1.2.1. CueTrack Element

 id / type: 0xF7 / uinteger
 range: not 0
 path: \Segment\Cues\CuePoint\CueTrackPositions\CueTrack
 minOccurs / maxOccurs: 1 / 1
 definition: The track for which a position is given.

5.1.5.1.2.2. CueClusterPosition Element

 id / type: 0xF1 / uinteger
 path: \Segment\Cues\CuePoint\CueTrackPositions\CueClusterPosition
 minOccurs / maxOccurs: 1 / 1
 definition: The Segment Position (Section 16) of the Cluster
 containing the associated Block.

5.1.5.1.2.3. CueRelativePosition Element

 id / type: 0xF0 / uinteger
 path: \Segment\Cues\CuePoint\CueTrackPositions\CueRelativePosition
 maxOccurs: 1
 minver: 4
 definition: The relative position inside the Cluster of the
 referenced SimpleBlock or BlockGroup with 0 being the first
 possible position for an Element inside that Cluster.

5.1.5.1.2.4. CueDuration Element

 id / type: 0xB2 / uinteger
 path: \Segment\Cues\CuePoint\CueTrackPositions\CueDuration
 maxOccurs: 1
 minver: 4
 definition: The duration of the block, expressed in Segment Ticks
 which is based on TimestampScale; see Section 11.1. If missing,
 the track’s DefaultDuration does not apply and no duration
 information is available in terms of the cues.

5.1.5.1.2.5. CueBlockNumber Element

 id / type: 0x5378 / uinteger

Lhomme, et al. Expires 24 April 2024 [Page 68]

Internet-Draft Matroska Format October 2023

 range: not 0
 path: \Segment\Cues\CuePoint\CueTrackPositions\CueBlockNumber
 maxOccurs: 1
 definition: Number of the Block in the specified Cluster.

5.1.5.1.2.6. CueCodecState Element

 id / type / default: 0xEA / uinteger / 0
 path: \Segment\Cues\CuePoint\CueTrackPositions\CueCodecState
 minOccurs / maxOccurs: 1 / 1
 minver: 2
 definition: The Segment Position (Section 16) of the Codec State
 corresponding to this Cue Element. 0 means that the data is taken
 from the initial Track Entry.

5.1.5.1.2.7. CueReference Element

 id / type: 0xDB / master
 path: \Segment\Cues\CuePoint\CueTrackPositions\CueReference
 minver: 2
 definition: The Clusters containing the referenced Blocks.

5.1.5.1.2.8. CueRefTime Element

 id / type: 0x96 / uinteger
 path: \Segment\Cues\CuePoint\CueTrackPositions\CueReference\CueRefTi
 me
 minOccurs / maxOccurs: 1 / 1
 minver: 2
 definition: Timestamp of the referenced Block, expressed in Matroska
 Ticks -- i.e., in nanoseconds; see Section 11.1.

5.1.6. Attachments Element

 id / type: 0x1941A469 / master
 path: \Segment\Attachments
 maxOccurs: 1
 definition: Contain attached files.

5.1.6.1. AttachedFile Element

 id / type: 0x61A7 / master
 path: \Segment\Attachments\AttachedFile
 minOccurs: 1
 definition: An attached file.

Lhomme, et al. Expires 24 April 2024 [Page 69]

Internet-Draft Matroska Format October 2023

5.1.6.1.1. FileDescription Element

 id / type: 0x467E / utf-8
 path: \Segment\Attachments\AttachedFile\FileDescription
 maxOccurs: 1
 definition: A human-friendly name for the attached file.

5.1.6.1.2. FileName Element

 id / type: 0x466E / utf-8
 path: \Segment\Attachments\AttachedFile\FileName
 minOccurs / maxOccurs: 1 / 1
 definition: Filename of the attached file.

5.1.6.1.3. FileMediaType Element

 id / type: 0x4660 / string
 path: \Segment\Attachments\AttachedFile\FileMediaType
 minOccurs / maxOccurs: 1 / 1
 definition: Media type of the file following the [RFC6838] format.

 stream copy: True (Section 8)

5.1.6.1.4. FileData Element

 id / type: 0x465C / binary
 path: \Segment\Attachments\AttachedFile\FileData
 minOccurs / maxOccurs: 1 / 1
 definition: The data of the file.

 stream copy: True (Section 8)

5.1.6.1.5. FileUID Element

 id / type: 0x46AE / uinteger
 range: not 0
 path: \Segment\Attachments\AttachedFile\FileUID
 minOccurs / maxOccurs: 1 / 1
 definition: Unique ID representing the file, as random as possible.

 stream copy: True (Section 8)

5.1.7. Chapters Element

 id / type: 0x1043A770 / master
 path: \Segment\Chapters
 maxOccurs: 1

Lhomme, et al. Expires 24 April 2024 [Page 70]

Internet-Draft Matroska Format October 2023

 recurring: True

 definition: A system to define basic menus and partition data. For
 more detailed information, look at the Chapters explanation in
 Section 20.

5.1.7.1. EditionEntry Element

 id / type: 0x45B9 / master
 path: \Segment\Chapters\EditionEntry
 minOccurs: 1
 definition: Contains all information about a Segment edition.

5.1.7.1.1. EditionUID Element

 id / type: 0x45BC / uinteger
 range: not 0
 path: \Segment\Chapters\EditionEntry\EditionUID
 maxOccurs: 1
 definition: A unique ID to identify the edition. It’s useful for
 tagging an edition.

 stream copy: True (Section 8)

5.1.7.1.2. EditionFlagDefault Element

 id / type / default: 0x45DB / uinteger / 0
 range: 0-1
 path: \Segment\Chapters\EditionEntry\EditionFlagDefault
 minOccurs / maxOccurs: 1 / 1
 definition: Set to 1 if the edition SHOULD be used as the default
 one.

5.1.7.1.3. EditionFlagOrdered Element

 id / type / default: 0x45DD / uinteger / 0
 range: 0-1
 path: \Segment\Chapters\EditionEntry\EditionFlagOrdered
 minOccurs / maxOccurs: 1 / 1
 definition: Set to 1 if the chapters can be defined multiple times
 and the order to play them is enforced; see Section 20.1.3.

5.1.7.1.4. ChapterAtom Element

 id / type: 0xB6 / master
 path: \Segment\Chapters\EditionEntry\+ChapterAtom
 minOccurs: 1

Lhomme, et al. Expires 24 April 2024 [Page 71]

Internet-Draft Matroska Format October 2023

 recursive: True

 definition: Contains the atom information to use as the chapter atom
 (apply to all tracks).

5.1.7.1.4.1. ChapterUID Element

 id / type: 0x73C4 / uinteger
 range: not 0
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterUID
 minOccurs / maxOccurs: 1 / 1
 definition: A unique ID to identify the Chapter.

 stream copy: True (Section 8)

5.1.7.1.4.2. ChapterStringUID Element

 id / type: 0x5654 / utf-8
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterStringUID
 maxOccurs: 1
 minver: 3
 definition: A unique string ID to identify the Chapter. For example
 it is used as the storage for [WebVTT] cue identifier values.

5.1.7.1.4.3. ChapterTimeStart Element

 id / type: 0x91 / uinteger
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterTimeStart
 minOccurs / maxOccurs: 1 / 1
 definition: Timestamp of the start of Chapter, expressed in Matroska
 Ticks -- i.e., in nanoseconds; see Section 11.1.

5.1.7.1.4.4. ChapterTimeEnd Element

 id / type: 0x92 / uinteger
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterTimeEnd
 minOccurs / maxOccurs: see implementation notes / 1
 definition: Timestamp of the end of Chapter timestamp excluded,
 expressed in Matroska Ticks -- i.e., in nanoseconds; see
 Section 11.1. The value MUST be greater than or equal to the
 ChapterTimeStart of the same ChapterAtom.
 usage notes: The ChapterTimeEnd timestamp value being excluded, it
 MUST take in account the duration of the last frame it includes,
 especially for the ChapterAtom using the last frames of the
 Segment.

 notes:

Lhomme, et al. Expires 24 April 2024 [Page 72]

Internet-Draft Matroska Format October 2023

 +===========+==+
 | attribute | note |
 +===========+==+
 | minOccurs | ChapterTimeEnd MUST be set (minOccurs=1) if the |
 | | Edition is an ordered edition; see Section 20.1.3, |
 | | unless it’s a Parent Chapter; see Section 20.2.3 |
 +-----------+--+

 Table 31: ChapterTimeEnd implementation notes

5.1.7.1.4.5. ChapterFlagHidden Element

 id / type / default: 0x98 / uinteger / 0
 range: 0-1
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterFlagHidden
 minOccurs / maxOccurs: 1 / 1
 definition: Set to 1 if a chapter is hidden. Hidden chapters SHOULD
 NOT be available to the user interface (but still to Control
 Tracks; see Section 20.2.5 on Chapter flags).

5.1.7.1.4.6. ChapterSegmentUUID Element

 id / type: 0x6E67 / binary
 length: 16
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterSegmentUUID
 minOccurs / maxOccurs: see implementation notes / 1
 definition: The SegmentUUID of another Segment to play during this
 chapter.
 usage notes: The value MUST NOT be the SegmentUUID value of the
 Segment it belongs to.

 notes:

 +===========+==+
 | attribute | note |
 +===========+==+
 | minOccurs | ChapterSegmentUUID MUST be set (minOccurs=1) |
 | | if ChapterSegmentEditionUID is used; see |
 | | Section 17.2 on medium-linking Segments. |
 +-----------+--+

 Table 32: ChapterSegmentUUID implementation notes

5.1.7.1.4.7. ChapterSegmentEditionUID Element

 id / type: 0x6EBC / uinteger
 range: not 0
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterSegmentEdit

Lhomme, et al. Expires 24 April 2024 [Page 73]

Internet-Draft Matroska Format October 2023

 ionUID
 maxOccurs: 1
 definition: The EditionUID to play from the Segment linked in
 ChapterSegmentUUID. If ChapterSegmentEditionUID is undeclared,
 then no Edition of the linked Segment is used; see Section 17.2 on
 medium-linking Segments.

5.1.7.1.4.8. ChapterPhysicalEquiv Element

 id / type: 0x63C3 / uinteger
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterPhysicalEqu
 iv
 maxOccurs: 1
 definition: Specify the physical equivalent of this ChapterAtom like
 "DVD" (60) or "SIDE" (50); see Section 20.4 for a complete list of
 values.

5.1.7.1.4.9. ChapterDisplay Element

 id / type: 0x80 / master
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterDisplay
 definition: Contains all possible strings to use for the chapter
 display.

5.1.7.1.4.10. ChapString Element

 id / type: 0x85 / utf-8
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterDisplay\Cha
 pString
 minOccurs / maxOccurs: 1 / 1
 definition: Contains the string to use as the chapter atom.

5.1.7.1.4.11. ChapLanguage Element

 id / type / default: 0x437C / string / eng
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterDisplay\Cha
 pLanguage
 minOccurs: 1
 definition: A language corresponding to the string, in the Matroska
 languages form; see Section 12 on language codes. This Element
 MUST be ignored if a ChapLanguageBCP47 Element is used within the
 same ChapterDisplay Element.

5.1.7.1.4.12. ChapLanguageBCP47 Element

 id / type: 0x437D / string
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterDisplay\Cha
 pLanguageBCP47

Lhomme, et al. Expires 24 April 2024 [Page 74]

Internet-Draft Matroska Format October 2023

 minver: 4
 definition: A language corresponding to the ChapString, in the
 [BCP47] form; see Section 12 on language codes. If a
 ChapLanguageBCP47 Element is used, then any ChapLanguage and
 ChapCountry Elements used in the same ChapterDisplay MUST be
 ignored.

5.1.7.1.4.13. ChapCountry Element

 id / type: 0x437E / string
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapterDisplay\Cha
 pCountry
 definition: A country corresponding to the string, in the Matroska
 countries form; see Section 13 on country codes. This Element
 MUST be ignored if a ChapLanguageBCP47 Element is used within the
 same ChapterDisplay Element.

5.1.7.1.4.14. ChapProcess Element

 id / type: 0x6944 / master
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess
 definition: Contains all the commands associated to the Atom.

5.1.7.1.4.15. ChapProcessCodecID Element

 id / type / default: 0x6955 / uinteger / 0
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess\ChapPr
 ocessCodecID
 minOccurs / maxOccurs: 1 / 1
 definition: Contains the type of the codec used for the processing.
 A value of 0 means built-in Matroska processing (to be defined), a
 value of 1 means the DVD command set is used; see Section 20.3 on
 DVD menus. More codec IDs can be added later.

5.1.7.1.4.16. ChapProcessPrivate Element

 id / type: 0x450D / binary
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess\ChapPr
 ocessPrivate
 maxOccurs: 1
 definition: Some optional data attached to the ChapProcessCodecID
 information. For ChapProcessCodecID = 1, it is the "DVD level"
 equivalent; see Section 20.3 on DVD menus.

5.1.7.1.4.17. ChapProcessCommand Element

 id / type: 0x6911 / master
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess\ChapPr

Lhomme, et al. Expires 24 April 2024 [Page 75]

Internet-Draft Matroska Format October 2023

 ocessCommand
 definition: Contains all the commands associated to the Atom.

5.1.7.1.4.18. ChapProcessTime Element

 id / type: 0x6922 / uinteger
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess\ChapPr
 ocessCommand\ChapProcessTime
 minOccurs / maxOccurs: 1 / 1
 definition: Defines when the process command SHOULD be handled

 restrictions:

 +=======+===============================+
 | value | label |
 +=======+===============================+
 | 0 | during the whole chapter |
 +-------+-------------------------------+
 | 1 | before starting playback |
 +-------+-------------------------------+
 | 2 | after playback of the chapter |
 +-------+-------------------------------+

 Table 33: ChapProcessTime values

5.1.7.1.4.19. ChapProcessData Element

 id / type: 0x6933 / binary
 path: \Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess\ChapPr
 ocessCommand\ChapProcessData
 minOccurs / maxOccurs: 1 / 1
 definition: Contains the command information. The data SHOULD be
 interpreted depending on the ChapProcessCodecID value. For
 ChapProcessCodecID = 1, the data correspond to the binary DVD cell
 pre/post commands; see Section 20.3 on DVD menus.

5.1.8. Tags Element

 id / type: 0x1254C367 / master
 path: \Segment\Tags
 definition: Element containing metadata describing Tracks, Editions,
 Chapters, Attachments, or the Segment as a whole. A list of valid
 tags can be found in [MatroskaTags].

5.1.8.1. Tag Element

 id / type: 0x7373 / master
 path: \Segment\Tags\Tag

Lhomme, et al. Expires 24 April 2024 [Page 76]

Internet-Draft Matroska Format October 2023

 minOccurs: 1
 definition: A single metadata descriptor.

5.1.8.1.1. Targets Element

 id / type: 0x63C0 / master
 path: \Segment\Tags\Tag\Targets
 minOccurs / maxOccurs: 1 / 1
 definition: Specifies which other elements the metadata represented
 by the Tag applies to. If empty or omitted, then the Tag
 describes everything in the Segment.

5.1.8.1.1.1. TargetTypeValue Element

 id / type / default: 0x68CA / uinteger / 50
 path: \Segment\Tags\Tag\Targets\TargetTypeValue
 minOccurs / maxOccurs: 1 / 1
 definition: A number to indicate the logical level of the target.

 defined values:

Lhomme, et al. Expires 24 April 2024 [Page 77]

Internet-Draft Matroska Format October 2023

 +=======+===================+=================================+
 | value | label | definition |
 +=======+===================+=================================+
 | 70 | COLLECTION | The highest hierarchical level |
 | | | that tags can describe. |
 +-------+-------------------+---------------------------------+
 | 60 | EDITION / ISSUE / | A list of lower levels grouped |
 | | VOLUME / OPUS / | together. |
 | | SEASON / SEQUEL | |
 +-------+-------------------+---------------------------------+
 | 50 | ALBUM / OPERA / | The most common grouping level |
 | | CONCERT / MOVIE / | of music and video (equals to |
 | | EPISODE | an episode for TV series). |
 +-------+-------------------+---------------------------------+
 | 40 | PART / SESSION | When an album or episode has |
 | | | different logical parts. |
 +-------+-------------------+---------------------------------+
 | 30 | TRACK / SONG / | The common parts of an album or |
 | | CHAPTER | movie. |
 +-------+-------------------+---------------------------------+
 | 20 | SUBTRACK / | Corresponds to parts of a track |
 | | MOVEMENT / SCENE | for audio like a movement, or a |
 | | | scene in a movie. |
 +-------+-------------------+---------------------------------+
 | 10 | SHOT | The lowest hierarchy found in |
 | | | music or movies. |
 +-------+-------------------+---------------------------------+

 Table 34: TargetTypeValue values

5.1.8.1.1.2. TargetType Element

 id / type: 0x63CA / string
 path: \Segment\Tags\Tag\Targets\TargetType
 maxOccurs: 1
 definition: An informational string that can be used to display the
 logical level of the target like "ALBUM", "TRACK", "MOVIE",
 "CHAPTER", etc.

 restrictions:

Lhomme, et al. Expires 24 April 2024 [Page 78]

Internet-Draft Matroska Format October 2023

 +============+====================+
 | value | label |
 +============+====================+
 | COLLECTION | TargetTypeValue 70 |
 +------------+--------------------+
 | EDITION | TargetTypeValue 60 |
 +------------+--------------------+
 | ISSUE | TargetTypeValue 60 |
 +------------+--------------------+
 | VOLUME | TargetTypeValue 60 |
 +------------+--------------------+
 | OPUS | TargetTypeValue 60 |
 +------------+--------------------+
 | SEASON | TargetTypeValue 60 |
 +------------+--------------------+
 | SEQUEL | TargetTypeValue 60 |
 +------------+--------------------+
 | ALBUM | TargetTypeValue 50 |
 +------------+--------------------+
 | OPERA | TargetTypeValue 50 |
 +------------+--------------------+
 | CONCERT | TargetTypeValue 50 |
 +------------+--------------------+
 | MOVIE | TargetTypeValue 50 |
 +------------+--------------------+
 | EPISODE | TargetTypeValue 50 |
 +------------+--------------------+
 | PART | TargetTypeValue 40 |
 +------------+--------------------+
 | SESSION | TargetTypeValue 40 |
 +------------+--------------------+
 | TRACK | TargetTypeValue 30 |
 +------------+--------------------+
 | SONG | TargetTypeValue 30 |
 +------------+--------------------+
 | CHAPTER | TargetTypeValue 30 |
 +------------+--------------------+
 | SUBTRACK | TargetTypeValue 20 |
 +------------+--------------------+
 | MOVEMENT | TargetTypeValue 20 |
 +------------+--------------------+
 | SCENE | TargetTypeValue 20 |
 +------------+--------------------+
 | SHOT | TargetTypeValue 10 |
 +------------+--------------------+

 Table 35: TargetType values

Lhomme, et al. Expires 24 April 2024 [Page 79]

Internet-Draft Matroska Format October 2023

5.1.8.1.1.3. TagTrackUID Element

 id / type / default: 0x63C5 / uinteger / 0
 path: \Segment\Tags\Tag\Targets\TagTrackUID
 definition: A unique ID to identify the Track(s) the tags belong to.
 usage notes: If the value is 0 at this level, the tags apply to all
 tracks in the Segment. If set to any other value, it MUST match
 the TrackUID value of a track found in this Segment.

5.1.8.1.1.4. TagEditionUID Element

 id / type / default: 0x63C9 / uinteger / 0
 path: \Segment\Tags\Tag\Targets\TagEditionUID
 definition: A unique ID to identify the EditionEntry(s) the tags
 belong to.
 usage notes: If the value is 0 at this level, the tags apply to all
 editions in the Segment. If set to any other value, it MUST match
 the EditionUID value of an edition found in this Segment.

5.1.8.1.1.5. TagChapterUID Element

 id / type / default: 0x63C4 / uinteger / 0
 path: \Segment\Tags\Tag\Targets\TagChapterUID
 definition: A unique ID to identify the Chapter(s) the tags belong
 to.
 usage notes: If the value is 0 at this level, the tags apply to all
 chapters in the Segment. If set to any other value, it MUST match
 the ChapterUID value of a chapter found in this Segment.

5.1.8.1.1.6. TagAttachmentUID Element

 id / type / default: 0x63C6 / uinteger / 0
 path: \Segment\Tags\Tag\Targets\TagAttachmentUID
 definition: A unique ID to identify the Attachment(s) the tags
 belong to.
 usage notes: If the value is 0 at this level, the tags apply to all
 the attachments in the Segment. If set to any other value, it
 MUST match the FileUID value of an attachment found in this
 Segment.

5.1.8.1.2. SimpleTag Element

 id / type: 0x67C8 / master
 path: \Segment\Tags\Tag\+SimpleTag
 minOccurs: 1

 recursive: True

Lhomme, et al. Expires 24 April 2024 [Page 80]

Internet-Draft Matroska Format October 2023

 definition: Contains general information about the target.

5.1.8.1.2.1. TagName Element

 id / type: 0x45A3 / utf-8
 path: \Segment\Tags\Tag\+SimpleTag\TagName
 minOccurs / maxOccurs: 1 / 1
 definition: The name of the Tag that is going to be stored.

5.1.8.1.2.2. TagLanguage Element

 id / type / default: 0x447A / string / und
 path: \Segment\Tags\Tag\+SimpleTag\TagLanguage
 minOccurs / maxOccurs: 1 / 1
 definition: Specifies the language of the tag specified, in the
 Matroska languages form; see Section 12 on language codes. This
 Element MUST be ignored if the TagLanguageBCP47 Element is used
 within the same SimpleTag Element.

5.1.8.1.2.3. TagLanguageBCP47 Element

 id / type: 0x447B / string
 path: \Segment\Tags\Tag\+SimpleTag\TagLanguageBCP47
 maxOccurs: 1
 minver: 4
 definition: The language used in the TagString, in the [BCP47] form;
 see Section 12 on language codes. If this Element is used, then
 any TagLanguage Elements used in the same SimpleTag MUST be
 ignored.

5.1.8.1.2.4. TagDefault Element

 id / type / default: 0x4484 / uinteger / 1
 range: 0-1
 path: \Segment\Tags\Tag\+SimpleTag\TagDefault
 minOccurs / maxOccurs: 1 / 1
 definition: A boolean value to indicate if this is the default/
 original language to use for the given tag.

5.1.8.1.2.5. TagString Element

 id / type: 0x4487 / utf-8
 path: \Segment\Tags\Tag\+SimpleTag\TagString
 maxOccurs: 1
 definition: The value of the Tag.

Lhomme, et al. Expires 24 April 2024 [Page 81]

Internet-Draft Matroska Format October 2023

5.1.8.1.2.6. TagBinary Element

 id / type: 0x4485 / binary
 path: \Segment\Tags\Tag\+SimpleTag\TagBinary
 maxOccurs: 1
 definition: The values of the Tag, if it is binary. Note that this
 cannot be used in the same SimpleTag as TagString.

6. Matroska Element Ordering

 Except for the EBML Header and the CRC-32 Element, the EBML
 specification does not require any particular storage order for
 Elements. This specification however defines mandates and
 recommendations for ordering certain Elements in order to facilitate
 better playback, seeking, and editing efficiency. This section
 describes and offers rationale for ordering requirements and
 recommendations for Matroska.

6.1. Top-Level Elements

 The Info Element is the only REQUIRED Top-Level Element in a Matroska
 file. To be playable, Matroska MUST also contain at least one Tracks
 Element and Cluster Element. The first Info Element and the first
 Tracks Element MUST either be stored before the first Cluster Element
 or both SHALL be referenced by a SeekHead Element occurring before
 the first Cluster Element.

 All Top-Level Elements MUST use a 4-octet long EBML Element ID.

 When using Medium Linking, chapters are used to reference other
 Segments to play in a given order Section 17.2. A Segment containing
 these linked Chapters does not require a Track Element or a Cluster
 Element.

 It is possible to edit a Matroska file after it has been created.
 For example, chapters, tags, or attachments can be added. When new
 Top-Level Elements are added to a Matroska file, the SeekHead
 Element(s) MUST be updated so that the SeekHead Element(s) itemize
 the identity and position of all Top-Level Elements.

 Editing, removing, or adding Elements to a Matroska file often
 requires that some existing Elements be voided or extended.
 Transforming the existing Elements into Void Elements as padding can
 be used as a method to avoid moving large amounts of data around.

Lhomme, et al. Expires 24 April 2024 [Page 82]

Internet-Draft Matroska Format October 2023

6.2. CRC-32

 As noted by the EBML specification, if a CRC-32 Element is used, then
 the CRC-32 Element MUST be the first ordered Element within its
 Parent Element.

 In Matroska all Top-Level Elements of an EBML Document SHOULD include
 a CRC-32 Element as their first Child Element. The Segment Element,
 which is the Root Element, SHOULD NOT have a CRC-32 Element.

6.3. SeekHead

 If used, the first SeekHead Element MUST be the first non-CRC-32
 Child Element of the Segment Element. If a second SeekHead Element
 is used, then the first SeekHead Element MUST reference the identity
 and position of the second SeekHead.

 Additionally, the second SeekHead Element MUST only reference Cluster
 Elements and not any other Top-Level Element already contained within
 the first SeekHead Element.

 The second SeekHead Element MAY be stored in any order relative to
 the other Top-Level Elements. Whether one or two SeekHead Element(s)
 are used, the SeekHead Element(s) MUST collectively reference the
 identity and position of all Top-Level Elements except for the first
 SeekHead Element.

6.4. Cues (index)

 The Cues Element is RECOMMENDED to optimize seeking access in
 Matroska. It is programmatically simpler to add the Cues Element
 after all Cluster Elements have been written because this does not
 require a prediction of how much space to reserve before writing the
 Cluster Elements. However, storing the Cues Element before the
 Cluster Elements can provide some seeking advantages. If the Cues
 Element is present, then it SHOULD either be stored before the first
 Cluster Element or be referenced by a SeekHead Element.

6.5. Info

 The first Info Element SHOULD occur before the first Tracks Element
 and first Cluster Element except when referenced by a SeekHead
 Element.

Lhomme, et al. Expires 24 April 2024 [Page 83]

Internet-Draft Matroska Format October 2023

6.6. Chapters Element

 The Chapters Element SHOULD be placed before the Cluster Element(s).
 The Chapters Element can be used during playback even if the user
 does not need to seek. It immediately gives the user information
 about what section is being read and what other sections are
 available. In the case of Ordered Chapters it is RECOMMENDED to
 evaluate the logical linking even before playing. The Chapters
 Element SHOULD be placed before the first Tracks Element and after
 the first Info Element.

6.7. Attachments

 The Attachments Element is not intended to be used by default when
 playing the file, but could contain information relevant to the
 content, such as cover art or fonts. Cover art is useful even before
 the file is played and fonts could be needed before playback starts
 for initialization of subtitles. The Attachments Element MAY be
 placed before the first Cluster Element; however, if the Attachments
 Element is likely to be edited, then it SHOULD be placed after the
 last Cluster Element.

6.8. Tags

 The Tags Element is most subject to changes after the file was
 originally created. For easier editing, the Tags Element can be
 placed at the end of the Segment Element, even after the Attachments
 Element. On the other hand, it is inconvenient to have to seek in
 the Segment for tags, especially for network streams. So it’s better
 if the Tags Element is found early in the stream. When editing the
 Tags Element, the original Tags Element at the beginning can be
 overwritten with a Void Element and a new Tags Element written at the
 end of the Segment Element. The file and Segment sizes will only
 marginally change.

7. Matroska versioning

 Matroska is based upon the principle that a reading application does
 not have to support 100% of the specifications in order to be able to
 play the file. A Matroska file therefore contains version indicators
 that tell a reading application what to expect.

 It is possible and valid to have the version fields indicate that the
 file contains Matroska Elements from a higher specification version
 number while signaling that a reading application MUST only support a
 lower version number properly in order to play it back (possibly with
 a reduced feature set).

Lhomme, et al. Expires 24 April 2024 [Page 84]

Internet-Draft Matroska Format October 2023

 The EBML Header of each Matroska document informs the reading
 application on what version of Matroska to expect. The Elements
 within EBML Header with jurisdiction over this information are
 DocTypeVersion and DocTypeReadVersion.

 DocTypeVersion MUST be equal to or greater than the highest Matroska
 version number of any Element present in the Matroska file. For
 example, a file using the SimpleBlock Element (Section 5.1.3.4) MUST
 have a DocTypeVersion equal to or greater than 2. A file containing
 CueRelativePosition Elements (Section 5.1.5.1.2.3) MUST have a
 DocTypeVersion equal to or greater than 4.

 The DocTypeReadVersion MUST contain the minimum version number that a
 reading application can minimally support in order to play the file
 back -- optionally with a reduced feature set. For example, if a
 file contains only Elements of version 2 or lower except for
 CueRelativePosition (which is a version 4 Matroska Element), then
 DocTypeReadVersion SHOULD still be set to 2 and not 4 because
 evaluating CueRelativePosition is not necessary for standard playback
 -- it makes seeking more precise if used.

