# Data plane Enhancement Taxonomy

draft-joung-detnet-taxonomy-dataplane-00 Jinoo Joung, Xuesong Geng, Shaofu Peng, Toerless Eckert

DetNet Interim, Feb. 06. 2024

### **Overview of the draft**

- Purpose
  - To facilitate the understanding of the data plane enhancement solutions, which are suggested currently or can be suggested in the future, for deterministic networking
- Scope
  - To provide criteria for classifying data plane solutions
  - To provide examples of each category, along with reasons where necessary
  - To provide strengths and limitations of the categories
- Out of scope
  - The candidate solutions currently being proposed in DetNet WG are simply listed without any descriptions. The details of the solutions are intentionally omitted.
- Definitions:
  - An enhancement solution can be a combination of multiple data plane functional entities, such as regulators, queues, and schedulers.
  - A solution can also include functional entities across network nodes, e.g. traffic enforcement or regulation functions at the edge.

### Taxonomy 1: Per Hop Dominant Factor for Latency Bound

|                   | Category 1                                                                                                                                                                                                                                                                               | Category 2                              | Category 3                               |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|--|--|--|
| Criteria          | The per hop dominant factor for the latency bound, which is the largest sum term i<br>the expression, when the network and traffic conditions are the worst.<br>The worst condition typically means high network utilization, large packet and burst<br>sizes, and large number of hops. |                                         |                                          |  |  |  |
| Indicator         | Max Packet Length / Service<br>Rate                                                                                                                                                                                                                                                      | Sum of Max Packet<br>Lengths / Capacity | Sum of Max Burst Sizes<br>/ Capacity     |  |  |  |
| Strengths         | individual flow isolation                                                                                                                                                                                                                                                                | less complex than<br>Category 1         | least complex                            |  |  |  |
| Limitations       | complex                                                                                                                                                                                                                                                                                  |                                         | require tighter burst control mechanisms |  |  |  |
| Example solutions | FQ, C-SCORE                                                                                                                                                                                                                                                                              | DRR                                     | ATS, CQF and variants                    |  |  |  |

# Example data plane solution : ATS

Latency and Backlog Bounds in Time-Sensitive Networking with Credit Based Shapers and Asynchronous Traffic Shaping

> Ehsan Mohammadpour, Eleni Stai, Maaz Mohiuddin, Jean-Yves Le Boudec École Polytechnique Fédérale de Lausanne, Switzerland {firstname.lastname}@epfl.ch



Fig. 2: Illustration of the queuing policy in interleaved regulators (IR) by TSN switches for four flows of class A.





Fig. 1: Architecture of one TSN node output port.

**Theorem III.2.** A tight upper bound on the response time in the CBFS of node *i* (following the interleaved regulator) for flow *f* of class  $x \in \{A, B\}$ , going from node *i* to *j*, is:

$$S(f, i, j, x) = T_{ij}^{x} + \left(\frac{b_{ij}^{\text{tot}, x} - \psi_f}{R_{ij}^{x}}\right) + \frac{\psi_f}{c_{ij}} + T_{ij}^{\text{var,max}}, \quad (5) \ \textbf{a}$$

where the parameter  $\psi_f$  depends on the first f and the type of regulator, namely, for LRQ:  $\psi_f = L_f$  and for  $\psi_f = M_f$ .

 $b_{ij}^{\text{tot},x} = \sum_{f \in F_{ij}^x} b_f$ for LRQ:  $\psi_f = L_f$  and for LB:  $\psi_f = M_f$ M: minimum packet length c: link capacity

T<sup>x</sup>: the delay due to the upper class traffic. For A class, the dominant factor for T<sup>A</sup> is = {total CDT burst / (Link capacity-total CDT rate)}

R<sup>x</sup>: the allocated rate to the class

4

### Example data plane solution : ATS

Latency and Backlog Bounds in Time-Sensitive Networking with Credit Based Shapers and Asynchronous Traffic Shaping

> Ehsan Mohammadpour, Eleni Stai, Maaz Mohiuddin, Jean-Yves Le Boudec École Polytechnique Fédérale de Lausanne, Switzerland {firstname.lastname}@epfl.ch



### Taxonomy 2: Periodicity

|                   | Periodic                                                                                                                                                                                                                                                                                                                                    | Non-periodic      |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|
| Criteria          | A solution maintains a set of consecutive time slots that are repeated periodically.<br>A packet is assigned to a particular time slot.<br>The slot is decided with a predefined rule based on conventions such as the arriva<br>time, the priority, the flow the packet belongs to, or the time slot it was assigned<br>the upstream node. |                   |  |  |
| Indicator         | Meets the criteria                                                                                                                                                                                                                                                                                                                          | Does not meet     |  |  |
| Strengths         | less jitter                                                                                                                                                                                                                                                                                                                                 | flexible          |  |  |
| Limitations       |                                                                                                                                                                                                                                                                                                                                             |                   |  |  |
| Example solutions | TAS, CQF, their variants                                                                                                                                                                                                                                                                                                                    | ATS, C-SCORE, EDF |  |  |

