
LAKE Working Group G. Selander
Internet-Draft J. Preuß Mattsson
Intended status: Standards Track Ericsson AB
Expires: 5 September 2024 M. Vuini
 G. Fedrecheski
 INRIA
 M. Richardson
 Sandelman Software Works
 4 March 2024

 Lightweight Authorization using Ephemeral Diffie-Hellman Over COSE
 draft-ietf-lake-authz-01

Abstract

 This document describes a procedure for authorizing enrollment of new
 devices using the lightweight authenticated key exchange protocol
 Ephemeral Diffie-Hellman Over COSE (EDHOC). The procedure is
 applicable to zero-touch onboarding of new devices to a constrained
 network leveraging trust anchors installed at manufacture time.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at
 https://ericssonresearch.github.io/ace-ake-authz/draft-ietf-lake-
 authz.html. Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-ietf-lake-authz/.

 Discussion of this document takes place on the Lightweight
 Authenticated Key Exchange Working Group mailing list
 (mailto:lake@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/lake/. Subscribe at
 https://www.ietf.org/mailman/listinfo/lake/.

 Source for this draft and an issue tracker can be found at
 https://github.com/EricssonResearch/ace-ake-authz.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Selander, et al. Expires 5 September 2024 [Page 1]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 5 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 2. Problem Description . 4
 3. Assumptions . 5
 3.1. Device (U) . 6
 3.2. Domain Authenticator (V) 7
 3.3. Enrollment Server (W) 8
 4. The Protocol . 8
 4.1. Overview . 8
 4.2. Reuse of EDHOC . 10
 4.3. Stateless Operation of V 11
 4.4. Device <-> Enrollment Server (U <-> W) 12
 4.5. Device <-> Authenticator (U <-> V) 15
 4.6. Authenticator <-> Enrollment Server (V <-> W) 17
 4.7. Error Handling . 19
 5. REST Interface at W . 20
 5.1. Scheme "https" . 20
 5.2. Scheme "coaps" . 21
 5.3. Scheme "coap" . 21
 5.4. URIs . 21

Selander, et al. Expires 5 September 2024 [Page 2]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 6. Security Considerations 22
 7. IANA Considerations . 23
 7.1. EDHOC External Authorization Data Registry 23
 7.2. The Well-Known URI Registry 23
 7.3. Well-Known Name Under ".arpa" Name Space 24
 7.4. Media Types Registry 24
 7.5. CoAP Content-Formats Registry 25
 8. References . 25
 8.1. Normative References 25
 8.2. Informative References 26
 Appendix A. Use with Constrained Join Protocol (CoJP) 27
 A.1. Network Discovery . 28
 A.2. The Enrollment Protocol with Parameter Provisioning . . . 29
 Appendix B. Enrollment Hints 31
 B.1. Domain Authenticator hints 31
 B.2. Device Hints . 31
 Appendix C. Examples . 31
 C.1. Minimal . 31
 C.2. Wrong gateway . 32
 Acknowledgments . 33
 Authors’ Addresses . 33

1. Introduction

 For constrained IoT deployments [RFC7228] the overhead and processing
 contributed by security protocols may be significant which motivates
 the specification of lightweight protocols that are optimizing, in
 particular, message overhead (see [I-D.ietf-lake-reqs]). This
 document describes a procedure for augmenting the lightweight
 authenticated Diffie-Hellman key exchange EDHOC [I-D.ietf-lake-edhoc]
 with third party-assisted authorization.

 The procedure involves a device, a domain authenticator, and an
 enrollment server. The device and domain authenticator perform
 mutual authentication and authorization, assisted by the enrollment
 server which provides relevant authorization information to the
 device (a "voucher") and to the authenticator. The high-level model
 is similiar to BRSKI [RFC8995].

 In this document we consider the target interaction for which
 authorization is needed to be "enrollment", for example joining a
 network for the first time (e.g., [RFC9031]), but it can be applied
 to authorize other target interactions.

Selander, et al. Expires 5 September 2024 [Page 3]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 The enrollment server may represent the manufacturer of the device,
 or some other party with information about the device from which a
 trust anchor has been pre-provisioned into the device. The (domain)
 authenticator may represent the service provider or some other party
 controlling access to the network in which the device is enrolling.

 The protocol assumes that authentication between device and
 authenticator is performed with EDHOC [I-D.ietf-lake-edhoc], and
 defines the integration of a lightweight authorization procedure
 using the External Authorization Data (EAD) fields defined in EDHOC.

 The protocol enables a low message count by performing authorization
 and enrollment in parallel with authentication, instead of in
 sequence which is common for network access. It further reuses
 protocol elements from EDHOC leading to reduced message sizes on
 constrained links.

 This protocol is applicable to a wide variety of settings, and can be
 mapped to different authorization architectures.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to have an understanding of CBOR [RFC8949] and
 EDHOC [I-D.ietf-lake-edhoc]. Appendix C.1 of [I-D.ietf-lake-edhoc]
 contains some basic info about CBOR.

2. Problem Description

 The (potentially constrained) device (U) wants to enroll into a
 domain over a constrained link. The device authenticates and
 enforces authorization of the (non-constrained) domain authenticator
 (V) with the help of a voucher conveying authorization information.
 The voucher has a similar role as in [RFC8366] but should be
 considerably more compact. The domain authenticator, in turn,
 authenticates the device and authorizes its enrollment into the
 domain.

 The procedure is assisted by a (non-constrained) enrollment server
 (W) located in a non-constrained network behind the domain
 authenticator, e.g. on the Internet, providing information to the
 device (the voucher) and to the domain authenticator as part of the
 protocol.

Selander, et al. Expires 5 September 2024 [Page 4]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 The objective of this document is to specify such a protocol which is
 lightweight over the constrained link by reusing elements of EDHOC
 [I-D.ietf-lake-edhoc] and by shifting message overhead to the non-
 constrained side of the network. See illustration in Figure 1.

 Note the cardinality of the involved parties. It is expected that
 the authenticator needs to handle a large unspecified number of
 devices, but for a given device type or manufacturer it is expected
 that one or a few nodes host enrollment servers.

 Voucher
 Info
 +----------+ | +---------------+ Voucher +---------------+
				Request	
Device +------o---->	Domain +---------->	Enrollment			
	<---o-------+ Authenticator	<----------+ Server			
(U) +----+------>	(V)	Voucher	(W)		
				Response	
 +----------+ | +---------------+ +---------------+
 Voucher

 Figure 1: Overview of message flow. EDHOC is used on the
 constrained link between U and V. Voucher Info and Voucher are
 sent in EDHOC External Authorization Data (EAD). The link
 between V and W is not constrained.

3. Assumptions

 The protocol is based on the following pre-existing relations between
 the device (U), the domain authenticator (V) and the enrollment
 server (W), see Figure 2.

 * U and W have an explicit relation: U is configured with a public
 key of W, see Section 3.1.

 * V and W have an implicit relation, e.g., based on web PKI with
 trusted CA certificates, see Section 3.2.

 * U and V need not have any previous relation, this protocol
 establishes a relation between U and V.

 Each of the three parties can gain protected communication with the
 other two during the protocol.

Selander, et al. Expires 5 September 2024 [Page 5]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 V may be able to access credentials over non-nonstrained networks,
 but U may be limited to constrained networks. Implementations
 wishing to leverage the zero-touch capabilities of this protocol are
 expected to support transmission of credentials from V to U by value
 during the EDHOC exchange, which will impact the message size
 depending on type of credential used.

 Explicit relation (e.g., from device manufacture)
 | <---> |
 | |
 +----+-----+ +---------------+ +-------+-------+
Device	con-	Domain	not con-	Enrollment
	strained	Authenticator	strained	Server
(U)	network	(V)	network	(W)
 +----+-----+ +-------+-------+ +-------+-------+
 | | |
 | <----------------------> | <------------------------> |
 No previous relation Implicit relation
 (e.g., web PKI based)

 Figure 2: Overview of pre-existing relations.

3.1. Device (U)

 To authenticate to V, the device (U) runs EDHOC in the role of
 Initiator with authentication credential CRED_U, for example, an
 X.509 certificate or a CBOR Web Token (CWT, [RFC8392]). CRED_U may,
 for example, be carried in ID_CRED_I of EDHOC message_3 or be
 provisioned to V over a non-constrained network, see bottom of
 Figure 3.

 U also needs to identify itself to W, this device identifier is
 denoted by ID_U. The purpose of ID_U is for W to be able to
 determine if the device with this identifier is authorized to enroll
 with V. ID_U may be a reference to CRED_U, like ID_CRED_I in EDHOC
 (see Section 3.5.2 of [I-D.ietf-lake-edhoc]), or a device identifier
 from a different name space, such as EUI-64 identifiers.

 U is also provisioned with information about W:

 * A static public DH key of W (G_W) used to establish secure
 communication with the enrollment server (see Section 4.4).

 * Location information about the enrollment server (LOC_W) that can
 be used by V to reach W. This is typically a URI but may
 alternatively be only the domain name.

Selander, et al. Expires 5 September 2024 [Page 6]

Internet-Draft Lightweight Authorization using EDHOC March 2024

3.2. Domain Authenticator (V)

 To authenticate to U, the domain authenticator (V) runs EDHOC in the
 role of Responder with an authentication credential CRED_V, which is
 a CWT Claims Set [RFC8392] containing a public key of V, see
 Section 4.5.2.1. This proves to U the possession of the private key
 corresponding to the public key of CRED_V. CRED_V typically needs to
 be transported to U in EDHOC (using ID_CRED_R = CRED_V, see
 Section 3.5.2 of [I-D.ietf-lake-edhoc]) since there is no previous
 relation between U and V.

 V and W need to establish a secure (confidentiality and integrity
 protected) connection for the Voucher Request/Response protocol.
 Furthermore, W needs access the same credential CRED_V as V used with
 U, and V needs to prove to W the possession of the private key
 corresponding to the public key of CRED_V. It is RECOMMENDED that V
 authenticates to W using the same credential CRED_V as with U.

 * V and W may protect the Voucher Request/Response protocol using
 TLS 1.3 with client authentication [RFC8446] if CRED_V is an X.509
 certificate of a signature public key. However, note that CRED_V
 may not be a valid credential to use with TLS 1.3, e.g., when U
 and V run EDHOC with method 1 or 3, where the public key of CRED_V
 is a static Diffie-Hellman key.

 * V may run EDHOC with W using ID_CRED_I = CRED_V. In this case the
 secure connection between V and W may be based on OSCORE
 [RFC8613].

 Note that both TLS 1.3 and EDHOC may be run between V and W during
 this setup procedure. For example, W may authenticate to V using TLS
 1.3 with server certificates signed by a CA trusted by V, and then V
 may run EDHOC using CRED_V over the secure TLS connection to W, see
 Figure 3.

 Note also that the secure connection between V and W may be long
 lived and reused for multiple voucher requests/responses.

 Other details of proof-of-possession related to CRED_V and transport
 of CRED_V are out of scope of this document.

Selander, et al. Expires 5 September 2024 [Page 7]

Internet-Draft Lightweight Authorization using EDHOC March 2024

3.3. Enrollment Server (W)

 The enrollment server (W) is assumed to have the private DH key
 corresponding to G_W, which is used to establish secure communication
 with the device (see Section 4.4). W provides to U the authorization
 decision for enrollment with V in the form of a voucher (see
 Section 4.4.2). Authorization policies are out of scope for this
 document.

 Authentication credentials and communication security with V is
 described in Section 3.2. To calculate the voucher, W needs access
 to message_1 and CRED_V as used in the EDHOC session between U and V,
 see Section 4.4.2.

 * W MUST verify that CRED_V is bound to the secure connection
 between W and V

 * W MUST verify that V is in possession of the private key
 corresponding to the public key of CRED_V

 W needs to be available during the execution of the protocol between
 U and V.