 A reading application supporting Matroska version V MUST NOT refuse
 to read a file with DocReadTypeVersion equal to or lower than V even
 if DocTypeVersion is greater than V.

 A reading application supporting at least Matroska version V reading
 a file whose DocTypeReadVersion field is equal to or lower than V
 MUST skip Matroska/EBML Elements it encounters but does not know
 about if that unknown element fits into the size constraints set by
 the current Parent Element.

8. Stream Copy

 It is sometimes necessary to create a Matroska file from another
 Matroska file, for example to add subtitles in a language or to edit
 out a portion of the content. Some values from the original Matroska
 file need to be kept the same in the destination file. For example,
 the SamplingFrequency of an audio track wouldn’t change between the
 two files. Some other values may change between the two files, for
 example the TrackNumber of an audio track when another track has been
 added.

 An Element is marked with a property: stream copy: True when the
 values of that Element need to be kept identical between the source
 and destination file. If that property is not set, elements may or
 may not keep the same value between the source and destination.

Lhomme, et al. Expires 24 April 2024 [Page 85]

Internet-Draft Matroska Format October 2023

9. DefaultDecodedFieldDuration

 The DefaultDecodedFieldDuration Element can signal to the displaying
 application how often fields of a video sequence will be available
 for displaying. It can be used for both interlaced and progressive
 content.

 If the video sequence is signaled as interlaced Section 5.1.4.1.28.1,
 then DefaultDecodedFieldDuration equals the period between two
 successive fields at the output of the decoding process. For video
 sequences signaled as progressive, DefaultDecodedFieldDuration is
 half of the period between two successive frames at the output of the
 decoding process.

 These values are valid at the end of the decoding process before
 post-processing (such as deinterlacing or inverse telecine) is
 applied.

 Examples:

 * Blu-ray movie: 1000000000 ns/(48/1.001) = 20854167 ns
 * PAL broadcast/DVD: 1000000000 ns/(50/1.000) = 20000000 ns
 * N/ATSC broadcast: 1000000000 ns/(60/1.001) = 16683333 ns
 * hard-telecined DVD: 1000000000 ns/(60/1.001) = 16683333 ns (60
 encoded interlaced fields per second)
 * soft-telecined DVD: 1000000000 ns/(60/1.001) = 16683333 ns (48
 encoded interlaced fields per second, with "repeat_first_field =
 1")

10. Cluster Blocks

 Frames using references SHOULD be stored in "coding order". That
 means the references first, and then the frames referencing them. A
 consequence is that timestamps might not be consecutive. But a frame
 with a past timestamp MUST reference a frame already known, otherwise
 it’s considered bad/void.

 Matroska has two similar ways to store frames in a block:

 * in a Block which is contained inside a BlockGroup,
 * or in a SimpleBlock which is directly in the Cluster.

 The SimpleBlock is usually preferred unless some extra elements of
 the BlockGroup need to be used. A Matroska Reader MUST support both
 types of blocks.

 Each block contains the same parts in the following order:

Lhomme, et al. Expires 24 April 2024 [Page 86]

Internet-Draft Matroska Format October 2023

 * a variable length header,
 * optionally the lacing information,
 * the consecutive frame(s)

 The block header starts with the number of the Track it corresponds
 to. The value MUST corresponding to the TrackNumber
 (Section 5.1.4.1.1) of a TrackEntry of the Segment.

 The TrackNumber is coded using the VINT mechanism described in
 Section 4 of [RFC8794]. To save space, the shortest VINT form SHOULD
 be used. The value can be coded on up to 8 octets. This is the only
 element with a variable size in the block header.

 The timestamp is expressed in Track Ticks; see Section 11.1. The
 value is stored as a signed value on 16 bits.

10.1. Block Structure

 This section describes the binary data contained in the Block Element
 Section 5.1.3.5.1. Bit 0 is the most significant bit.

 As the TrackNumber size can vary between 1 and 8 octets, there are 8
 different sizes for the Block header. We only provide the
 definitions for TrackNumber sizes of 1 and 2. The other variants can
 be deduced by extending the size of the TrackNumber by multiples of 8
 bits.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | | | |I|LAC|U|
 | Track Number | Timestamp | Rsvrd |N|ING|N|
 | | | |V| |U|
 +-+

 Figure 11: Block Header with 1 octet TrackNumber

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Track Number | Timestamp |
 +-+
 | |I|LAC|U|
 | Rsvrd |N|ING|N| ...
 | |V| |U|
 +-+

 Figure 12: Block Header with 2 octets TrackNumber

Lhomme, et al. Expires 24 April 2024 [Page 87]

Internet-Draft Matroska Format October 2023

 where:

 Track Number: 8, 16, 24, 32, 40, 48 or 64 bits
 an EBML VINT coded track number

 Timestamp: 16 bits
 signed timestamp in Track Ticks

 Rsvrd: 4 bits
 Reserved bits MUST be set to 0

 INV: 1 bit
 Invisible, the codec SHOULD decode this frame but not display it

 LACING: 2 bits
 using lacing mode

 * 00b : no lacing (Section 10.3.1)
 * 01b : Xiph lacing (Section 10.3.2)
 * 11b : EBML lacing (Section 10.3.3)
 * 10b : fixed-size lacing (Section 10.3.4)

 UNU: 1 bit
 unused bit

 The following data in the Block correspond to the lacing data and
 frames usage as described in each respective lacing mode.

10.2. SimpleBlock Structure

 This section describes the binary data contained in the SimpleBlock
 Element Section 5.1.3.4. Bit 0 is the most significant bit.

 The SimpleBlock is inspired by the Block structure; see Section 10.1.
 The main differences are the added Keyframe flag and Discardable
 flag. Otherwise, everything is the same.

 As the TrackNumber size can vary between 1 and 8 octets, there are 8
 different sizes for the SimpleBlock header. We only provide the
 definitions for TrackNumber sizes of 1 and 2. The other variants can
 be deduced by extending the size of the TrackNumber by multiples of 8
 bits.

Lhomme, et al. Expires 24 April 2024 [Page 88]

Internet-Draft Matroska Format October 2023

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | | |K| |I|LAC|D|
 | Track Number | Timestamp |E|Rsvrd|N|ING|I|
 | | |Y| |V| |S|
 +-+

 Figure 13: SimpleBlock Header with 1 octet TrackNumber

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Track Number | Timestamp |
 +-+
 |K| |I|LAC|D|
 |E|Rsvrd|N|ING|I| ...
 |Y| |V| |S|
 +-+

 Figure 14: SimpleBlock Header with 2 octets TrackNumber

 where:

 Track Number: 8, 16, 24, 32, 40, 48 or 64 bits
 an EBML VINT coded track number

 Timestamp: 16 bits
 signed timestamp in Track Ticks

 KEY: 1 bit
 Keyframe, set when the Block contains only keyframes

 Rsvrd: 3 bits
 Reserved bits MUST be set to 0

 INV: 1 bit
 Invisible, the codec SHOULD decode this frame but not display it

 LACING: 2 bits
 using lacing mode

 * 00b : no lacing (Section 10.3.1)
 * 01b : Xiph lacing (Section 10.3.2)
 * 11b : EBML lacing (Section 10.3.3)
 * 10b : fixed-size lacing (Section 10.3.4)

Lhomme, et al. Expires 24 April 2024 [Page 89]

Internet-Draft Matroska Format October 2023

 DIS: 1 bit
 Discardable, the frames of the Block can be discarded during
 playing if needed

 The following data in the SimpleBlock correspond to the lacing data
 and frames usage as described in each respective lacing mode.

10.3. Block Lacing

 Lacing is a mechanism to save space when storing data. It is
 typically used for small blocks of data (referred to as frames in
 Matroska). It packs multiple frames into a single Block or
 SimpleBlock.

 Lacing MUST NOT be used to store a single frame in a Block or
 SimpleBlock.

 There are 3 types of lacing:

 1. Xiph, inspired by what is found in the Ogg container [RFC3533]
 2. EBML, which is the same with sizes coded differently
 3. fixed-size, where the size is not coded

 When lacing is not used, i.e. to store a single frame, the lacing
 bits 5 and 6 of the Block or SimpleBlock MUST be set to zero.

 For example, a user wants to store 3 frames of the same track. The
 first frame is 800 octets long, the second is 500 octets long and the
 third is 1000 octets long. As these data are small, they can be
 stored in a lace to save space.

 It is possible not to use lacing at all and just store a single frame
 without any extra data. When the FlagLacing -- Section 5.1.4.1.12 --
 is set to "0" all blocks of that track MUST NOT use lacing.

10.3.1. No lacing

 When no lacing is used, the number of frames in the lace is ommitted
 and only one frame can be stored in the Block. The bits 5-6 of the
 Block Header flags are set to 0b00.

 The Block for an 800 octets frame is as follows:

Lhomme, et al. Expires 24 April 2024 [Page 90]

Internet-Draft Matroska Format October 2023

 +==============+=========+===================+
 | Block Octets | Value | Description |
 +==============+=========+===================+
 | 4-803 | <frame> | Single frame data |
 +--------------+---------+-------------------+

 Table 36: No lacing

 When a Block contains a single frame, it MUST use this No lacing
 mode.

10.3.2. Xiph lacing

 The Xiph lacing uses the same coding of size as found in the Ogg
 container [RFC3533]. The bits 5-6 of the Block Header flags are set
 to 0b01.

 The Block data with laced frames is stored as follows:

 * Lacing Head on 1 Octet: Number of frames in the lace minus 1.
 * Lacing size of each frame except the last one.
 * Binary data of each frame consecutively.

 The lacing size is split into 255 values, stored as unsigned octets
 -- for example, 500 is coded 255;245 or [0xFF 0xF5]. A frame with a
 size multiple of 255 is coded with a 0 at the end of the size -- for
 example, 765 is coded 255;255;255;0 or [0xFF 0xFF 0xFF 0x00].

 The size of the last frame is deduced from the size remaining in the
 Block after the other frames.

 Because large sizes result in large coding of the sizes, it is
 RECOMMENDED to use Xiph lacing only with small frames.

 In our example, the 800, 500 and 1000 frames are stored with Xiph
 lacing in a Block as follows:

Lhomme, et al. Expires 24 April 2024 [Page 91]

Internet-Draft Matroska Format October 2023

 +=============+=====================+==========================+
 | Block Octet | Value | Description |
 +=============+=====================+==========================+
 | 4 | 0x02 | Number of frames minus 1 |
 +-------------+---------------------+--------------------------+
 | 5-8 | 0xFF 0xFF 0xFF 0x23 | Size of the first frame |
 | | | (255;255;255;35) |
 +-------------+---------------------+--------------------------+
 | 9-10 | 0xFF 0xF5 | Size of the second frame |
 | | | (255;245) |
 +-------------+---------------------+--------------------------+
 | 11-810 | | First frame data |
 +-------------+---------------------+--------------------------+
 | 811-1310 | | Second frame data |
 +-------------+---------------------+--------------------------+
 | 1311-2310 | | Third frame data |
 +-------------+---------------------+--------------------------+

 Table 37: Xiph lacing example

 The Block is 2311 octets large and the last frame starts at 1311, so
 we can deduce the size of the last frame is 2311 - 1311 = 1000.

10.3.3. EBML lacing

 The EBML lacing encodes the frame size with an EBML-like encoding
 [RFC8794]. The bits 5-6 of the Block Header flags are set to 0b11.

 The Block data with laced frames is stored as follows:

 * Lacing Head on 1 Octet: Number of frames in the lace minus 1.
 * Lacing size of each frame except the last one.
 * Binary data of each frame consecutively.

 The first frame size is encoded as an EBML Variable-Size Integer
 value, also known as VINT in [RFC8794]. The remaining frame sizes
 are encoded as signed values using the difference between the frame
 size and the previous frame size. These signed values are encoded as
 VINT, with a mapping from signed to unsigned numbers. Decoding the
 unsigned number stored in the VINT to a signed number is done by
 subtracting 2^((7*n)-1)-1, where n is the octet size of the VINT.

Lhomme, et al. Expires 24 April 2024 [Page 92]

Internet-Draft Matroska Format October 2023

 +===================================+======================+
 | Bit Representation of signed VINT | Possible Value Range |
 +===================================+======================+
 | 1xxx xxxx | 2^7 values from |
 | | -(2^6-1) to 2^6 |
 +-----------------------------------+----------------------+
 | 01xx xxxx xxxx xxxx | 2^14 values from |
 | | -(2^13-1) to 2^13 |
 +-----------------------------------+----------------------+
 | 001x xxxx xxxx xxxx xxxx xxxx | 2^21 values from |
 | | -(2^20-1) to 2^20 |
 +-----------------------------------+----------------------+
 | 0001 xxxx xxxx xxxx xxxx xxxx | 2^28 values from |
 | xxxx xxxx | -(2^27-1) to 2^27 |
 +-----------------------------------+----------------------+
 | 0000 1xxx xxxx xxxx xxxx xxxx | 2^35 values from |
 | xxxx xxxx xxxx xxxx | -(2^34-1) to 2^34 |
 +-----------------------------------+----------------------+

 Table 38: EBML Lacing signed VINT bits usage

 In our example, the 800, 500 and 1000 frames are stored with EBML
 lacing in a Block as follows:

 +==============+===========+=====================================+
 | Block Octets | Value | Description |
 +==============+===========+=====================================+
 | 4 | 0x02 | Number of frames minus 1 |
 +--------------+-----------+-------------------------------------+
 | 5-6 | 0x43 0x20 | Size of the first frame (800 = |
 | | | 0x320 + 0x4000) |
 +--------------+-----------+-------------------------------------+
 | 7-8 | 0x5E 0xD3 | Size of the second frame (500 - 800 |
 | | | = -300 = - 0x12C + 0x1FFF + 0x4000) |
 +--------------+-----------+-------------------------------------+
 | 8-807 | <frame1> | First frame data |
 +--------------+-----------+-------------------------------------+
 | 808-1307 | <frame2> | Second frame data |
 +--------------+-----------+-------------------------------------+
 | 1308-2307 | <frame3> | Third frame data |
 +--------------+-----------+-------------------------------------+

 Table 39: EBML lacing example

 The Block is 2308 octets large and the last frame starts at 1308, so
 we can deduce the size of the last frame is 2308 - 1308 = 1000.

Lhomme, et al. Expires 24 April 2024 [Page 93]

Internet-Draft Matroska Format October 2023

10.3.4. Fixed-size lacing

 The Fixed-size lacing doesn’t store the frame size, only the number
 of frames in the lace. Each frame MUST have the same size. The
 frame size of each frame is deduced from the total size of the Block.
 The bits 5-6 of the Block Header flags are set to 0b10.

 The Block data with laced frames is stored as follows:

 * Lacing Head on 1 Octet: Number of frames in the lace minus 1.
 * Binary data of each frame consecutively.

 For example, for 3 frames of 800 octets each:

 +==============+==========+==========================+
 | Block Octets | Value | Description |
 +==============+==========+==========================+
 | 4 | 0x02 | Number of frames minus 1 |
 +--------------+----------+--------------------------+
 | 5-804 | <frame1> | First frame data |
 +--------------+----------+--------------------------+
 | 805-1604 | <frame2> | Second frame data |
 +--------------+----------+--------------------------+
 | 1605-2404 | <frame3> | Third frame data |
 +--------------+----------+--------------------------+

 Table 40: Fixed-size lacing example

 This gives a Block of 2405 octets. When reading the Block we find
 that there are 3 frames (Octet 4). The data start at Octet 5, so the
 size of each frame is (2405 - 5) / 3 = 800.

10.3.5. Laced Frames Timestamp

 A Block only contains a single timestamp value. But when lacing is
 used, it contains more than one frame. Each frame originally has its
 own timestamp, or Presentation Timestamp (PTS). That timestamp
 applies to the first frame in the lace.

 In the lace, each frame after the first one has an underdetermined
 timestamp. But each of these frames MUST be contiguous -- i.e. the
 decoded data MUST NOT contain any gap between them. If there is a
 gap in the stream, the frames around the gap MUST NOT be in the same
 Block.

 Lacing is only useful for small contiguous data to save space. This
 is usually the case for audio tracks and not the case for video --
 which use a lot of data -- or subtitle tracks -- which have long

Lhomme, et al. Expires 24 April 2024 [Page 94]

Internet-Draft Matroska Format October 2023

 gaps. For audio, there is usually a fixed output sampling frequency
 for the whole track. So the decoder should be able to recover the
 timestamp of each sample, knowing each output sample is contiguous
 with a fixed frequency. For subtitles this is usually not the case
 so lacing SHOULD NOT be used.

10.4. Random Access Points

 Random Access Points (RAP) are positions where the parser can seek to
 and start playback without decoding of what was before. In Matroska
 BlockGroups and SimpleBlocks can be RAPs. To seek to these elements
 it is still necessary to seek to the Cluster containing them, read
 the Cluster Timestamp and start playback from the BlockGroup or
 SimpleBlock that is a RAP.

 Because a Matroska File is usually composed of multiple tracks
 playing at the same time -- video, audio and subtitles -- to seek
 properly to a RAP, each selected track must be taken in account.
 Usually all audio and subtitle BlockGroup or SimpleBlock are RAP.
 They are independent of each other and can be played randomly.

 Video tracks on the other hand often use references to previous and
 future frames for better coding efficiency. Frames with such
 reference MUST either contain one or more ReferenceBlock Elements in
 their BlockGroup or MUST be marked as non-keyframe in a SimpleBlock;
 see Section 10.2.

 * BlockGroup with a frame that references another frame, with the
 EBML tree shown as XML:

 <Cluster>
 <Timestamp>123456</Timestamp>
 <BlockGroup>
 <!-- References a Block 40 Track Ticks before this one -->
 <ReferenceBlock>-40</ReferenceBlock>
 <Block/>
 </BlockGroup>
 ...
 </Cluster>

 * SimpleBlock with a frame that references another frame, with the
 EBML tree shown as XML:

 <Cluster>
 <Timestamp>123456</Timestamp>
 <SimpleBlock/> (octet 3 bit 0 not set)
 ...
 </Cluster>

Lhomme, et al. Expires 24 April 2024 [Page 95]

Internet-Draft Matroska Format October 2023

 Frames that are RAP -- i.e. they don’t depend on other frames -- MUST
 set the keyframe flag if they are in a SimpleBlock or their parent
 BlockGroup MUST NOT contain a ReferenceBlock.

 * BlockGroup with a frame that references no other frame, with the
 EBML tree shown as XML:

 <Cluster>
 <Timestamp>123456</Timestamp>
 <BlockGroup>
 <!-- No ReferenceBlock allowed in this BlockGroup -->
 <Block/>
 </BlockGroup>
 ...
 </Cluster>

 * SimpleBlock with a frame that references no other frame, with the
 EBML tree shown as XML:

 <Cluster>
 <Timestamp>123456</Timestamp>
 <SimpleBlock/> (octet 3 bit 0 set)
 ...
 </Cluster>

 There may be cases where the use of BlockGroup is necessary, as the
 frame may need a BlockDuration, BlockAdditions, CodecState or a
 DiscardPadding element. For thoses cases a SimpleBlock MUST NOT be
 used, the reference information SHOULD be recovered for non-RAP
 frames.

 * SimpleBlock with a frame that references another frame, with the
 EBML tree shown as XML:

 <Cluster>
 <Timestamp>123456</Timestamp>
 <SimpleBlock/> (octet 3 bit 0 not set)
 ...
 </Cluster>

 * Same frame that references another frame put inside a BlockGroup
 to add BlockDuration, with the EBML tree shown as XML:

Lhomme, et al. Expires 24 April 2024 [Page 96]

Internet-Draft Matroska Format October 2023

 <Cluster>
 <Timestamp>123456</Timestamp>
 <BlockGroup>
 <!-- ReferenceBlock value recovered based on the codec -->
 <ReferenceBlock>-40</ReferenceBlock>
 <BlockDuration>20<BlockDuration>
 <Block/>
 </BlockGroup>
 ...
 </Cluster>

 When a frame in a BlockGroup is not a RAP, the BlockGroup MUST
 contain at least a ReferenceBlock. The ReferenceBlocks MUST be used
 in one of the following ways:

 * each reference frame listed as a ReferenceBlock,
 * some referenced frame listed as a ReferenceBlock, even if the
 timestamp value is accurate,
 * or one ReferenceBlock with the timestamp value "0" corresponding
 to a self or unknown reference.

 The lack of ReferenceBlock would mean such a frame is a RAP and
 seeking on that frame that actually depends on other frames may
 create bogus output or even crash.

 * Same frame that references another frame put inside a BlockGroup
 but the reference could not be recovered, with the EBML tree shown
 as XML:

 <Cluster>
 <Timestamp>123456</Timestamp>
 <BlockGroup>
 <!-- ReferenceBlock value not recovered from the codec -->
 <ReferenceBlock>0</ReferenceBlock>
 <BlockDuration>20<BlockDuration>
 <Block/>
 </BlockGroup>
 ...
 </Cluster>

 * BlockGroup with a frame that references two other frames, with the
 EBML tree shown as XML:

Lhomme, et al. Expires 24 April 2024 [Page 97]

Internet-Draft Matroska Format October 2023

 <Cluster>
 <Timestamp>123456</Timestamp>
 <BlockGroup>
 <!-- References a Block 80 Track Ticks before this one -->
 <ReferenceBlock>-80</ReferenceBlock>
 <!-- References a Block 40 Track Ticks after this one -->
 <ReferenceBlock>40</ReferenceBlock>
 <Block/>
 </BlockGroup>
 ...
 </Cluster>

 Intra-only video frames, such as the ones found in AV1 or VP9, can be
 decoded without any other frame, but they don’t reset the codec
 state. So seeking to these frames is not possible as the next frames
 may need frames that are not known from this seeking point. Such
 intra-only frames MUST NOT be considered as keyframes so the keyframe
 flag MUST NOT be set in the SimpleBlock or a ReferenceBlock MUST be
 used to signify the frame is not a RAP. The timestamp value of the
 ReferenceBlock MUST be "0", meaning it’s referencing itself.

 * Intra-only frame not an RAP, with the EBML tree shown as XML:

 <Cluster>
 <Timestamp>123456</Timestamp>
 <BlockGroup>
 <!-- References itself to mark it should not be used as RAP -->
 <ReferenceBlock>0</ReferenceBlock>
 <Block/>
 </BlockGroup>
 ...
 </Cluster>

 Because a video SimpleBlock has less references information than a
 video BlockGroup, it is possible to remux a video track using
 BlockGroup into a SimpleBlock, as long as it doesn’t use any other
 BlockGroup features than ReferenceBlock.

11. Timestamps

 Historically timestamps in Matroska were mistakenly called timecodes.
 The Timestamp Element was called Timecode, the TimestampScale Element
 was called TimecodeScale, the TrackTimestampScale Element was called
 TrackTimecodeScale and the ReferenceTimestamp Element was called
 ReferenceTimeCode.

Lhomme, et al. Expires 24 April 2024 [Page 98]

Internet-Draft Matroska Format October 2023

11.1. Timestamp Ticks

 All timestamp values in Matroska are expressed in multiples of a
 tick. They are usually stored as integers. There are three types of
 ticks possible:

11.1.1. Matroska Ticks

 For such elements, the timestamp value is stored directly in
 nanoseconds.

 The elements storing values in Matroska Ticks/nanoseconds are:

 * TrackEntry\DefaultDuration; defined in Section 5.1.4.1.13
 * TrackEntry\DefaultDecodedFieldDuration; defined in
 Section 5.1.4.1.14
 * TrackEntry\SeekPreRoll; defined in Section 5.1.4.1.26
 * TrackEntry\CodecDelay; defined in Section 5.1.4.1.25
 * BlockGroup\DiscardPadding; defined in Section 5.1.3.5.7
 * ChapterAtom\ChapterTimeStart; defined in Section 5.1.7.1.4.3
 * ChapterAtom\ChapterTimeEnd; defined in Section 5.1.7.1.4.4
 * CuePoint\CueTime; defined in Section 5.1.5.1.1
 * CueReference\CueRefTime; defined in Section 5.1.5.1.1

11.1.2. Segment Ticks

 Elements in Segment Ticks involve the use of the TimestampScale
 Element of the Segment to get the timestamp in nanoseconds of the
 element, with the following formula:

 timestamp in nanosecond = element value * TimestampScale

 This allows storing smaller integer values in the elements.

 When using the default value of TimestampScale of "1,000,000", one
 Segment Tick represents one millisecond.

 The elements storing values in Segment Ticks are:

 * Cluster\Timestamp; defined in Section 5.1.3.1
 * Info\Duration is stored as a floating-point but the same formula
 applies; defined in Section 5.1.2.10
 * CuePoint\CueTrackPositions\CueDuration; defined in
 Section 5.1.5.1.2.4

Lhomme, et al. Expires 24 April 2024 [Page 99]

Internet-Draft Matroska Format October 2023

11.1.3. Track Ticks

 Elements in Track Ticks involve the use of the TimestampScale Element
 of the Segment and the TrackTimestampScale Element of the Track to
 get the timestamp in nanoseconds of the element, with the following
 formula:

 timestamp in nanoseconds =
 element value * TrackTimestampScale * TimestampScale

 This allows storing smaller integer values in the elements. The
 resulting floating-point values of the timestamps are still expressed
 in nanoseconds.

 When using the default values for TimestampScale and
 TrackTimestampScale of "1,000,000" and of "1.0" respectively, one
 Track Tick represents one millisecond.

 The elements storing values in Track Ticks are:

 * Cluster\BlockGroup\Block and Cluster\SimpleBlock timestamps;
 detailed in Section 11.2
 * Cluster\BlockGroup\BlockDuration; defined in Section 5.1.3.5.3
 * Cluster\BlockGroup\ReferenceBlock; defined in Section 5.1.3.5.5

 When the TrackTimestampScale is interpreted as "1.0", Track Ticks are
 equivalent to Segment Ticks and give an integer value in nanoseconds.
 This is the most common case as TrackTimestampScale is usually
 omitted.

 A value of TrackTimestampScale other than "1.0" MAY be used to scale
 the timestamps more in tune with each Track sampling frequency. For
 historical reasons, a lot of Matroska readers don’t take the
 TrackTimestampScale value in account. So using a value other than
 "1.0" might not work in many places.

11.2. Block Timestamps

 A Block Element and SimpleBlock Element timestamp is the time when
 the decoded data of the first frame in the Block/SimpleBlock MUST be
 presented, if the track of that Block/SimpleBlock is selected for
 playback. This is also known as the Presentation Timestamp (PTS).

 The Block Element and SimpleBlock Element store their timestamps as
 signed integers, relative to the Cluster\Timestamp value of the
 Cluster they are stored in. To get the timestamp of a Block or
 SimpleBlock in nanoseconds you have to use the following formula:

Lhomme, et al. Expires 24 April 2024 [Page 100]

Internet-Draft Matroska Format October 2023

 (Cluster\Timestamp + (block timestamp * TrackTimestampScale)) *
 TimestampScale

 The Block Element and SimpleBlock Element store their timestamps as
 16bit signed integers, allowing a range from "-32768" to "+32767"
 Track Ticks. Although these values can be negative, when added to
 the Cluster\Timestamp, the resulting frame timestamp SHOULD NOT be
 negative.

 When a CodecDelay Element is set, its value MUST be substracted from
 each Block timestamp of that track. To get the timestamp in
 nanoseconds of the first frame in a Block or SimpleBlock, the formula
 becomes:

 ((Cluster\Timestamp + (block timestamp * TrackTimestampScale)) *
 TimestampScale) - CodecDelay

 The resulting frame timestamp SHOULD NOT be negative.

 During playback, when a frame has a negative timestamp, the content
 MUST be decoded by the decoder but not played to the user.

11.3. TimestampScale Rounding

 The default Track Tick duration is one millisecond.

 The TimestampScale is a floating-point value, which is usually 1.0.
 But when it’s not, the multiplied Block Timestamp is a floating-point
 value in nanoseconds. The Matroska Reader SHOULD use the nearest
 rounding value in nanosecond to get the proper nanosecond timestamp
 of a Block. This allows some clever TimestampScale values to have
 more refined timestamp precision per frame.

12. Language Codes

 Matroska from version 1 through 3 uses language codes that can be
 either the 3 letters bibliographic ISO-639-2 form [ISO639-2] (like
 "fre" for French), or such a language code followed by a dash and a
 country code for specialities in languages (like "fre-ca" for
 Canadian French). The ISO 639-2 Language Elements are "Language
 Element", "TagLanguage Element", and "ChapLanguage Element".