# Example data plane solution : ECQF

#### IEEE P802.1DC and IEEE P802.1Qdv **Time Sensitive Networking Developments**

| <b>«</b> | Slot is the<br>"cycle" in CQF. |             |    |    |     |      |      | Norman Finn<br>Huawei Technologies Co. Ltd<br>nfinn@nfinnconsulting.com<br>finn-tutorial-802-1DC-1Qdv-2023-12-v02.pdf |        |               |  |
|----------|--------------------------------|-------------|----|----|-----|------|------|-----------------------------------------------------------------------------------------------------------------------|--------|---------------|--|
|          | 1 ms                           |             |    |    |     |      | CQF7 | 7                                                                                                                     | 77     |               |  |
|          | 3 ms                           |             |    |    |     | CQF6 |      | 6                                                                                                                     | oriori |               |  |
| 6        | ms                             |             |    | CC | QF5 |      |      | 5                                                                                                                     | ty sel | $\rightarrow$ |  |
|          | best                           | best-effor  | t  |    |     |      |      | 4                                                                                                                     | ectio  |               |  |
|          | lowes                          | t best effo | rt |    |     |      |      | <br>0                                                                                                                 | п      |               |  |

- The time slot pattern in the period is repeated, at least till a reconfiguration.
- A packet is assigned to one of the finite number of slots, with a predefined rule.
- Note that the time slots can be overlapped.

# Example data plane solution : ECQF

#### IEEE P802.1DC and IEEE P802.1Qdv **Time Sensitive Networking Developments**

| <b></b> | Per       | iod        | Slot is the<br>"cycle" in CQF. |   |         | Norman Finn<br>Huawei Technologies Co. Ltd<br>nfinn@nfinnconsulting.com<br>finn-tutorial-802-1DC-1Qdv-2023-12-v02.p |
|---------|-----------|------------|--------------------------------|---|---------|---------------------------------------------------------------------------------------------------------------------|
|         | 1 ms      |            | CQF7                           | 7 | q       |                                                                                                                     |
|         | 3 ms      |            | CQF6                           | 6 | riority | E2E latency                                                                                                         |
|         | 6 ms      | CC         | QF5                            | 5 | ' selec | time), under packet is ser                                                                                          |
|         | best bes  | st-effort  |                                | 4 | ction   | in the next r                                                                                                       |
|         | lowest be | est effort |                                | 0 |         | The slot time                                                                                                       |

- The time slot pattern in the period is repeated, at least till a reconfiguration.
- A packet is assigned to one of the finite number of slots, with a predefined rule.
- Note that the time slots can be overlapped.

nderstanding: bound  $\sim$  (H+1)\*(Slot condition that a ved at the NEXT slot node.

e = {slot length / link capacity} is the per-hop dominant factor for the E2E latency bound. But how we determine the slot time is an open problem.

### Example data plane solution : ECQF or any CQF variant

- How can we determine the slot time T<sub>s</sub>?
- Consider only Class 7 flows.
- Assume
  - A perfectly synched network
  - The packet lengths are all identical to L.
  - All the flow's burst sizes are fixed at b.
  - There is a bottleneck link with utilization ~1.
- Transmit the burst immediately at the network entrance.
- If Σ<sub>at the bottleneck link</sub> (b) = B <= T<sub>S</sub> \*C then T<sub>S</sub> >= B/C, thus the dominant factor is larger than or equal to B/C. (C: Link capacity)
- Otherwise, T<sub>s</sub> < B/C then some packets cannot be served in a single slot. → This contradicts the basic CQF assumption.



## Example data plane solution : ECQF or any CQF variant

- How can we determine the slot time T<sub>s</sub>?
- Consider only Class 7 flows.
- Assume
  - A perfectly synched network
  - The packet lengths are all identical to L.
  - All the flow's burst sizes are fixed at b.
  - There is a bottleneck link with utilization ~1.
- Or we can regulate the burst at the network edge, and transmit one packet in a slot per flow.
- $\Sigma_{\text{at the bottleneck link}}$  (L) =  $\Sigma$ L can be set as T<sub>S</sub>\*C, thus the dominant factor is  $\Sigma$ L/C.
- In this case, the arrival rate from a flow has to be less than the service rate,  $L/T_s$ .
- The difference between the arrival rates of flows has to be taken into account, which is NOT trivial, either.