4. The Protocol

4.1. Overview

 The protocol consist of three security sessions going on in parallel:

 1. The EDHOC session between device (U) and (domain) authenticator
 (V)

 2. Voucher Request/Response between authenticator (V) and enrollment
 server (W)

 3. An exchange of voucher-related information, including the voucher
 itself, between device (U) and enrollment server (W), mediated by
 the authenticator (V).

 Figure 3 provides an overview of the message flow detailed in this
 section. An outline of EDHOC is given in Section 3 of
 [I-D.ietf-lake-edhoc].

Selander, et al. Expires 5 September 2024 [Page 8]

Internet-Draft Lightweight Authorization using EDHOC March 2024

U V W
	Establish secure channel
+<--- --- --- --- --- --- --- -->	
	(e.g., TLS with server cert.)
	Proof of possession w.r.t. CRED
+<--- --- --- --- --- --- --- -->	
	(e.g., EDHOC)

--
 CORE PROTOCOL

| | |
| EDHOC message_1 | |
+----------------------------->| |
(EAD_1 = LOC_W, ENC_U_INFO)	
	Voucher Request (VREQ)
+-------------------------------------->	
	(message_1, ?opaque_state)
	Voucher Response (VRES)
	<--------------------------------------+
	(message_1, Voucher, ?opaque_state)
EDHOC message_2	
<-----------------------------+	
(EAD_2 = Voucher)	
EDHOC message_3	
+----------------------------->	

--

| |
| | Credential
| | Database
| | |
| | ID_CRED_I from message_3 |
| +--- --- --- --- --- --- --- -->|
| | |

Selander, et al. Expires 5 September 2024 [Page 9]

Internet-Draft Lightweight Authorization using EDHOC March 2024

| | CRED_U |
| |<-- --- --- --- --- --- --- ---+
| | |
| | |

 Figure 3: Overview of the protocol: W-assisted authorization of U
 and V to each other: EDHOC between U and V, and Voucher Request/
 Response between V and W. Before the protocol, V and W are
 assumed to have established a secure channel and performed proof-
 of-possession of relevant keys. Credential lookup of CRED_U may
 involve W or other credential database.

4.2. Reuse of EDHOC

 The protocol illustrated in Figure 3 reuses several components of
 EDHOC:

 * G_X, the ephemeral public Diffie-Hellman key of U, is also used in
 the protocol between U and W.

 * SUITES_I includes the cipher suite for EDHOC selected by U, and
 also defines the algorithms used between U and W (see Section 3.6
 of [I-D.ietf-lake-edhoc]):

 - EDHOC AEAD algorithm: used to encrypt ID_U

 - EDHOC hash algorithm: used for key derivation and to calculate
 the voucher

 - EDHOC MAC length in bytes: length of the voucher

 - EDHOC key exchange algorithm: used to calculate the shared
 secret between U and W

 * EAD_1, EAD_2 are the External Authorization Data message fields of
 message_1 and message_2, respectively, see Section 3.8 of
 [I-D.ietf-lake-edhoc]. This document specifies the EAD items with
 ead_label = TBD1, see Section 7.1).

 * ID_CRED_I and ID_CRED_R are used to identify the authentication
 credentials CRED_U and CRED_V, respectively. As shown at the
 bottom of Figure 3, V may use W to obtain CRED_U. CRED_V is
 transported in ID_CRED_R in message_2, see Section 4.5.2.1.

 The protocol also reuses the EDHOC-Extract and EDHOC-Expand key
 derivation from EDHOC (see Section 4 of [I-D.ietf-lake-edhoc]).

Selander, et al. Expires 5 September 2024 [Page 10]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 * The intermediate pseudo-random key PRK is derived using EDHOC-
 Extract():

 - PRK = EDHOC-Extract(salt, IKM)

 o where salt = 0x (the zero-length byte string)

 o IKM is computed as an ECDH cofactor Diffie-Hellman shared
 secret from the public key of W, G_W, and the private key
 corresponding to G_X (or v.v.), see Section 5.7.1.2 of
 [NIST-800-56A].

 The output keying material OKM is derived from PRK using EDHOC-
 Expand(), which is defined in terms of the EDHOC hash algorithm of
 the selected cipher suite, see Section 4.2 of [I-D.ietf-lake-edhoc]:

 * OKM = EDHOC-Expand(PRK, info, length)

 where

 info = (
 info_label : int,
 context : bstr,
 length : uint,
)

4.3. Stateless Operation of V

 V may act statelessly with respect to U: the state of the EDHOC
 session started by U may be dropped at V until authorization from W
 is received. Once V has received EDHOC message_1 from U and
 extracted LOC_W from EAD_1, message_1 is forwarded unmodified to W in
 the form of a Voucher Request. V encapsulates the internal state
 that it needs to later respond to U, and sends that to W together
 with EDHOC message_1. This state typically contains U’s IP address
 and port number, together with any other implementation-specific
 parameter needed by V to respond to U. At this point, V can drop the
 EDHOC session that was initiated by U.

 V MUST encrypt and integrity protect the encapsulated state using a
 uniformly-distributed (pseudo-)random key, known only to itself. How
 V serializes and encrypts its internal state is out of scope of this
 specification. For example, V may use the existing CBOR and COSE
 libraries.

 Editor’s note: Consider to include an example of serialized internal
 state.

Selander, et al. Expires 5 September 2024 [Page 11]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 W sends to V the voucher together with echoed message_1, as received
 from U, and V’s internal state. This allows V to act as a simple
 message relay until it has obtained the authorization from W to
 enroll U. The reception of a successful Voucher Response at V from W
 implies the authorization for V to enroll U. At this point, V can
 initialize a new EDHOC session with U, based on the message and the
 state retrieved from the Voucher Response from W.

4.4. Device <-> Enrollment Server (U <-> W)

 The protocol between U and W is carried between U and V in message_1
 and message_2 (Section 4.5), and between V and W in the Voucher
 Request/Response (Section 4.6). The data is protected between the
 endpoints using secret keys derived from a Diffie-Hellman shared
 secret (see Section 4.2) as further detailed in this section.

4.4.1. Voucher Info

 The external authorization data EAD_1 contains an EAD item with
 ead_label = TBD1 and ead_value = Voucher_Info, which is a CBOR byte
 string:

 Voucher_Info = bstr .cbor Voucher_Info_Seq

 Voucher_Info_Seq = (
 LOC_W: tstr,
 ENC_U_INFO: bstr
)

 where

 * LOC_W is a text string used by V to locate W, e.g., a URI or a
 domain name.

 * ENC_U_INFO is a byte string containing an encrypted identifier of
 U and, optionally, opaque application data prepared by U. It is
 calculated as follows:

 ENC_U_INFO is ’ciphertext’ of COSE_Encrypt0 (Section 5.2 of
 [RFC9052]) computed from the following:

 * The encryption key K_1 and nonce IV_1 are derived as specified
 below.

 * ’protected’ is a byte string of size 0

 * ’plaintext’ and ’external_aad’ as below:

Selander, et al. Expires 5 September 2024 [Page 12]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 plaintext = (
 ID_U: bstr,
 ?OPAQUE_INFO: bstr,
)

 external_aad = (
 SS: int,
)

 where

 * ID_U is an identifier of the device, see Section 3.1.

 * OPAQUE_INFO is an opaque field provided by the application. If
 present, it will contain application data that U may want to
 convey to W, e.g., enrollment hints, see Appendix B. Note that
 OPAQUE_INFO is opaque when viewed as an information element in
 EDHOC. It is opaque to V, while the application in U and W can
 read its contents. The same applies to other references of
 OPAQUE_INFO throughout this document.

 * SS is the selected cipher suite in SUITES_I of EDHOC message_1,
 see Section 4.5.

 The external_aad is wrapped in an enc_structure as defined in
 Section 5.3 of [RFC9052].

 Editor’s note: Add more context to external_aad.

 The derivation of K_1 = EDHOC-Expand(PRK, info, length) uses the
 following input to the info struct (see OKM in Section 4.2):

 * info_label = 0

 * context = h’’ (the empty CBOR string)

 * length is length of key of the EDHOC AEAD algorithm in bytes
 (which is the length of K_1)

 The derivation of IV_1 = EDHOC-Expand(PRK, info, length) uses the
 following input to the info struct (see OKM in Section 4.2):

 * info_label = 1

 * context = h’’ (the empty CBOR string)

 * length is length of nonce of the EDHOC AEAD algorithm in bytes
 (which is the length of IV_1)

Selander, et al. Expires 5 September 2024 [Page 13]

Internet-Draft Lightweight Authorization using EDHOC March 2024

4.4.2. Voucher

 The voucher is an assertion to U that W has authorized V. The
 voucher consists of the ’ciphertext’ field of a COSE_Encrypt0 object:

 Voucher = COSE_Encrypt0.ciphertext

 Its corresponding plaintext value consists of an opaque field that
 can be used by W to convey information to U, such as a voucher scope.
 The authentication tag present in the ciphertext is also bound to
 message_1 and the credential of V.

 The external authorization data EAD_2 contains an EAD item with
 ead_label = TBD1 and ead_value = Voucher, which is computed from the
 following:

 * The encryption key K_2 and nonce IV_2 are derived as specified
 below.

 * ’protected’ is a byte string of size 0

 * ’plaintext’ and ’external_aad’ as below:

 plaintext = (
 ?OPAQUE_INFO: bstr
)

 external_aad = (
 H(message_1): bstr,
 CRED_V: bstr,
)

 where

 * OPAQUE_INFO is an opaque field provided by the application.

 * H(message_1) is the hash of EDHOC message_1, calculated from the
 associated voucher request, see Section 4.6.1.

 * CRED_V is the CWT Claims Set [RFC8392] containing the public
 authentication key of V, see Section 4.5.2.1

 The derivation of K_2 = EDHOC-Expand(PRK, info, length) uses the
 following input to the info struct (see Section 4.2):

 * info_label = 2

 * context = h’’ (the empty CBOR string)

Selander, et al. Expires 5 September 2024 [Page 14]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 * length is length of key of the EDHOC AEAD algorithm in bytes

 The derivation of IV_2 = EDHOC-Expand(PRK, info, length) uses the
 following input to the info struct (see Section 4.2):

 * info_label = 3

 * context = h’’ (the empty CBOR string)

 * length is length of nonce of the EDHOC AEAD algorithm in bytes

4.5. Device <-> Authenticator (U <-> V)

 This section describes the processing in U and V, which include the
 EDHOC protocol, see Figure 3. Normal EDHOC processing is omitted
 here.

4.5.1. Message 1

4.5.1.1. Processing in U

 U composes EDHOC message_1 using authentication method, identifiers,
 etc. according to an agreed application profile, see Section 3.9 of
 [I-D.ietf-lake-edhoc]. The selected cipher suite, in this document
 denoted SS, applies also to the interaction with W as detailed in
 Section 4.2, in particular, with respect to the Diffie Hellman key
 agreement algorithm used between U and W. As part of the normal
 EDHOC processing, U generates the ephemeral public key G_X which is
 reused in the interaction with W, see Section 4.4.

 The device sends EDHOC message_1 with EAD item (-TBD1, Voucher_Info)
 included in EAD_1, where Voucher_Info is specified in Section 4.4.
 The negative sign indicates that the EAD item is critical, see
 Section 3.8 of [I-D.ietf-lake-edhoc].

4.5.1.2. Processing in V

 V receives EDHOC message_1 from U and processes it as specified in
 Section 5.2.3 of [I-D.ietf-lake-edhoc], with the additional step of
 processing the EAD item in EAD_1. Since the EAD item is critical, if
 V does not recognize it or it contains information that V cannot
 process, then V MUST abort the EDHOC session, see Section 3.8 of
 [I-D.ietf-lake-edhoc]. Otherwise, the ead_label = TBD1, triggers the
 voucher request to W as described in Section 4.6. The exchange
 between V and W needs to be completed successfully for the EDHOC
 session to be continued.

Selander, et al. Expires 5 September 2024 [Page 15]

Internet-Draft Lightweight Authorization using EDHOC March 2024

4.5.2. Message 2

4.5.2.1. Processing in V

 V receives the voucher response from W as described in Section 4.6.