Lhomme, et al. Expires 24 April 2024 [Page 101]

Internet-Draft Matroska Format October 2023

 Starting in Matroska version 4, either [ISO639-2] or [BCP47] MAY be
 used, although BCP 47 is RECOMMENDED. The BCP 47 Language Elements
 are "LanguageBCP47 Element", "TagLanguageBCP47 Element", and
 "ChapLanguageBCP47 Element". If a BCP 47 Language Element and an ISO
 639-2 Language Element are used within the same Parent Element, then
 the ISO 639-2 Language Element MUST be ignored and precedence given
 to the BCP 47 Language Element.

13. Country Codes

 Country codes are the [BCP47] two-letter region subtag, without the
 UK exception.

14. Encryption

 This Matroska specification provides no interoperable solution for
 securing the data container with any assurances of confidentiality,
 integrity, authenticity, or to provide authorization. The
 ContentEncryption Element (Section 5.1.4.1.31.8) and associated sub-
 fields (Section 5.1.4.1.31.9 to Section 5.1.4.1.31.12) are defined
 only for the benefit of implementers to construct their own
 proprietary solution or as the basis for further standardization
 activities. How to use these fields to secure a Matroska data
 container is out of scope, as are any related issues such as key
 management and distribution.

 A Matroska Reader who encounters containers that use the fields
 defined in this section MUST rely on out-of-scope guidance to decode
 the associated content.

 Because encryption occurs within the Block Element, it is possible to
 manipulate encrypted streams without decrypting them. The streams
 could potentially be copied, deleted, cut, appended, or any number of
 other possible editing techniques without decryption. The data can
 be used without having to expose it or go through the decrypting
 process.

 Encryption can also be layered within Matroska. This means that two
 completely different types of encryption can be used, requiring two
 separate keys to be able to decrypt a stream.

 Encryption information is stored in the ContentEncodings Element
 under the ContentEncryption Element.

 For encryption systems sharing public/private keys, the creation of
 the keys and the exchange of keys are not covered by this document.
 They have to be handled by the system using Matroska.

Lhomme, et al. Expires 24 April 2024 [Page 102]

Internet-Draft Matroska Format October 2023

 The algorithms described in Table 26 support different modes of
 operations and key sizes. The specification of these parameters is
 required for a complete solution, but is out of scope of this
 document and left to the proprietary implementations using them or
 subsequent profiles of this document.

 The ContentEncodingScope Element gives an idea of which part of the
 track are encrypted. But each ContentEncAlgo Element and its sub
 elements like AESSettingsCipherMode really define how the encrypted
 should be exactly interpreted.

 An example of an extension that builds upon these security-related
 fields in this specification is [WebM-Enc]. It uses AES-CTR,
 ContentEncAlgo = 5 (Section 5.1.4.1.31.9) and AESSettingsCipherMode =
 1 (Section 5.1.4.1.31.12).

 A Matroska Writer MUST NOT use insecure cryptographic algorithms to
 create new archives or streams, but a Matroska Reader MAY support
 these algorithms to read previously made archives or stream.

15. Image Presentation

15.1. Cropping

 The PixelCrop Elements (PixelCropTop, PixelCropBottom,
 PixelCropRight, and PixelCropLeft) indicate when, and by how much,
 encoded videos frames SHOULD be cropped for display. These Elements
 allow edges of the frame that are not intended for display, such as
 the sprockets of a full-frame film scan or the VANC area of a
 digitized analog videotape, to be stored but hidden. PixelCropTop
 and PixelCropBottom store an integer of how many rows of pixels
 SHOULD be cropped from the top and bottom of the image
 (respectively). PixelCropLeft and PixelCropRight store an integer of
 how many columns of pixels SHOULD be cropped from the left and right
 of the image (respectively).

 For example, a pillar-boxed video that stores a 1440x1080 visual
 image within the center of a padded 1920x1080 encoded image may set
 both PixelCropLeft and PixelCropRight to "240", so that a Matroska
 Player should crop off 240 columns of pixels from the left and right
 of the encoded image to present the image with the pillar-boxes
 hidden.

 Cropping has to be performed before resizing and the display
 dimensions given by DisplayWidth, DisplayHeight and DisplayUnit apply
 to the already cropped image.

Lhomme, et al. Expires 24 April 2024 [Page 103]

Internet-Draft Matroska Format October 2023

15.2. Rotation

 The ProjectionPoseRoll Element (see Section 5.1.4.1.28.46) can be
 used to indicate that the image from the associated video track
 SHOULD be rotated for presentation. For instance, the following
 representation of the Projection Element Section 5.1.4.1.28.41) and
 the ProjectionPoseRoll Element represents a video track where the
 image SHOULD be presented with a 90-degree counter-clockwise
 rotation, with the EBML tree shown as XML :

 <Projection>
 <ProjectionPoseRoll>90</ProjectionPoseRoll>
 </Projection>

 Figure 15: Rotation example.

16. Segment Position

 The Segment Position of an Element refers to the position of the
 first octet of the Element ID of that Element, measured in octets,
 from the beginning of the Element Data section of the containing
 Segment Element. In other words, the Segment Position of an Element
 is the distance in octets from the beginning of its containing
 Segment Element minus the size of the Element ID and Element Data
 Size of that Segment Element. The Segment Position of the first
 Child Element of the Segment Element is 0. An Element which is not
 stored within a Segment Element, such as the Elements of the EBML
 Header, do not have a Segment Position.

16.1. Segment Position Exception

 Elements that are defined to store a Segment Position MAY define
 reserved values to indicate a special meaning.

16.2. Example of Segment Position

 This table presents an example of Segment Position by showing a
 hexadecimal representation of a very small Matroska file with labels
 to show the offsets in octets. The file contains a Segment Element
 with an Element ID of "0x18538067" and a MuxingApp Element with an
 Element ID of "0x4D80".

Lhomme, et al. Expires 24 April 2024 [Page 104]

Internet-Draft Matroska Format October 2023

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +--+
 0 |1A|45|DF|A3|8B|42|82|88|6D|61|74|72|6F|73|6B|61|
 ^ EBML Header
 0 | |18|53|80|67|
 ^ Segment ID
 20 |93|
 ^ Segment Data Size
 20 | |15|49|A9|66|8E|4D|80|84|69|65|74|66|57|41|84|69|65|74|66|
 ^ Start of Segment data
 20 | |4D|80|84|69|65|74|66|57|41|84|69|65|74|66|
 ^ MuxingApp start

 In the above example, the Element ID of the Segment Element is stored
 at offset 16, the Element Data Size of the Segment Element is stored
 at offset 20, and the Element Data of the Segment Element is stored
 at offset 21.

 The MuxingApp Element is stored at offset 26. Since the Segment
 Position of an Element is calculated by subtracting the position of
 the Element Data of the containing Segment Element from the position
 of that Element, the Segment Position of MuxingApp Element in the
 above example is ’26 - 21’ or ’5’.

17. Linked Segments

 Matroska provides several methods to link two or more Segment
 Elements together to create a Linked Segment. A Linked Segment is a
 set of multiple Segments linked together into a single presentation
 by using Hard Linking or Medium Linking.

 All Segments within a Linked Segment MUST have a SegmentUUID.

 All Segments within a Linked Segment SHOULD be stored within the same
 directory or be accessible quickly based on their SegmentUUID in
 order to have seamless transition between segments.

 All Segments within a Linked Segment MAY set a SegmentFamily with a
 common value to make it easier for a Matroska Player to know which
 Segments are meant to be played together.

 The SegmentFilename, PrevFilename and NextFilename elements MAY also
 give hints on the original filenames that were used when the Segment
 links were created, in case some SegmentUUID are damaged.

Lhomme, et al. Expires 24 April 2024 [Page 105]

Internet-Draft Matroska Format October 2023

17.1. Hard Linking

 Hard Linking, also called splitting, is the process of creating a
 Linked Segment by linking multiple Segment Elements using the
 NextUUID and PrevUUID Elements.

 All Segments within a Hard Linked Segment MUST use the same Tracks
 list and TimestampScale.

 Within a Linked Segment, the timestamps of Block and SimpleBlock MUST
 follow consecutively the timestamps of Block and SimpleBlock from the
 previous Segment in linking order.

 With Hard Linking, the chapters of any Segment within the Linked
 Segment MUST only reference the current Segment. The NextUUID and
 PrevUUID reference the respective SegmentUUID values of the next and
 previous Segments.

 The first Segment of a Linked Segment MUST NOT have a PrevUUID
 Element. The last Segment of a Linked Segment MUST NOT have a
 NextUUID Element.

 For each node of the chain of Segments of a Linked Segment at least
 one Segment MUST reference the other Segment within the chain.

 In a chain of Segments of a Linked Segment the NextUUID always takes
 precedence over the PrevUUID. So if SegmentA has a NextUUID to
 SegmentB and SegmentB has a PrevUUID to SegmentC, the link to use is
 NextUUID between SegmentA and SegmentB, SegmentC is not part of the
 Linked Segment.

 If SegmentB has a PrevUUID to SegmentA but SegmentA has no NextUUID,
 then the Matroska Player MAY consider these two Segments linked as
 SegmentA followed by SegmentB.

 As an example, three Segments can be Hard Linked as a Linked Segment
 through cross-referencing each other with SegmentUUID, PrevUUID, and
 NextUUID, as in this table:

Lhomme, et al. Expires 24 April 2024 [Page 106]

Internet-Draft Matroska Format October 2023

 +==========+================+==================+==================+
 |file name |SegmentUUID | PrevUUID | NextUUID |
 +==========+================+==================+==================+
 |start.mkv |71000c23cd310998| Invalid | a77b3598941cb803 |
 | |53fbc94dd984a5dd| | eac0fcdafe44fac9 |
 +----------+----------------+------------------+------------------+
 |middle.mkv|a77b3598941cb803| 71000c23cd310998 | 6c92285fa6d3e827 |
 | |eac0fcdafe44fac9| 53fbc94dd984a5dd | b198d120ea3ac674 |
 +----------+----------------+------------------+------------------+
 |end.mkv |6c92285fa6d3e827| a77b3598941cb803 | Invalid |
 | |b198d120ea3ac674| eac0fcdafe44fac9 | |
 +----------+----------------+------------------+------------------+

 Table 41: Usual Hard Linking UIDs

 An other example where only the NextUUID Element is used:

 +============+==================+==========+==================+
 | file name | SegmentUUID | PrevUUID | NextUUID |
 +============+==================+==========+==================+
 | start.mkv | 71000c23cd310998 | Invalid | a77b3598941cb803 |
 | | 53fbc94dd984a5dd | | eac0fcdafe44fac9 |
 +------------+------------------+----------+------------------+
 | middle.mkv | a77b3598941cb803 | n/a | 6c92285fa6d3e827 |
 | | eac0fcdafe44fac9 | | b198d120ea3ac674 |
 +------------+------------------+----------+------------------+
 | end.mkv | 6c92285fa6d3e827 | n/a | Invalid |
 | | b198d120ea3ac674 | | |
 +------------+------------------+----------+------------------+

 Table 42: Hard Linking without PrevUUID

 An example where only the PrevUUID Element is used:

 +============+==================+==================+==========+
 | file name | SegmentUUID | PrevUUID | NextUUID |
 +============+==================+==================+==========+
 | start.mkv | 71000c23cd310998 | Invalid | n/a |
 | | 53fbc94dd984a5dd | | |
 +------------+------------------+------------------+----------+
 | middle.mkv | a77b3598941cb803 | 71000c23cd310998 | n/a |
 | | eac0fcdafe44fac9 | 53fbc94dd984a5dd | |
 +------------+------------------+------------------+----------+
 | end.mkv | 6c92285fa6d3e827 | a77b3598941cb803 | Invalid |
 | | b198d120ea3ac674 | eac0fcdafe44fac9 | |
 +------------+------------------+------------------+----------+

 Table 43: Hard Linking without NextUUID

Lhomme, et al. Expires 24 April 2024 [Page 107]

Internet-Draft Matroska Format October 2023

 In this example only the middle.mkv is using the PrevUUID and
 NextUUID Elements:

 +==========+================+==================+==================+
 |file name |SegmentUUID | PrevUUID | NextUUID |
 +==========+================+==================+==================+
 |start.mkv |71000c23cd310998| Invalid | n/a |
 | |53fbc94dd984a5dd| | |
 +----------+----------------+------------------+------------------+
 |middle.mkv|a77b3598941cb803| 71000c23cd310998 | 6c92285fa6d3e827 |
 | |eac0fcdafe44fac9| 53fbc94dd984a5dd | b198d120ea3ac674 |
 +----------+----------------+------------------+------------------+
 |end.mkv |6c92285fa6d3e827| n/a | Invalid |
 | |b198d120ea3ac674| | |
 +----------+----------------+------------------+------------------+

 Table 44: Hard Linking with mixed UID links

17.2. Medium Linking

 Medium Linking creates relationships between Segments using Ordered
 Chapters (Section 20.1.3) and the ChapterSegmentUUID Element. A
 Chapter Edition with Ordered Chapters MAY contain Chapter elements
 that reference timestamp ranges from other Segments. The Segment
 referenced by the Ordered Chapter via the ChapterSegmentUUID Element
 SHOULD be played as part of a Linked Segment.

 The timestamps of Segment content referenced by Ordered Chapters MUST
 be adjusted according to the cumulative duration of the previous
 Ordered Chapters.

 As an example a file named intro.mkv could have a SegmentUUID of
 "0xb16a58609fc7e60653a60c984fc11ead". Another file called
 program.mkv could use a Chapter Edition that contains two Ordered
 Chapters. The first chapter references the Segment of intro.mkv with
 the use of a ChapterSegmentUUID, ChapterSegmentEditionUID,
 ChapterTimeStart, and optionally a ChapterTimeEnd element. The
 second chapter references content within the Segment of program.mkv.
 A Matroska Player SHOULD recognize the Linked Segment created by the
 use of ChapterSegmentUUID in an enabled Edition and present the
 reference content of the two Segments as a single presentation.

 The ChapterSegmentUUID represents the Segment that holds the content
 to play in place of the Linked Chapter. The ChapterSegmentUUID MUST
 NOT be the SegmentUUID of its own Segment.

 There are 2 ways to use a chapter link:

Lhomme, et al. Expires 24 April 2024 [Page 108]

Internet-Draft Matroska Format October 2023

 * Linked-Duration linking,

 * Linked-Edition linking

17.2.1. Linked-Duration

 A Matroska Player MUST play the content of the linked Segment from
 the ChapterTimeStart until ChapterTimeEnd timestamp in place of the
 Linked Chapter.

 ChapterTimeStart and ChapterTimeEnd represent timestamps in the
 Linked Segment matching the value of ChapterSegmentUUID. Their
 values MUST be in the range of the linked Segment duration.

 The ChapterTimeEnd value MUST be set when using linked-duration
 chapter linking. ChapterSegmentEditionUID MUST NOT be set.

17.2.2. Linked-Edition

 A Matroska Player MUST play the whole linked Edition of the linked
 Segment in place of the Linked Chapter.

 ChapterSegmentEditionUID represents a valid Edition from the Linked
 Segment matching the value of ChapterSegmentUUID.

 When using linked-edition chapter linking. ChapterTimeEnd is
 OPTIONAL.

18. Track Flags

18.1. Default flag

 The "default track" flag is a hint for a Matroska Player indicating
 that a given track SHOULD be eligible to be automatically selected as
 the default track for a given language. If no tracks in a given
 language have the default track flag set, then all tracks in that
 language are eligible for automatic selection. This can be used to
 indicate that a track provides "regular service" suitable for users
 with default settings, as opposed to specialized services, such as
 commentary, hearing-impaired captions, or descriptive audio.

 The Matroska Player MAY override the "default track" flag for any
 reason, including user preferences to prefer tracks providing
 accessibility services.

Lhomme, et al. Expires 24 April 2024 [Page 109]

Internet-Draft Matroska Format October 2023

18.2. Forced flag

 The "forced" flag tells the Matroska Player that it SHOULD display
 this subtitle track, even if user preferences usually would not call
 for any subtitles to be displayed alongside the current selected
 audio track. This can be used to indicate that a track contains
 translations of onscreen text, or of dialogue spoken in a different
 language than the track’s primary one.

18.3. Hearing-impaired flag

 The "hearing impaired" flag tells the Matroska Player that it SHOULD
 prefer this track when selecting a default track for a hearing-
 impaired user, and that it MAY prefer to select a different track
 when selecting a default track for a non-hearing-impaired user.

18.4. Visual-impaired flag

 The "visual impaired" flag tells the Matroska Player that it SHOULD
 prefer this track when selecting a default track for a visually-
 impaired user, and that it MAY prefer to select a different track
 when selecting a default track for a non-visually-impaired user.

18.5. Descriptions flag

 The "descriptions" flag tells the Matroska Player that this track is
 suitable to play via a text-to-speech system for a visually-impaired
 user, and that it SHOULD NOT automatically select this track when
 selecting a default track for a non-visually-impaired user.

18.6. Original flag

 The "original" flag tells the Matroska Player that this track is in
 the original language, and that it SHOULD prefer it if configured to
 prefer original-language tracks of this track’s type.

18.7. Commentary flag

 The "commentary" flag tells the Matroska Player that this track
 contains commentary on the content.

18.8. Track Operation

 TrackOperation allows combining multiple tracks to make a virtual
 one. It uses two separate system to combine tracks. One to create a
 3D "composition" (left/right/background planes) and one to simplify
 join two tracks together to make a single track.

Lhomme, et al. Expires 24 April 2024 [Page 110]

Internet-Draft Matroska Format October 2023

 A track created with TrackOperation is a proper track with a UID and
 all its flags. However, the codec ID is meaningless because each
 "sub" track needs to be decoded by its own decoder before the
 "operation" is applied. The Cues Elements corresponding to such a
 virtual track SHOULD be the union of the Cues Elements for each of
 the tracks it’s composed of (when the Cues are defined per track).

 In the case of TrackJoinBlocks, the Block Elements (from BlockGroup
 and SimpleBlock) of all the tracks SHOULD be used as if they were
 defined for this new virtual Track. When two Block Elements have
 overlapping start or end timestamps, it’s up to the underlying system
 to either drop some of these frames or render them the way they
 overlap. This situation SHOULD be avoided when creating such tracks
 as you can never be sure of the end result on different platforms.

18.9. Overlay Track

 Overlay tracks SHOULD be rendered in the same channel as the track
 it’s linked to. When content is found in such a track, it SHOULD be
 played on the rendering channel instead of the original track.

18.10. Multi-planar and 3D videos

 There are two different ways to compress 3D videos: have each eye
 track in a separate track and have one track have both eyes combined
 inside (which is more efficient, compression-wise). Matroska
 supports both ways.

 For the single track variant, there is the StereoMode Element, which
 defines how planes are assembled in the track (mono or left-right
 combined). Odd values of StereoMode means the left plane comes first
 for more convenient reading. The pixel count of the track
 (PixelWidth/PixelHeight) is the raw amount of pixels, for example
 3840x1080 for full HD side by side, and the DisplayWidth/
 DisplayHeight in pixels is the amount of pixels for one plane
 (1920x1080 for that full HD stream). Old stereo 3D were displayed
 using anaglyph (cyan and red colors separated). For compatibility
 with such movies, there is a value of the StereoMode that corresponds
 to AnaGlyph.

 There is also a "packed" mode (values 13 and 14) which consists of
 packing two frames together in a Block using lacing. The first frame
 is the left eye and the other frame is the right eye (or vice versa).
 The frames SHOULD be decoded in that order and are possibly dependent
 on each other (P and B frames).

Lhomme, et al. Expires 24 April 2024 [Page 111]

Internet-Draft Matroska Format October 2023

 For separate tracks, Matroska needs to define exactly which track
 does what. TrackOperation with TrackCombinePlanes do that. For more
 details look at Section 18.8 on how TrackOperation works.

 The 3D support is still in infancy and may evolve to support more
 features.

 The StereoMode used to be part of Matroska v2 but it didn’t meet the
 requirement for multiple tracks. There was also a bug in libmatroska
 prior to 0.9.0 that would save/read it as 0x53B9 instead of 0x53B8;
 see OldStereoMode (Section 5.1.4.1.28.5). Matroska Readers MAY
 support these legacy files by checking Matroska v2 or 0x53B9. The
 older values of StereoMode were 0: mono, 1: right eye, 2: left eye,
 3: both eyes, the only values that can be found in OldStereoMode.
 They are not compatible with the StereoMode values found in Matroska
 v3 and above.

19. Default track selection

 This section provides some example sets of Tracks and hypothetical
 user settings, along with indications of which ones a similarly-
 configured Matroska Player SHOULD automatically select for playback
 by default in such a situation. A player MAY provide additional
 settings with more detailed controls for more nuanced scenarios.
 These examples are provided as guidelines to illustrate the intended
 usages of the various supported Track flags, and their expected
 behaviors.

 Track names are shown in English for illustrative purposes; actual
 files may have titles in the language of each track, or provide
 titles in multiple languages.

19.1. Audio Selection

 Example track set:

Lhomme, et al. Expires 24 April 2024 [Page 112]

Internet-Draft Matroska Format October 2023

 +===+=====+====+======+========+=======+===============+===========+
 |No.|Type |Lang|Layout|Original|Default|Other flags |Name |
 +===+=====+====+======+========+=======+===============+===========+
 |1 |Video|und |N/A |N/A |N/A |None | |
 +---+-----+----+------+--------+-------+---------------+-----------+
 |2 |Audio|eng |5.1 |1 |1 |None | |
 +---+-----+----+------+--------+-------+---------------+-----------+
 |3 |Audio|eng |2.0 |1 |1 |None | |
 +---+-----+----+------+--------+-------+---------------+-----------+
 |4 |Audio|eng |2.0 |1 |0 |Visual-impaired|Descriptive|
 | | | | | | | |audio |
 +---+-----+----+------+--------+-------+---------------+-----------+
 |5 |Audio|esp |5.1 |0 |1 |None | |
 +---+-----+----+------+--------+-------+---------------+-----------+
 |6 |Audio|esp |2.0 |0 |0 |Visual-impaired|Descriptive|
 | | | | | | | |audio |
 +---+-----+----+------+--------+-------+---------------+-----------+
 |7 |Audio|eng |2.0 |1 |0 |Commentary |Director’s |
 | | | | | | | |Commentary |
 +---+-----+----+------+--------+-------+---------------+-----------+
 |8 |Audio|eng |2.0 |1 |0 |None |Karaoke |
 +---+-----+----+------+--------+-------+---------------+-----------+

 Table 45: Audio Tracks for default selection

 Here we have a file with 7 audio tracks, of which 5 are in English
 and 2 are in Spanish.

 The English tracks all have the Original flag, indicating that
 English is the original content language.

 Generally the player will first consider the track languages: if the
 player has an option to prefer original-language audio and the user
 has enabled it, then it should prefer one of the Original-flagged
 tracks. If configured to specifically prefer audio tracks in English
 or Spanish, the player should select one of the tracks in the
 corresponding language. The player may also wish to prefer an
 Original-flagged track if no tracks matching any of the user’s
 explicitly-preferred languages are available.

 Two of the tracks have the Visual-impaired flag. If the player has
 been configured to prefer such tracks, it should select one;
 otherwise, it should avoid them if possible.

 If selecting an English track, when other settings have left multiple
 possible options, it may be useful to exclude the tracks that lack
 the Default flag: here, one provides descriptive service for the
 visually impaired (which has its own flag and may be automatically

Lhomme, et al. Expires 24 April 2024 [Page 113]

Internet-Draft Matroska Format October 2023

 selected by user configuration, but is unsuitable for users with
 default-configured players), one is a commentary track (which has its
 own flag, which the player may or may not have specialized handling
 for), and the last contains karaoke versions of the music that plays
 during the film, which is an unusual specialized audio service that
 Matroska has no built-in support for indicating, so it’s indicated in
 the track name instead. By not setting the Default flag on these
 specialized tracks, the file’s author hints that they should not be
 automatically selected by a default-configured player.

 Having narrowed its choices down, our example player now may have to
 select between tracks 2 and 3. The only difference between these
 tracks is their channel layouts: 2 is 5.1 surround, while 3 is
 stereo. If the player is aware that the output device is a pair of
 headphones or stereo speakers, it may wish to prefer the stereo mix
 automatically. On the other hand, if it knows that the device is a
 surround system, it may wish to prefer the surround mix.

 If the player finishes analyzing all of the available audio tracks
 and finds that multiple seems equally and maximally preferable, it
 SHOULD default to the first of the group.

19.2. Subtitle selection

 Example track set:

Lhomme, et al. Expires 24 April 2024 [Page 114]

Internet-Draft Matroska Format October 2023

 +===+===========+====+========+=======+======+==========+==========+
 |No.| Type |Lang|Original|Default|Forced| Other | Name |
 | | | | | | | flags | |
 +===+===========+====+========+=======+======+==========+==========+
 |1 | Video |und |N/A |N/A |N/A | None | |
 +---+-----------+----+--------+-------+------+----------+----------+
 |2 | Audio |fra |1 |1 |N/A | None | |
 +---+-----------+----+--------+-------+------+----------+----------+
 |3 | Audio |por |0 |1 |N/A | None | |
 +---+-----------+----+--------+-------+------+----------+----------+
 |4 | Subtitles |fra |1 |1 |0 | None | |
 +---+-----------+----+--------+-------+------+----------+----------+
5	Subtitles	fra	1	0	0	Hearing-	Captions
						impaired	for the
							hearing-
							impaired
+---+-----------+----+--------+-------+------+----------+----------+							
6	Subtitles	por	0	1	0	None	
+---+-----------+----+--------+-------+------+----------+----------+							
7	Subtitles	por	0	0	1	None	Signs
+---+-----------+----+--------+-------+------+----------+----------+							
8	Subtitles	por	0	0	0	Hearing-	SDH
						impaired	
 +---+-----------+----+--------+-------+------+----------+----------+

 Table 46: Subtitle Tracks for default selection

 Here we have 2 audio tracks and 5 subtitle tracks. As we can see,
 French is the original language.

 We’ll start by discussing the case where the user prefers French (or
 Original-language) audio (or has explicitly selected the French audio
 track), and also prefers French subtitles.

 In this case, if the player isn’t configured to display captions when
 the audio matches their preferred subtitle languages, the player
 doesn’t need to select a subtitle track at all.

 If the user _has_ indicated that they want captions to be displayed,
 the selection simply comes down to whether Hearing-impaired subtitles
 are preferred.

 The situation for a user who prefers Portuguese subtitles starts out
 somewhat analogous. If they select the original French audio (either
 by explicit audio language preference, preference for Original-
 language tracks, or by explicitly selecting that track), then the
 selection once again comes down to the hearing-impaired preference.

Lhomme, et al. Expires 24 April 2024 [Page 115]

Internet-Draft Matroska Format October 2023

 However, the case where the Portuguese audio track is selected has an
 important catch: a Forced track in Portuguese is present. This may
 contain translations of onscreen text from the video track, or of
 portions of the audio that are not translated (music, for instance).
 This means that even if the user’s preferences wouldn’t normally call
 for captions here, the Forced track should be selected nonetheless,
 rather than selecting no track at all. On the other hand, if the
 user’s preferences _do_ call for captions, the non-Forced tracks
 should be preferred, as the Forced track will not contain captioning
 for the dialogue.

20. Chapters

 The Matroska Chapters system can have multiple Editions and each
 Edition can consist of Simple Chapters where a chapter start time is
 used as marker in the timeline only. An Edition can be more complex
 with Ordered Chapters where a chapter end time stamp is additionally
 used or much more complex with Linked Chapters. The Matroska
 Chapters system can also have a menu structure, borrowed from the DVD
 menu system [DVD-Video], or have its own built-in Matroska menu
 structure.

20.1. EditionEntry

 The EditionEntry is also called an Edition. An Edition contains a
 set of Edition flags and MUST contain at least one ChapterAtom
 Element. Chapters are always inside an Edition (or a Chapter itself
 part of an Edition). Multiple Editions are allowed. Some of these
 Editions MAY be ordered and others not.

20.1.1. EditionFlagDefault

 Only one Edition SHOULD have an EditionFlagDefault flag set to true.

20.1.2. Default Edition

 The Default Edition is the Edition that a Matroska Player SHOULD use
 for playback by default.

 The first Edition with the EditionFlagDefault flag set to true is the
 Default Edition.

 When all EditionFlagDefault flags are set to false, then the first
 Edition is the Default Edition.