### **Taxonomy 3: Network Synchronization**

|                   | phase synchronous                                                                                                               | frequency synchronous                                         | asynchronous                                                                                  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| Criteria          | Whether network synchronization is required                                                                                     |                                                               |                                                                                               |  |  |  |
| Indicator         | require network nodes<br>to be both phase and<br>frequency<br>synchronized                                                      | require network nodes<br>to be only frequency<br>synchronized | may also require loose phase<br>and frequency<br>synchronizations but with less<br>precision. |  |  |  |
|                   | The required level of synch. precision is to be studied further. The level can be determined by an indicator e.g. <b>MTIE</b> . |                                                               |                                                                                               |  |  |  |
| Strengths         | precise jitter control                                                                                                          |                                                               | least complex                                                                                 |  |  |  |
| Limitations       | complex, not scalable                                                                                                           |                                                               | additional jitter control may be necessary                                                    |  |  |  |
| Example solutions | CQF, TAS                                                                                                                        | variants of CQF & TAS                                         | ATS, C-SCORE, EDF                                                                             |  |  |  |

# Example data plane solution : ECQF

#### IEEE P802.1DC and IEEE P802.1Qdv Time Sensitive Networking Developments



- a) Obtained by time-of-arrival of frame (in P802.1Qdv draft 0.4)
- b) Obtained by a field in the frame (*not* in P802.1Qdv draft 0.4) -
- Bin selection based on counting bytes stored in output bin so far (in P802.1Qdv draft 0.4)

### Bin selection based on previous hop's bin

If the selection of the next-hop bin is derived from the last-hop bin selection, then **no per-flow state machines, and no per-flow configuration**, is required. Furthermore, the end-to-end **delivery time is constant**, modulo one bin rotation cycle.

But, this requires that all hops along the path rotate their bins at exactly the same frequency - that is, the difference in the number of bins output between two hops, over an arbitrarily long period of time, must be bounded.



As with other CQF variants, ECQF requires **frequency** synchronization.

How small the bound should be is for further study. MTIE can be an indicator for the synch precision and the criteria.

### **Taxonomy 4: Traffic Granularity**

|                   | Flow level                                                                                                                         | Flow aggregate level                                                                                                      | Class level                                                                                                         |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|
| Criteria          | the granularity of their traffic control target,<br>which refers to the size and specificity of the traffic entity they handle     |                                                                                                                           |                                                                                                                     |  |  |  |
| Indicator         | Each packet is controlled<br>based on its specific flow,<br>which can be identified usually<br>by the 5-tuple.                     | Flows are grouped by<br>shared characteristics like<br>traffic specification,<br>service requirement, or<br>routing path. | Flows are further grouped by<br>similar service requirements,<br>regardless of specific path or<br>traffic details. |  |  |  |
| Strengths         | more accurate service<br>differentiation among<br>flows                                                                            |                                                                                                                           | least complex                                                                                                       |  |  |  |
| Limitations       | complex                                                                                                                            |                                                                                                                           |                                                                                                                     |  |  |  |
| Example solutions | FQ, C-SCORE                                                                                                                        | IR, Possible enhancement<br>to TAS with more than 8<br>queues.                                                            | CQF and its variants, EDF                                                                                           |  |  |  |
| Note              | Functional entity with the coarsest granularity is dominant, thus the whole solution belongs to the coarsest granularity category. |                                                                                                                           |                                                                                                                     |  |  |  |

## Example data plane solution : ATS

Latency and Backlog Bounds in Time-Sensitive Networking with Credit Based Shapers and Asynchronous Traffic Shaping

> Ehsan Mohammadpour, Eleni Stai, Maaz Mohiuddin, Jean-Yves Le Boudec École Polytechnique Fédérale de Lausanne, Switzerland {firstname.lastname}@epfl.ch



Fig. 2: Illustration of the queuing policy in interleaved regulators (IR) by TSN switches for four flows of class A.





Fig. 1: Architecture of one TSN node output port.

ATS consists of interleaved regulators (IRs) and a strict priority scheduler. An IR has a queue dedicated to a flow aggregate having the same class and the same input port. The regulation function itself is based on a flow. According to the definition, **IR is a flow aggregate level solution**. On the other hand, the strict priority scheduler in ATS is classbased. Therefore, **ATS as a whole is class level**.