 V sends EDHOC message_2 to U with the critical EAD item (-TBD1,
 Voucher) included in EAD_2, where the Voucher is specified in
 Section 4.4.

 CRED_V is a CWT Claims Set [RFC8392] containing the public
 authentication key of V encoded as a COSE_Key in the ’cnf’ claim, see
 Section 3.5.2 of [I-D.ietf-lake-edhoc].

 ID_CRED_R contains the CWT Claims Set with ’kccs’ as COSE header_map,
 see Section 9.6 of [I-D.ietf-lake-edhoc].

4.5.2.2. Processing in U

 U receives EDHOC message_2 from V and processes it as specified in
 Section 5.3.2 of [I-D.ietf-lake-edhoc], with the additional step of
 processing the EAD item in EAD_2.

 If U does not recognize the EAD item or the EAD item contains
 information that U cannot process, then U MUST abort the EDHOC
 session, see Section 3.8 of [I-D.ietf-lake-edhoc]. Otherwise U MUST
 verify the Voucher by performing the same calculation as in
 Section 4.4.2 using H(message_1) and CRED_V received in ID_CRED_R of
 message_2. If the voucher calculated in this way is not identical to
 what was received in message_2, then U MUST abort the EDHOC session.

4.5.3. Message 3

4.5.3.1. Processing in U

 If all verifications are passed, then U sends EDHOC message_3.

 EDHOC message_3 may be combined with an OSCORE request, see
 [I-D.ietf-core-oscore-edhoc].

4.5.3.2. Processing in V

 V performs the normal EDHOC verifications of message_3. V may
 retrieve CRED_U from a Credential Database, after having learnt
 ID_CRED_I from U.

Selander, et al. Expires 5 September 2024 [Page 16]

Internet-Draft Lightweight Authorization using EDHOC March 2024

4.6. Authenticator <-> Enrollment Server (V <-> W)

 It is assumed that V and W have set up a secure connection, W has
 accessed the authentication credential CRED_V to be used in the EDHOC
 session between V and with U, and that W has verified that V is in
 possession of the private key corresponding to CRED_V, see
 Section 3.2 and Section 3.3. V and W run the Voucher Request/
 Response protocol over the secure connection.

4.6.1. Voucher Request

4.6.1.1. Processing in V

 V sends the voucher request to W. The Voucher Request SHALL be a
 CBOR array as defined below:

 Voucher_Request = [
 message_1: bstr,
 ? opaque_state: bstr
]

 where

 * message_1 is the EDHOC message_1 as it was received from U.

 * opaque_state is OPTIONAL and represents the serialized and
 encrypted opaque state needed by V to statelessly respond to U
 after the reception of Voucher_Response.

4.6.1.2. Processing in W

 W receives and parses the voucher request received over the secure
 connection with V. The voucher request essentially contains EDHOC
 message_1 as sent by U to V. W SHALL NOT process message_1 as if it
 was an EDHOC message intended for W.

 W extracts from message_1:

 * SS - the selected cipher suite, which is the (last) integer of
 SUITES_I.

 * G_X - the ephemeral public key of U

 * ENC_U_INFO - the encryption of (1) the device identifier ID_U and
 (2) the optional OPAQUE_INFO field, contained in the Voucher_Info
 field of the EAD item with ead_label = TBD1 (with minus sign
 indicating criticality)

Selander, et al. Expires 5 September 2024 [Page 17]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 W verifies and decrypts ENC_U_INFO using the relevant algorithms of
 the selected cipher suite SS (see Section 4.2), and obtains ID_U.

 In case OPAQUE_INFO is present, it is made available to the
 application.

 W calculates the hash of message_1 H(message_1), and associates this
 session identifier to the device identifier ID_U. If H(message_1) is
 not unique among session identifiers associated to this device
 identifier of U, the EDHOC session SHALL be aborted.

 W uses ID_U to look up the associated authorization policies for U
 and enforces them. This is out of scope for the specification.

4.6.2. Voucher Response

4.6.2.1. Processing in W

 W retrieves CRED_V associated to the secure connection with V, and
 constructs the the Voucher for the device with identifier ID_U (see
 Section 4.4.2).

 W generates the voucher response and sends it to V over the secure
 connection. The Voucher_Response SHALL be a CBOR array as defined
 below:

 Voucher_Response = [
 message_1: bstr,
 Voucher: bstr,
 ? opaque_state: bstr
]

 where

 * message_1 is the EDHOC message_1 as it was received from V.

 * The Voucher is defined in Section 4.4.2.

 * opaque_state is the echoed byte string opaque_state from
 Voucher_Request, if present.

4.6.2.2. Processing in V

 V receives the voucher response from W over the secure connection.
 If present, V decrypts and verifies opaque_state as received from W.
 If that verification fails then EDHOC is aborted. If the voucher
 response is successfully received from W, then V responds to U with
 EDHOC message_2 as described in Section 4.5.2.1.

Selander, et al. Expires 5 September 2024 [Page 18]

Internet-Draft Lightweight Authorization using EDHOC March 2024

4.7. Error Handling

 This section specifies a new EDHOC error code and how it is used in
 the proposed protocol.

4.7.1. EDHOC Error "Access denied"

 This section specifies the new EDHOC error "Access denied", see
 Figure 4.

 +----------+----------------+--+
 | ERR_CODE | ERR_INFO Type | Description |
 +==========+================+==+
 | TBD3 | error_content | Access denied |
 +----------+----------------+--+

 Figure 4: EDHOC error code and error information for Access denied.

 Error code TBD3 is used to indicate to the receiver that access
 control has been applied and the sender has aborted the EDHOC
 session. The ERR_INFO field contains error_content which is a CBOR
 Sequence consisting of an integer and an optional byte string.

 error_content = (
 REJECT_TYPE : int,
 ? REJECT_INFO : bstr,
)

 The purpose of REJECT_INFO is for the sender to provide verifiable
 and actionable information to the receiver about the error, so that
 an automated action may be taken to enable access.

 +-------------+---------------+--------------------------------------+
 | REJECT_TYPE | REJECT_INFO | Description |
 +=============+===============+======================================+
 | 0 | - | No REJECT_INFO |
 +-------------+---------------+--------------------------------------+
 | 1 | bstr | REJECT_INFO from trusted third party |
 +-------------+---------------+--------------------------------------+

 Figure 5: REJECT_TYPE and REJECT_INFO for Access denied.

4.7.2. Error handling in W, V, and U

 This protocol uses the EDHOC Error "Access denied" in the following
 way:

Selander, et al. Expires 5 September 2024 [Page 19]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 * W generates error_content and transfers it to V via the secure
 connection. If REJECT_TYPE is 1, then REJECT_INFO is encrypted
 from W to U using the EDHOC AEAD algorithm.

 * V receives error_content, prepares an EDHOC "Access denied" error,
 and sends it to U.

 * U receives the error message and extracts the error_content. If
 REJECT_TYPE is 1, then U decrypts REJECT_INFO, based on which it
 may retry to gain access.

 The encryption of REJECT_INFO follows a procedure analogous to the
 one defined in Section 4.4.2, with the following differences:

 plaintext = (
 OPAQUE_INFO: bstr,
)

 external_aad = (
 H(message_1): bstr,
)

 where

 * OPAQUE_INFO is an opaque field that contains actionable
 information about the error. It may contain, for example, a list
 of suggested Vs through which U should join instead.

 * H(message_1) is the hash of EDHOC message_1, calculated from the
 associated voucher request, see Section 4.6.1.

5. REST Interface at W

 The interaction between V and W is enabled through a RESTful
 interface exposed by W. This RESTful interface MAY be implemented
 using either HTTP or CoAP. V SHOULD access the resources exposed by
 W through the protocol indicated by the scheme in LOC_W URI.

5.1. Scheme "https"

 In case the scheme indicates "https", V MUST perform a TLS handshake
 with W and use HTTP. If the authentication credential CRED_V can be
 used in a TLS handshake, e.g. an X.509 certificate of a signature
 public key, then V SHOULD use it to authenticate to W as a client.
 If the authentication credential CRED_V cannot be used in a TLS
 handshake, e.g. if the public key is a static Diffie-Hellman key,
 then V SHOULD first perform a TLS handshake with W using available
 compatible keys. V MUST then perform an EDHOC session over the TLS

Selander, et al. Expires 5 September 2024 [Page 20]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 connection proving to W the possession of the private key
 corresponding to CRED_V. Performing the EDHOC session is only
 necessary if V did not authenticate with CRED_V in the TLS handshake
 with W.

 Editor’s note: Clarify that performing TLS handshake is not necessary
 for each device request; if there already is a TLS connection between
 V and W that should be reused. Similar considerations for 5.2 and
 5.3.

5.2. Scheme "coaps"

 In case the scheme indicates "coaps", V SHOULD perform a DTLS
 handshake with W and access the resources defined in Section 5.4
 using CoAP. The normative requirements in Section 5.1 on performing
 the DTLS handshake and EDHOC session remain the same, except that TLS
 is replaced with DTLS.

5.3. Scheme "coap"

 In case the scheme indicates "coap", V SHOULD perform an EDHOC
 session with W, as specified in Appendix A of [I-D.ietf-lake-edhoc]
 and access the resources defined in Section 5.4 using OSCORE and
 CoAP. The authentication credential in this EDHOC session MUST be
 CRED_V.

5.4. URIs

 The URIs defined below are valid for both HTTP and CoAP. W MUST
 support the use of the path-prefix "/.well-known/", as defined in
 [RFC8615], and the registered name "lake-authz". A valid URI in case
 of HTTP thus begins with

 * "https://www.example.com/.well-known/lake-authz"

 In case of CoAP with DTLS:

 * "coaps://example.com/.well-known/lake-authz"

 In case of EDHOC and OSCORE:

 * "coap://example.com/.well-known/lake-authz"

 Each operation specified in the following is indicated by a path-
 suffix.

Selander, et al. Expires 5 September 2024 [Page 21]

Internet-Draft Lightweight Authorization using EDHOC March 2024

5.4.1. Voucher Request (/voucherrequest)

 To request a voucher, V MUST issue a request:

 * Method is POST

 * Payload is the serialization of the Voucher Request object, as
 specified in Section 4.6.1.

 * Content-Format (Content-Type) is set to "application/lake-authz-
 voucherrequest+cbor"

 In case of successful processing at W, W MUST issue a 200 OK response
 with payload containing the serialized Voucher Response object, as
 specified in Section 4.6.2.

5.4.2. Certificate Request (/certrequest)

 V requests the public key certificate of U from W through the
 "/certrequest" path-suffix. To request U’s authentication
 credential, V MUST issue a request:

 * Method is POST

 * Payload is the serialization of the ID_CRED_I object, as received
 in EDHOC message_3.

 In case of a successful lookup of the authentication credential at W,
 W MUST issue 200 OK response with payload containing the serialized
 CRED_U.

6. Security Considerations

 This specification builds on and reuses many of the security
 constructions of EDHOC, e.g., shared secret calculation and key
 derivation. The security considerations of EDHOC
 [I-D.ietf-lake-edhoc] apply with modifications discussed here.

 EDHOC provides identity protection of the Initiator, here the device.
 The encryption of the device identifier ID_U in the first message
 should consider potential information leaking from the length of
 ID_U, either by making all identifiers having the same length or the
 use of a padding scheme.

 Although W learns about the identity of U after receiving VREQ, this
 information must not be disclosed to V, until U has revealed its
 identity to V with ID_CRED_I in message_3. W may be used for lookup
 of CRED_U from ID_CRED_I, or this credential lookup function may be

Selander, et al. Expires 5 September 2024 [Page 22]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 separate from the authorization function of W, see Figure 3. The
 trust model used here is that U decides to which V it reveals its
 identity. In an alternative trust model where U trusts W to decide
 to which V it reveals U’s identity, CRED_U could be sent in Voucher
 Response.