Lhomme, et al. Expires 24 April 2024 [Page 116]

Internet-Draft Matroska Format October 2023

 +===========+=============+=================+
 | Edition | FlagDefault | Default Edition |
 +===========+=============+=================+
 | Edition 1 | true | X |
 +-----------+-------------+-----------------+
 | Edition 2 | true | |
 +-----------+-------------+-----------------+
 | Edition 3 | true | |
 +-----------+-------------+-----------------+

 Table 47: Default edition, all default

 +===========+=============+=================+
 | Edition | FlagDefault | Default Edition |
 +===========+=============+=================+
 | Edition 1 | false | X |
 +-----------+-------------+-----------------+
 | Edition 2 | false | |
 +-----------+-------------+-----------------+
 | Edition 3 | false | |
 +-----------+-------------+-----------------+

 Table 48: Default edition, no default

 +===========+=============+=================+
 | Edition | FlagDefault | Default Edition |
 +===========+=============+=================+
 | Edition 1 | false | |
 +-----------+-------------+-----------------+
 | Edition 2 | true | X |
 +-----------+-------------+-----------------+
 | Edition 3 | false | |
 +-----------+-------------+-----------------+

 Table 49: Default edition, with default

20.1.3. EditionFlagOrdered

 The EditionFlagOrdered Flag is a significant feature as it enables an
 Edition of Ordered Chapters which defines and arranges a virtual
 timeline rather than simply labeling points within the timeline. For
 example, with Editions of Ordered Chapters a single Matroska file can
 present multiple edits of a film without duplicating content.
 Alternatively, if a videotape is digitized in full, one Ordered
 Edition could present the full content (including colorbars,
 countdown, slate, a feature presentation, and black frames), while
 another Edition of Ordered Chapters can use Chapters that only mark
 the intended presentation with the colorbars and other ancillary

Lhomme, et al. Expires 24 April 2024 [Page 117]

Internet-Draft Matroska Format October 2023

 visual information excluded. If an Edition of Ordered Chapters is
 enabled, then the Matroska Player MUST play those Chapters in their
 stored order from the timestamp marked in the ChapterTimeStart
 Element to the timestamp marked in to ChapterTimeEnd Element.

 If the EditionFlagOrdered Flag evaluates to "0", Simple Chapters are
 used and only the ChapterTimeStart of a Chapter is used as chapter
 mark to jump to the predefined point in the timeline. With Simple
 Chapters, a Matroska Player MUST ignore certain Chapter Elements. In
 that case these elements are informational only.

 The following list shows the different Chapter elements only found in
 Ordered Chapters.

 +======================================+
 | Ordered Chapter elements |
 +======================================+
 | ChapterAtom/ChapterSegmentUUID |
 +--------------------------------------+
 | ChapterAtom/ChapterSegmentEditionUID |
 +--------------------------------------+
 | ChapterAtom/ChapterTrack |
 +--------------------------------------+
 | ChapterAtom/ChapProcess |
 +--------------------------------------+
 | Info/ChapterTranslate |
 +--------------------------------------+
 | TrackEntry/TrackTranslate |
 +--------------------------------------+

 Table 50: elements only found in
 ordered chapters

 Furthermore, there are other EBML Elements which could be used if the
 EditionFlagOrdered evaluates to "1".

20.1.3.1. Ordered-Edition and Matroska Segment-Linking

 * Hard Linking: Ordered-Chapters supersedes the Hard Linking.

 * Medium Linking: Ordered Chapters are used in a normal way and can
 be combined with the ChapterSegmentUUID element which establishes
 a link to another Segment.

 See Section 17 on the Linked Segments for more information about Hard
 Linking and Medium Linking.

Lhomme, et al. Expires 24 April 2024 [Page 118]

Internet-Draft Matroska Format October 2023

20.2. ChapterAtom

 The ChapterAtom is also called a Chapter.

20.2.1. ChapterTimeStart

 The timestamp of the start of Chapter with nanosecond accuracy, not
 scaled by TimestampScale. For Simple Chapters this is the position
 of the chapter markers in the timeline.

20.2.2. ChapterTimeEnd

 The timestamp of the end of Chapter with nanosecond accuracy, not
 scaled by TimestampScale. The timestamp defined by the
 ChapterTimeEnd is not part of the Chapter. A Matroska Player
 calculates the duration of this Chapter using the difference between
 the ChapterTimeEnd and ChapterTimeStart. The end timestamp MUST be
 greater than or equal to the start timestamp.

 When the ChapterTimeEnd timestamp is equal to the ChapterTimeStart
 timestamp, the timestamps is included in the Chapter. It can be
 useful to put markers in a file or add chapter commands with ordered
 chapter commands without having to play anything; see
 Section 5.1.7.1.4.14.

 +===========+=================+===============+===============+
 | Chapter | Start timestamp | End timestamp | Duration |
 +===========+=================+===============+===============+
 | Chapter 1 | 0 | 1000000000 | 1000000000 |
 +-----------+-----------------+---------------+---------------+
 | Chapter 2 | 1000000000 | 5000000000 | 4000000000 |
 +-----------+-----------------+---------------+---------------+
 | Chapter 3 | 6000000000 | 6000000000 | 0 |
 +-----------+-----------------+---------------+---------------+
 | Chapter 4 | 9000000000 | 8000000000 | Invalid |
 | | | | (-1000000000) |
 +-----------+-----------------+---------------+---------------+

 Table 51: ChapterTimeEnd usage possibilities

20.2.3. Nested Chapters

 A ChapterAtom element can contain other ChapterAtom elements. That
 element is a Parent Chapter and the ChapterAtom elements it contains
 are Nested Chapters.

Lhomme, et al. Expires 24 April 2024 [Page 119]

Internet-Draft Matroska Format October 2023

 Nested Chapters can be useful to tag small parts of a Segment that
 already have tags or add Chapter Codec commands on smaller parts of a
 Segment that already have Chapter Codec commands.

 The ChapterTimeStart of a Nested Chapter MUST be greater than or
 equal to the ChapterTimeStart its Parent Chapter.

 If the Parent Chapter of a Nested Chapter has a ChapterTimeEnd, the
 ChapterTimeStart of that Nested Chapter MUST be smaller than or equal
 to the ChapterTimeEnd of the Parent Chapter.

20.2.4. Nested Chapters in Ordered Chapters

 The ChapterTimeEnd of the lowest level of Nested Chapters MUST be set
 for Ordered Chapters.

 When used with Ordered Chapters, the ChapterTimeEnd value of a Parent
 Chapter is useless for playback as the proper playback sections are
 described in its Nested Chapters. The ChapterTimeEnd SHOULD NOT be
 set in Parent Chapters and MUST be ignored for playback.

20.2.5. ChapterFlagHidden

 Each Chapter ChapterFlagHidden flag works independently of parent
 chapters. A Nested Chapter with a ChapterFlagHidden that evaluates
 to "0" remains visible in the user interface even if the Parent
 Chapter ChapterFlagHidden flag is set to "1".

 +==========================+===================+=========+
 | Chapter + Nested Chapter | ChapterFlagHidden | visible |
 +==========================+===================+=========+
 | Chapter 1 | 0 | yes |
 +--------------------------+-------------------+---------+
 | Nested Chapter 1.1 | 0 | yes |
 +--------------------------+-------------------+---------+
 | Nested Chapter 1.2 | 1 | no |
 +--------------------------+-------------------+---------+
 | Chapter 2 | 1 | no |
 +--------------------------+-------------------+---------+
 | Nested Chapter 2.1 | 0 | yes |
 +--------------------------+-------------------+---------+
 | Nested Chapter 2.2 | 1 | no |
 +--------------------------+-------------------+---------+

 Table 52: ChapterFlagHidden nested visibility

Lhomme, et al. Expires 24 April 2024 [Page 120]

Internet-Draft Matroska Format October 2023

20.3. Menu features

 The menu features are handled like a chapter codec. That means each
 codec has a type, some private data and some data in the chapters.

 The type of the menu system is defined by the ChapProcessCodecID
 parameter. For now, only 2 values are supported : 0 matroska script,
 1 menu borrowed from the DVD [DVD-Video]. The private data depend on
 the type of menu system (stored in ChapProcessPrivate), idem for the
 data in the chapters (stored in ChapProcessData).

 The menu system, as well as Chapter Codecs in general, can do actions
 on the Matroska Player like jumping to another Chapter or Edition,
 selecting different tracks and possibly more. The scope of all the
 possibilities of Chapter Codecs is not covered in this document as it
 depends on the Chapter Codec features and its integration in a
 Matroska Player.

20.4. Physical Types

 Each level can have different meanings for audio and video. The
 ORIGINAL_MEDIA_TYPE tag [MatroskaTags] can be used to specify a
 string for ChapterPhysicalEquiv = 60. Here is the list of possible
 levels for both audio and video:

Lhomme, et al. Expires 24 April 2024 [Page 121]

Internet-Draft Matroska Format October 2023

 +=======+=======================+=============+=====================+
 | Value | Audio | Video | Comment |
 +=======+=======================+=============+=====================+
 | 70 | SET / PACKAGE | SET / | the collection of |
 | | | PACKAGE | different media |
 +-------+-----------------------+-------------+---------------------+
60	CD / 12" / 10" / 7" /	DVD / VHS	the physical medium
	TAPE / MINIDISC / DAT	/	like a CD or a DVD
		LASERDISC	
+-------+-----------------------+-------------+---------------------+			
50	SIDE	SIDE	when the original
			medium (LP/DVD) has
			different sides
+-------+-----------------------+-------------+---------------------+			
40	-	LAYER	another physical
			level on DVDs
+-------+-----------------------+-------------+---------------------+			
30	SESSION	SESSION	as found on CDs and
			DVDs
+-------+-----------------------+-------------+---------------------+			
20	TRACK	-	as found on audio
			CDs
+-------+-----------------------+-------------+---------------------+			
10	INDEX	-	the first logical
			level of the side/
			medium
 +-------+-----------------------+-------------+---------------------+

 Table 53: ChapterPhysicalEquiv meaning per track type

20.5. Chapter Examples

20.5.1. Example 1 : basic chaptering

 In this example a movie is split in different chapters. It could
 also just be an audio file (album) on which each track corresponds to
 a chapter.

 * 00000 ms - 05000 ms : Intro
 * 05000 ms - 25000 ms : Before the crime
 * 25000 ms - 27500 ms : The crime
 * 27500 ms - 38000 ms : The killer arrested
 * 38000 ms - 43000 ms : Credits

 This would translate in the following matroska form, with the EBML
 tree shown as XML :

Lhomme, et al. Expires 24 April 2024 [Page 122]

Internet-Draft Matroska Format October 2023

 <Chapters>
 <EditionEntry>
 <EditionUID>16603393396715046047</EditionUID>
 <ChapterAtom>
 <ChapterUID>1193046</ChapterUID>
 <ChapterTimeStart>0</ChapterTimeStart>
 <ChapterTimeEnd>5000000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Intro</ChapString>
 </ChapterDisplay>
 </ChapterAtom>
 <ChapterAtom>
 <ChapterUID>2311527</ChapterUID>
 <ChapterTimeStart>5000000000</ChapterTimeStart>
 <ChapterTimeEnd>25000000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Before the crime</ChapString>
 </ChapterDisplay>
 <ChapterDisplay>
 <ChapString>Avant le crime</ChapString>
 <ChapLanguage>fra</ChapLanguage>
 </ChapterDisplay>
 </ChapterAtom>
 <ChapterAtom>
 <ChapterUID>3430008</ChapterUID>
 <ChapterTimeStart>25000000000</ChapterTimeStart>
 <ChapterTimeEnd>27500000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>The crime</ChapString>
 </ChapterDisplay>
 <ChapterDisplay>
 <ChapString>Le crime</ChapString>
 <ChapLanguage>fra</ChapLanguage>
 </ChapterDisplay>
 </ChapterAtom>
 <ChapterAtom>
 <ChapterUID>4548489</ChapterUID>
 <ChapterTimeStart>27500000000</ChapterTimeStart>
 <ChapterTimeEnd>38000000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>After the crime</ChapString>
 </ChapterDisplay>
 <ChapterDisplay>
 <ChapString>Apres le crime</ChapString>
 <ChapLanguage>fra</ChapLanguage>
 </ChapterDisplay>
 </ChapterAtom>
 <ChapterAtom>

Lhomme, et al. Expires 24 April 2024 [Page 123]

Internet-Draft Matroska Format October 2023

 <ChapterUID>5666960</ChapterUID>
 <ChapterTimeStart>38000000000</ChapterTimeStart>
 <ChapterTimeEnd>43000000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Credits</ChapString>
 </ChapterDisplay>
 <ChapterDisplay>
 <ChapString>Generique</ChapString>
 <ChapLanguage>fra</ChapLanguage>
 </ChapterDisplay>
 </ChapterAtom>
 </EditionEntry>
 </Chapters>

 Figure 16: Basic Chapters Example.

20.5.2. Example 2 : nested chapters

 In this example an (existing) album is split into different chapters,
 and one of them contains another splitting.

20.5.2.1. The Micronauts "Bleep To Bleep"

 * 00:00 - 12:28 : Baby Wants To Bleep/Rock
 - 00:00 - 04:38 : Baby wants to bleep (pt.1)
 - 04:38 - 07:12 : Baby wants to rock
 - 07:12 - 10:33 : Baby wants to bleep (pt.2)
 - 10:33 - 12:28 : Baby wants to bleep (pt.3)
 * 12:30 - 19:38 : Bleeper_O+2
 * 19:40 - 22:20 : Baby wants to bleep (pt.4)
 * 22:22 - 25:18 : Bleep to bleep
 * 25:20 - 33:35 : Baby wants to bleep (k)
 * 33:37 - 44:28 : Bleeper

 This would translate in the following matroska form, with the EBML
 tree shown as XML :

 <Chapters>
 <EditionEntry>
 <EditionUID>1281690858003401414</EditionUID>
 <ChapterAtom>
 <ChapterUID>1</ChapterUID>
 <ChapterTimeStart>0</ChapterTimeStart>
 <ChapterTimeEnd>748000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Baby wants to Bleep/Rock</ChapString>
 </ChapterDisplay>
 <ChapterAtom>

Lhomme, et al. Expires 24 April 2024 [Page 124]

Internet-Draft Matroska Format October 2023

 <ChapterUID>2</ChapterUID>
 <ChapterTimeStart>0</ChapterTimeStart>
 <ChapterTimeEnd>278000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Baby wants to bleep (pt.1)</ChapString>
 </ChapterDisplay>
 </ChapterAtom>
 <ChapterAtom>
 <ChapterUID>3</ChapterUID>
 <ChapterTimeStart>278000000</ChapterTimeStart>
 <ChapterTimeEnd>432000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Baby wants to rock</ChapString>
 </ChapterDisplay>
 </ChapterAtom>
 <ChapterAtom>
 <ChapterUID>4</ChapterUID>
 <ChapterTimeStart>432000000</ChapterTimeStart>
 <ChapterTimeEnd>633000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Baby wants to bleep (pt.2)</ChapString>
 </ChapterDisplay>
 </ChapterAtom>
 <ChapterAtom>
 <ChapterUID>5</ChapterUID>
 <ChapterTimeStart>633000000</ChapterTimeStart>
 <ChapterTimeEnd>748000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Baby wants to bleep (pt.3)</ChapString>
 </ChapterDisplay>
 </ChapterAtom>
 </ChapterAtom>
 <ChapterAtom>
 <ChapterUID>6</ChapterUID>
 <ChapterTimeStart>750000000</ChapterTimeStart>
 <ChapterTimeEnd>1178500000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Bleeper_O+2</ChapString>
 </ChapterDisplay>
 </ChapterAtom>
 <ChapterAtom>
 <ChapterUID>7</ChapterUID>
 <ChapterTimeStart>1180500000</ChapterTimeStart>
 <ChapterTimeEnd>1340000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Baby wants to bleep (pt.4)</ChapString>
 </ChapterDisplay>
 </ChapterAtom>

Lhomme, et al. Expires 24 April 2024 [Page 125]

Internet-Draft Matroska Format October 2023

 <ChapterAtom>
 <ChapterUID>8</ChapterUID>
 <ChapterTimeStart>1342000000</ChapterTimeStart>
 <ChapterTimeEnd>1518000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Bleep to bleep</ChapString>
 </ChapterDisplay>
 </ChapterAtom>
 <ChapterAtom>
 <ChapterUID>9</ChapterUID>
 <ChapterTimeStart>1520000000</ChapterTimeStart>
 <ChapterTimeEnd>2015000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Baby wants to bleep (k)</ChapString>
 </ChapterDisplay>
 </ChapterAtom>
 <ChapterAtom>
 <ChapterUID>10</ChapterUID>
 <ChapterTimeStart>2017000000</ChapterTimeStart>
 <ChapterTimeEnd>2668000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Bleeper</ChapString>
 </ChapterDisplay>
 </ChapterAtom>
 </EditionEntry>
 </Chapters>

 Figure 17: Nested Chapters Example.

21. Attachments

 Matroska supports storage of related files and data in the
 Attachments Element (a Top-Level Element). Attachment Elements can
 be used to store related cover art, font files, transcripts, reports,
 error recovery files, picture, or text-based annotations, copies of
 specifications, or other ancillary files related to the Segment.

 Matroska Readers MUST NOT execute files stored as Attachment
 Elements.

21.1. Cover Art

 This section defines a set of guidelines for the storage of cover art
 in Matroska files. A Matroska Reader MAY use embedded cover art to
 display a representational still-image depiction of the multimedia
 contents of the Matroska file.

Lhomme, et al. Expires 24 April 2024 [Page 126]

Internet-Draft Matroska Format October 2023

 Only [JPEG] and PNG [RFC2083] image formats SHOULD be used for cover
 art pictures.

 There can be two different covers for a movie/album: a portrait style
 (e.g., a DVD case) and a landscape style (e.g., a wide banner ad).

 There can be two versions of the same cover, the normal cover and the
 small cover. The dimension of the normal cover SHOULD be 600 pixels
 on the smallest side -- for example, 960x600 for landscape, 600x800
 for portrait, or 600x600 for square. The dimension of the small
 cover SHOULD be 120 pixels on the smallest side -- for example,
 192x120 or 120x160.

 Versions of cover art can be differentiated by the filename, which is
 stored in the FileName Element. The default filename of the normal
 cover in square or portrait mode is cover.(jpg|png). When stored,
 the normal cover SHOULD be the first Attachment in storage order.
 The small cover SHOULD be prefixed with "small_", such as
 small_cover.(jpg|png). The landscape variant SHOULD be suffixed with
 "_land", such as cover_land.(jpg|png). The filenames are case-
 sensitive.

 The following table provides examples of file names for cover art in
 Attachments.

 +======================+===================+=================+
 | FileName | Image Orientation | Pixel Length of |
 | | | Smallest Side |
 +======================+===================+=================+
 | cover.jpg | Portrait or | 600 |
 | | square | |
 +----------------------+-------------------+-----------------+
 | small_cover.png | Portrait or | 120 |
 | | square | |
 +----------------------+-------------------+-----------------+
 | cover_land.png | Landscape | 600 |
 +----------------------+-------------------+-----------------+
 | small_cover_land.jpg | Landscape | 120 |
 +----------------------+-------------------+-----------------+

 Table 54: Cover Art Filenames

Lhomme, et al. Expires 24 April 2024 [Page 127]

Internet-Draft Matroska Format October 2023

21.2. Font files

 Font files MAY be added to a Matroska file as Attachments so that the
 font file may be used to display an associated subtitle track. This
 allows the presentation of a Matroska file to be consistent in
 various environments where the needed fonts might not be available on
 the local system.

 Depending on the font format in question, each font file can contain
 multiple font variants. Each font variant has a name which will be
 referred to as Font Name from now on. This Font Name can be
 different from the Attachment’s FileName, even when disregarding the
 extension. In order to select a font for display, a Matroska player
 SHOULD consider both the Font Name and the base name of the
 Attachment’s FileName, preferring the former when there are multiple
 matches.

 Subtitle codecs, such as SubStation Alpha (SSA/ASS), usually refer to
 a font by its Font Name, not by its filename. If none of the
 Attachments are a match for the Font Name, the Matroska player SHOULD
 attempt to find a system font whose Font Name matches the one used in
 the subtitle track.

 Since loading fonts temporarily can take a while, a Matroska player
 usually loads or installs all the fonts found in attachments so they
 are ready to be used during playback. Failure to use the font
 attachment might result in incorrect rendering of the subtitles.

 If a selected subtitle track has some AttachmentLink elements, the
 player MAY restrict its font rendering to use only these fonts.

 A Matroska player SHOULD handle the official font media types from
 [RFC8081] when the system can handle the type:

 * font/sfnt: Generic SFNT Font Type,

 * font/ttf: TTF Font Type,

 * font/otf: OpenType Layout (OTF) Font Type,

 * font/collection: Collection Font Type,

 * font/woff: WOFF 1.0,

 * font/woff2: WOFF 2.0.

Lhomme, et al. Expires 24 April 2024 [Page 128]

Internet-Draft Matroska Format October 2023

 Fonts in Matroska existed long before [RFC8081]. A few unofficial
 media types for fonts were used in existing files. Therefore, it is
 RECOMMENDED for a Matroska player to support the following legacy
 media types for font attachments:

 * application/x-truetype-font: Truetype fonts, equivalent to font/
 ttf and sometimes font/otf,

 * application/x-font-ttf: TTF fonts, equivalent to font/ttf,

 * application/vnd.ms-opentype: OpenType Layout fonts, equivalent to
 font/otf

 * application/font-sfnt: Generic SFNT Font Type, equivalent to font/
 sfnt

 * application/font-woff: WOFF 1.0, equivalent to font/woff

 There may also be some font attachments with the application/octet-
 stream media type. In that case the Matroska player MAY try to guess
 the font type by checking the file extension of the
 AttachedFile\FileName string. Common file extensions for fonts are:

 * .ttf for Truetype fonts, equivalent to font/ttf,

 * .otf for OpenType Layout fonts, equivalent to font/otf,

 * .ttc for Collection fonts, equivalent to font/collection

 The file extension check MUST be case-insensitive.

 Matroska writers SHOULD use a valid font media type from [RFC8081] in
 the AttachedFile\FileMediaType of the font attachment. They MAY use
 the media types found in older files when compatibility with older
 players is necessary.

22. Cues

 The Cues Element provides an index of certain Cluster Elements to
 allow for optimized seeking to absolute timestamps within the
 Segment. The Cues Element contains one or many CuePoint Elements
 which each MUST reference an absolute timestamp (via the CueTime
 Element), a Track (via the CueTrack Element), and a Segment Position
 (via the CueClusterPosition Element). Additional non-mandated
 Elements are part of the CuePoint Element such as CueDuration,
 CueRelativePosition, CueCodecState and others which provide any
 Matroska Reader with additional information to use in the
 optimization of seeking performance.

Lhomme, et al. Expires 24 April 2024 [Page 129]

Internet-Draft Matroska Format October 2023

22.1. Recommendations

 The following recommendations are provided to optimize Matroska
 performance.

 * Unless Matroska is used as a live stream, it SHOULD contain a Cues
 Element.

 * For each video track, each keyframe SHOULD be referenced by a
 CuePoint Element.

 * It is RECOMMENDED to not reference non-keyframes of video tracks
 in Cues unless it references a Cluster Element which contains a
 CodecState Element but no keyframes.

 * For each subtitle track present, each subtitle frame SHOULD be
 referenced by a CuePoint Element with a CueDuration Element.

 * References to audio tracks MAY be skipped in CuePoint Elements if
 a video track is present. When included the CuePoint Elements
 SHOULD reference audio keyframes at most once every 500
 milliseconds.

 * If the referenced frame is not stored within the first
 SimpleBlock, or first BlockGroup within its Cluster Element, then
 the CueRelativePosition Element SHOULD be written to reference
 where in the Cluster the reference frame is stored.

 * If a CuePoint Element references Cluster Element that includes a
 CodecState Element, then that CuePoint Element MUST use a
 CueCodecState Element.

 * CuePoint Elements SHOULD be numerically sorted in storage order by
 the value of the CueTime Element.

23. Matroska Streaming

 In Matroska, there are two kinds of streaming: file access and
 livestreaming.

23.1. File Access

 File access can simply be reading a file located on your computer,
 but also includes accessing a file from an HTTP (web) server or CIFS
 (Windows share) server. These protocols are usually safe from
 reading errors and seeking in the stream is possible. However, when
 a file is stored far away or on a slow server, seeking can be an
 expensive operation and should be avoided. The guidelines in

Lhomme, et al. Expires 24 April 2024 [Page 130]

Internet-Draft Matroska Format October 2023

 Section 25, when followed, help reduce the number of seeking
 operations for regular playback and also have the playback start
 quickly without a lot of data needed to read first (like a Cues
 Element, Attachment Element or SeekHead Element).

 Matroska, having a small overhead, is well suited for storing music/
 videos on file servers without a big impact on the bandwidth used.
 Matroska does not require the index to be loaded before playing,
 which allows playback to start very quickly. The index can be loaded
 only when seeking is requested the first time.

23.2. Livestreaming

 Livestreaming is the equivalent of television broadcasting on the
 internet. There are 2 families of servers for livestreaming: RTP/
 RTSP and HTTP. Matroska is not meant to be used over RTP. RTP
 already has timing and channel mechanisms that would be wasted if
 doubled in Matroska. Additionally, having the same information at
 the RTP and Matroska level would be a source of confusion if they do
 not match. Livestreaming of Matroska over file-like protocols like
 HTTP, QUIC, etc. is possible.

 A live Matroska stream is different from a file because it usually
 has no known end (only ending when the client disconnects). For
 this, all bits of the "size" portion of the Segment Element MUST be
 set to 1. Another option is to concatenate Segment Elements with
 known sizes, one after the other. This solution allows a change of
 codec/resolution between each segment. For example, this allows for
 a switch between 4:3 and 16:9 in a television program.

 When Segment Elements are continuous, certain Elements, like
 SeekHead, Cues, Chapters, and Attachments, MUST NOT be used.

 It is possible for a Matroska Player to detect that a stream is not
 seekable. If the stream has neither a SeekHead list nor a Cues list
 at the beginning of the stream, it SHOULD be considered non-seekable.
 Even though it is possible to seek forward in the stream, it is NOT
 RECOMMENDED.

 In the context of live radio or web TV, it is possible to "tag" the
 content while it is playing. The Tags Element can be placed between
 Clusters each time it is necessary. In that case, the new Tags
 Element MUST reset the previously encountered Tags Elements and use
 the new values instead.

Lhomme, et al. Expires 24 April 2024 [Page 131]

Internet-Draft Matroska Format October 2023

24. Tags

24.1. Tags Precedence

 Tags allow tagging all kinds of Matroska parts with very detailed
 metadata in multiple languages.

 Some Matroska elements also contain their own string value like the
 Track Name (Section 5.1.4.1.18) or the Chapter String
 (Section 5.1.7.1.4.10).

 The following Matroska elements can also be defined with tags:

 * The Track Name Element (Section 5.1.4.1.18) corresponds to a tag
 with the TagTrackUID (Section 5.1.8.1.1.3) set to the given track,
 a TagName of TITLE (Section 5.1.8.1.2.1) and a TagLanguage
 (Section 5.1.8.1.2.2) or TagLanguageBCP47 (Section 5.1.8.1.2.3) of
 "und".

 * The Chapter String Element (Section 5.1.7.1.4.10) corresponds to a
 tag with the TagChapterUID (Section 5.1.8.1.1.5) set to the same
 chapter UID, a TagName of TITLE (Section 5.1.8.1.2.1) and a
 TagLanguage (Section 5.1.8.1.2.2) or TagLanguageBCP47
 (Section 5.1.8.1.2.3) matching the ChapLanguage
 (Section 5.1.7.1.4.11) or ChapLanguageBCP47 (Section 5.1.7.1.4.12)
 respectively.

 * The FileDescription Element (Section 5.1.6.1.1) of an attachment
 corresponds to a tag with the TagAttachmentUID
 (Section 5.1.8.1.1.6) set to the given attachment, a TagName of
 TITLE (Section 5.1.8.1.2.1) and a TagLanguage
 (Section 5.1.8.1.2.2) or TagLanguageBCP47 (Section 5.1.8.1.2.3) of
 "und".

 When both values exist in the file, the value found in Tags takes
 precedence over the value found in original location of the element.
 For example, if you have a TrackEntry\Name element and Tag TITLE for
 that track in a Matroska Segment, the Tag string SHOULD be used and
 not the TrackEntry\Name string to identify the track.

 As the Tag element is optional, a lot of Matroska Readers do not
 handle it and will not use the tags value when it’s found. So for
 maximum compatibility, it’s usually better to put the strings in the
 TrackEntry, ChapterAtom and Attachment and keep the tags matching
 these values if tags are also used.

Lhomme, et al. Expires 24 April 2024 [Page 132]

Internet-Draft Matroska Format October 2023

24.2. Tag Levels

 Tag elements allow tagging information on multiple levels, each level
 having a TargetTypeValue Section 5.1.8.1.1.1. An element for a given
 TargetTypeValue also applies to the lower levels denoted by smaller
 TargetTypeValue values. If an upper value doesn’t apply to a level
 but the actual value to use is not known, an empty TagString
 (Section 5.1.8.1.2.5) or an empty TagBinary (Section 5.1.8.1.2.6)
 element MUST be used as the tag value for this level.

 See [MatroskaTags] for more details on common tag names, types and
 descriptions.