### Example data plane solution : ECQF

#### IEEE P802.1DC and IEEE P802.1Qdv Time Sensitive Networking Developments



### Taxonomy 5: Work Conserving

|                   | Work conserving                                                                                                                                                                      | Non-work conserving                                                         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Criteria          | If a solution never idle when there is a pack                                                                                                                                        | aet to send.                                                                |
| Indicator         | Meets the criteria                                                                                                                                                                   | Νο                                                                          |
| Strengths         | small average latency, small observed<br>maximum latency than the bound, the<br>statistical multiplexing gain.<br>fit well to bursty traffic, without a need<br>for overprovisioning | avoid burst accumulation, jitter control, simple latency evaluation process |
| Limitations       |                                                                                                                                                                                      |                                                                             |
| Example solutions | FIFO, round robin schedulers, FQ , C-<br>SCORE                                                                                                                                       | TAS, CQF, ATS, and their variants                                           |

### Taxonomy 6: Target Transmission Time

|                   | On-time                                                                                                                                                                                                                   | In-time                                                       |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|
| Criteria          | how closely they adhere to predefined target transmission times for packets                                                                                                                                               |                                                               |  |  |  |
| Indicator         | strive to transmit packets as close as<br>possible to their target times without ever<br>exceeding them                                                                                                                   | transmit packets without a specified target transmission time |  |  |  |
| Strengths         | typically control the jitter as well as latency                                                                                                                                                                           | less average latency                                          |  |  |  |
| Limitations       | larger average<br>latency                                                                                                                                                                                                 | additional jitter control may be necessary                    |  |  |  |
| Example solutions | TAS, CQF and their variants, EDF (on-time mode)                                                                                                                                                                           | ATS, C-SCORE, EDF (in-time mode)                              |  |  |  |
| Note              | The on-time/in-time taxonomy here is about the scheduling decision, which determines when a packet is transmitted. It is not about the consequence of the scheduling, whether the jitter bound is also guaranteed or not. |                                                               |  |  |  |

### Example data plane solution : ATS

Latency and Backlog Bounds in Time-Sensitive Networking with Credit Based Shapers and Asynchronous Traffic Shaping

> Ehsan Mohammadpour, Eleni Stai, Maaz Mohiuddin, Jean-Yves Le Boudec École Polytechnique Fédérale de Lausanne, Switzerland {firstname.lastname}@epfl.ch



Fig. 2: Illustration of the queuing policy in interleaved regulators (IR) by TSN switches for four flows of class A.





Fig. 1: Architecture of one TSN node output port.

ATS, which includes the interleaved regulator, is an in-time solution. A regulator determines an eligible time for a packet to be transmitted. Packets are always transmitted at or later than their eligible times. **An eligible time is not a target transmission time.** Note that ATS is a non-work conserving but in-time solution.

### **Taxonomy 7: Service Order**

|                   | Rate-based                                                                                                                                                     | Time-based                    | Arrival-based                | Priority-based                    |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|-----------------------------------|--|--|--|--|
| Criteria          | The primary service order decision factor for packets from different flows.<br>(The rule for service order decision can be a combination of multiple factors.) |                               |                              |                                   |  |  |  |  |
| Indicator         | the allocated service<br>rate of their flows or<br>flow aggregates.                                                                                            | the allowed delay or deadline | the order they<br>arrive     | the assigned priorities           |  |  |  |  |
| Strengths         | the "pay burst only<br>once" property,<br>simple admission<br>control process                                                                                  | precise delay<br>control      | implementation<br>simplicity | implementation<br>simplicity      |  |  |  |  |
| Limitations       |                                                                                                                                                                |                               |                              |                                   |  |  |  |  |
| Example solutions | DRR, FQ , C-SCORE                                                                                                                                              | EDF                           | IR                           | ATS, TAS, CQF, and their variants |  |  |  |  |
| Note              | If the rule based on the arrival time is combined with the other rules, then the arrival time is considered the secondary factor.                              |                               |                              |                                   |  |  |  |  |

# Visualization of taxonomy



# Thank you

• Please take a look at

https://datatracker.ietf.org/doc/draft-joung-detnet-taxonomy-dataplane/

- Please share your comments and questions.
- References:
  - Mohammadpour, Ehsan, Eleni Stai, Maaz Mohiuddin, and Jean-Yves Le Boudec. "Latency and backlog bounds in time-sensitive networking with credit based shapers and asynchronous traffic shaping." In 2018 30th International Teletraffic Congress (ITC 30), vol. 2, pp. 1-6. IEEE, 2018.
  - Norman Finn, IEEE P802.1DC and IEEE P802.1Qdv Time Sensitive Networking Developments, finn-tutorial-802-1DC-1Qdv-2023-12-v02.pdf, DetNet WG Interim meeting, Dec. 2023.