 As noted in Section 8.2 of [I-D.ietf-lake-edhoc] an ephemeral key may
 be used to calculate several ECDH shared secrets. In this
 specification the ephemeral key G_X is also used to calculate G_XW,
 the shared secret with the enrollment server.

 The private ephemeral key is thus used in the device for calculations
 of key material relating to both the authenticator and the enrollment
 server. There are different options for where to implement these
 calculations, one option is as an addition to EDHOC, i.e., to extend
 the EDHOC API in the device with input of public key of W (G_W) and
 device identifier of U (ID_U), and produce the encryption of ID_U
 which is included in Voucher_Info in EAD_1.

7. IANA Considerations

7.1. EDHOC External Authorization Data Registry

 IANA has registered the following entry in the "EDHOC External
 Authorization Data" registry under the group name "Ephemeral Diffie-
 Hellman Over COSE (EDHOC)". The ead_label = TBD1 corresponds to the
 ead_value Voucher_Info in EAD_1, and Voucher in EAD_2 with processing
 specified in Section 4.5.1 and Section 4.5.2, respectively, of this
 document.

 +=======+============+=============================+
 | Label | Value Type | Description |
 +=======+============+=============================+
 | TBD1 | bstr | Voucher related information |
 +-------+------------+-----------------------------+

 Table 1: Addition to the EDHOC EAD registry

7.2. The Well-Known URI Registry

 IANA has registered the following entry in "The Well-Known URI
 Registry", using the template from [RFC8615]:

 * URI suffix: lake-authz

 * Change controller: IETF

 * Specification document: [[this document]]

Selander, et al. Expires 5 September 2024 [Page 23]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 * Related information: None

7.3. Well-Known Name Under ".arpa" Name Space

 This document allocates a well-known name under the .arpa name space
 according to the rules given in [RFC3172] and [RFC6761]. The name
 "lake-authz.arpa" is requested. No subdomains are expected, and
 addition of any such subdomains requires the publication of an IETF
 Standards Track RFC. No A, AAAA, or PTR record is requested.

7.4. Media Types Registry

 IANA has added the media types "application/lake-authz-
 voucherrequest+cbor" to the "Media Types" registry.

7.4.1. application/lake-authz-voucherrequest+cbor Media Type
 Registration

 * Type name: application

 * Subtype name: lake-authz-voucherrequest+cbor

 * Required parameters: N/A

 * Optional paramaters: N/A

 * Encoding considerations: binary

 * Security cosniderations: See Section 6 of this document.

 * Interoperability considerations: N/A

 * Published specification: [[this document]] (this document)

 * Application that use this media type: To be identified

 * Fragment identifier considerations: N/A

 * Additional information:

 - Magic number(s): N/A

 - File extension(s): N/A

 - Macintosh file type code(s): N/A

 * Person & email address to contact for further information: See
 "Authors’ Addresses" section.

Selander, et al. Expires 5 September 2024 [Page 24]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 * Intended usage: COMMON

 * Restrictions on usage: N/A

 * Author: See "Authors’ Addresses" section.

 * Change Controller: IESG

7.5. CoAP Content-Formats Registry

 IANA has added the media type "application/lake-authz-
 voucherrequest+cbor" to the "CoAP Content-Formats" registry under the
 registry group "Constrained RESTful Environments (CoRE) Parameters".

 +================================+==========+======+============+
 | Media Type | Encoding | ID | Reference |
 +================================+==========+======+============+
 | application/lake-authz- | - | TBD2 | [[this |
 | voucherrequest+cbor | | | document]] |
 +--------------------------------+----------+------+------------+

 Table 2: Addition to the CoAP Content-Formats registry

8. References

8.1. Normative References

 [I-D.ietf-lake-edhoc]
 Selander, G., Mattsson, J. P., and F. Palombini,
 "Ephemeral Diffie-Hellman Over COSE (EDHOC)", Work in
 Progress, Internet-Draft, draft-ietf-lake-edhoc-23, 22
 January 2024, <https://datatracker.ietf.org/doc/html/
 draft-ietf-lake-edhoc-23>.

 [NIST-800-56A]
 Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.
 Davis, "Recommendation for Pair-Wise Key-Establishment
 Schemes Using Discrete Logarithm Cryptography - NIST
 Special Publication 800-56A, Revision 3", April 2018,
 <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
 NIST.SP.800-56Ar3.pdf>.

 [RFC8366] Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

Selander, et al. Expires 5 September 2024 [Page 25]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

 [RFC9052] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Structures and Process", STD 96, RFC 9052,
 DOI 10.17487/RFC9052, August 2022,
 <https://www.rfc-editor.org/info/rfc9052>.

8.2. Informative References

 [I-D.ietf-core-oscore-edhoc]
 Palombini, F., Tiloca, M., Höglund, R., Hristozov, S., and
 G. Selander, "Using Ephemeral Diffie-Hellman Over COSE
 (EDHOC) with the Constrained Application Protocol (CoAP)
 and Object Security for Constrained RESTful Environments
 (OSCORE)", Work in Progress, Internet-Draft, draft-ietf-
 core-oscore-edhoc-10, 29 November 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-core-
 oscore-edhoc-10>.

 [I-D.ietf-lake-reqs]
 Vuini, M., Selander, G., Mattsson, J. P., and D. Garcia-
 Carillo, "Requirements for a Lightweight AKE for OSCORE",
 Work in Progress, Internet-Draft, draft-ietf-lake-reqs-04,
 8 June 2020, <https://datatracker.ietf.org/doc/html/draft-
 ietf-lake-reqs-04>.

 [IEEE802.15.4]
 IEEE standard for Information Technology, "IEEE Std
 802.15.4 Standard for Low-Rate Wireless Networks", n.d..

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Selander, et al. Expires 5 September 2024 [Page 26]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 [RFC3172] Huston, G., Ed., "Management Guidelines & Operational
 Requirements for the Address and Routing Parameter Area
 Domain ("arpa")", BCP 52, RFC 3172, DOI 10.17487/RFC3172,
 September 2001, <https://www.rfc-editor.org/info/rfc3172>.

 [RFC6761] Cheshire, S. and M. Krochmal, "Special-Use Domain Names",
 RFC 6761, DOI 10.17487/RFC6761, February 2013,
 <https://www.rfc-editor.org/info/rfc6761>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8615] Nottingham, M., "Well-Known Uniform Resource Identifiers
 (URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,
 <https://www.rfc-editor.org/info/rfc8615>.

 [RFC8995] Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
 and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,
 May 2021, <https://www.rfc-editor.org/info/rfc8995>.

 [RFC9031] Vuini, M., Ed., Simon, J., Pister, K., and M.
 Richardson, "Constrained Join Protocol (CoJP) for 6TiSCH",
 RFC 9031, DOI 10.17487/RFC9031, May 2021,
 <https://www.rfc-editor.org/info/rfc9031>.

Appendix A. Use with Constrained Join Protocol (CoJP)

 This section outlines how the protocol is used for network enrollment
 and parameter provisioning. An IEEE 802.15.4 network is used as an
 example of how a new device (U) can be enrolled into the domain
 managed by the domain authenticator (V).

Selander, et al. Expires 5 September 2024 [Page 27]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 U V W
 | | |
 | | |
 + - - - - - - - - - - - - - - - - -->| |
 | Optional network solicitation | |
 |<-----------------------------------+ |
 | Network discovery | |
 | | |
 +----------------------------------->| |
 | EDHOC message_1 | |
 | +----------------------------->|
 | | Voucher Request (VREQ) |
 | |<-----------------------------+
 | | Voucher Response (VRES) |
 |<-----------------------------------+ |
 | EDHOC message_2 | |
 | | |
 | | |
 +----------------------------------->| |
 | EDHOC message_3 + CoJP request | |
 | | |
 +<-----------------------------------| |
 | CoJP response | |
 |

 Figure 6: Use of draft-ietf-lake-authz with CoJP.

A.1. Network Discovery

 When a device first boots, it needs to discover the network it
 attempts to join. The network discovery procedure is defined by the
 link-layer technology in use. In case of Time-slotted Channel
 Hopping (TSCH) networks, a mode of [IEEE802.15.4], the device scans
 the radio channels for Enhanced Beacon (EB) frames, a procedure known
 as passive scan. EBs carry the information about the network, and
 particularly the network identifier. Based on the EB, the network
 identifier, the information pre-configured into the device, the
 device makes the decision on whether it should join the network
 advertised by the received EB frame. This process is described in
 Section 4.1 of [RFC9031]. In case of other, non-TSCH modes of IEEE
 802.15.4 it is possible to use the active scan procedure and send
 solicitation frames. These solicitation frames trigger the nearest
 network coordinator to respond by emitting a beacon frame. The
 network coordinator emitting beacons may be multiple link-layer hops
 away from the domain authenticator (V), in which case it plays the
 role of a Join Proxy (see [RFC9031]). Join Proxy does not
 participate in the protocol and acts as a transparent router between
 the device and the domain authenticator. For simplicity, Figure 6

Selander, et al. Expires 5 September 2024 [Page 28]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 illustrates the case when the device and the domain authenticator are
 a single hop away and can communicate directly.

A.2. The Enrollment Protocol with Parameter Provisioning

A.2.1. Flight 1

 Once the device has discovered the network it wants to join, it
 constructs the EDHOC message_1, as described in Section 4.5. The
 device SHALL map the message to a CoAP request:

 * The request method is POST.

 * The type is Confirmable (CON).

 * The Proxy-Scheme option is set to "coap".

 * The Uri-Host option is set to "lake-authz.arpa". This is an
 anycast type of identifier of the domain authenticator (V) that is
 resolved to its IPv6 address by the Join Proxy.

 * The Uri-Path option is set to ".well-known/edhoc".

 * The payload is the (true, EDHOC message_1) CBOR sequence, where
 EDHOC message_1 is constructed as defined in Section 4.5.

A.2.2. Flight 2

 The domain authenticator receives message_1 and processes it as
 described in Section 4.5. The message triggers the exchange with the
 enrollment server, as described in Section 4.6. If the exchange
 between V and W completes successfully, the domain authenticator
 prepares EDHOC message_2, as described in Section 4.5. The
 authenticator SHALL map the message to a CoAP response:

 * The response code is 2.04 Changed.

 * The payload is the EDHOC message_2, as defined in Section 4.5.

A.2.3. Flight 3

 The device receives EDHOC message_2 and processes it as described in
 Section 4.5}. Upon successful processing of message_2, the device
 prepares flight 3, which is an OSCORE-protected CoJP request
 containing an EDHOC message_3, as described in
 [I-D.ietf-core-oscore-edhoc]. EDHOC message_3 is prepared as
 described in Section 4.5. The OSCORE-protected payload is the CoJP
 Join Request object specified in Section 8.4.1 of [RFC9031]. OSCORE

Selander, et al. Expires 5 September 2024 [Page 29]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 protection leverages the OSCORE Security Context derived from the
 EDHOC session, as specified in Appendix A of [I-D.ietf-lake-edhoc].
 To that end, [I-D.ietf-core-oscore-edhoc] specifies that the Sender
 ID of the client (device) must be set to the connection identifier
 selected by the domain authenticator, C_R. OSCORE includes the
 Sender ID as the kid in the OSCORE option. The network identifier in
 the CoJP Join Request object is set to the network identifier
 obtained from the network discovery phase. In case of IEEE 802.15.4
 networks, this is the PAN ID.

 The device SHALL map the message to a CoAP request:

 * The request method is POST.

 * The type is Confirmable (CON).

 * The Proxy-Scheme option is set to "coap".

 * The Uri-Host option is set to "lake-authz.arpa".

 * The Uri-Path option is set to ".well-known/edhoc".

 * The EDHOC option [I-D.ietf-core-oscore-edhoc] is set and is empty.

 * The payload is prepared as described in Section 3.2 of
 [I-D.ietf-core-oscore-edhoc], with EDHOC message_3 and the CoJP
 Join Request object as the OSCORE-protected payload.