25. Implementation Recommendations

25.1. Cluster

 It is RECOMMENDED that each individual Cluster Element contains no
 more than 5 seconds or 5 megabytes of content.

25.2. SeekHead

 It is RECOMMENDED that the first SeekHead Element be followed by a
 Void Element to allow for the SeekHead Element to be expanded to
 cover new Top-Level Elements that could be added to the Matroska
 file, such as Tags, Chapters, and Attachments Elements.

 The size of this Void Element should be adjusted depending on the
 Matroska file already having Tags, Chapters, and Attachments
 Elements.

25.3. Optimum Layouts

 While there can be Top-Level Elements in any order, some ordering of
 Elements are better than others. Here are few optimum layouts for
 different use case:

25.3.1. Optimum layout for a muxer

 This is the basic layout muxers should be using for an efficient
 playback experience.

 * SeekHead
 * Info
 * Tracks
 * Chapters
 * Attachments
 * Tags

Lhomme, et al. Expires 24 April 2024 [Page 133]

Internet-Draft Matroska Format October 2023

 * Clusters
 * Cues

25.3.2. Optimum layout after editing tags

 When tags from the previous layout need to be extended, they are
 moved to the end with the extra information. The location where the
 old tags were located is voided.

 * SeekHead
 * Info
 * Tracks
 * Chapters
 * Attachments
 * Void
 * Clusters
 * Cues
 * Tags

25.3.3. Optimum layout with Cues at the front

 Cues are usually a big chunk of data referencing a lot of locations
 in the file. For players that want to seek in the file they need to
 seek to the end of the file to access these locations. It is often
 better if they are placed early in the file. On the other hand that
 means players that don’t intend to seek will have to read/skip these
 data no matter what.

 Because the Cues reference locations further in the file, it’s often
 complicated to allocate the proper space for that element before all
 the locations are known. Therefore, this layout is rarely used.

 * SeekHead
 * Info
 * Tracks
 * Chapters
 * Attachments
 * Tags
 * Cues
 * Clusters

25.3.4. Optimum layout for livestreaming

 In Livestreaming (Section 23.2) only a few elements make sense.
 SeekHead and Cues are useless for example. All elements other than
 the Clusters MUST be placed before the Clusters.

 * Info

Lhomme, et al. Expires 24 April 2024 [Page 134]

Internet-Draft Matroska Format October 2023

 * Tracks
 * Attachments (rare)
 * Tags
 * Clusters

26. Security Considerations

 Matroska inherits security considerations from EBML.

 Attacks on a Matroska Reader could include:

 * Storage of an arbitrary and potentially executable data within an
 Attachment Element. Matroska Readers that extract or use data
 from Matroska Attachments SHOULD check that the data adheres to
 expectations or not use the attachement.

 * A Matroska Attachment with an inaccurate media type.

 * Damage to the Encryption and Compression fields (Section 14) that
 would result in bogus binary data interpreted by the decoder.

 * Chapter Codecs running unwanted commands on the host system.

 The same error handling done for EBML applies to Matroska files.
 Particular error handling is not covered in this specification as
 this is depends on the goal of the Matroska Readers. It is up to the
 decision of the Matroska Readers on how to handle the errors if they
 are recoverable in their code or not. For example, if the checksum
 of the \Segment\Tracks is invalid some could decide to try to read
 the data anyway, some will just reject the file, most will not even
 check it.

 Matroska Reader implementations need to be robust against malicious
 payloads. Those related to denial of service are outlined in
 Section 2.1 of [RFC4732].
 Although rarer, the same may apply to a Matroska Writer. Malicious
 stream data must not cause the Writer to misbehave, as this might
 allow an attacker access to transcoding gateways.

 As an audio and visual container format, a Matroska file or stream
 will potentially encapsulate numerous byte streams created with a
 variety of codecs. Implementers will need to consider the security
 considerations of these encapsulated formats.

27. IANA Considerations

Lhomme, et al. Expires 24 April 2024 [Page 135]

Internet-Draft Matroska Format October 2023

27.1. Matroska Element IDs Registry

 This document creates a new IANA registry called the "Matroska
 Element IDs" registry.

 To register a new Element ID in this registry, one needs an Element
 ID, a Change Controller (IETF or email of registrant) and an optional
 Reference to a document describing the Element ID.

 Element IDs are encoded using the VINT mechanism described in
 Section 4 of [RFC8794] and can be between one and five octets long.
 Five-octet-long Element IDs are possible only if declared in the EBML
 header.

 Element IDs are described in Section 5 of [RFC8794] with errata 7189
 and 7191.

 One-octet Matroska Element IDs are to be allocated according to the
 "RFC Required" policy [RFC8126].

 Two-octet Matroska Element IDs are to be allocated according to the
 "Specification Required" policy [RFC8126].

 Three-octet and four-octet Matroska Element IDs are to be allocated
 according to the "First Come First Served" policy [RFC8126].

 The allowed values in the Elements IDs registry are similar to the
 ones found in the EBML Element IDs registry defined in Section 17.1
 of [RFC8794].

 EBML IDs defined for the EBML Header -- as defined in Section 17.1 of
 [RFC8794] -- MUST NOT be used as Matroska Element IDs.

 Given the scarcity of the One-octet Element IDs, they should only be
 created to save space for elements found many times in a file. For
 example, within a BlockGroup or Chapters. The Four-octet Element IDs
 are mostly for synchronization of large elements. They should only
 be used for such high level elements. Elements that are not expected
 to be used often should use Three-octet Element IDs.

 Elements found in Section 28 have an assigned Matroska Element ID for
 historical reasons. These elements are not in use and SHOULD NOT be
 reused unless there is no other IDs available with the desired size.
 Such IDs are considered as reclaimed to the IANA registry as they
 could be used for other things in the future.

 Matroska Element IDs Values found in this document are assigned as
 initial values as follows:

Lhomme, et al. Expires 24 April 2024 [Page 136]

Internet-Draft Matroska Format October 2023

 +============+=============================+======================+
 | Element ID | Element Name | Reference |
 +============+=============================+======================+
 | 0x80 | ChapterDisplay | Described in |
 | | | Section 5.1.7.1.4.9 |
 +------------+-----------------------------+----------------------+
 | 0x83 | TrackType | Described in |
 | | | Section 5.1.4.1.3 |
 +------------+-----------------------------+----------------------+
 | 0x85 | ChapString | Described in |
 | | | Section 5.1.7.1.4.10 |
 +------------+-----------------------------+----------------------+
 | 0x86 | CodecID | Described in |
 | | | Section 5.1.4.1.21 |
 +------------+-----------------------------+----------------------+
 | 0x88 | FlagDefault | Described in |
 | | | Section 5.1.4.1.5 |
 +------------+-----------------------------+----------------------+
 | 0x8E | Slices | Reclaimed |
 | | | (Section 28.5) |
 +------------+-----------------------------+----------------------+
 | 0x91 | ChapterTimeStart | Described in |
 | | | Section 5.1.7.1.4.3 |
 +------------+-----------------------------+----------------------+
 | 0x92 | ChapterTimeEnd | Described in |
 | | | Section 5.1.7.1.4.4 |
 +------------+-----------------------------+----------------------+
 | 0x96 | CueRefTime | Described in |
 | | | Section 5.1.5.1.2.8 |
 +------------+-----------------------------+----------------------+
 | 0x97 | CueRefCluster | Reclaimed |
 | | | (Section 28.37) |
 +------------+-----------------------------+----------------------+
 | 0x98 | ChapterFlagHidden | Described in |
 | | | Section 5.1.7.1.4.5 |
 +------------+-----------------------------+----------------------+
 | 0x9A | FlagInterlaced | Described in |
 | | | Section 5.1.4.1.28.1 |
 +------------+-----------------------------+----------------------+
 | 0x9B | BlockDuration | Described in |
 | | | Section 5.1.3.5.3 |
 +------------+-----------------------------+----------------------+
 | 0x9C | FlagLacing | Described in |
 | | | Section 5.1.4.1.12 |
 +------------+-----------------------------+----------------------+
 | 0x9D | FieldOrder | Described in |
 | | | Section 5.1.4.1.28.2 |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 137]

Internet-Draft Matroska Format October 2023

 | 0x9F | Channels | Described in |
 | | | Section 5.1.4.1.29.3 |
 +------------+-----------------------------+----------------------+
 | 0xA0 | BlockGroup | Described in |
 | | | Section 5.1.3.5 |
 +------------+-----------------------------+----------------------+
 | 0xA1 | Block | Described in |
 | | | Section 5.1.3.5.1 |
 +------------+-----------------------------+----------------------+
 | 0xA2 | BlockVirtual | Reclaimed |
 | | | (Section 28.3) |
 +------------+-----------------------------+----------------------+
 | 0xA3 | SimpleBlock | Described in |
 | | | Section 5.1.3.4 |
 +------------+-----------------------------+----------------------+
 | 0xA4 | CodecState | Described in |
 | | | Section 5.1.3.5.6 |
 +------------+-----------------------------+----------------------+
 | 0xA5 | BlockAdditional | Described in |
 | | | Section 5.1.3.5.2.2 |
 +------------+-----------------------------+----------------------+
 | 0xA6 | BlockMore | Described in |
 | | | Section 5.1.3.5.2.1 |
 +------------+-----------------------------+----------------------+
 | 0xA7 | Position | Described in |
 | | | Section 5.1.3.2 |
 +------------+-----------------------------+----------------------+
 | 0xAA | CodecDecodeAll | Reclaimed |
 | | | (Section 28.22) |
 +------------+-----------------------------+----------------------+
 | 0xAB | PrevSize | Described in |
 | | | Section 5.1.3.3 |
 +------------+-----------------------------+----------------------+
 | 0xAE | TrackEntry | Described in |
 | | | Section 5.1.4.1 |
 +------------+-----------------------------+----------------------+
 | 0xAF | EncryptedBlock | Reclaimed |
 | | | (Section 28.15) |
 +------------+-----------------------------+----------------------+
 | 0xB0 | PixelWidth | Described in |
 | | | Section 5.1.4.1.28.6 |
 +------------+-----------------------------+----------------------+
 | 0xB2 | CueDuration | Described in |
 | | | Section 5.1.5.1.2.4 |
 +------------+-----------------------------+----------------------+
 | 0xB3 | CueTime | Described in |
 | | | Section 5.1.5.1.1 |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 138]

Internet-Draft Matroska Format October 2023

 | 0xB5 | SamplingFrequency | Described in |
 | | | Section 5.1.4.1.29.1 |
 +------------+-----------------------------+----------------------+
 | 0xB6 | ChapterAtom | Described in |
 | | | Section 5.1.7.1.4 |
 +------------+-----------------------------+----------------------+
 | 0xB7 | CueTrackPositions | Described in |
 | | | Section 5.1.5.1.2 |
 +------------+-----------------------------+----------------------+
 | 0xB9 | FlagEnabled | Described in |
 | | | Section 5.1.4.1.4 |
 +------------+-----------------------------+----------------------+
 | 0xBA | PixelHeight | Described in |
 | | | Section 5.1.4.1.28.7 |
 +------------+-----------------------------+----------------------+
 | 0xBB | CuePoint | Described in |
 | | | Section 5.1.5.1 |
 +------------+-----------------------------+----------------------+
 | 0xC0 | TrickTrackUID | Reclaimed |
 | | | (Section 28.28) |
 +------------+-----------------------------+----------------------+
 | 0xC1 | TrickTrackSegmentUID | Reclaimed |
 | | | (Section 28.29) |
 +------------+-----------------------------+----------------------+
 | 0xC4 | TrickMasterTrackSegmentUID | Reclaimed |
 | | | (Section 28.32) |
 +------------+-----------------------------+----------------------+
 | 0xC6 | TrickTrackFlag | Reclaimed |
 | | | (Section 28.30) |
 +------------+-----------------------------+----------------------+
 | 0xC7 | TrickMasterTrackUID | Reclaimed |
 | | | (Section 28.31) |
 +------------+-----------------------------+----------------------+
 | 0xC8 | ReferenceFrame | Reclaimed |
 | | | (Section 28.12) |
 +------------+-----------------------------+----------------------+
 | 0xC9 | ReferenceOffset | Reclaimed |
 | | | (Section 28.13) |
 +------------+-----------------------------+----------------------+
 | 0xCA | ReferenceTimestamp | Reclaimed |
 | | | (Section 28.14) |
 +------------+-----------------------------+----------------------+
 | 0xCB | BlockAdditionID | Reclaimed |
 | | | (Section 28.9) |
 +------------+-----------------------------+----------------------+
 | 0xCC | LaceNumber | Reclaimed |
 | | | (Section 28.7) |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 139]

Internet-Draft Matroska Format October 2023

 | 0xCD | FrameNumber | Reclaimed |
 | | | (Section 28.8) |
 +------------+-----------------------------+----------------------+
 | 0xCE | Delay | Reclaimed |
 | | | (Section 28.10) |
 +------------+-----------------------------+----------------------+
 | 0xCF | SliceDuration | Reclaimed |
 | | | (Section 28.11) |
 +------------+-----------------------------+----------------------+
 | 0xD7 | TrackNumber | Described in |
 | | | Section 5.1.4.1.1 |
 +------------+-----------------------------+----------------------+
 | 0xDB | CueReference | Described in |
 | | | Section 5.1.5.1.2.7 |
 +------------+-----------------------------+----------------------+
 | 0xE0 | Video | Described in |
 | | | Section 5.1.4.1.28 |
 +------------+-----------------------------+----------------------+
 | 0xE1 | Audio | Described in |
 | | | Section 5.1.4.1.29 |
 +------------+-----------------------------+----------------------+
 | 0xE2 | TrackOperation | Described in |
 | | | Section 5.1.4.1.30 |
 +------------+-----------------------------+----------------------+
 | 0xE3 | TrackCombinePlanes | Described in |
 | | | Section 5.1.4.1.30.1 |
 +------------+-----------------------------+----------------------+
 | 0xE4 | TrackPlane | Described in |
 | | | Section 5.1.4.1.30.2 |
 +------------+-----------------------------+----------------------+
 | 0xE5 | TrackPlaneUID | Described in |
 | | | Section 5.1.4.1.30.3 |
 +------------+-----------------------------+----------------------+
 | 0xE6 | TrackPlaneType | Described in |
 | | | Section 5.1.4.1.30.4 |
 +------------+-----------------------------+----------------------+
 | 0xE7 | Timestamp | Described in |
 | | | Section 5.1.3.1 |
 +------------+-----------------------------+----------------------+
 | 0xE8 | TimeSlice | Reclaimed |
 | | | (Section 28.6) |
 +------------+-----------------------------+----------------------+
 | 0xE9 | TrackJoinBlocks | Described in |
 | | | Section 5.1.4.1.30.5 |
 +------------+-----------------------------+----------------------+
 | 0xEA | CueCodecState | Described in |
 | | | Section 5.1.5.1.2.6 |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 140]

Internet-Draft Matroska Format October 2023

 | 0xEB | CueRefCodecState | Reclaimed |
 | | | (Section 28.39) |
 +------------+-----------------------------+----------------------+
 | 0xED | TrackJoinUID | Described in |
 | | | Section 5.1.4.1.30.6 |
 +------------+-----------------------------+----------------------+
 | 0xEE | BlockAddID | Described in |
 | | | Section 5.1.3.5.2.3 |
 +------------+-----------------------------+----------------------+
 | 0xF0 | CueRelativePosition | Described in |
 | | | Section 5.1.5.1.2.3 |
 +------------+-----------------------------+----------------------+
 | 0xF1 | CueClusterPosition | Described in |
 | | | Section 5.1.5.1.2.2 |
 +------------+-----------------------------+----------------------+
 | 0xF7 | CueTrack | Described in |
 | | | Section 5.1.5.1.2.1 |
 +------------+-----------------------------+----------------------+
 | 0xFA | ReferencePriority | Described in |
 | | | Section 5.1.3.5.4 |
 +------------+-----------------------------+----------------------+
 | 0xFB | ReferenceBlock | Described in |
 | | | Section 5.1.3.5.5 |
 +------------+-----------------------------+----------------------+
 | 0xFD | ReferenceVirtual | Reclaimed |
 | | | (Section 28.4) |
 +------------+-----------------------------+----------------------+
 | 0x41A4 | BlockAddIDName | Described in |
 | | | Section 5.1.4.1.17.2 |
 +------------+-----------------------------+----------------------+
 | 0x41E4 | BlockAdditionMapping | Described in |
 | | | Section 5.1.4.1.17 |
 +------------+-----------------------------+----------------------+
 | 0x41E7 | BlockAddIDType | Described in |
 | | | Section 5.1.4.1.17.3 |
 +------------+-----------------------------+----------------------+
 | 0x41ED | BlockAddIDExtraData | Described in |
 | | | Section 5.1.4.1.17.4 |
 +------------+-----------------------------+----------------------+
 | 0x41F0 | BlockAddIDValue | Described in |
 | | | Section 5.1.4.1.17.1 |
 +------------+-----------------------------+----------------------+
 | 0x4254 | ContentCompAlgo | Described in |
 | | | Section 5.1.4.1.31.6 |
 +------------+-----------------------------+----------------------+
 | 0x4255 | ContentCompSettings | Described in |
 | | | Section 5.1.4.1.31.7 |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 141]

Internet-Draft Matroska Format October 2023

 | 0x437C | ChapLanguage | Described in |
 | | | Section 5.1.7.1.4.11 |
 +------------+-----------------------------+----------------------+
 | 0x437D | ChapLanguageBCP47 | Described in |
 | | | Section 5.1.7.1.4.12 |
 +------------+-----------------------------+----------------------+
 | 0x437E | ChapCountry | Described in |
 | | | Section 5.1.7.1.4.13 |
 +------------+-----------------------------+----------------------+
 | 0x4444 | SegmentFamily | Described in |
 | | | Section 5.1.2.7 |
 +------------+-----------------------------+----------------------+
 | 0x4461 | DateUTC | Described in |
 | | | Section 5.1.2.11 |
 +------------+-----------------------------+----------------------+
 | 0x447A | TagLanguage | Described in |
 | | | Section 5.1.8.1.2.2 |
 +------------+-----------------------------+----------------------+
 | 0x447B | TagLanguageBCP47 | Described in |
 | | | Section 5.1.8.1.2.3 |
 +------------+-----------------------------+----------------------+
 | 0x4484 | TagDefault | Described in |
 | | | Section 5.1.8.1.2.4 |
 +------------+-----------------------------+----------------------+
 | 0x4485 | TagBinary | Described in |
 | | | Section 5.1.8.1.2.6 |
 +------------+-----------------------------+----------------------+
 | 0x4487 | TagString | Described in |
 | | | Section 5.1.8.1.2.5 |
 +------------+-----------------------------+----------------------+
 | 0x4489 | Duration | Described in |
 | | | Section 5.1.2.10 |
 +------------+-----------------------------+----------------------+
 | 0x44B4 | TagDefaultBogus | Reclaimed |
 | | | (Section 28.43) |
 +------------+-----------------------------+----------------------+
 | 0x450D | ChapProcessPrivate | Described in |
 | | | Section 5.1.7.1.4.16 |
 +------------+-----------------------------+----------------------+
 | 0x45A3 | TagName | Described in |
 | | | Section 5.1.8.1.2.1 |
 +------------+-----------------------------+----------------------+
 | 0x45B9 | EditionEntry | Described in |
 | | | Section 5.1.7.1 |
 +------------+-----------------------------+----------------------+
 | 0x45BC | EditionUID | Described in |
 | | | Section 5.1.7.1.1 |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 142]

Internet-Draft Matroska Format October 2023

 | 0x45DB | EditionFlagDefault | Described in |
 | | | Section 5.1.7.1.2 |
 +------------+-----------------------------+----------------------+
 | 0x45DD | EditionFlagOrdered | Described in |
 | | | Section 5.1.7.1.3 |
 +------------+-----------------------------+----------------------+
 | 0x465C | FileData | Described in |
 | | | Section 5.1.6.1.4 |
 +------------+-----------------------------+----------------------+
 | 0x4660 | FileMediaType | Described in |
 | | | Section 5.1.6.1.3 |
 +------------+-----------------------------+----------------------+
 | 0x4661 | FileUsedStartTime | Reclaimed |
 | | | (Section 28.41) |
 +------------+-----------------------------+----------------------+
 | 0x4662 | FileUsedEndTime | Reclaimed |
 | | | (Section 28.42) |
 +------------+-----------------------------+----------------------+
 | 0x466E | FileName | Described in |
 | | | Section 5.1.6.1.2 |
 +------------+-----------------------------+----------------------+
 | 0x4675 | FileReferral | Reclaimed |
 | | | (Section 28.40) |
 +------------+-----------------------------+----------------------+
 | 0x467E | FileDescription | Described in |
 | | | Section 5.1.6.1.1 |
 +------------+-----------------------------+----------------------+
 | 0x46AE | FileUID | Described in |
 | | | Section 5.1.6.1.5 |
 +------------+-----------------------------+----------------------+
 | 0x47E1 | ContentEncAlgo | Described in |
 | | | Section 5.1.4.1.31.9 |
 +------------+-----------------------------+----------------------+
 | 0x47E2 | ContentEncKeyID | Described in Section |
 | | | 5.1.4.1.31.10 |
 +------------+-----------------------------+----------------------+
 | 0x47E3 | ContentSignature | Reclaimed |
 | | | (Section 28.33) |
 +------------+-----------------------------+----------------------+
 | 0x47E4 | ContentSigKeyID | Reclaimed |
 | | | (Section 28.34) |
 +------------+-----------------------------+----------------------+
 | 0x47E5 | ContentSigAlgo | Reclaimed |
 | | | (Section 28.35) |
 +------------+-----------------------------+----------------------+
 | 0x47E6 | ContentSigHashAlgo | Reclaimed |
 | | | (Section 28.36) |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 143]

Internet-Draft Matroska Format October 2023

 | 0x47E7 | ContentEncAESSettings | Described in Section |
 | | | 5.1.4.1.31.11 |
 +------------+-----------------------------+----------------------+
 | 0x47E8 | AESSettingsCipherMode | Described in Section |
 | | | 5.1.4.1.31.12 |
 +------------+-----------------------------+----------------------+
 | 0x4D80 | MuxingApp | Described in |
 | | | Section 5.1.2.13 |
 +------------+-----------------------------+----------------------+
 | 0x4DBB | Seek | Described in |
 | | | Section 5.1.1.1 |
 +------------+-----------------------------+----------------------+
 | 0x5031 | ContentEncodingOrder | Described in |
 | | | Section 5.1.4.1.31.2 |
 +------------+-----------------------------+----------------------+
 | 0x5032 | ContentEncodingScope | Described in |
 | | | Section 5.1.4.1.31.3 |
 +------------+-----------------------------+----------------------+
 | 0x5033 | ContentEncodingType | Described in |
 | | | Section 5.1.4.1.31.4 |
 +------------+-----------------------------+----------------------+
 | 0x5034 | ContentCompression | Described in |
 | | | Section 5.1.4.1.31.5 |
 +------------+-----------------------------+----------------------+
 | 0x5035 | ContentEncryption | Described in |
 | | | Section 5.1.4.1.31.8 |
 +------------+-----------------------------+----------------------+
 | 0x535F | CueRefNumber | Reclaimed |
 | | | (Section 28.38) |
 +------------+-----------------------------+----------------------+
 | 0x536E | Name | Described in |
 | | | Section 5.1.4.1.18 |
 +------------+-----------------------------+----------------------+
 | 0x5378 | CueBlockNumber | Described in |
 | | | Section 5.1.5.1.2.5 |
 +------------+-----------------------------+----------------------+
 | 0x537F | TrackOffset | Reclaimed |
 | | | (Section 28.18) |
 +------------+-----------------------------+----------------------+
 | 0x53AB | SeekID | Described in |
 | | | Section 5.1.1.1.1 |
 +------------+-----------------------------+----------------------+
 | 0x53AC | SeekPosition | Described in |
 | | | Section 5.1.1.1.2 |
 +------------+-----------------------------+----------------------+
 | 0x53B8 | StereoMode | Described in |
 | | | Section 5.1.4.1.28.3 |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 144]

Internet-Draft Matroska Format October 2023

 | 0x53B9 | OldStereoMode | Described in |
 | | | Section 5.1.4.1.28.5 |
 +------------+-----------------------------+----------------------+
 | 0x53C0 | AlphaMode | Described in |
 | | | Section 5.1.4.1.28.4 |
 +------------+-----------------------------+----------------------+
 | 0x54AA | PixelCropBottom | Described in |
 | | | Section 5.1.4.1.28.8 |
 +------------+-----------------------------+----------------------+
 | 0x54B0 | DisplayWidth | Described in Section |
 | | | 5.1.4.1.28.12 |
 +------------+-----------------------------+----------------------+
 | 0x54B2 | DisplayUnit | Described in Section |
 | | | 5.1.4.1.28.14 |
 +------------+-----------------------------+----------------------+
 | 0x54B3 | AspectRatioType | Reclaimed |
 | | | (Section 28.24) |
 +------------+-----------------------------+----------------------+
 | 0x54BA | DisplayHeight | Described in Section |
 | | | 5.1.4.1.28.13 |
 +------------+-----------------------------+----------------------+
 | 0x54BB | PixelCropTop | Described in |
 | | | Section 5.1.4.1.28.9 |
 +------------+-----------------------------+----------------------+
 | 0x54CC | PixelCropLeft | Described in Section |
 | | | 5.1.4.1.28.10 |
 +------------+-----------------------------+----------------------+
 | 0x54DD | PixelCropRight | Described in Section |
 | | | 5.1.4.1.28.11 |
 +------------+-----------------------------+----------------------+
 | 0x55AA | FlagForced | Described in |
 | | | Section 5.1.4.1.6 |
 +------------+-----------------------------+----------------------+
 | 0x55AB | FlagHearingImpaired | Described in |
 | | | Section 5.1.4.1.7 |
 +------------+-----------------------------+----------------------+
 | 0x55AC | FlagVisualImpaired | Described in |
 | | | Section 5.1.4.1.8 |
 +------------+-----------------------------+----------------------+
 | 0x55AD | FlagTextDescriptions | Described in |
 | | | Section 5.1.4.1.9 |
 +------------+-----------------------------+----------------------+
 | 0x55AE | FlagOriginal | Described in |
 | | | Section 5.1.4.1.10 |
 +------------+-----------------------------+----------------------+
 | 0x55AF | FlagCommentary | Described in |
 | | | Section 5.1.4.1.11 |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 145]

Internet-Draft Matroska Format October 2023

 | 0x55B0 | Colour | Described in Section |
 | | | 5.1.4.1.28.16 |
 +------------+-----------------------------+----------------------+
 | 0x55B1 | MatrixCoefficients | Described in Section |
 | | | 5.1.4.1.28.17 |
 +------------+-----------------------------+----------------------+
 | 0x55B2 | BitsPerChannel | Described in Section |
 | | | 5.1.4.1.28.18 |
 +------------+-----------------------------+----------------------+
 | 0x55B3 | ChromaSubsamplingHorz | Described in Section |
 | | | 5.1.4.1.28.19 |
 +------------+-----------------------------+----------------------+
 | 0x55B4 | ChromaSubsamplingVert | Described in Section |
 | | | 5.1.4.1.28.20 |
 +------------+-----------------------------+----------------------+
 | 0x55B5 | CbSubsamplingHorz | Described in Section |
 | | | 5.1.4.1.28.21 |
 +------------+-----------------------------+----------------------+
 | 0x55B6 | CbSubsamplingVert | Described in Section |
 | | | 5.1.4.1.28.22 |
 +------------+-----------------------------+----------------------+
 | 0x55B7 | ChromaSitingHorz | Described in Section |
 | | | 5.1.4.1.28.23 |
 +------------+-----------------------------+----------------------+
 | 0x55B8 | ChromaSitingVert | Described in Section |
 | | | 5.1.4.1.28.24 |
 +------------+-----------------------------+----------------------+
 | 0x55B9 | Range | Described in Section |
 | | | 5.1.4.1.28.25 |
 +------------+-----------------------------+----------------------+
 | 0x55BA | TransferCharacteristics | Described in Section |
 | | | 5.1.4.1.28.26 |
 +------------+-----------------------------+----------------------+
 | 0x55BB | Primaries | Described in Section |
 | | | 5.1.4.1.28.27 |
 +------------+-----------------------------+----------------------+
 | 0x55BC | MaxCLL | Described in Section |
 | | | 5.1.4.1.28.28 |
 +------------+-----------------------------+----------------------+
 | 0x55BD | MaxFALL | Described in Section |
 | | | 5.1.4.1.28.29 |
 +------------+-----------------------------+----------------------+
 | 0x55D0 | MasteringMetadata | Described in Section |
 | | | 5.1.4.1.28.30 |
 +------------+-----------------------------+----------------------+
 | 0x55D1 | PrimaryRChromaticityX | Described in Section |
 | | | 5.1.4.1.28.31 |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 146]