 Note that the OSCORE Sender IDs are derived from the connection
 identifiers of the EDHOC session. This is in contrast with [RFC9031]
 where ID Context of the OSCORE Security Context is set to the device
 identifier (pledge identifier). Since the device identity is
 exchanged during the EDHOC session, and the certificate of the device
 is communicated to the authenticator as part of the Voucher Response
 message, there is no need to transport the device identity in OSCORE
 messages. The authenticator playing the role of the [RFC9031] JRC
 obtains the device identity from the execution of the authorization
 protocol.

A.2.4. Flight 4

 Flight 4 is the OSCORE response carrying CoJP response message. The
 message is processed as specified in Section 8.4.2 of [RFC9031].

Selander, et al. Expires 5 September 2024 [Page 30]

Internet-Draft Lightweight Authorization using EDHOC March 2024

Appendix B. Enrollment Hints

 This section defines items that can be used in the OPAQUE_INFO field
 of either EAD_1 or the Access Denied error response. The purpose of
 the proposed items is to improve protocol scalability, aiming to
 reduce battery usage and enrollment delay. The main use case is when
 several potential gateways (V) are detected by U’s radio, which can
 lead to U trying to enroll (and failing) several times until it finds
 a suitable V.

B.1. Domain Authenticator hints

 In case W denies the enrollment of U to a given V, a list of Domain
 Authenticator hints (v_hint) can be sent from W to U. The hint is
 optional and is included in the REJECT_INFO item in the Access Denied
 error message. It consists of a list of application-defined
 identifiers of V (e.g. MAC addresses, SSIDs, PAN IDs, etc.), as
 defined below:

 v_hint = [1* bstr]

B.2. Device Hints

 U may send a Device hint (u_hint) so that it can help W to select
 which Vs to include in v_hint. This can be useful in large scale
 scenarios with many gateways (V). The hint is an optional field
 included in the OPAQUE_INFO field within EAD_1, and it must be
 encrypted. The hint itself is application dependent, and can contain
 GPS coordinates, application-specific tags, the list of Vs detected
 by U, or other relevant information. It is defined as follows:

 u_hint: [1* bstr]

Appendix C. Examples

 This section presents high level examples of the protocol execution.

 Note: the examples below include samples of access policies used by
 W. These are provided for the sake of completeness only, since the
 authorization mechanism used by W is out of scope in this document.

C.1. Minimal

 This is a simple example that demonstrates successful execution of
 the protocol.

 Premises:

Selander, et al. Expires 5 September 2024 [Page 31]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 * device u1 has ID_U = key id = 14

 * the access policy in W specifies, via a list of ID_U, that device
 u1 can enroll via any domain authenticator, i.e., the list
 contains ID_U = 14. In this case, the policy only specifies a
 restriction in terms of U, effectively allowing enrollment via any
 V.

 Execution:

 1. device u1 discovers a gateway (v1) and tries to enroll

 2. gateway v1 identifies the zero-touch join attempt by checking
 that the label of EAD_1 = TBD1, and prepares a Voucher Request
 using the information contained in the value of EAD_1

 3. upon receiving the request, W obtains ID_U = 14, authorizes the
 access, and replies with Voucher Response

C.2. Wrong gateway

 In this example, a device u1 tries to enroll a domain via gateway v1,
 but W denies the request because the pairing (u1, v1) is not
 configured in its access policies.

 This example also illustrates how the REJECT_INFO field of the EDHOC
 error Access Denied could be used, in this case to suggest that the
 device should select another gateway for the join procedure.

 Premises:

 * devices and gateways communicate via Bluetooth Low Energy (BLE),
 therefore their network identifers are MAC addresses (EUI-48)

 * device u1 has ID_U = key id = 14

 * there are 3 gateways in the radio range of u1:

 - v1 with MAC address = A2-A1-88-EE-97-75

 - v2 with MAC address = 28-0F-70-84-51-E4

 - v3 with MAC address = 39-63-C9-D0-5C-62

 * the access policy in W specifies, via a mapping of shape (ID_U;
 MAC1, MAC2, ...) that device u1 can only join via gateway v3,
 i.e., the mapping is: (14; 39-63-C9-D0-5C-62)

Selander, et al. Expires 5 September 2024 [Page 32]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 * W is able to map the PoP key of the gateways to their respective
 MAC addresses

 Execution:

 1. device u1 tries to join via gateway v1, which forwards the
 request to W

 2. W verifies that MAC address A2-A1-88-EE-97-75 is not in the
 access policy mapping, and replies with an error. The
 error_content has REJECT_TYPE = 1, and the plaintext of
 REJECT_INFO contains a list of suggested gateways =
 [h’3963C9D05C62’]. The single element in the list is the 6-byte
 MAC address of v3, serialized as a bstr.

 3. gateway v1 assembles an EDHOC error "Access Denied" with
 error_content, and sends it to u1

 4. device u1 processes the error, decrypts REJECT_INFO, and retries
 the protocol via gateway v3

Acknowledgments

 The authors sincerely thank Aurelio Schellenbaum for his contribution
 in the initial phase of this work.

Authors’ Addresses

 Göran Selander
 Ericsson AB
 Sweden
 Email: goran.selander@ericsson.com

 John Preuß Mattsson
 Ericsson AB
 Sweden
 Email: john.mattsson@ericsson.com

 Malia Vuini
 INRIA
 France
 Email: malisa.vucinic@inria.fr

Selander, et al. Expires 5 September 2024 [Page 33]

Internet-Draft Lightweight Authorization using EDHOC March 2024

 Geovane Fedrecheski
 INRIA
 France
 Email: geovane.fedrecheski@inria.fr

 Michael Richardson
 Sandelman Software Works
 Canada
 Email: mcr+ietf@sandelman.ca

Selander, et al. Expires 5 September 2024 [Page 34]

LAKE Working Group G. Selander
Internet-Draft J. Preuß Mattsson
Intended status: Standards Track F. Palombini
Expires: 25 July 2024 Ericsson
 22 January 2024

 Ephemeral Diffie-Hellman Over COSE (EDHOC)
 draft-ietf-lake-edhoc-23

Abstract

 This document specifies Ephemeral Diffie-Hellman Over COSE (EDHOC), a
 very compact and lightweight authenticated Diffie-Hellman key
 exchange with ephemeral keys. EDHOC provides mutual authentication,
 forward secrecy, and identity protection. EDHOC is intended for
 usage in constrained scenarios and a main use case is to establish an
 OSCORE security context. By reusing COSE for cryptography, CBOR for
 encoding, and CoAP for transport, the additional code size can be
 kept very low.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 25 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components

Selander, et al. Expires 25 July 2024 [Page 1]

Internet-Draft EDHOC January 2024

 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Motivation . 4
 1.2. Message Size Examples 5
 1.3. Document Structure 6
 1.4. Terminology and Requirements Language 6
 2. EDHOC Outline . 7
 3. Protocol Elements . 9
 3.1. General . 9
 3.2. Method . 10
 3.3. Connection Identifiers 10
 3.4. Transport . 12
 3.5. Authentication Parameters 14
 3.6. Cipher Suites . 20
 3.7. Ephemeral Public Keys 21
 3.8. External Authorization Data (EAD) 22
 3.9. Application Profile 24
 4. Key Derivation . 25
 4.1. Keys for EDHOC Message Processing 26
 4.2. Keys for EDHOC Applications 29
 5. Message Formatting and Processing 30
 5.1. EDHOC Message Processing Outline 31
 5.2. EDHOC Message 1 . 32
 5.3. EDHOC Message 2 . 33
 5.4. EDHOC Message 3 . 36
 5.5. EDHOC Message 4 . 39
 6. Error Handling . 41
 6.1. Success . 42
 6.2. Unspecified Error . 42
 6.3. Wrong Selected Cipher Suite 43
 6.4. Unknown Credential Referenced 45
 7. EDHOC Message Deduplication 46
 8. Compliance Requirements 47
 9. Security Considerations 47
 9.1. Security Properties 48
 9.2. Cryptographic Considerations 51
 9.3. Cipher Suites and Cryptographic Algorithms 53
 9.4. Post-Quantum Considerations 53
 9.5. Unprotected Data and Privacy 54
 9.6. Updated Internet Threat Model Considerations 55
 9.7. Denial-of-Service . 55
 9.8. Implementation Considerations 56
 10. IANA Considerations . 59

Selander, et al. Expires 25 July 2024 [Page 2]

Internet-Draft EDHOC January 2024

 10.1. EDHOC Exporter Label Registry 59
 10.2. EDHOC Cipher Suites Registry 60
 10.3. EDHOC Method Type Registry 62
 10.4. EDHOC Error Codes Registry 63
 10.5. EDHOC External Authorization Data Registry 63
 10.6. COSE Header Parameters Registry 64
 10.7. The Well-Known URI Registry 65
 10.8. Media Types Registry 65
 10.9. CoAP Content-Formats Registry 67
 10.10. Resource Type (rt=) Link Target Attribute Values
 Registry . 67
 10.11. Expert Review Instructions 67
 11. References . 68
 11.1. Normative References 68
 11.2. Informative References 71
 Appendix A. Use with OSCORE and Transfer over CoAP 76
 A.1. Deriving the OSCORE Security Context 76
 A.2. Transferring EDHOC over CoAP 78
 Appendix B. Compact Representation 82
 Appendix C. Use of CBOR, CDDL, and COSE in EDHOC 83
 C.1. CBOR and CDDL . 84
 C.2. CDDL Definitions . 85
 C.3. COSE . 86
 Appendix D. Authentication Related Verifications 88
 D.1. Validating the Authentication Credential 88
 D.2. Identities . 89
 D.3. Certification Path and Trust Anchors 90
 D.4. Revocation Status . 91
 D.5. Unauthenticated Operation 91
 Appendix E. Use of External Authorization Data 91
 Appendix F. Application Profile Example 93
 Appendix G. Long PLAINTEXT_2 94
 Appendix H. EDHOC_KeyUpdate 95
 Appendix I. Example Protocol State Machine 96
 I.1. Initiator State Machine 96
 I.2. Responder State Machine 98
 Appendix J. Change Log . 100
 Acknowledgments . 112
 Authors’ Addresses . 112

1. Introduction

Selander, et al. Expires 25 July 2024 [Page 3]

Internet-Draft EDHOC January 2024

1.1. Motivation

 Many Internet of Things (IoT) deployments require technologies which
 are highly performant in constrained environments [RFC7228]. IoT
 devices may be constrained in various ways, including memory,
 storage, processing capacity, and power. The connectivity for these
 settings may also exhibit constraints such as unreliable and lossy
 channels, highly restricted bandwidth, and dynamic topology. The
 IETF has acknowledged this problem by standardizing a range of
 lightweight protocols and enablers designed for the IoT, including
 the Constrained Application Protocol (CoAP, [RFC7252]), Concise
 Binary Object Representation (CBOR, [RFC8949]), and Static Context
 Header Compression (SCHC, [RFC8724]).

 The need for special protocols targeting constrained IoT deployments
 extends also to the security domain [I-D.ietf-lake-reqs]. Important
 characteristics in constrained environments are the number of round
 trips and protocol message sizes, which if kept low can contribute to
 good performance by enabling transport over a small number of radio
 frames, reducing latency due to fragmentation or duty cycles, etc.
 Another important criterion is code size, which may be prohibitively
 large for certain deployments due to device capabilities or network
 load during firmware update. Some IoT deployments also need to
 support a variety of underlying transport technologies, potentially
 even with a single connection.

 Some security solutions for such settings exist already. CBOR Object
 Signing and Encryption (COSE, [RFC9052]) specifies basic application-
 layer security services efficiently encoded in CBOR. Another example
 is Object Security for Constrained RESTful Environments (OSCORE,
 [RFC8613]) which is a lightweight communication security extension to
 CoAP using CBOR and COSE. In order to establish good quality
 cryptographic keys for security protocols such as COSE and OSCORE,
 the two endpoints may run an authenticated Diffie-Hellman key
 exchange protocol, from which shared secret keying material can be
 derived. Such a key exchange protocol should also be lightweight; to
 prevent bad performance in case of repeated use, e.g., due to device
 rebooting or frequent rekeying for security reasons; or to avoid
 latencies in a network formation setting with many devices
 authenticating at the same time.

 This document specifies Ephemeral Diffie-Hellman Over COSE (EDHOC), a
 lightweight authenticated key exchange protocol providing good
 security properties including forward secrecy, identity protection,
 and cipher suite negotiation. Authentication can be based on raw
 public keys (RPK) or public key certificates and requires the
 application to provide input on how to verify that endpoints are
 trusted. This specification supports the referencing of credentials

Selander, et al. Expires 25 July 2024 [Page 4]

Internet-Draft EDHOC January 2024

 in order to reduce message overhead, but credentials may
 alternatively be embedded in the messages. EDHOC does not currently
 support pre-shared key (PSK) authentication as authentication with
 static Diffie-Hellman public keys by reference produces equally small
 message sizes but with much simpler key distribution and identity
 protection.

 EDHOC makes use of known protocol constructions, such as SIGMA
 [SIGMA], the Noise XX pattern [Noise], and Extract-and-Expand
 [RFC5869]. EDHOC uses COSE for cryptography and identification of
 credentials (including COSE_Key, CBOR Web Token (CWT), CWT Claims Set
 (CCS), X.509, and CBOR encoded X.509 (C509) certificates, see
 Section 3.5.2). COSE provides crypto agility and enables the use of
 future algorithms and credential types targeting IoT.

 EDHOC is designed for highly constrained settings making it
 especially suitable for low-power networks [RFC8376] such as Cellular
 IoT, 6TiSCH, and LoRaWAN. A main objective for EDHOC is to be a
 lightweight authenticated key exchange for OSCORE, i.e., to provide
 authentication and session key establishment for IoT use cases such
 as those built on CoAP [RFC7252] involving ’things’ with embedded
 microcontrollers, sensors, and actuators. By reusing the same
 lightweight primitives as OSCORE (CBOR, COSE, CoAP) the additional
 code size can be kept very low. Note that while CBOR and COSE
 primitives are built into the protocol messages, EDHOC is not bound
 to a particular transport.

 A typical setting is when one of the endpoints is constrained or in a
 constrained network, and the other endpoint is a node on the Internet
 (such as a mobile phone). Thing-to-thing interactions over
 constrained networks are also relevant since both endpoints would
 then benefit from the lightweight properties of the protocol. EDHOC
 could, e.g., be run when a device connects for the first time, or to
 establish fresh keys which are not revealed by a later compromise of
 the long-term keys.

1.2. Message Size Examples

 Examples of EDHOC message sizes are shown in Figure 1, using
 different kinds of authentication keys and COSE header parameters for
 identification: static Diffie-Hellman keys or signature keys, either
 in CBOR Web Token (CWT) / CWT Claims Set (CCS) [RFC8392] identified
 by a key identifier using ’kid’ [RFC9052], or in X.509 certificates
 identified by a hash value using ’x5t’ [RFC9360]. As a comparison,
 in the case of RPK authentication, the EDHOC message size when
 transferred in CoAP can be less than 1/7 of the DTLS 1.3 handshake
 [RFC9147] with ECDHE and connection ID, see Section 2 of
 [I-D.ietf-iotops-security-protocol-comparison].

Selander, et al. Expires 25 July 2024 [Page 5]

Internet-Draft EDHOC January 2024

 --
 Static DH Keys Signature Keys
 ---------------- ----------------
 kid x5t kid x5t
 --
 message_1 37 37 37 37
 message_2 45 58 102 115
 message_3 19 33 77 90
 --
 Total 101 128 216 242
 --

 Figure 1: Examples of EDHOC message sizes in bytes.

1.3. Document Structure

 The remainder of the document is organized as follows: Section 2
 outlines EDHOC authenticated with signature keys, Section 3 describes
 the protocol elements of EDHOC, including formatting of the ephemeral
 public keys, Section 4 specifies the key derivation, Section 5
 specifies message processing for EDHOC authenticated with signature
 keys or static Diffie-Hellman keys, Section 6 describes the error
 messages, Section 7 describes EDHOC support for transport that does
 not handle message duplication, and Section 8 lists compliance
 requirements. Note that normative text is also used in appendices,
 in particular Appendix A.

1.4. Terminology and Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with the terms and concepts
 described in CBOR [RFC8949], CBOR Sequences [RFC8742], COSE
 structures and processing [RFC9052], COSE algorithms [RFC9053], CWT
 and CWT Claims Set [RFC8392], and the Concise Data Definition
 Language (CDDL, [RFC8610]), which is used to express CBOR data
 structures. Examples of CBOR and CDDL are provided in Appendix C.1.
 When referring to CBOR, this specification always refers to
 Deterministically Encoded CBOR as specified in Sections 4.2.1 and
 4.2.2 of [RFC8949]. The single output from authenticated encryption
 (including the authentication tag) is called "ciphertext", following
 [RFC5116].

Selander, et al. Expires 25 July 2024 [Page 6]

Internet-Draft EDHOC January 2024

2. EDHOC Outline

 EDHOC specifies different authentication methods of the ephemeral-
 ephemeral Diffie-Hellman key exchange: signature keys and static
 Diffie-Hellman keys. This section outlines the signature key based
 method. Further details of protocol elements and other
 authentication methods are provided in the remainder of this
 document.

 SIGMA (SIGn-and-MAc) is a family of theoretical protocols with a
 large number of variants [SIGMA]. Like in IKEv2 [RFC7296] and (D)TLS
 1.3 [RFC8446][RFC9147], EDHOC authenticated with signature keys is
 built on a variant of the SIGMA protocol, SIGMA-I, which provides
 identity protection against active attacks on the party initiating
 the protocol. Also like IKEv2, EDHOC implements the MAC-then-Sign
 variant of the SIGMA-I protocol. The message flow (excluding an
 optional fourth message) is shown in Figure 2.

 Initiator Responder
 | G_X |
 +-->|
 | |
 | G_Y, Enc(ID_CRED_R, Sig(R; MAC(CRED_R, G_X, G_Y))) |
 |<--+
 | |
 | AEAD(ID_CRED_I, Sig(I; MAC(CRED_I, G_Y, G_X))) |
 +-->|
 | |

 Figure 2: MAC-then-Sign variant of the SIGMA-I protocol used by
 EDHOC method 0.

 The parties exchanging messages in an EDHOC session are called
 Initiator (I) and Responder (R), where the Initiator sends message_1
 (see Section 3). They exchange ephemeral public keys, compute a
 shared secret session key PRK_out, and derive symmetric application
 keys used to protect application data.

 * G_X and G_Y are the ECDH ephemeral public keys of I and R,
 respectively.

 * CRED_I and CRED_R are the authentication credentials containing
 the public authentication keys of I and R, respectively.

 * ID_CRED_I and ID_CRED_R are used to identify and optionally
 transport the credentials of the Initiator and the Responder,
 respectively.

Selander, et al. Expires 25 July 2024 [Page 7]

Internet-Draft EDHOC January 2024

 * Sig(I; .) and Sig(R; .) denote signatures made with the private
 authentication key of I and R, respectively.

 * Enc(), AEAD(), and MAC() denotes encryption, authenticated
 encryption with additional data, and message authentication code -
 crypto algorithms applied with keys derived from one or more
 shared secrets calculated during the protocol.

 In order to create a "full-fledged" protocol some additional protocol
 elements are needed. EDHOC adds:

 * Transcript hashes (hashes of message data) TH_2, TH_3, TH_4 used
 for key derivation and as additional authenticated data.

 * Computationally independent keys derived from the ECDH shared
 secret and used for authenticated encryption of different
 messages.

 * An optional fourth message giving key confirmation to I in
 deployments where no protected application data is sent from R to
 I.

 * A keying material exporter and a key update function with forward
 secrecy.

 * Secure negotiation of cipher suite.

 * Method types, error handling, and padding.

 * Selection of connection identifiers C_I and C_R which may be used
 in EDHOC to identify protocol state.

 * Transport of external authorization data.

 EDHOC is designed to encrypt and integrity protect as much
 information as possible. Symmetric keys and random material used in
 EDHOC are derived using EDHOC_KDF with as much previous information
 as possible, see Figure 8. EDHOC is furthermore designed to be as
 compact and lightweight as possible, in terms of message sizes,
 processing, and the ability to reuse already existing CBOR, COSE, and
 CoAP libraries. Like in (D)TLS, authentication is the responsibility
 of the application. EDHOC identifies (and optionally transports)
 authentication credentials, and provides proof-of-possession of the
 private authentication key.

 To simplify for implementors, the use of CBOR and COSE in EDHOC is
 summarized in Appendix C. Test vectors including CBOR diagnostic
 notation are provided in [I-D.ietf-lake-traces].

Selander, et al. Expires 25 July 2024 [Page 8]

Internet-Draft EDHOC January 2024

3. Protocol Elements

3.1. General

 The EDHOC protocol consists of three mandatory messages (message_1,
 message_2, message_3), an optional fourth message (message_4), and an
 error message, between an Initiator (I) and a Responder (R). The odd
 messages are sent by I, the even by R. Both I and R can send error
 messages. The roles have slightly different security properties
 which should be considered when the roles are assigned, see
 Section 9.1. All EDHOC messages are CBOR Sequences [RFC8742], and
 are defined to be deterministically encoded CBOR as specified in
 Section 4.2.1 of [RFC8949]. Figure 3 illustrates an EDHOC message
 flow with the optional fourth message as well as the content of each
 message. The protocol elements in the figure are introduced in
 Section 3 and Section 5. Message formatting and processing are
 specified in Section 5 and Section 6.

 Application data may be protected using the agreed application
 algorithms (AEAD, hash) in the selected cipher suite (see
 Section 3.6) and the application can make use of the established
 connection identifiers C_I and C_R (see Section 3.3). Media types
 that may be used for EDHOC are defined in Section 10.8.

 The Initiator can derive symmetric application keys after creating
 EDHOC message_3, see Section 4.2.1. Protected application data can
 therefore be sent in parallel or together with EDHOC message_3.
 EDHOC message_4 is typically not sent.

 Initiator Responder
 | METHOD, SUITES_I, G_X, C_I, EAD_1 |
 +-->|
 | message_1 |
 | |
 | G_Y, Enc(C_R, ID_CRED_R, Signature_or_MAC_2, EAD_2) |
 |<--+
 | message_2 |
 | |
 | AEAD(ID_CRED_I, Signature_or_MAC_3, EAD_3) |
 +-->|
 | message_3 |
 | |
 | AEAD(EAD_4) |
 |<- +
 | message_4 |

 Figure 3: EDHOC message flow including the optional fourth message.

Selander, et al. Expires 25 July 2024 [Page 9]

Internet-Draft EDHOC January 2024

3.2. Method

 The data item METHOD in message_1 (see Section 5.2.1), is an integer
 specifying the authentication method. EDHOC supports authentication
 with signature or static Diffie-Hellman keys, as defined in the four
 authentication methods: 0, 1, 2, and 3, see Figure 4. When using a
 static Diffie-Hellman key the authentication is provided by a Message
 Authentication Code (MAC) computed from an ephemeral-static ECDH
 shared secret which enables significant reductions in message sizes.
 Note that also in the static Diffie-Hellman based authentication
 methods there is an ephemeral-ephemeral Diffie-Hellman key exchange.

 The Initiator and the Responder need to have agreed on a single
 method to be used for EDHOC, see Section 3.9.

 +-------------+--------------------+--------------------+
 | Method Type | Initiator | Responder |
 | Value | Authentication Key | Authentication Key |
 +=============+====================+====================+
 | 0 | Signature Key | Signature Key |
 | 1 | Signature Key | Static DH Key |
 | 2 | Static DH Key | Signature Key |
 | 3 | Static DH Key | Static DH Key |
 +-------------+--------------------+--------------------+

 Figure 4: Authentication keys for method types.