Internet-Draft Matroska Format October 2023

 | 0x55D2 | PrimaryRChromaticityY | Described in Section |
 | | | 5.1.4.1.28.32 |
 +------------+-----------------------------+----------------------+
 | 0x55D3 | PrimaryGChromaticityX | Described in Section |
 | | | 5.1.4.1.28.33 |
 +------------+-----------------------------+----------------------+
 | 0x55D4 | PrimaryGChromaticityY | Described in Section |
 | | | 5.1.4.1.28.34 |
 +------------+-----------------------------+----------------------+
 | 0x55D5 | PrimaryBChromaticityX | Described in Section |
 | | | 5.1.4.1.28.35 |
 +------------+-----------------------------+----------------------+
 | 0x55D6 | PrimaryBChromaticityY | Described in Section |
 | | | 5.1.4.1.28.36 |
 +------------+-----------------------------+----------------------+
 | 0x55D7 | WhitePointChromaticityX | Described in Section |
 | | | 5.1.4.1.28.37 |
 +------------+-----------------------------+----------------------+
 | 0x55D8 | WhitePointChromaticityY | Described in Section |
 | | | 5.1.4.1.28.38 |
 +------------+-----------------------------+----------------------+
 | 0x55D9 | LuminanceMax | Described in Section |
 | | | 5.1.4.1.28.39 |
 +------------+-----------------------------+----------------------+
 | 0x55DA | LuminanceMin | Described in Section |
 | | | 5.1.4.1.28.40 |
 +------------+-----------------------------+----------------------+
 | 0x55EE | MaxBlockAdditionID | Described in |
 | | | Section 5.1.4.1.16 |
 +------------+-----------------------------+----------------------+
 | 0x5654 | ChapterStringUID | Described in |
 | | | Section 5.1.7.1.4.2 |
 +------------+-----------------------------+----------------------+
 | 0x56AA | CodecDelay | Described in |
 | | | Section 5.1.4.1.25 |
 +------------+-----------------------------+----------------------+
 | 0x56BB | SeekPreRoll | Described in |
 | | | Section 5.1.4.1.26 |
 +------------+-----------------------------+----------------------+
 | 0x5741 | WritingApp | Described in |
 | | | Section 5.1.2.14 |
 +------------+-----------------------------+----------------------+
 | 0x5854 | SilentTracks | Reclaimed |
 | | | (Section 28.1) |
 +------------+-----------------------------+----------------------+
 | 0x58D7 | SilentTrackNumber | Reclaimed |
 | | | (Section 28.2) |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 147]

Internet-Draft Matroska Format October 2023

 | 0x61A7 | AttachedFile | Described in |
 | | | Section 5.1.6.1 |
 +------------+-----------------------------+----------------------+
 | 0x6240 | ContentEncoding | Described in |
 | | | Section 5.1.4.1.31.1 |
 +------------+-----------------------------+----------------------+
 | 0x6264 | BitDepth | Described in |
 | | | Section 5.1.4.1.29.4 |
 +------------+-----------------------------+----------------------+
 | 0x63A2 | CodecPrivate | Described in |
 | | | Section 5.1.4.1.22 |
 +------------+-----------------------------+----------------------+
 | 0x63C0 | Targets | Described in |
 | | | Section 5.1.8.1.1 |
 +------------+-----------------------------+----------------------+
 | 0x63C3 | ChapterPhysicalEquiv | Described in |
 | | | Section 5.1.7.1.4.8 |
 +------------+-----------------------------+----------------------+
 | 0x63C4 | TagChapterUID | Described in |
 | | | Section 5.1.8.1.1.5 |
 +------------+-----------------------------+----------------------+
 | 0x63C5 | TagTrackUID | Described in |
 | | | Section 5.1.8.1.1.3 |
 +------------+-----------------------------+----------------------+
 | 0x63C6 | TagAttachmentUID | Described in |
 | | | Section 5.1.8.1.1.6 |
 +------------+-----------------------------+----------------------+
 | 0x63C9 | TagEditionUID | Described in |
 | | | Section 5.1.8.1.1.4 |
 +------------+-----------------------------+----------------------+
 | 0x63CA | TargetType | Described in |
 | | | Section 5.1.8.1.1.2 |
 +------------+-----------------------------+----------------------+
 | 0x6624 | TrackTranslate | Described in |
 | | | Section 5.1.4.1.27 |
 +------------+-----------------------------+----------------------+
 | 0x66A5 | TrackTranslateTrackID | Described in |
 | | | Section 5.1.4.1.27.1 |
 +------------+-----------------------------+----------------------+
 | 0x66BF | TrackTranslateCodec | Described in |
 | | | Section 5.1.4.1.27.2 |
 +------------+-----------------------------+----------------------+
 | 0x66FC | TrackTranslateEditionUID | Described in |
 | | | Section 5.1.4.1.27.3 |
 +------------+-----------------------------+----------------------+
 | 0x67C8 | SimpleTag | Described in |
 | | | Section 5.1.8.1.2 |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 148]

Internet-Draft Matroska Format October 2023

 | 0x68CA | TargetTypeValue | Described in |
 | | | Section 5.1.8.1.1.1 |
 +------------+-----------------------------+----------------------+
 | 0x6911 | ChapProcessCommand | Described in |
 | | | Section 5.1.7.1.4.17 |
 +------------+-----------------------------+----------------------+
 | 0x6922 | ChapProcessTime | Described in |
 | | | Section 5.1.7.1.4.18 |
 +------------+-----------------------------+----------------------+
 | 0x6924 | ChapterTranslate | Described in |
 | | | Section 5.1.2.8 |
 +------------+-----------------------------+----------------------+
 | 0x6933 | ChapProcessData | Described in |
 | | | Section 5.1.7.1.4.19 |
 +------------+-----------------------------+----------------------+
 | 0x6944 | ChapProcess | Described in |
 | | | Section 5.1.7.1.4.14 |
 +------------+-----------------------------+----------------------+
 | 0x6955 | ChapProcessCodecID | Described in |
 | | | Section 5.1.7.1.4.15 |
 +------------+-----------------------------+----------------------+
 | 0x69A5 | ChapterTranslateID | Described in |
 | | | Section 5.1.2.8.1 |
 +------------+-----------------------------+----------------------+
 | 0x69BF | ChapterTranslateCodec | Described in |
 | | | Section 5.1.2.8.2 |
 +------------+-----------------------------+----------------------+
 | 0x69FC | ChapterTranslateEditionUID | Described in |
 | | | Section 5.1.2.8.3 |
 +------------+-----------------------------+----------------------+
 | 0x6D80 | ContentEncodings | Described in |
 | | | Section 5.1.4.1.31 |
 +------------+-----------------------------+----------------------+
 | 0x6DE7 | MinCache | Reclaimed |
 | | | (Section 28.16) |
 +------------+-----------------------------+----------------------+
 | 0x6DF8 | MaxCache | Reclaimed |
 | | | (Section 28.17) |
 +------------+-----------------------------+----------------------+
 | 0x6E67 | ChapterSegmentUUID | Described in |
 | | | Section 5.1.7.1.4.6 |
 +------------+-----------------------------+----------------------+
 | 0x6EBC | ChapterSegmentEditionUID | Described in |
 | | | Section 5.1.7.1.4.7 |
 +------------+-----------------------------+----------------------+
 | 0x6FAB | TrackOverlay | Reclaimed |
 | | | (Section 28.23) |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 149]

Internet-Draft Matroska Format October 2023

 | 0x7373 | Tag | Described in |
 | | | Section 5.1.8.1 |
 +------------+-----------------------------+----------------------+
 | 0x7384 | SegmentFilename | Described in |
 | | | Section 5.1.2.2 |
 +------------+-----------------------------+----------------------+
 | 0x73A4 | SegmentUUID | Described in |
 | | | Section 5.1.2.1 |
 +------------+-----------------------------+----------------------+
 | 0x73C4 | ChapterUID | Described in |
 | | | Section 5.1.7.1.4.1 |
 +------------+-----------------------------+----------------------+
 | 0x73C5 | TrackUID | Described in |
 | | | Section 5.1.4.1.2 |
 +------------+-----------------------------+----------------------+
 | 0x7446 | AttachmentLink | Described in |
 | | | Section 5.1.4.1.24 |
 +------------+-----------------------------+----------------------+
 | 0x75A1 | BlockAdditions | Described in |
 | | | Section 5.1.3.5.2 |
 +------------+-----------------------------+----------------------+
 | 0x75A2 | DiscardPadding | Described in |
 | | | Section 5.1.3.5.7 |
 +------------+-----------------------------+----------------------+
 | 0x7670 | Projection | Described in Section |
 | | | 5.1.4.1.28.41 |
 +------------+-----------------------------+----------------------+
 | 0x7671 | ProjectionType | Described in Section |
 | | | 5.1.4.1.28.42 |
 +------------+-----------------------------+----------------------+
 | 0x7672 | ProjectionPrivate | Described in Section |
 | | | 5.1.4.1.28.43 |
 +------------+-----------------------------+----------------------+
 | 0x7673 | ProjectionPoseYaw | Described in Section |
 | | | 5.1.4.1.28.44 |
 +------------+-----------------------------+----------------------+
 | 0x7674 | ProjectionPosePitch | Described in Section |
 | | | 5.1.4.1.28.45 |
 +------------+-----------------------------+----------------------+
 | 0x7675 | ProjectionPoseRoll | Described in Section |
 | | | 5.1.4.1.28.46 |
 +------------+-----------------------------+----------------------+
 | 0x78B5 | OutputSamplingFrequency | Described in |
 | | | Section 5.1.4.1.29.2 |
 +------------+-----------------------------+----------------------+
 | 0x7BA9 | Title | Described in |
 | | | Section 5.1.2.12 |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 150]

Internet-Draft Matroska Format October 2023

 | 0x7D7B | ChannelPositions | Reclaimed |
 | | | (Section 28.27) |
 +------------+-----------------------------+----------------------+
 | 0x22B59C | Language | Described in |
 | | | Section 5.1.4.1.19 |
 +------------+-----------------------------+----------------------+
 | 0x22B59D | LanguageBCP47 | Described in |
 | | | Section 5.1.4.1.20 |
 +------------+-----------------------------+----------------------+
 | 0x23314F | TrackTimestampScale | Described in |
 | | | Section 5.1.4.1.15 |
 +------------+-----------------------------+----------------------+
 | 0x234E7A | DefaultDecodedFieldDuration | Described in |
 | | | Section 5.1.4.1.14 |
 +------------+-----------------------------+----------------------+
 | 0x2383E3 | FrameRate | Reclaimed |
 | | | (Section 28.26) |
 +------------+-----------------------------+----------------------+
 | 0x23E383 | DefaultDuration | Described in |
 | | | Section 5.1.4.1.13 |
 +------------+-----------------------------+----------------------+
 | 0x258688 | CodecName | Described in |
 | | | Section 5.1.4.1.23 |
 +------------+-----------------------------+----------------------+
 | 0x26B240 | CodecDownloadURL | Reclaimed |
 | | | (Section 28.21) |
 +------------+-----------------------------+----------------------+
 | 0x2AD7B1 | TimestampScale | Described in |
 | | | Section 5.1.2.9 |
 +------------+-----------------------------+----------------------+
 | 0x2EB524 | UncompressedFourCC | Described in Section |
 | | | 5.1.4.1.28.15 |
 +------------+-----------------------------+----------------------+
 | 0x2FB523 | GammaValue | Reclaimed |
 | | | (Section 28.25) |
 +------------+-----------------------------+----------------------+
 | 0x3A9697 | CodecSettings | Reclaimed |
 | | | (Section 28.19) |
 +------------+-----------------------------+----------------------+
 | 0x3B4040 | CodecInfoURL | Reclaimed |
 | | | (Section 28.20) |
 +------------+-----------------------------+----------------------+
 | 0x3C83AB | PrevFilename | Described in |
 | | | Section 5.1.2.4 |
 +------------+-----------------------------+----------------------+
 | 0x3CB923 | PrevUUID | Described in |
 | | | Section 5.1.2.3 |
 +------------+-----------------------------+----------------------+

Lhomme, et al. Expires 24 April 2024 [Page 151]

Internet-Draft Matroska Format October 2023

 | 0x3E83BB | NextFilename | Described in |
 | | | Section 5.1.2.6 |
 +------------+-----------------------------+----------------------+
 | 0x3EB923 | NextUUID | Described in |
 | | | Section 5.1.2.5 |
 +------------+-----------------------------+----------------------+
 | 0x1043A770 | Chapters | Described in |
 | | | Section 5.1.7 |
 +------------+-----------------------------+----------------------+
 | 0x114D9B74 | SeekHead | Described in |
 | | | Section 5.1.1 |
 +------------+-----------------------------+----------------------+
 | 0x1254C367 | Tags | Described in |
 | | | Section 5.1.8 |
 +------------+-----------------------------+----------------------+
 | 0x1549A966 | Info | Described in |
 | | | Section 5.1.2 |
 +------------+-----------------------------+----------------------+
 | 0x1654AE6B | Tracks | Described in |
 | | | Section 5.1.4 |
 +------------+-----------------------------+----------------------+
 | 0x18538067 | Segment | Described in |
 | | | Section 5.1 |
 +------------+-----------------------------+----------------------+
 | 0x1941A469 | Attachments | Described in |
 | | | Section 5.1.6 |
 +------------+-----------------------------+----------------------+
 | 0x1C53BB6B | Cues | Described in |
 | | | Section 5.1.5 |
 +------------+-----------------------------+----------------------+
 | 0x1F43B675 | Cluster | Described in |
 | | | Section 5.1.3 |
 +------------+-----------------------------+----------------------+

 Table 55: IDs and Names for Matroska Element IDs assigned by
 this document

27.2. Chapter Codec IDs Registry

 This document creates a new IANA registry called the "Matroska
 Chapter Codec IDs" registry. The values correspond to the unsigned
 integer ChapProcessCodecID value described in Section 5.1.7.1.4.15.

 To register a new Chapter Codec ID in this registry, one needs a
 Chapter Codec ID, a Change Controller (IETF or email of registrant)
 and an optional Reference to a document describing the Chapter Codec
 ID.

Lhomme, et al. Expires 24 April 2024 [Page 152]

Internet-Draft Matroska Format October 2023

 The Chapter Codec IDs are to be allocated according to the "First
 Come First Served" policy [RFC8126].

 ChapProcessCodecID values of "0" and "1" are RESERVED to the IETF for
 future use.

27.3. Media Types

 Matroska files and streams are found in three main forms: audio-video
 files, audio-only and occasionally with stereoscopic video tracks.

 Historically Matroska files and streams have used the following media
 types with a "x-" prefix. For better compatibility a system SHOULD
 be able to handle both formats. Newer systems SHOULD NOT use the
 historic format and use the format that follows the [RFC6838] format
 instead.

 Please register three media types, the [RFC6838] templates are below:

27.3.1. For files containing video tracks

 Type name: video
 Subtype name: matroska
 Required parameters: N/A
 Optional parameters: N/A
 Encoding considerations: as per this document and RFC8794
 Security considerations: See Section 26.
 Interoperability considerations: Due to the extensibility of
 Matroska, it is possible to encounter files with unknown but valid
 EBML Elements. Readers should be ready to handle this case. The
 fixed byte order, octet boundaries and UTF-8 usage allow for broad
 interoparability.
 Published specification: THISRFC
 Applications that use this media type: FFmpeg, VLC, ...
 Fragment identifier considerations: N/A

 Additional information:

 * Deprecated alias names for this type: video/x-matroska

 * Magic number(s): N/A

 * File extension(s): mkv

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information: IETF
 CELLAR WG cellar@ietf.org

Lhomme, et al. Expires 24 April 2024 [Page 153]

Internet-Draft Matroska Format October 2023

 Intended usage: COMMON
 Restrictions on usage: None
 Author: IETF CELLAR WG
 Change controller: IETF
 Provisional registration? (standards tree only): No

27.3.2. For files containing audio tracks with no video tracks

 Type name: audio
 Subtype name: matroska
 Required parameters: N/A
 Optional parameters: N/A
 Encoding considerations: as per this document and RFC8794
 Security considerations: See Section 26.
 Interoperability considerations: Due to the extensibility of
 Matroska, it is possible to encounter files with unknown but valid
 EBML Elements. Readers should be ready to handle this case. The
 fixed byte order, octet boundaries and UTF-8 usage allow for broad
 interoparability.
 Published specification: THISRFC
 Applications that use this media type: FFmpeg, VLC, ...
 Fragment identifier considerations: N/A

 Additional information:

 * Deprecated alias names for this type: audio/x-matroska

 * Magic number(s): N/A

 * File extension(s): mka

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information: IETF
 CELLAR WG cellar@ietf.org
 Intended usage: COMMON
 Restrictions on usage: None
 Author: IETF CELLAR WG
 Change controller: IETF
 Provisional registration? (standards tree only): No

27.3.3. For files containing a stereoscopic video track

 Type name: video
 Subtype name: matroska-3d
 Required parameters: N/A
 Optional parameters: N/A
 Encoding considerations: as per this document and RFC8794

Lhomme, et al. Expires 24 April 2024 [Page 154]

Internet-Draft Matroska Format October 2023

 Security considerations: See Section 26.
 Interoperability considerations: Due to the extensibility of
 Matroska, it is possible to encounter files with unknown but valid
 EBML Elements. Readers should be ready to handle this case. The
 fixed byte order, octet boundaries and UTF-8 usage allow for broad
 interoparability.
 Published specification: THISRFC
 Applications that use this media type: FFmpeg, VLC, ...
 Fragment identifier considerations: N/A

 Additional information:

 * Deprecated alias names for this type: video/x-matroska-3d

 * Magic number(s): N/A

 * File extension(s): mk3d

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information: IETF
 CELLAR WG cellar@ietf.org
 Intended usage: COMMON
 Restrictions on usage: None
 Author: IETF CELLAR WG
 Change controller: IETF
 Provisional registration? (standards tree only): No

28. Annex A: Historic Deprecated Elements

 As Matroska evolved since 2002 many parts that were considered for
 use in the format were never used and often incorrectly designed.
 Many of the elements that were then defined are not found in any
 known files but were part of public specs. DivX also had a few
 custom elements that were designed for custom features.

 We list these elements that have a known ID that SHOULD NOT be reused
 to avoid colliding with existing files. They might be reassigned by
 IANA in the future if there are no more IDs for a given size. A
 short description of what each ID was used for is included, but the
 text is not normative.

28.1. SilentTracks Element

 type / id: master / 0x5854
 path: \Segment\Cluster\SilentTracks
 documentation: The list of tracks that are not used in that part of

Lhomme, et al. Expires 24 April 2024 [Page 155]

Internet-Draft Matroska Format October 2023

 the stream. It is useful when using overlay tracks on seeking or
 to decide what track to use.

28.2. SilentTrackNumber Element

 type / id: uinteger / 0x58D7
 path: \Segment\Cluster\SilentTracks\SilentTrackNumber
 documentation: One of the track number that are not used from now on
 in the stream. It could change later if not specified as silent
 in a further Cluster.

28.3. BlockVirtual Element

 type / id: binary / 0xA2
 path: \Segment\Cluster\BlockGroup\BlockVirtual
 documentation: A Block with no data. It must be stored in the
 stream at the place the real Block would be in display order.

28.4. ReferenceVirtual Element

 type / id: integer / 0xFD
 path: \Segment\Cluster\BlockGroup\ReferenceVirtual
 documentation: The Segment Position of the data that would otherwise
 be in position of the virtual block.

28.5. Slices Element

 type / id: master / 0x8E
 path: \Segment\Cluster\BlockGroup\Slices
 documentation: Contains slices description.

28.6. TimeSlice Element

 type / id: master / 0xE8
 path: \Segment\Cluster\BlockGroup\Slices\TimeSlice
 documentation: Contains extra time information about the data
 contained in the Block. Being able to interpret this Element is
 not required for playback.

28.7. LaceNumber Element

 type / id: uinteger / 0xCC
 path: \Segment\Cluster\BlockGroup\Slices\TimeSlice\LaceNumber
 documentation: The reverse number of the frame in the lace (0 is the
 last frame, 1 is the next to last, etc.). Being able to interpret
 this Element is not required for playback.

Lhomme, et al. Expires 24 April 2024 [Page 156]

Internet-Draft Matroska Format October 2023

28.8. FrameNumber Element

 type / id: uinteger / 0xCD
 path: \Segment\Cluster\BlockGroup\Slices\TimeSlice\FrameNumber
 documentation: The number of the frame to generate from this lace
 with this delay (allow you to generate many frames from the same
 Block/Frame).

28.9. BlockAdditionID Element

 type / id: uinteger / 0xCB
 path: \Segment\Cluster\BlockGroup\Slices\TimeSlice\BlockAdditionID
 documentation: The ID of the BlockAdditional Element (0 is the main
 Block).

28.10. Delay Element

 type / id: uinteger / 0xCE
 path: \Segment\Cluster\BlockGroup\Slices\TimeSlice\Delay
 documentation: The delay to apply to the Element, expressed in Track
 Ticks; see Section 11.1.

28.11. SliceDuration Element

 type / id: uinteger / 0xCF
 path: \Segment\Cluster\BlockGroup\Slices\TimeSlice\SliceDuration
 documentation: The duration to apply to the Element, expressed in
 Track Ticks; see Section 11.1.

28.12. ReferenceFrame Element

 type / id: master / 0xC8
 path: \Segment\Cluster\BlockGroup\ReferenceFrame
 documentation: Contains information about the last reference frame.
 See [DivXTrickTrack].

28.13. ReferenceOffset Element

 type / id: uinteger / 0xC9
 path: \Segment\Cluster\BlockGroup\ReferenceFrame\ReferenceOffset
 documentation: The relative offset, in bytes, from the previous
 BlockGroup element for this Smooth FF/RW video track to the
 containing BlockGroup element. See [DivXTrickTrack].

28.14. ReferenceTimestamp Element

 type / id: uinteger / 0xCA
 path: \Segment\Cluster\BlockGroup\ReferenceFrame\ReferenceTimestamp

Lhomme, et al. Expires 24 April 2024 [Page 157]

Internet-Draft Matroska Format October 2023

 documentation: The timestamp of the BlockGroup pointed to by
 ReferenceOffset, expressed in Track Ticks; see Section 11.1. See
 [DivXTrickTrack].

28.15. EncryptedBlock Element

 type / id: binary / 0xAF
 path: \Segment\Cluster\EncryptedBlock
 documentation: Similar to SimpleBlock, see Section 10.2, but the
 data inside the Block are Transformed (encrypt and/or signed).

28.16. MinCache Element

 type / id: uinteger / 0x6DE7
 path: \Segment\Tracks\TrackEntry\MinCache
 documentation: The minimum number of frames a player should be able
 to cache during playback. If set to 0, the reference pseudo-cache
 system is not used.

28.17. MaxCache Element

 type / id: uinteger / 0x6DF8
 path: \Segment\Tracks\TrackEntry\MaxCache
 documentation: The maximum cache size necessary to store referenced
 frames in and the current frame. 0 means no cache is needed.

28.18. TrackOffset Element

 type / id: integer / 0x537F
 path: \Segment\Tracks\TrackEntry\TrackOffset
 documentation: A value to add to the Block’s Timestamp, expressed in
 Matroska Ticks -- i.e., in nanoseconds; see Section 11.1. This
 can be used to adjust the playback offset of a track.

28.19. CodecSettings Element

 type / id: utf-8 / 0x3A9697
 path: \Segment\Tracks\TrackEntry\CodecSettings
 documentation: A string describing the encoding setting used.

28.20. CodecInfoURL Element

 type / id: string / 0x3B4040
 path: \Segment\Tracks\TrackEntry\CodecInfoURL
 documentation: A URL to find information about the codec used.

Lhomme, et al. Expires 24 April 2024 [Page 158]

Internet-Draft Matroska Format October 2023

28.21. CodecDownloadURL Element

 type / id: string / 0x26B240
 path: \Segment\Tracks\TrackEntry\CodecDownloadURL
 documentation: A URL to download about the codec used.

28.22. CodecDecodeAll Element

 type / id: uinteger / 0xAA
 path: \Segment\Tracks\TrackEntry\CodecDecodeAll
 documentation: Set to 1 if the codec can decode potentially damaged
 data.

28.23. TrackOverlay Element

 type / id: uinteger / 0x6FAB
 path: \Segment\Tracks\TrackEntry\TrackOverlay
 documentation: Specify that this track is an overlay track for the
 Track specified (in the u-integer). That means when this track
 has a gap on SilentTracks, the overlay track should be used
 instead. The order of multiple TrackOverlay matters, the first
 one is the one that should be used. If not found it should be the
 second, etc.

28.24. AspectRatioType Element

 type / id: uinteger / 0x54B3
 path: \Segment\Tracks\TrackEntry\Video\AspectRatioType
 documentation: Specify the possible modifications to the aspect
 ratio.

28.25. GammaValue Element

 type / id: float / 0x2FB523
 path: \Segment\Tracks\TrackEntry\Video\GammaValue
 documentation: Gamma Value.

28.26. FrameRate Element

 type / id: float / 0x2383E3
 path: \Segment\Tracks\TrackEntry\Video\FrameRate
 documentation: Number of frames per second. This value is
 Informational only. It is intended for constant frame rate
 streams, and should not be used for a variable frame rate
 TrackEntry.

Lhomme, et al. Expires 24 April 2024 [Page 159]

Internet-Draft Matroska Format October 2023

28.27. ChannelPositions Element

 type / id: binary / 0x7D7B
 path: \Segment\Tracks\TrackEntry\Audio\ChannelPositions
 documentation: Table of horizontal angles for each successive
 channel.

28.28. TrickTrackUID Element

 type / id: uinteger / 0xC0
 path: \Segment\Tracks\TrackEntry\TrickTrackUID
 documentation: The TrackUID of the Smooth FF/RW video in the paired
 EBML structure corresponding to this video track. See
 [DivXTrickTrack].

28.29. TrickTrackSegmentUID Element

 type / id: binary / 0xC1
 path: \Segment\Tracks\TrackEntry\TrickTrackSegmentUID
 documentation: The SegmentUID of the Segment containing the track
 identified by TrickTrackUID. See [DivXTrickTrack].

28.30. TrickTrackFlag Element

 type / id: uinteger / 0xC6
 path: \Segment\Tracks\TrackEntry\TrickTrackFlag
 documentation: Set to 1 if this video track is a Smooth FF/RW track.
 If set to 1, MasterTrackUID and MasterTrackSegUID should be
 present and BlockGroups for this track must contain ReferenceFrame
 structures. Otherwise, TrickTrackUID and TrickTrackSegUID must be
 present if this track has a corresponding Smooth FF/RW track. See
 [DivXTrickTrack].

28.31. TrickMasterTrackUID Element

 type / id: uinteger / 0xC7
 path: \Segment\Tracks\TrackEntry\TrickMasterTrackUID
 documentation: The TrackUID of the video track in the paired EBML
 structure that corresponds to this Smooth FF/RW track. See
 [DivXTrickTrack].

28.32. TrickMasterTrackSegmentUID Element

 type / id: binary / 0xC4
 path: \Segment\Tracks\TrackEntry\TrickMasterTrackSegmentUID
 documentation: The SegmentUID of the Segment containing the track
 identified by MasterTrackUID. See [DivXTrickTrack].

Lhomme, et al. Expires 24 April 2024 [Page 160]

Internet-Draft Matroska Format October 2023

28.33. ContentSignature Element

 type / id: binary / 0x47E3
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncryption\ContentSignature
 documentation: A cryptographic signature of the contents.

28.34. ContentSigKeyID Element

 type / id: binary / 0x47E4
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncryption\ContentSigKeyID
 documentation: This is the ID of the private key the data was signed
 with.

28.35. ContentSigAlgo Element

 type / id: uinteger / 0x47E5
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncryption\ContentSigAlgo
 documentation: The algorithm used for the signature.

28.36. ContentSigHashAlgo Element

 type / id: uinteger / 0x47E6
 path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\Co
 ntentEncryption\ContentSigHashAlgo
 documentation: The hash algorithm used for the signature.

28.37. CueRefCluster Element

 type / id: uinteger / 0x97
 path: \Segment\Cues\CuePoint\CueTrackPositions\CueReference\CueRefCl
 uster
 documentation: The Segment Position of the Cluster containing the
 referenced Block.

28.38. CueRefNumber Element

 type / id: uinteger / 0x535F
 path: \Segment\Cues\CuePoint\CueTrackPositions\CueReference\CueRefNu
 mber
 documentation: Number of the referenced Block of Track X in the
 specified Cluster.

28.39. CueRefCodecState Element

 type / id: uinteger / 0xEB

Lhomme, et al. Expires 24 April 2024 [Page 161]

Internet-Draft Matroska Format October 2023

 path: \Segment\Cues\CuePoint\CueTrackPositions\CueReference\CueRefCo
 decState
 documentation: The Segment Position of the Codec State corresponding
 to this referenced Element. 0 means that the data is taken from
 the initial Track Entry.