 EDHOC does not have a dedicated message field to indicate the
 protocol version. Breaking changes to EDHOC can be introduced by
 specifying and registering new methods.

3.3. Connection Identifiers

 EDHOC includes the selection of connection identifiers (C_I, C_R)
 identifying a connection for which keys are agreed.

 Connection identifiers may be used to correlate EDHOC messages and
 facilitate the retrieval of protocol state during an EDHOC session
 (see Section 3.4), or may be used in applications of EDHOC, e.g., in
 OSCORE (see Section 3.3.3). The connection identifiers do not have
 any cryptographic purpose in EDHOC and only facilitate the retrieval
 of security data associated with the protocol state.

 Connection identifiers in EDHOC are intrinsically byte strings. Most
 constrained devices only have a few connections for which short
 identifiers may be sufficient. In some cases minimum length
 identifiers are necessary to comply with overhead requirements.
 However, CBOR byte strings - with the exception of the empty byte

Selander, et al. Expires 25 July 2024 [Page 10]

Internet-Draft EDHOC January 2024

 string h which encodes as one byte (0x40) - are encoded as two or
 more bytes. To enable one-byte encoding of certain byte strings
 while maintaining CBOR encoding, EDHOC represents certain identifiers
 as CBOR integers on the wire, see Section 3.3.2.

3.3.1. Selection of Connection Identifiers

 C_I and C_R are chosen by I and R, respectively. The Initiator
 selects C_I and sends it in message_1 for the Responder to use as a
 reference to the connection in communication with the Initiator. The
 Responder selects C_R and sends it in message_2 for the Initiator to
 use as a reference to the connection in communications with the
 Responder.

 If connection identifiers are used by an application protocol for
 which EDHOC establishes keys then the selected connection identifiers
 SHALL adhere to the requirements for that protocol, see Section 3.3.3
 for an example.

3.3.2. Representation of Byte String Identifiers

 To allow identifiers with minimal overhead on the wire, certain byte
 strings used in connection identifiers and credential identifiers
 (see Section Section 3.5.3) are defined to have integer
 representations.

 The integers with one-byte CBOR encoding are -24, ..., 23, see
 Figure 5.

 Integer: -24 -23 ... -11 ... -2 -1 0 1 ... 15 ... 23
 Encoding: 37 36 ... 2A ... 21 20 00 01 ... 0F ... 17

 Figure 5: One-byte CBOR encoded integers.

 The byte strings which coincide with a one-byte CBOR encoding of an
 integer MUST be represented by the CBOR encoding of that integer.
 Other byte strings are simply encoded as CBOR byte strings.

 For example:

 * 0x21 is represented by 0x21 (CBOR encoding of the integer -2), not
 by 0x4121 (CBOR encoding of the byte string 0x21).

 * 0x0D is represented by 0x0D (CBOR encoding of the integer 13), not
 by 0x410D (CBOR encoding of the byte string 0x0D).

 * 0x18 is represented by 0x4118 (CBOR encoding of the byte string
 0x18).

Selander, et al. Expires 25 July 2024 [Page 11]

Internet-Draft EDHOC January 2024

 * 0x38 is represented by 0x4138 (CBOR encoding of the byte string
 0x38).

 * 0xABCD is represented by 0x42ABCD (CBOR encoding of the byte
 string 0xABCD).

 One may view this representation of byte strings as a transport
 encoding: a byte string which parses as the one-byte CBOR encoding of
 an integer (i.e., integer in the interval -24, ..., 23) is just
 copied directly into the message, a byte string which does not is
 encoded as a CBOR byte string during transport.

 Implementation Note: When implementing the byte string identifier
 representation, it can in some programming languages help to define a
 new type, or other data structure, which (in its user facing API)
 behaves like a byte string, but when serializing to CBOR produces a
 CBOR byte string or a CBOR integer depending on its value.

3.3.3. Use of Connection Identifiers with OSCORE

 For OSCORE, the choice of connection identifier results in the
 endpoint selecting its Recipient ID, see Section 3.1 of [RFC8613],
 for which certain uniqueness requirements apply, see Section 3.3 of
 [RFC8613]. Therefore, the Initiator and the Responder MUST NOT
 select connection identifiers such that it results in the same OSCORE
 Recipient ID. Since the connection identifier is a byte string, it
 is converted to an OSCORE Recipient ID equal to the byte string.

 Examples:

 * A connection identifier 0xFF (represented in the EDHOC message as
 0x41FF, see Section 3.3.2) is converted to the OSCORE Recipient ID
 0xFF.

 * A connection identifier 0x21 (represented in the EDHOC message as
 0x21, see Section 3.3.2) is converted to the OSCORE Recipient ID
 0x21.

3.4. Transport

 Cryptographically, EDHOC does not put requirements on the underlying
 layers. Received messages are processed as the expected next message
 according to protocol state, see Section 5. If processing fails for
 any reason then, typically, an error message is attempted to be sent
 and the EDHOC session is aborted.

Selander, et al. Expires 25 July 2024 [Page 12]

Internet-Draft EDHOC January 2024

 EDHOC is not bound to a particular transport layer and can even be
 used in environments without IP. Ultimately, the application is free
 to choose how to transport EDHOC messages including errors. In order
 to avoid unnecessary message processing or protocol termination, it
 is RECOMMENDED to use reliable transport, such as CoAP in reliable
 mode, which is the default transport, see Appendix A.2. In general,
 the transport SHOULD handle:

 * message loss,

 * message duplication, see Section 7 for an alternative,

 * flow control,

 * congestion control,

 * fragmentation and reassembly,

 * demultiplexing EDHOC messages from other types of messages,

 * denial-of-service mitigation,

 * message correlation, see Section 3.4.1.

 EDHOC does not require error free transport since a change in message
 content is detected through the transcript hashes in a subsequent
 integrity verification, see Section 5. The transport does not
 require additional means to handle message reordering because of the
 lockstep processing of EDHOC.

 EDHOC is designed to enable an authenticated key exchange with small
 messages, where the minimum message sizes are of the order
 illustrated in the first column of Figure 1. There is no maximum
 message size specified by the protocol; this is for example dependent
 on the size of authentication credentials (if they are transported,
 see Section 3.5).

 The use of transport is specified in the application profile, which
 in particular may specify limitations in message sizes, see
 Section 3.9.

Selander, et al. Expires 25 July 2024 [Page 13]

Internet-Draft EDHOC January 2024

3.4.1. EDHOC Message Correlation

 Correlation between EDHOC messages is needed to facilitate the
 retrieval of protocol state and security context during an EDHOC
 session. It is also helpful for the Responder to get an indication
 that a received EDHOC message is the beginning of a new EDHOC
 session, such that no existing protocol state or security context
 needs to be retrieved.

 Correlation may be based on existing mechanisms in the transport
 protocol, for example, the CoAP Token may be used to correlate EDHOC
 messages in a CoAP response and in an associated CoAP request. The
 connection identifiers may also be used to correlate EDHOC messages.

 If correlation between consecutive messages is not provided by other
 means then the transport binding SHOULD mandate prepending of an
 appropriate connection identifier (when available from the EDHOC
 protocol) to the EDHOC message. If message_1 indication is not
 provided by other means, then the transport binding SHOULD mandate
 prepending of message_1 with the CBOR simple value true (0xf5).

 Transport of EDHOC in CoAP payloads is described in Appendix A.2,
 including how to use connection identifiers and message_1 indication
 with CoAP. A similar construction is possible for other client-
 server protocols. Protocols that do not provide any correlation at
 all can prescribe prepending of the peer’s connection identifier to
 all messages.

 Note that correlation between EDHOC messages may be obtained without
 transport support or connection identifiers, for example if the
 endpoints only accept a single instance of the protocol at a time,
 and execute conditionally on a correct sequence of messages.

3.5. Authentication Parameters

 EDHOC supports various settings for how the other endpoint’s
 authentication (public) key may be transported, identified, and
 trusted.

 EDHOC performs the following authentication related operations:

 * EDHOC transports information about credentials in ID_CRED_I and
 ID_CRED_R (described in Section 3.5.3). Based on this
 information, the authentication credentials CRED_I and CRED_R
 (described in Section 3.5.2) can be obtained. EDHOC may also
 transport certain authentication related information as External
 Authorization Data (see Section 3.8).

Selander, et al. Expires 25 July 2024 [Page 14]

Internet-Draft EDHOC January 2024

 * EDHOC uses the authentication credentials in two ways (see
 Section 5.3.2 and Section 5.4.2):

 - The authentication credential is input to the integrity
 verification using the MAC fields.

 - The authentication key of the authentication credential is used
 with the Signature_or_MAC field to verify proof-of-possession
 of the private key.

 Other authentication related verifications are out of scope for
 EDHOC, and is the responsibility of the application. In particular,
 the authentication credential needs to be validated in the context of
 the connection for which EDHOC is used, see Appendix D. EDHOC MUST
 allow the application to read received information about credential
 (ID_CRED_R, ID_CRED_I). EDHOC MUST have access to the authentication
 key and the authentication credential.

 Note that the type of authentication key, authentication credential,
 and the identification of the credential have a large impact on the
 message size. For example, the Signature_or_MAC field is much
 smaller with a static DH key than with a signature key. A CWT Claims
 Set (CCS) is much smaller than a self-signed certificate/CWT, but if
 it is possible to reference the credential with a COSE header like
 ’kid’, then that is in turn much smaller than a CCS.

3.5.1. Authentication Keys

 The authentication key (i.e., the public key used for authentication)
 MUST be a signature key or static Diffie-Hellman key. The Initiator
 and the Responder MAY use different types of authentication keys,
 e.g., one uses a signature key and the other uses a static Diffie-
 Hellman key.

 The authentication key algorithm needs to be compatible with the
 method and the selected cipher suite (see Section 3.6). The
 authentication key algorithm needs to be compatible with the EDHOC
 key exchange algorithm when static Diffie-Hellman authentication is
 used, and compatible with the EDHOC signature algorithm when
 signature authentication is used.

 Note that for most signature algorithms, the signature is determined
 by the signature algorithm and the authentication key algorithm
 together. When using static Diffie-Hellman keys the Initiator’s and
 Responder’s private authentication keys are denoted as I and R,
 respectively, and the public authentication keys are denoted G_I and
 G_R, respectively.

Selander, et al. Expires 25 July 2024 [Page 15]

Internet-Draft EDHOC January 2024

 For X.509 certificates the authentication key is represented by a
 SubjectPublicKeyInfo field. For CWT and CCS (see Section 3.5.2)) the
 authentication key is represented by a ’cnf’ claim [RFC8747]
 containing a COSE_Key [RFC9052]. In EDHOC, a raw public key (RPK) is
 an authentication key encoded as a COSE_Key wrapped in a CCS.

3.5.2. Authentication Credentials

 The authentication credentials, CRED_I and CRED_R, contains the
 public authentication key of the Initiator and the Responder,
 respectively. We use the notation CRED_x to refer to CRED_I or
 CRED_R. Requirements on CRED_x applies both to CRED_I and to CRED_R.
 The authentication credential typically also contains other
 parameters that needs to be verified by the application, see
 Appendix D, and in particular information about the identity
 ("subject") of the endpoint to prevent misbinding attacks, see
 Appendix D.2.

 EDHOC relies on COSE for identification of credentials (see
 Section 3.5.3), for example X.509 certificates [RFC9360], C509
 certificates [I-D.ietf-cose-cbor-encoded-cert], CWTs [RFC8392] and
 CWT Claims Sets (CCS) [RFC8392]. When the identified credential is a
 chain or a bag, the authentication credential CRED_x is just the end
 entity X.509 or C509 certificate / CWT. In the choice between chain
 or bag it is RECOMMENDED to use a chain, since the certificates in a
 bag are unordered and may contain self-signed and extraneous
 certificates, which can add complexity to the process of extracting
 the end entity certificate. The Initiator and the Responder MAY use
 different types of authentication credentials, e.g., one uses an RPK
 and the other uses a public key certificate.