28.40. FileReferral Element

 type / id: binary / 0x4675
 path: \Segment\Attachments\AttachedFile\FileReferral
 documentation: A binary value that a track/codec can refer to when
 the attachment is needed.

28.41. FileUsedStartTime Element

 type / id: uinteger / 0x4661
 path: \Segment\Attachments\AttachedFile\FileUsedStartTime
 documentation: The timestamp at which this optimized font attachment
 comes into context, expressed in Segment Ticks which is based on
 TimestampScale. See [DivXWorldFonts].

28.42. FileUsedEndTime Element

 type / id: uinteger / 0x4662
 path: \Segment\Attachments\AttachedFile\FileUsedEndTime
 documentation: The timestamp at which this optimized font attachment
 goes out of context, expressed in Segment Ticks which is based on
 TimestampScale. See [DivXWorldFonts].

28.43. TagDefaultBogus Element

 type / id: uinteger / 0x44B4
 path: \Segment\Tags\Tag\+SimpleTag\TagDefaultBogus
 documentation: A variant of the TagDefault element with a bogus
 Element ID; see Section 5.1.8.1.2.4.

29. Normative References

 [BCP47] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [CIE-1931] Commission Internationale de l’Eclairage, "CIE 1931
 Standard Colorimetric System", 1931,
 <https://en.wikipedia.org/wiki/CIE_1931_color_space>.

Lhomme, et al. Expires 24 April 2024 [Page 162]

Internet-Draft Matroska Format October 2023

 [ISO639-2] United States Library Of Congress, "Codes for the
 Representation of Names of Languages", ISO 639-2:1998, 21
 December 2017, <https://www.loc.gov/standards/iso639-
 2/php/code_list.php>.

 [ISO9899] International Organization for Standardization,
 "Information technology -- Programming languages -- C",
 ISO/IEC 9899:2011, 2011,
 <https://www.iso.org/standard/57853.html>.

 [ITU-H.273]
 International Telecommunication Union, "Coding-independent
 code points for video signal type identification",
 ITU H.273, 24 September 2021,
 <https://www.itu.int/rec/T-REC-H.273/en>.

 [RFC1950] Deutsch, P. and J. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950,
 DOI 10.17487/RFC1950, May 1996,
 <https://www.rfc-editor.org/info/rfc1950>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC8081] Lilley, C., "The "font" Top-Level Media Type", RFC 8081,
 DOI 10.17487/RFC8081, February 2017,
 <https://www.rfc-editor.org/info/rfc8081>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Lhomme, et al. Expires 24 April 2024 [Page 163]

Internet-Draft Matroska Format October 2023

 [RFC8794] Lhomme, S., Rice, D., and M. Bunkus, "Extensible Binary
 Meta Language", RFC 8794, DOI 10.17487/RFC8794, July 2020,
 <https://www.rfc-editor.org/info/rfc8794>.

30. Informative References

 [AVIFormat]
 Microsoft, "AVI RIFF File Reference", 31 May 2018,
 <https://docs.microsoft.com/en-
 us/windows/win32/directshow/avi-riff-file-reference>.

 [Blowfish] Schneier, B., "The Blowfish Encryption Algorithm", 1993,
 <https://www.schneier.com/academic/blowfish/>.

 [BZIP2] Seward, J., "bzip2", 18 July 1996,
 <https://sourceware.org/bzip2/>.

 [DivXTrickTrack]
 "DivX Trick Track Extensions", 14 December 2010,
 <https://web.archive.org/web/20101222001148/
 http://labs.divx.com/node/16601>.

 [DivXWorldFonts]
 "DivX World Fonts Extensions", 14 December 2010,
 <https://web.archive.org/web/20110214132246/
 http://labs.divx.com/node/16602>.

 [DVD-Video]
 DVD Forum, "DVD-Books: Part 3 DVD-Video Book", 1 November
 1995, <http://www.dvdforum.org/>.

 [FIPS.197] US National Institute of Standards and Technology,
 "Advanced Encryption Standard (AES)", FIPS PUB 197,
 DOI 10.6028/NIST.FIPS.197, 26 November 2001,
 <https://csrc.nist.gov/publications/detail/fips/197/
 final>.

 [FIPS.46-3]
 US National Institute of Standards and Technology, "Data
 Encryption Standard (DES)", FIPS PUB 46, 25 October 1999,
 <https://csrc.nist.gov/publications/detail/fips/46/3/
 archive/1999-10-25>.

 [FourCC-RGB]
 Silicon.dk ApS, "RGB Pixel Format FourCCs",
 <https://web.archive.org/web/20160609214806/
 https://www.fourcc.org/rgb.php>.

Lhomme, et al. Expires 24 April 2024 [Page 164]

Internet-Draft Matroska Format October 2023

 [FourCC-YUV]
 Silicon.dk ApS, "YUV Pixel Format FourCCs",
 <https://web.archive.org/web/20160609214806/
 https://www.fourcc.org/yuv.php>.

 [JPEG] International Telegraph and Telephone Consultative
 Committee, "Digital Compression and Coding of Continuous-
 Tone Still Images", ITU T.81, September 1992,
 <https://www.w3.org/Graphics/JPEG/itu-t81.pdf>.

 [LZO] Tarreau, W., Rodgman, R., and M. Oberhumer, "Lempel-Ziv-
 Oberhumer compression", 30 October 2018,
 <https://www.kernel.org/doc/Documentation/lzo.txt>.

 [MatroskaCodec]
 Lhomme, S., Bunkus, M., and D. Rice, "Media Container
 Codec Specifications", Work in Progress, Internet-Draft,
 draft-ietf-cellar-codec-10, 12 April 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cellar-
 codec-10>.

 [MatroskaTags]
 Lhomme, S., Bunkus, M., and D. Rice, "Matroska Media
 Container Tag Specifications", Work in Progress, Internet-
 Draft, draft-ietf-cellar-tags-10, 12 April 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cellar-
 tags-10>.

 [MCF] "Media Container Format", 17 July 2002,
 <http://mukoli.free.fr/mcf/>.

 [MSRGB] Microsoft, "WMF Compression Enumeration",
 <https://learn.microsoft.com/en-
 us/openspecs/windows_protocols/ms-wmf/4e588f70-bd92-4a6f-
 b77f-35d0feaf7a57>.

 [MSYUV16] Microsoft, "10-bit and 16-bit YUV Video Formats",
 <https://learn.microsoft.com/en-us/windows/win32/
 medfound/10-bit-and-16-bit-yuv-video-formats>.

 [MSYUV8] Microsoft, "Recommended 8-Bit YUV Formats for Video
 Rendering", <https://learn.microsoft.com/en-
 us/windows/win32/medfound/recommended-8-bit-yuv-formats-
 for-video-rendering>.

 [RFC0959] Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 959, DOI 10.17487/RFC0959, October 1985,
 <https://www.rfc-editor.org/info/rfc959>.

Lhomme, et al. Expires 24 April 2024 [Page 165]

Internet-Draft Matroska Format October 2023

 [RFC2083] Boutell, T., "PNG (Portable Network Graphics)
 Specification Version 1.0", RFC 2083,
 DOI 10.17487/RFC2083, March 1997,
 <https://www.rfc-editor.org/info/rfc2083>.

 [RFC3533] Pfeiffer, S., "The Ogg Encapsulation Format Version 0",
 RFC 3533, DOI 10.17487/RFC3533, May 2003,
 <https://www.rfc-editor.org/info/rfc3533>.

 [RFC9110] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/info/rfc9110>.

 [SMB-CIFS] Microsoft Corporation, "Common Internet File System (CIFS)
 Protocol", 1 October 2020,
 <https://winprotocoldoc.blob.core.windows.net/
 productionwindowsarchives/MS-CIFS/%5bMS-CIFS%5d.pdf>.

 [SP.800-38A]
 US National Institute of Standards and Technology,
 "Recommendation for Block Cipher Modes of Operation:
 Methods and Techniques", DOI 10.6028/NIST.SP.800-38A, 1
 December 2001,
 <https://csrc.nist.gov/publications/detail/fips/197/
 final>.

 [SP.800-67]
 US National Institute of Standards and Technology,
 "Recommendation for the Triple Data Encryption Algorithm
 (TDEA) Block Cipher",
 DOI 10.6028/10.6028/NIST.SP.800-67r2, 1 November 2017,
 <https://csrc.nist.gov/publications/detail/sp/800-67/rev-
 2/final>.

 [Twofish] Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall,
 C., and N. Ferguson, "Twofish: A 128-Bit Block Cipher", 15
 June 1998, <https://www.schneier.com/academic/twofish/>.

 [WebM-Enc] Galligan, F., "WebM Encryption", 19 September 2016,
 <https://www.webmproject.org/docs/webm-encryption/>.

 [WebVTT] Pieters, S., Pfeiffer, S., Ed., Jaegenstedt, P., and I.
 Hickson, "WebVTT Cue Identifier", 4 April 2019,
 <https://www.w3.org/TR/webvtt1/#webvtt-cue-identifier>.

Authors’ Addresses

Lhomme, et al. Expires 24 April 2024 [Page 166]

Internet-Draft Matroska Format October 2023

 Steve Lhomme
 Email: slhomme@matroska.org

 Moritz Bunkus
 Email: moritz@bunkus.org

 Dave Rice
 Email: dave@dericed.com

Lhomme, et al. Expires 24 April 2024 [Page 167]

CELLAR Group S. Lhomme
Internet-Draft
Intended status: Standards Track M. Bunkus
Expires: 24 April 2024
 D. Rice
 22 October 2023

 Matroska Media Container Tag Specifications
 draft-ietf-cellar-tags-12

Abstract

 This document defines the Matroska tags, namely the tag names and
 their respective semantic meaning.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 24 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Lhomme, et al. Expires 24 April 2024 [Page 1]

Internet-Draft Matroska Tags October 2023

Table of Contents

 1. Introduction . 2
 2. Status of this document 3
 3. Notation and Conventions 3
 4. Tagging . 3
 4.1. Why official tags matter 3
 4.2. Tag Formatting . 4
 4.3. Target types . 5
 5. Official tags . 7
 5.1. Nesting Information 7
 5.2. Organization Information 8
 5.3. Titles . 9
 5.4. Nested Information 9
 5.5. Entities . 10
 5.6. Search and Classification 13
 5.7. Temporal Information 15
 5.8. Spatial Information 15
 5.9. Personal . 17
 5.10. Technical Information 17
 5.11. Identifiers . 18
 5.12. Commercial . 20
 5.13. Legal . 20
 5.14. Notes . 21
 6. Security Considerations 21
 7. IANA Considerations . 21
 7.1. Matroska Tags Names Registry 21
 8. Normative References . 28
 9. Informative References 29
 Authors’ Addresses . 30

1. Introduction

 Matroska is a multimedia container format defined in [Matroska]. It
 can store timestamped multimedia data but also chapters and tags.
 The Tag Elements add important metadata to identify and classify the
 information found in a Matroska Segment. It can tag a whole Segment,
 separate Track Elements, individual Chapter Elements or Attachment
 Elements.

 While the Matroska tagging framework allows anyone to create their
 own custom tags, it’s important to have a common set of values for
 interoperability. This document intends to define a set of common
 tag names used in Matroska.

Lhomme, et al. Expires 24 April 2024 [Page 2]

Internet-Draft Matroska Tags October 2023

2. Status of this document

 This document is a work-in-progress specification defining the
 Matroska file format as part of the IETF Cellar working group
 (https://datatracker.ietf.org/wg/cellar/charter/). It uses basic
 elements and concept already defined in the Matroska specifications
 defined by this workgroup [Matroska].

3. Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

4. Tagging

 When a Tag is nested within another Tag, the nested Tag becomes an
 attribute of the base tag. For instance, if you wanted to store the
 dates that a singer used certain addresses for, that singer being the
 lead singer for a track that included multiple bands simultaneously,
 then your tag tree would look something like this:

 * Targets
 - TrackUID
 * BAND
 - LEADPERFORMER
 o ADDRESS
 + DATE
 + DATEEND
 o ADDRESS
 + DATE

 In this way, it becomes possible to store any Tag as attributes of
 another tag.

 Multiple items SHOULD never be stored as a list in a single
 TagString. If there is more than one tag of a certain type to be
 stored, then more than one SimpleTag SHOULD be used.

4.1. Why official tags matter

 There is a debate between people who think all tags SHOULD be free
 and those who think all tags SHOULD be strict. If you look at this
 page you will realize we are in between.

Lhomme, et al. Expires 24 April 2024 [Page 3]

Internet-Draft Matroska Tags October 2023

 Advanced-users application might let you put any tag in your file.
 But for the rest of the applications, they usually give you a basic
 list of tags you can use. Both have their needs. But it’s usually a
 bad idea to use custom/exotic tags because you will probably be the
 only person to use this information even though everyone else could
 benefit from it. So hopefully, when someone wants to put information
 in one’s file, they will find an official one that fit them and
 hopefully use it ! If it’s not in the list, this person can contact
 us any time for addition of such a missing tag. But it doesn’t mean
 it will be accepted... Matroska files are not meant the become a
 whole database of people who made costumes for a film. A website
 would be better for that... It’s hard to define what SHOULD be in and
 what doesn’t make sense in a file. So we’ll treat each request
 carefully.

 We also need an official list simply for developers to be able to
 display relevant information in their own design (if they choose to
 support a list of meta-information they SHOULD know which tag has the
 wanted meaning so that other apps could understand the same meaning).

4.2. Tag Formatting

 * The TagName SHOULD consists of capital letters, numbers and the
 underscore character ’_’.

 * The TagName SHOULD NOT contain any space.

 * TagNames starting with the underscore character ’_’ are not
 official tags; see Section 4.1.

 * The fields with dates SHOULD have the following format: YYYY-MM-DD
 hh:mm:ss.mss YYYY = Year, MM = Month, DD = Days, HH = Hours, mm =
 Minutes, ss = Seconds, mss = Milliseconds. To store less
 accuracy, you remove items starting from the right. To store only
 the year, you would use, "2004". To store a specific day such as
 May 1st, 2003, you would use "2003-05-01".

 * Fields that require a Float SHOULD use the "." mark instead of the
 "," mark. To display it differently for another local,
 applications SHOULD support auto replacement on display. Also, a
 thousandths separator SHOULD NOT be used.

 * For currency amounts, there SHOULD only be a numeric value in the
 Tag. Only numbers, no letters or symbols other than ".". For
 instance, you would store "15.59" instead of "$15.59USD".

Lhomme, et al. Expires 24 April 2024 [Page 4]

Internet-Draft Matroska Tags October 2023

4.3. Target types

 The TargetType element allows tagging of different parts that are
 inside or outside a given file. For example, in an audio file with
 one song you could have information about the album it comes from and
 even the CD set even if it’s not found in the file.

 For application to know what kind of information (like TITLE) relates
 to a certain level (CD title or track title), we also need a set of
 official TargetType names. For now audio and video will have
 different values & names. That also means the same tag name can have
 different meanings depending on where it is (otherwise, we would end
 up with 15 TITLE_ tags).

Lhomme, et al. Expires 24 April 2024 [Page 5]

Internet-Draft Matroska Tags October 2023

 +=================+============+============+=======================+
 | TargetTypeValue | Audio | Video | Comment |
 | | strings | strings | |
 +=================+============+============+=======================+
70	COLLECTION	COLLECTION	the high
			hierarchy
			consisting of
			many different
			lower items
+-----------------+------------+------------+-----------------------+			
60	EDITION /	SEASON /	a list of lower
	ISSUE /	SEQUEL /	levels grouped
	VOLUME /	VOLUME	together
	OPUS		
+-----------------+------------+------------+-----------------------+			
50	ALBUM /	MOVIE /	the most common
	OPERA /	EPISODE /	grouping level
	CONCERT	CONCERT	of music and
			video (equals
			to an episode
			for TV series)
+-----------------+------------+------------+-----------------------+			
40	PART /	PART /	when an album
	SESSION	SESSION	or episode has
			different
			logical parts
+-----------------+------------+------------+-----------------------+			
30	TRACK /	CHAPTER	the common
	SONG		parts of an
			album or a
			movie
+-----------------+------------+------------+-----------------------+			
20	SUBTRACK /	SCENE	corresponds to
	PART /		parts of a
	MOVEMENT		track for audio
			(like a
			movement)
+-----------------+------------+------------+-----------------------+			
10	-	SHOT	the lowest
			hierarchy found
			in music or
			movies
 +-----------------+------------+------------+-----------------------+

 Table 1: TargetTypeValue values semantic description

Lhomme, et al. Expires 24 April 2024 [Page 6]

Internet-Draft Matroska Tags October 2023

 An upper level value tag applies to the lower level. That means if a
 CD has the same artist for all tracks, you just need to set the
 ARTIST tag at level 50 (ALBUM) and not to each TRACK (but you can).
 That also means that, if some parts of the CD have no known ARTIST,
 the value MUST be set to nothing (a void string "").

 When a level doesn’t exist it MUST NOT be specified in the files, so
 that the TOTAL_PARTS and PART_NUMBER elements match the same levels.

 Here is an example of how these organizational tags work: If you set
 10 TOTAL_PARTS to the ALBUM level (40) it means the album contains 10
 lower parts. The lower part in question is the first lower level
 that is specified in the file. So, if it’s TRACK (30), then that
 means it contains 10 tracks. If it’s MOVEMENT (20), that means it’s
 10 movements, etc.

5. Official tags

 The following is a complete list of the supported Matroska Tags.
 While it is possible to use Tag names that are not listed below, this
 is not recommended as compatibility will be compromised. If you find
 that there is a Tag missing that you would like to use, then please
 contact the persons mentioned in the IANA Mastroska Tags Registry for
 its inclusion, see Section 7.1.

5.1. Nesting Information

 Nesting Information tags are intended to contain other tags.

Lhomme, et al. Expires 24 April 2024 [Page 7]

Internet-Draft Matroska Tags October 2023

 +==========+========+==+
 | Tag Name | Type | Description |
 +==========+========+==+
 | ORIGINAL | nested | A special tag that is meant to have other |
 | | | tags inside (using nested tags) to |
 | | | describe the original work of art that |
 | | | this item is based on. All tags in this |
 | | | list can be used "under" the ORIGINAL tag |
 | | | like LYRICIST, PERFORMER, etc. |
 +----------+--------+--+
 | SAMPLE | nested | A tag that contains other tags to describe |
 | | | a sample used in the targeted item taken |
 | | | from another work of art. All tags in |
 | | | this list can be used "under" the SAMPLE |
 | | | tag like TITLE, ARTIST, DATE_RELEASED, |
 | | | etc. |
 +----------+--------+--+
 | COUNTRY | UTF-8 | The name of the country that is meant to |
 | | | have other tags inside (using nested tags) |
 | | | to country specific information about the |
 | | | item, in the Matroska countries form, i.e. |
 | | | [BCP47] two-letter region subtag, without |
 | | | the UK exception. All tags in this list |
 | | | can be used "under" the COUNTRY_SPECIFIC |
 | | | tag like LABEL, PUBLISH_RATING, etc. |
 +----------+--------+--+

 Table 2: Nesting Information tags

5.2. Organization Information

 +=============+=======+===+
 | Tag Name | Type | Description |
 +=============+=======+===+
TOTAL_PARTS	UTF-8	Total number of parts defined at the
		first lower level. (e.g., if
		TargetType is ALBUM, the total number
		of tracks of an audio CD)
+-------------+-------+---+		
PART_NUMBER	UTF-8	Number of the current part of the
		current level. (e.g., if TargetType is
		TRACK, the track number of an audio
		CD)
+-------------+-------+---+		
PART_OFFSET	UTF-8	A number to add to PART_NUMBER, when
		the parts at that level don’t start at
		1. (e.g., if TargetType is TRACK, the
		track number of the second audio CD)

Lhomme, et al. Expires 24 April 2024 [Page 8]

Internet-Draft Matroska Tags October 2023

 +-------------+-------+---+

 Table 3: Organization Information tags

5.3. Titles

 +==========+=======+=======================================+
 | Tag Name | Type | Description |
 +==========+=======+=======================================+
 | TITLE | UTF-8 | The title of this item. For example, |
 | | | for music you might label this "Canon |
 | | | in D", or for video’s audio track you |
 | | | might use "English 5.1" This is akin |
 | | | to the "TIT2" tag in [ID3v2]. |
 +----------+-------+---------------------------------------+
 | SUBTITLE | UTF-8 | Sub Title of the entity. |
 +----------+-------+---------------------------------------+

 Table 4: Titles tags

5.4. Nested Information

 Nested Information includes tags contained in other tags.

Lhomme, et al. Expires 24 April 2024 [Page 9]

Internet-Draft Matroska Tags October 2023

 +=============+=======+======================================+
 | Tag Name | Type | Description |
 +=============+=======+======================================+
 | URL | UTF-8 | URL corresponding to the tag it’s |
 | | | included in. |
 +-------------+-------+--------------------------------------+
 | SORT_WITH | UTF-8 | A child element to indicate what |
 | | | alternative value the parent tag can |
 | | | have to be sorted -- for example, |
 | | | "Pet Shop Boys" instead of "The Pet |
 | | | Shop Boys". Or "Marley Bob" and |
 | | | "Marley Ziggy" (no comma needed). |
 +-------------+-------+--------------------------------------+
 | INSTRUMENTS | UTF-8 | The instruments that are being used/ |
 | | | played, separated by a comma. It |
 | | | SHOULD be a child of the following |
 | | | tags: ARTIST, LEAD_PERFORMER, or |
 | | | ACCOMPANIMENT. |
 +-------------+-------+--------------------------------------+
 | EMAIL | UTF-8 | Email corresponding to the tag it’s |
 | | | included in. |
 +-------------+-------+--------------------------------------+
 | ADDRESS | UTF-8 | The physical address of the entity. |
 | | | The address SHOULD include a country |
 | | | code. It can be useful for a |
 | | | recording label. |
 +-------------+-------+--------------------------------------+
 | FAX | UTF-8 | The fax number corresponding to the |
 | | | tag it’s included in. It can be |
 | | | useful for a recording label. |
 +-------------+-------+--------------------------------------+
 | PHONE | UTF-8 | The phone number corresponding to |
 | | | the tag it’s included in. It can be |
 | | | useful for a recording label. |
 +-------------+-------+--------------------------------------+

 Table 5: Nested Information tags

5.5. Entities

 +=========================+=======+===============================+
 | Tag Name | Type | Description |
 +=========================+=======+===============================+
 | ARTIST | UTF-8 | A person or band/collective |
 | | | generally considered |
 | | | responsible for the work. |
 | | | This is akin to the "TPE1" |
 | | | tag in [ID3v2]. |

Lhomme, et al. Expires 24 April 2024 [Page 10]

Internet-Draft Matroska Tags October 2023

 +-------------------------+-------+-------------------------------+
 | LEAD_PERFORMER | UTF-8 | Lead Performer/Soloist(s). |
 | | | This can sometimes be the |
 | | | same as ARTIST. |
 +-------------------------+-------+-------------------------------+
 | ACCOMPANIMENT | UTF-8 | Band/orchestra/accompaniment/ |
 | | | musician. This is akin to |
 | | | the "TPE2" tag in [ID3v2]. |
 +-------------------------+-------+-------------------------------+
 | COMPOSER | UTF-8 | The name of the composer of |
 | | | this item. This is akin to |
 | | | the "TCOM" tag in [ID3v2]. |
 +-------------------------+-------+-------------------------------+
 | ARRANGER | UTF-8 | The person who arranged the |
 | | | piece, e.g., Ravel. |
 +-------------------------+-------+-------------------------------+
 | LYRICS | UTF-8 | The lyrics corresponding to a |
 | | | song (in case audio |
 | | | synchronization is not known |
 | | | or as a doublon to a subtitle |
 | | | track). Editing this value, |
 | | | when subtitles are found, |
 | | | SHOULD also result in editing |
 | | | the subtitle track for more |
 | | | consistency. |
 +-------------------------+-------+-------------------------------+
 | LYRICIST | UTF-8 | The person who wrote the |
 | | | lyrics for a musical item. |
 | | | This is akin to the "TEXT" |
 | | | tag in [ID3v2]. |
 +-------------------------+-------+-------------------------------+
 | CONDUCTOR | UTF-8 | Conductor/performer |
 | | | refinement. This is akin to |
 | | | the "TPE3" tag in [ID3v2]. |
 +-------------------------+-------+-------------------------------+
 | DIRECTOR | UTF-8 | This is akin to the "IART" |
 | | | tag [RIFF.tags]. |
 +-------------------------+-------+-------------------------------+
 | ASSISTANT_DIRECTOR | UTF-8 | The name of the assistant |
 | | | director. |
 +-------------------------+-------+-------------------------------+
 | DIRECTOR_OF_PHOTOGRAPHY | UTF-8 | The name of the director of |
 | | | photography, also known as |
 | | | cinematographer. This is |
 | | | akin to the "ICNM" tag in |
 | | | [RIFF.tags]. |
 +-------------------------+-------+-------------------------------+
 | SOUND_ENGINEER | UTF-8 | The name of the sound |

Lhomme, et al. Expires 24 April 2024 [Page 11]

Internet-Draft Matroska Tags October 2023

 | | | engineer or sound recordist. |
 +-------------------------+-------+-------------------------------+
 | ART_DIRECTOR | UTF-8 | The person who oversees the |
 | | | artists and craftspeople who |
 | | | build the sets. |
 +-------------------------+-------+-------------------------------+
 | PRODUCTION_DESIGNER | UTF-8 | Artist responsible for |
 | | | designing the overall visual |
 | | | appearance of a movie. |
 +-------------------------+-------+-------------------------------+
 | CHOREGRAPHER | UTF-8 | The name of the choregrapher |
 +-------------------------+-------+-------------------------------+
 | COSTUME_DESIGNER | UTF-8 | The name of the costume |
 | | | designer |
 +-------------------------+-------+-------------------------------+
 | ACTOR | UTF-8 | An actor or actress playing a |
 | | | role in this movie. This is |
 | | | the person’s real name, not |
 | | | the character’s name the |
 | | | person is playing. |
 +-------------------------+-------+-------------------------------+
 | CHARACTER | UTF-8 | The name of the character an |
 | | | actor or actress plays in |
 | | | this movie. This SHOULD be a |
 | | | sub-tag of an ACTOR tag in |
 | | | order not to cause |
 | | | ambiguities. |
 +-------------------------+-------+-------------------------------+
 | WRITTEN_BY | UTF-8 | The author of the story or |
 | | | script (used for movies and |
 | | | TV shows). |
 +-------------------------+-------+-------------------------------+
 | SCREENPLAY_BY | UTF-8 | The author of the screenplay |
 | | | or scenario (used for movies |
 | | | and TV shows). |
 +-------------------------+-------+-------------------------------+
 | EDITED_BY | UTF-8 | This is akin to the "IEDT" |
 | | | tag in [RIFF.tags]. |
 +-------------------------+-------+-------------------------------+
 | PRODUCER | UTF-8 | Produced by. This is akin to |
 | | | the "IPRO" tag in |
 | | | [RIFF.tags]. |
 +-------------------------+-------+-------------------------------+
 | COPRODUCER | UTF-8 | The name of a co-producer. |
 +-------------------------+-------+-------------------------------+
 | EXECUTIVE_PRODUCER | UTF-8 | The name of an executive |
 | | | producer. |
 +-------------------------+-------+-------------------------------+

Lhomme, et al. Expires 24 April 2024 [Page 12]

Internet-Draft Matroska Tags October 2023

 | DISTRIBUTED_BY | UTF-8 | This is akin to the "IDST" |
 | | | tag in [RIFF.tags]. |
 +-------------------------+-------+-------------------------------+
 | MASTERED_BY | UTF-8 | The engineer who mastered the |
 | | | content for a physical medium |
 | | | or for digital distribution. |
 +-------------------------+-------+-------------------------------+
 | ENCODED_BY | UTF-8 | This is akin to the "TENC" |
 | | | tag in [ID3v2]. |
 +-------------------------+-------+-------------------------------+
 | MIXED_BY | UTF-8 | DJ mix by the artist |
 | | | specified |
 +-------------------------+-------+-------------------------------+
 | REMIXED_BY | UTF-8 | Interpreted, remixed, or |
 | | | otherwise modified by. This |
 | | | is akin to the "TPE4" tag in |
 | | | [ID3v2]. |
 +-------------------------+-------+-------------------------------+
 | PRODUCTION_STUDIO | UTF-8 | This is akin to the "ISTD" |
 | | | tag in [RIFF.tags]. |
 +-------------------------+-------+-------------------------------+
 | THANKS_TO | UTF-8 | A very general tag for |
 | | | everyone else that wants to |
 | | | be listed. |
 +-------------------------+-------+-------------------------------+
 | PUBLISHER | UTF-8 | This is akin to the "TPUB" |
 | | | tag in [ID3v2]. |
 +-------------------------+-------+-------------------------------+
 | LABEL | UTF-8 | The record label or imprint |
 | | | on the disc. |
 +-------------------------+-------+-------------------------------+

 Table 6: Entities tags

5.6. Search and Classification

 +=====================+=======+====================================+
 | Tag Name | Type | Description |
 +=====================+=======+====================================+
GENRE	UTF-8	The main genre (classical,
		ambient-house, synthpop, sci-fi,
		drama, etc.). The format follows
		the infamous "TCON" tag in
		[ID3v2].
+---------------------+-------+------------------------------------+		
MOOD	UTF-8	Intended to reflect the mood of
		the item with a few keywords,
		e.g., "Romantic", "Sad" or

Lhomme, et al. Expires 24 April 2024 [Page 13]

Internet-Draft Matroska Tags October 2023

 | | | "Uplifting". The format follows |
 | | | that of the "TMOO" tag in [ID3v2]. |
 +---------------------+-------+------------------------------------+
ORIGINAL_MEDIA_TYPE	UTF-8	Describes the original type of the
		media, such as, "DVD", "CD",
		"computer image," "drawing,"
		"lithograph," and so forth. This
		is akin to the "TMED" tag in
		[ID3v2].
+---------------------+-------+------------------------------------+		
CONTENT_TYPE	UTF-8	The type of the item. e.g.,
		Documentary, Feature Film,
		Cartoon, Music Video, Music, Sound
		FX, ...
+---------------------+-------+------------------------------------+		
SUBJECT	UTF-8	Describes the topic of the file,
		such as "Aerial view of Seattle."
+---------------------+-------+------------------------------------+		
DESCRIPTION	UTF-8	A short description of the
		content, such as "Two birds
		flying."
+---------------------+-------+------------------------------------+		
KEYWORDS	UTF-8	Keywords to the item separated by
		a comma, used for searching.
+---------------------+-------+------------------------------------+		
SUMMARY	UTF-8	A plot outline or a summary of the
		story.
+---------------------+-------+------------------------------------+		
SYNOPSIS	UTF-8	A description of the story line of
		the item.
+---------------------+-------+------------------------------------+		
INITIAL_KEY	UTF-8	The initial key that a musical
		track starts in. The format is
		identical to "TKEY" tag in
		[ID3v2].
+---------------------+-------+------------------------------------+		
PERIOD	UTF-8	Describes the period that the
		piece is from or about. For
		example, "Renaissance".
+---------------------+-------+------------------------------------+		
LAW_RATING	UTF-8	Depending on the COUNTRY it’s the
		format of the rating of a movie
		(P, R, X in the USA, an age in
		other countries or a URI defining
		a logo).
 +---------------------+-------+------------------------------------+

 Table 7: Search and Classification tags

Lhomme, et al. Expires 24 April 2024 [Page 14]

Internet-Draft Matroska Tags October 2023

5.7. Temporal Information

 +================+=======+==+
 | Tag Name | Type | Description |
 +================+=======+==+
 | DATE_RELEASED | UTF-8 | The time that the item was originally |
 | | | released. This is akin to the "TDRL" |
 | | | tag in [ID3v2]. |
 +----------------+-------+--+
 | DATE_RECORDED | UTF-8 | The time that the recording began. |
 | | | This is akin to the "TDRC" tag in |
 | | | [ID3v2]. |
 +----------------+-------+--+
 | DATE_ENCODED | UTF-8 | The time that the encoding of this |
 | | | item was completed began. This is |
 | | | akin to the "TDEN" tag in [ID3v2]. |
 +----------------+-------+--+
 | DATE_TAGGED | UTF-8 | The time that the tags were done for |
 | | | this item. This is akin to the "TDTG" |
 | | | tag in [ID3v2]. |
 +----------------+-------+--+
 | DATE_DIGITIZED | UTF-8 | The time that the item was transferred |
 | | | to a digital medium. This is akin to |
 | | | the "IDIT" tag in [RIFF.tags]. |
 +----------------+-------+--+
 | DATE_WRITTEN | UTF-8 | The time that the writing of the |
 | | | music/script began. |
 +----------------+-------+--+
 | DATE_PURCHASED | UTF-8 | Information on when the file was |
 | | | purchased; see also Section 5.12 on |
 | | | purchase tags. |
 +----------------+-------+--+

 Table 8: Temporal Information tags

5.8. Spatial Information

 +======================+=======+===================================+
 | Tag Name | Type | Description |
 +======================+=======+===================================+
RECORDING_LOCATION	UTF-8	The location where the item was
		recorded, in the Matroska
		countries form, i.e. [BCP47] two-
		letter region subtag, without the
		UK exception. This code is
		followed by a comma, then more
		detailed information such as
		state/province, another comma,

Lhomme, et al. Expires 24 April 2024 [Page 15]

Internet-Draft Matroska Tags October 2023

		and then city. For example, "US,
		Texas, Austin". This will allow
		for easy sorting. It is okay to
		only store the country, or the
		country and the state/province.
		More detailed information can be
		added after the city through the
		use of additional commas. In
		cases where the province/state is
		unknown, but you want to store
		the city, simply leave a space
		between the two commas. For
		example, "US, , Austin".
+----------------------+-------+-----------------------------------+		
COMPOSITION_LOCATION	UTF-8	Location that the item was
		originally designed/written, in
		the Matroska countries form, i.e.
		[BCP47] two-letter region subtag,
		without the UK exception. This
		code is followed by a comma, then
		more detailed information such as
		state/province, another comma,
		and then city. For example, "US,
		Texas, Austin". This will allow
		for easy sorting. It is okay to
		only store the country, or the
		country and the state/province.
		More detailed information can be
		added after the city through the
		use of additional commas. In
		cases where the province/state is
		unknown, but you want to store
		the city, simply leave a space
		between the two commas. For
		example, "US, , Austin".
+----------------------+-------+-----------------------------------+		
COMPOSER_NATIONALITY	UTF-8	Nationality of the main composer
		of the item, mostly for classical
		music, in the Matroska countries
		form, i.e. [BCP47] two-letter
		region subtag, without the UK
		exception.
 +----------------------+-------+-----------------------------------+

 Table 9: Spatial Information tags

Lhomme, et al. Expires 24 April 2024 [Page 16]

Internet-Draft Matroska Tags October 2023

5.9. Personal

 +==============+=======+==+
 | Tag Name | Type | Description |
 +==============+=======+==+
 | COMMENT | UTF-8 | Any comment related to the content. |
 +--------------+-------+--+
 | PLAY_COUNTER | UTF-8 | The number of time the item has been |
 | | | played. |
 +--------------+-------+--+
 | RATING | UTF-8 | A numeric value defining how much a |
 | | | person likes the song/movie. The |
 | | | number is between 0 and 5 with decimal |
 | | | values possible (e.g., 2.7), 5(.0) |
 | | | being the highest possible rating. |
 | | | Other rating systems with different |
 | | | ranges will have to be scaled. |
 +--------------+-------+--+

 Table 10: Personal tags

5.10. Technical Information

 +==================+========+=====================================+
 | Tag Name | Type | Description |
 +==================+========+=====================================+
 | ENCODER | UTF-8 | The software or hardware used to |
 | | | encode this item. ("LAME" or |
 | | | "XviD") |
 +------------------+--------+-------------------------------------+
 | ENCODER_SETTINGS | UTF-8 | A list of the settings used for |
 | | | encoding this item. No specific |
 | | | format. |
 +------------------+--------+-------------------------------------+
 | BPS | UTF-8 | The average bits per second of the |
 | | | specified item. This is only the |
 | | | data in the Blocks, and excludes |
 | | | headers and any container overhead. |
 +------------------+--------+-------------------------------------+
 | FPS | UTF-8 | The average frames per second of |
 | | | the specified item. This is |
 | | | typically the average number of |
 | | | Blocks per second. In the event |
 | | | that lacing is used, each laced |
 | | | chunk is to be counted as a |
 | | | separate frame. |
 +------------------+--------+-------------------------------------+
 | BPM | UTF-8 | Average number of beats per minute |

Lhomme, et al. Expires 24 April 2024 [Page 17]

Internet-Draft Matroska Tags October 2023

 | | | in the complete target (e.g., a |
 | | | chapter). Usually a decimal |
 | | | number. |
 +------------------+--------+-------------------------------------+
 | MEASURE | UTF-8 | In music, a measure is a unit of |
 | | | time in Western music like "4/4". |
 | | | It represents a regular grouping of |
 | | | beats, a meter, as indicated in |
 | | | musical notation by the time |
 | | | signature. The majority of the |
 | | | contemporary rock and pop music you |
 | | | hear on the radio these days is |
 | | | written in the 4/4 time signature. |
 +------------------+--------+-------------------------------------+
 | TUNING | UTF-8 | It is saved as a frequency in hertz |
 | | | to allow near-perfect tuning of |
 | | | instruments to the same tone as the |
 | | | musical piece (e.g., "441.34" in |
 | | | Hertz). The default value is 440.0 |
 | | | Hz. |
 +------------------+--------+-------------------------------------+
 | REPLAYGAIN_GAIN | binary | The gain to apply to reach 89dB SPL |
 | | | on playback. This is based on the |
 | | | [ReplayGain] standard. Note that |
 | | | ReplayGain information can be found |
 | | | at all TargetType levels (track, |
 | | | album, etc). |
 +------------------+--------+-------------------------------------+
 | REPLAYGAIN_PEAK | binary | The maximum absolute peak value of |
 | | | the item. This is based on the |
 | | | [ReplayGain] standard. |
 +------------------+--------+-------------------------------------+

 Table 11: Technical Information tags

5.11. Identifiers

 +================+========+=====================================+
 | Tag Name | Type | Description |
 +================+========+=====================================+
 | ISRC | UTF-8 | The International Standard |
 | | | Recording Code [ISRC], excluding |
 | | | the "ISRC" prefix and including |
 | | | hyphens. |
 +----------------+--------+-------------------------------------+
 | MCDI | binary | This is a binary dump of the TOC of |
 | | | the CDROM that this item was taken |
 | | | from. This holds the same |

Lhomme, et al. Expires 24 April 2024 [Page 18]

Internet-Draft Matroska Tags October 2023

 | | | information as the "MCDI" in |
 | | | [ID3v2]. |
 +----------------+--------+-------------------------------------+
 | ISBN | UTF-8 | International Standard Book Number |
 | | | [ISBN]. |
 +----------------+--------+-------------------------------------+
 | BARCODE | UTF-8 | European Article Numbering EAN-13 |
 | | | barcode defined in [GS1] General |
 | | | Specifications. |
 +----------------+--------+-------------------------------------+
 | CATALOG_NUMBER | UTF-8 | A label-specific string used to |
 | | | identify the release -- for |
 | | | example, TIC 01. |
 +----------------+--------+-------------------------------------+
 | LABEL_CODE | UTF-8 | A 4-digit or 5-digit number to |
 | | | identify the record label, |
 | | | typically printed as (LC) xxxx or |
 | | | (LC) 0xxxx on CDs medias or covers |
 | | | (only the number is stored). |
 +----------------+--------+-------------------------------------+
 | LCCN | UTF-8 | Library of Congress Control Number |
 | | | [LCCN]. |
 +----------------+--------+-------------------------------------+
 | IMDB | UTF-8 | Internet Movie Database [IMDb] |
 | | | identifier. "tt" followed by at |
 | | | least 7 digits for Movies, TV |
 | | | Shows, and Episodes. |
 +----------------+--------+-------------------------------------+
 | TMDB | UTF-8 | The Movie DB "movie_id" or "tv_id" |
 | | | identifier for movies/TV shows |
 | | | [MovieDB]. The variable length |
 | | | digits string MUST be prefixed with |
 | | | either "movie/" or "tv/". |
 +----------------+--------+-------------------------------------+
 | TVDB | UTF-8 | The TV Database "Series ID" or |
 | | | "Episode ID" identifier for TV |
 | | | shows [TheTVDB]. Variable length |
 | | | all-digits string identifying a TV |
 | | | Show. |
 +----------------+--------+-------------------------------------+
 | TVDB2 | UTF-8 | The TV Database [TheTVDB] tag which |
 | | | can include movies. The variable |
 | | | length digits string representing a |
 | | | "Series ID", "Episode ID" or "Movie |
 | | | ID" identifier MUST be prefixed |
 | | | with "series/", "episodes/" or |
 | | | "movies/" respectively. |
 +----------------+--------+-------------------------------------+

Lhomme, et al. Expires 24 April 2024 [Page 19]

Internet-Draft Matroska Tags October 2023

 Table 12: Identifiers tags

5.12. Commercial

 +===================+=======+====================================+
 | Tag Name | Type | Description |
 +===================+=======+====================================+
 | PURCHASE_ITEM | UTF-8 | URL to purchase this file. This |
 | | | is akin to the "WPAY" tag in |
 | | | [ID3v2]. |
 +-------------------+-------+------------------------------------+
 | PURCHASE_INFO | UTF-8 | Information on where to purchase |
 | | | this album. This is akin to the |
 | | | "WCOM" tag in [ID3v2]. |
 +-------------------+-------+------------------------------------+
 | PURCHASE_OWNER | UTF-8 | Information on the person who |
 | | | purchased the file. This is akin |
 | | | to the "TOWN" tag in [ID3v2]. |
 +-------------------+-------+------------------------------------+
 | PURCHASE_PRICE | UTF-8 | The amount paid for entity. There |
 | | | SHOULD only be a numeric value in |
 | | | here. Only numbers, no letters or |
 | | | symbols other than ".". For |
 | | | instance, you would store "15.59" |
 | | | instead of "$15.59USD". |
 +-------------------+-------+------------------------------------+
 | PURCHASE_CURRENCY | UTF-8 | The currency type used to pay for |
 | | | the entity. Use [ISO4217] for the |
 | | | 3 letter alphabetic code. |
 +-------------------+-------+------------------------------------+

 Table 13: Commercial tags

5.13. Legal

 +======================+=======+====================================+
 | Tag Name | Type | Description |
 +======================+=======+====================================+
COPYRIGHT	UTF-8	The copyright information as
		per the copyright holder.
		This is akin to the "TCOP"
		tag in [ID3v2].
+----------------------+-------+------------------------------------+		
PRODUCTION_COPYRIGHT	UTF-8	The copyright information as
		per the production copyright
		holder. This is akin to the
		"TPRO" tag in [ID3v2].
 +----------------------+-------+------------------------------------+

Lhomme, et al. Expires 24 April 2024 [Page 20]

Internet-Draft Matroska Tags October 2023

LICENSE	UTF-8	The license applied to the
		content (like Creative
		Commons variants).
+----------------------+-------+------------------------------------+		
TERMS_OF_USE	UTF-8	The terms of use for this
		item. This is akin to the
		"USER" tag in [ID3v2].
 +----------------------+-------+------------------------------------+

 Table 14: Legal tags

5.14. Notes

 In the Target list, a logical OR is applied on all tracks, a logical
 OR is applied on all chapters. Then a logical AND is applied between
 the Tracks list and the Chapters list to know if an element belongs
 to this Target.

6. Security Considerations

 Tag values can be either strings or binary blobs. This document
 inherits security considerations from the EBML [RFC8794] and Matroska
 [Matroska] documents.

7. IANA Considerations

7.1. Matroska Tags Names Registry

 This document creates a new IANA registry called the "Matroska Tag
 Names" registry.

 To register a new Tag Name in this registry, one needs a Name, a
 Type, a Change Controller (IETF or email of registrant) and an
 optional Reference to a document describing the Element ID.

 The Name corresponds to the value stored in the TagName Element. The
 Name SHOULD always be written in all capital letters and contain no
 space as defined in Section 4.2,

 The Type corresponds to which element will be stored the tag value.
 There can be 3 values for the Type:

 * UTF-8: the value of the Tag is stored in TagString,
 * binary: the value of the Tag is stored in TagBinary,
 * nested: the tag doesn’t contain a value, only nested tags inside.

 Matroska Tag Names Values found in this document are assigned as
 initial values as follows:

Lhomme, et al. Expires 24 April 2024 [Page 21]

Internet-Draft Matroska Tags October 2023

 +=========================+==========+===================+
 | Tag Name | Tag Type | Reference |
 +=========================+==========+===================+
 | ORIGINAL | nested | Described in this |
 | | | Section 5.1 |
 +-------------------------+----------+-------------------+
 | SAMPLE | nested | Described in this |
 | | | Section 5.1 |
 +-------------------------+----------+-------------------+
 | COUNTRY | UTF-8 | Described in this |
 | | | Section 5.1 |
 +-------------------------+----------+-------------------+
 | TOTAL_PARTS | UTF-8 | Described in this |
 | | | Section 5.2 |
 +-------------------------+----------+-------------------+
 | PART_NUMBER | UTF-8 | Described in this |
 | | | Section 5.2 |
 +-------------------------+----------+-------------------+
 | PART_OFFSET | UTF-8 | Described in this |
 | | | Section 5.2 |
 +-------------------------+----------+-------------------+
 | TITLE | UTF-8 | Described in this |
 | | | Section 5.3 |
 +-------------------------+----------+-------------------+
 | SUBTITLE | UTF-8 | Described in this |
 | | | Section 5.3 |
 +-------------------------+----------+-------------------+
 | URL | UTF-8 | Described in this |
 | | | Section 5.4 |
 +-------------------------+----------+-------------------+
 | SORT_WITH | UTF-8 | Described in this |
 | | | Section 5.4 |
 +-------------------------+----------+-------------------+
 | INSTRUMENTS | UTF-8 | Described in this |
 | | | Section 5.4 |
 +-------------------------+----------+-------------------+
 | EMAIL | UTF-8 | Described in this |
 | | | Section 5.4 |
 +-------------------------+----------+-------------------+
 | ADDRESS | UTF-8 | Described in this |
 | | | Section 5.4 |
 +-------------------------+----------+-------------------+
 | FAX | UTF-8 | Described in this |
 | | | Section 5.4 |
 +-------------------------+----------+-------------------+
 | PHONE | UTF-8 | Described in this |
 | | | Section 5.4 |
 +-------------------------+----------+-------------------+

Lhomme, et al. Expires 24 April 2024 [Page 22]

Internet-Draft Matroska Tags October 2023

 | ARTIST | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | LEAD_PERFORMER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | ACCOMPANIMENT | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | COMPOSER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | ARRANGER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | LYRICS | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | LYRICIST | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | CONDUCTOR | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | DIRECTOR | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | ASSISTANT_DIRECTOR | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | DIRECTOR_OF_PHOTOGRAPHY | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | SOUND_ENGINEER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | ART_DIRECTOR | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | PRODUCTION_DESIGNER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | CHOREGRAPHER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | COSTUME_DESIGNER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+

Lhomme, et al. Expires 24 April 2024 [Page 23]

Internet-Draft Matroska Tags October 2023

 | ACTOR | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | CHARACTER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | WRITTEN_BY | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | SCREENPLAY_BY | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | EDITED_BY | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | PRODUCER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | COPRODUCER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | EXECUTIVE_PRODUCER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | DISTRIBUTED_BY | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | MASTERED_BY | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | ENCODED_BY | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | MIXED_BY | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | REMIXED_BY | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | PRODUCTION_STUDIO | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | THANKS_TO | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | PUBLISHER | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+

Lhomme, et al. Expires 24 April 2024 [Page 24]

Internet-Draft Matroska Tags October 2023

 | LABEL | UTF-8 | Described in this |
 | | | Section 5.5 |
 +-------------------------+----------+-------------------+
 | GENRE | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | MOOD | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | ORIGINAL_MEDIA_TYPE | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | CONTENT_TYPE | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | SUBJECT | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | DESCRIPTION | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | KEYWORDS | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | SUMMARY | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | SYNOPSIS | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | INITIAL_KEY | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | PERIOD | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | LAW_RATING | UTF-8 | Described in this |
 | | | Section 5.6 |
 +-------------------------+----------+-------------------+
 | DATE_RELEASED | UTF-8 | Described in this |
 | | | Section 5.7 |
 +-------------------------+----------+-------------------+
 | DATE_RECORDED | UTF-8 | Described in this |
 | | | Section 5.7 |
 +-------------------------+----------+-------------------+
 | DATE_ENCODED | UTF-8 | Described in this |
 | | | Section 5.7 |
 +-------------------------+----------+-------------------+

Lhomme, et al. Expires 24 April 2024 [Page 25]

Internet-Draft Matroska Tags October 2023

 | DATE_TAGGED | UTF-8 | Described in this |
 | | | Section 5.7 |
 +-------------------------+----------+-------------------+
 | DATE_DIGITIZED | UTF-8 | Described in this |
 | | | Section 5.7 |
 +-------------------------+----------+-------------------+
 | DATE_WRITTEN | UTF-8 | Described in this |
 | | | Section 5.7 |
 +-------------------------+----------+-------------------+
 | DATE_PURCHASED | UTF-8 | Described in this |
 | | | Section 5.7 |
 +-------------------------+----------+-------------------+
 | RECORDING_LOCATION | UTF-8 | Described in this |
 | | | Section 5.8 |
 +-------------------------+----------+-------------------+
 | COMPOSITION_LOCATION | UTF-8 | Described in this |
 | | | Section 5.8 |
 +-------------------------+----------+-------------------+
 | COMPOSER_NATIONALITY | UTF-8 | Described in this |
 | | | Section 5.8 |
 +-------------------------+----------+-------------------+
 | COMMENT | UTF-8 | Described in this |
 | | | Section 5.9 |
 +-------------------------+----------+-------------------+
 | PLAY_COUNTER | UTF-8 | Described in this |
 | | | Section 5.9 |
 +-------------------------+----------+-------------------+
 | RATING | UTF-8 | Described in this |
 | | | Section 5.9 |
 +-------------------------+----------+-------------------+
 | ENCODER | UTF-8 | Described in this |
 | | | Section 5.10 |
 +-------------------------+----------+-------------------+
 | ENCODER_SETTINGS | UTF-8 | Described in this |
 | | | Section 5.10 |
 +-------------------------+----------+-------------------+
 | BPS | UTF-8 | Described in this |
 | | | Section 5.10 |
 +-------------------------+----------+-------------------+
 | FPS | UTF-8 | Described in this |
 | | | Section 5.10 |
 +-------------------------+----------+-------------------+
 | BPM | UTF-8 | Described in this |
 | | | Section 5.10 |
 +-------------------------+----------+-------------------+
 | MEASURE | UTF-8 | Described in this |
 | | | Section 5.10 |
 +-------------------------+----------+-------------------+

Lhomme, et al. Expires 24 April 2024 [Page 26]

Internet-Draft Matroska Tags October 2023

 | TUNING | UTF-8 | Described in this |
 | | | Section 5.10 |
 +-------------------------+----------+-------------------+
 | REPLAYGAIN_GAIN | binary | Described in this |
 | | | Section 5.10 |
 +-------------------------+----------+-------------------+
 | REPLAYGAIN_PEAK | binary | Described in this |
 | | | Section 5.10 |
 +-------------------------+----------+-------------------+
 | ISRC | UTF-8 | Described in this |
 | | | Section 5.11 |
 +-------------------------+----------+-------------------+
 | MCDI | binary | Described in this |
 | | | Section 5.11 |
 +-------------------------+----------+-------------------+
 | ISBN | UTF-8 | Described in this |
 | | | Section 5.11 |
 +-------------------------+----------+-------------------+
 | BARCODE | UTF-8 | Described in this |
 | | | Section 5.11 |
 +-------------------------+----------+-------------------+
 | CATALOG_NUMBER | UTF-8 | Described in this |
 | | | Section 5.11 |
 +-------------------------+----------+-------------------+
 | LABEL_CODE | UTF-8 | Described in this |
 | | | Section 5.11 |
 +-------------------------+----------+-------------------+
 | LCCN | UTF-8 | Described in this |
 | | | Section 5.11 |
 +-------------------------+----------+-------------------+
 | IMDB | UTF-8 | Described in this |
 | | | Section 5.11 |
 +-------------------------+----------+-------------------+
 | TMDB | UTF-8 | Described in this |
 | | | Section 5.11 |
 +-------------------------+----------+-------------------+
 | TVDB | UTF-8 | Described in this |
 | | | Section 5.11 |
 +-------------------------+----------+-------------------+
 | TVDB2 | UTF-8 | Described in this |
 | | | Section 5.11 |
 +-------------------------+----------+-------------------+
 | PURCHASE_ITEM | UTF-8 | Described in this |
 | | | Section 5.12 |
 +-------------------------+----------+-------------------+
 | PURCHASE_INFO | UTF-8 | Described in this |
 | | | Section 5.12 |
 +-------------------------+----------+-------------------+

Lhomme, et al. Expires 24 April 2024 [Page 27]

Internet-Draft Matroska Tags October 2023

 | PURCHASE_OWNER | UTF-8 | Described in this |
 | | | Section 5.12 |
 +-------------------------+----------+-------------------+
 | PURCHASE_PRICE | UTF-8 | Described in this |
 | | | Section 5.12 |
 +-------------------------+----------+-------------------+
 | PURCHASE_CURRENCY | UTF-8 | Described in this |
 | | | Section 5.12 |
 +-------------------------+----------+-------------------+
 | COPYRIGHT | UTF-8 | Described in this |
 | | | Section 5.13 |
 +-------------------------+----------+-------------------+
 | PRODUCTION_COPYRIGHT | UTF-8 | Described in this |
 | | | Section 5.13 |
 +-------------------------+----------+-------------------+
 | LICENSE | UTF-8 | Described in this |
 | | | Section 5.13 |
 +-------------------------+----------+-------------------+
 | TERMS_OF_USE | UTF-8 | Described in this |
 | | | Section 5.13 |
 +-------------------------+----------+-------------------+

 Table 15: Names and Types for Matroska Tags assigned
 by this document

8. Normative References

 [BCP47] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [GS1] "GS1 General Specifications", GS1 20.0, January 2020,
 <https://www.gs1.org/standards/barcodes-epcrfid-id-keys/
 gs1-general-specifications>.

 [ID3v2] Nilsson, M., Mahoney, D., Ed., and J. Sundstrom, Ed., "ID3
 tag version 2.3.0", 3 February 1999,
 <https://id3.org/id3v2.3.0>.

 [IMDb] Internet Movie Database, "IMDb API Documentation",
 <https://imdb-api.com/api>.

 [ISBN] International ISBN Agency, "ISBN Users’ Manual", December
 2017, <https://www.isbn-international.org/content/isbn-
 users-manual>.

Lhomme, et al. Expires 24 April 2024 [Page 28]

Internet-Draft Matroska Tags October 2023

 [ISO4217] International Organization for Standardization, "ISO 4217
 Currency codes", ISO 4217:2015, August 2015,
 <https://www.iso.org/iso-4217-currency-codes.html>.

 [ISRC] IFPI Secretariat, "International Standard Recording Code
 (ISRC) Handbook", IFPI 3rd Edition, 2009,
 <https://www.ifpi.org/wp-content/uploads/2020/08/
 ISRC_Handbook.pdf>.

 [LCCN] United States Library Of Congress, "Library Of Congress
 Control Number", October 1999,
 <https://www.loc.gov/marc/lccn.html>.

 [Matroska] Lhomme, S., Bunkus, M., and D. Rice, "Media Container
 Specifications", Work in Progress, Internet-Draft, draft-
 ietf-cellar-matroska-20, 8 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cellar-
 matroska-20>.

 [MovieDB] The Movie Database, "The Movie Database API",
 <https://developers.themoviedb.org/3/movies/get-movie-
 details>.

 [ReplayGain]
 Robinson, D., "ReplayGain 1.0 specification", 10 July
 2001, <http://wiki.hydrogenaud.io/
 index.php?title=Replay_Gain_specification>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8794] Lhomme, S., Rice, D., and M. Bunkus, "Extensible Binary
 Meta Language", RFC 8794, DOI 10.17487/RFC8794, July 2020,
 <https://www.rfc-editor.org/info/rfc8794>.

 [TheTVDB] The TVDB, "API documentation",
 <https://www.thetvdb.com/api-information>.

9. Informative References

Lhomme, et al. Expires 24 April 2024 [Page 29]

Internet-Draft Matroska Tags October 2023

 [RIFF.tags]
 Exiftool, "RIFF Tags",
 <https://exiftool.org/TagNames/RIFF.html>.

Authors’ Addresses

 Steve Lhomme
 Email: slhomme@matroska.org

 Moritz Bunkus
 Email: moritz@bunkus.org

 Dave Rice
 Email: dave@dericed.com

Lhomme, et al. Expires 24 April 2024 [Page 30]

	draft-ietf-cellar-chapter-codecs-04
	draft-ietf-cellar-codec-12
	draft-ietf-cellar-control-04
	draft-ietf-cellar-ffv1-v4-22
	draft-ietf-cellar-flac-14
	draft-ietf-cellar-matroska-21
	draft-ietf-cellar-tags-12