 Since CRED_R is used in the integrity verification, see
 Section 5.3.2, it needs to be specified such that it is identical
 when used by Initiator or Responder. Similarly for CRED_I, see
 Section 5.4.2. The Initiator and Responder are expected to agree on
 the specific encoding of the authentication credentials, see
 Section 3.9. It is RECOMMENDED that the COSE ’kid’ parameter, when
 used to identify the authentication credential, refers to a such a
 specific encoding of the authentication credential. The Initiator
 and Responder SHOULD use an available authentication credential
 (transported in EDHOC or otherwise provisioned) without re-encoding.
 If for some reason re-encoding of an authentication credential passed
 by reference may occur, then a potential common encoding for CBOR
 based credentials is deterministically encoded CBOR as specified in
 Sections 4.2.1 and 4.2.2 of [RFC8949].

 * When the authentication credential is an X.509 certificate, CRED_x
 SHALL be the DER encoded certificate, encoded as a bstr [RFC9360].

Selander, et al. Expires 25 July 2024 [Page 16]

Internet-Draft EDHOC January 2024

 * When the authentication credential is a C509 certificate, CRED_x
 SHALL be the C509Certificate [I-D.ietf-cose-cbor-encoded-cert].

 * When the authentication credential is a CWT including a COSE_Key,
 CRED_x SHALL be the untagged CWT.

 * When the authentication credential includes a COSE_Key but is not
 in a CWT, CRED_x SHALL be an untagged CWT Claims Set (CCS). This
 is how RPKs are encoded, see Figure 6 for an example.

 - Naked COSE_Keys are thus dressed as CCS when used in EDHOC, in
 its simplest form by prefixing the COSE_Key with 0xA108A101 (a
 map with a ’cnf’ claim). In that case the resulting
 authentication credential contains no other identity than the
 public key itself, see Appendix D.2.

 An example of CRED_x is shown below:

 { /CCS/
 2 : "42-50-31-FF-EF-37-32-39", /sub/
 8 : { /cnf/
 1 : { /COSE_Key/
 1 : 1, /kty/
 2 : h’00’, /kid/
 -1 : 4, /crv/
 -2 : h’b1a3e89460e88d3a8d54211dc95f0b90 /x/
 3ff205eb71912d6db8f4af980d2db83a’
 }
 }
 }

 Figure 6: CWT Claims Set (CCS) containing an X25519 static
 Diffie-Hellman key and an EUI-64 identity.

3.5.3. Identification of Credentials

 The ID_CRED fields, ID_CRED_R and ID_CRED_I, are transported in
 message_2 and message_3, respectively, see Section 5.3.2 and
 Section 5.4.2. We use the notation ID_CRED_x to refer to ID_CRED_I
 or ID_CRED_R. Requirements on ID_CRED_x applies both to ID_CRED_I
 and to ID_CRED_R. The ID_CRED fields are used to identify and
 optionally transport credentials:

 * ID_CRED_R is intended to facilitate for the Initiator retrieving
 the authentication credential CRED_R and the authentication key of
 R.

Selander, et al. Expires 25 July 2024 [Page 17]

Internet-Draft EDHOC January 2024

 * ID_CRED_I is intended to facilitate for the Responder retrieving
 the authentication credential CRED_I and the authentication key of
 I.

 ID_CRED_x may contain the authentication credential CRED_x, for x = I
 or R, but for many settings it is not necessary to transport the
 authentication credential within EDHOC. For example, it may be pre-
 provisioned or acquired out-of-band over less constrained links.
 ID_CRED_I and ID_CRED_R do not have any cryptographic purpose in
 EDHOC since the authentication credentials are integrity protected.

 EDHOC relies on COSE for identification of credentials and supports
 all credential types for which COSE header parameters are defined
 including X.509 certificates ([RFC9360]), C509 certificates
 ([I-D.ietf-cose-cbor-encoded-cert]), CWT (see Section 3.5.3.1) and
 CWT Claims Set (see Section 3.5.3.1).

 ID_CRED_I and ID_CRED_R are of type COSE header_map, as defined in
 Section 3 of [RFC9052], and contains one or more COSE header
 parameters. If a map contains several header paramerers, the labels
 do not need to be sorted in bytewise lexicographic order. ID_CRED_I
 and ID_CRED_R MAY contain different header parameters. The header
 parameters typically provide some information about the format of the
 credential.

 Example: X.509 certificates can be identified by a hash value using
 the ’x5t’ parameter, see Section 2 of [RFC9360]:

 * ID_CRED_x = { 34 : COSE_CertHash }, for x = I or R,

 Example: CWT or CCS can be identified by a key identifier using the
 ’kid’ parameter, see Section 3.1 of [RFC9052]:

 * ID_CRED_x = { 4 : kid_x }, where kid_x : kid, for x = I or R.

 Note that COSE header parameters in ID_CRED_x are used to identify
 the message sender’s credential. There is therefore no reason to use
 the "-sender" header parameters, such as x5t-sender, defined in
 Section 3 of [RFC9360]. Instead, the corresponding parameter without
 "-sender", such as x5t, SHOULD be used.

 As stated in Section 3.1 of [RFC9052], applications MUST NOT assume
 that ’kid’ values are unique and several keys associated with a ’kid’
 may need to be checked before the correct one is found. Applications
 might use additional information such as ’kid context’ or lower
 layers to determine which key to try first. Applications should
 strive to make ID_CRED_x as unique as possible, since the recipient
 may otherwise have to try several keys.

Selander, et al. Expires 25 July 2024 [Page 18]

Internet-Draft EDHOC January 2024

 See Appendix C.3 for more examples.

3.5.3.1. COSE Header Parameters for CWT and CWT Claims Set

 This document registers two new COSE header parameters ’kcwt’ and
 ’kccs’ for use with CBOR Web Token (CWT, [RFC8392]) and CWT Claims
 Set (CCS, [RFC8392]), respectively. The CWT/CCS MUST contain a
 COSE_Key in a ’cnf’ claim [RFC8747]. There may be any number of
 additional claims present in the CWT/CCS.

 CWTs sent in ’kcwt’ are protected using a MAC or a signature and are
 similar to a certificate (when with public key cryptography) or a
 Kerberos ticket (when used with symmetric key cryptography). CCSs
 sent in ’kccs’ are not protected and are therefore similar to raw
 public keys or self-signed certificates.

 Security considerations for ’kcwt’ and ’kccs’ are made in
 Section 9.8.

3.5.3.2. Compact Encoding of ID_CRED Fields for ’kid’

 To comply with the LAKE message size requirements, see
 [I-D.ietf-lake-reqs], two optimizations are made for the case when
 ID_CRED_x, for x = I or R, contains a single ’kid’ parameter.

 1. The CBOR map { 4 : kid_x } is replaced by the byte string kid_x.

 2. The representation of identifiers specified in Section 3.3.2 is
 applied to kid_x.

 These optimizations MUST be applied if and only if ID_CRED_x = { 4 :
 kid_x } and ID_CRED_x in PLAINTEXT_y of message_y, y = 2 or 3, see
 Section 5.3.2 and Section 5.4.2. Note that these optimizations are
 not applied to instances of ID_CRED_x which have no impact on message
 size, e.g., context_y, or the COSE protected header. Examples:

 * For ID_CRED_x = { 4 : h’FF’ }, the encoding in PLAINTEXT_y is not
 the CBOR map 0xA10441FF but the CBOR byte string h’FF’, i.e.,
 0x41FF.

 * For ID_CRED_x = { 4 : h’21’ }, the encoding in PLAINTEXT_y is
 neither the CBOR map 0xA1044121, nor the CBOR byte string h’21’,
 i.e., 0x4121, but the CBOR integer 0x21.

Selander, et al. Expires 25 July 2024 [Page 19]

Internet-Draft EDHOC January 2024

3.6. Cipher Suites

 An EDHOC cipher suite consists of an ordered set of algorithms from
 the "COSE Algorithms" and "COSE Elliptic Curves" registries as well
 as the EDHOC MAC length. All algorithm names and definitions follow
 from COSE algorithms [RFC9053]. Note that COSE sometimes uses
 peculiar names such as ES256 for ECDSA with SHA-256, A128 for AES-
 128, and Ed25519 for the curve edwards25519. Algorithms need to be
 specified with enough parameters to make them completely determined.
 The EDHOC MAC length MUST be at least 8 bytes. Any cryptographic
 algorithm used in the COSE header parameters in ID_CRED fields is
 selected independently of the selected cipher suite. EDHOC is
 currently only specified for use with key exchange algorithms of type
 ECDH curves, but any Key Encapsulation Method (KEM), including Post-
 Quantum Cryptography (PQC) KEMs, can be used in method 0, see
 Section 9.4. Use of other types of key exchange algorithms to
 replace static DH authentication (method 1,2,3) would likely require
 a specification updating EDHOC with new methods.

 EDHOC supports all signature algorithms defined by COSE. Just like
 in (D)TLS 1.3 [RFC8446][RFC9147] and IKEv2 [RFC7296], a signature in
 COSE is determined by the signature algorithm and the authentication
 key algorithm together, see Section 3.5.1. The exact details of the
 authentication key algorithm depend on the type of authentication
 credential. COSE supports different formats for storing the public
 authentication keys including COSE_Key and X.509, which use different
 names and ways to represent the authentication key and the
 authentication key algorithm.

 An EDHOC cipher suite consists of the following parameters:

 * EDHOC AEAD algorithm

 * EDHOC hash algorithm

 * EDHOC MAC length in bytes (Static DH)

 * EDHOC key exchange algorithm (ECDH curve)

 * EDHOC signature algorithm

 * Application AEAD algorithm

 * Application hash algorithm

 Each cipher suite is identified with a pre-defined integer label.

Selander, et al. Expires 25 July 2024 [Page 20]

Internet-Draft EDHOC January 2024

 EDHOC can be used with all algorithms and curves defined for COSE.
 Implementations can either use any combination of COSE algorithms and
 parameters to define their own private cipher suite, or use one of
 the pre-defined cipher suites. Private cipher suites can be
 identified with any of the four values -24, -23, -22, -21. The pre-
 defined cipher suites are listed in the IANA registry (Section 10.2)
 with initial content outlined here:

 * Cipher suites 0-3, based on AES-CCM, are intended for constrained
 IoT where message overhead is a very important factor. Note that
 AES-CCM-16-64-128 and AES-CCM-16-128-128 are compatible with the
 IEEE CCM* mode.

 - Cipher suites 1 and 3 use a larger tag length (128-bit) in
 EDHOC than in the Application AEAD algorithm (64-bit).

 * Cipher suites 4 and 5, based on ChaCha20, are intended for less
 constrained applications and only use 128-bit tag lengths.

 * Cipher suite 6, based on AES-GCM, is for general non-constrained
 applications. It consists of high performance algorithms that are
 widely used in non-constrained applications.

 * Cipher suites 24 and 25 are intended for high security
 applications such as government use and financial applications.
 These cipher suites do not share any algorithms. Cipher suite 24
 consists of algorithms from the CNSA 1.0 suite [CNSA].

 The different methods (Section 3.2) use the same cipher suites, but
 some algorithms are not used in some methods. The EDHOC signature
 algorithm is not used in methods without signature authentication.

 The Initiator needs to have a list of cipher suites it supports in
 order of preference. The Responder needs to have a list of cipher
 suites it supports. SUITES_I contains cipher suites supported by the
 Initiator, formatted and processed as detailed in Section 5.2.1 to
 secure the cipher suite negotiation. Examples of cipher suite
 negotiation are given in Section 6.3.2.

3.7. Ephemeral Public Keys

 The ephemeral public keys in EDHOC (G_X and G_Y) use compact
 representation of elliptic curve points, see Appendix B. In COSE,
 compact representation is achieved by formatting the ECDH ephemeral
 public keys as COSE_Keys of type EC2 or OKP according to Sections 7.1
 and 7.2 of [RFC9053], but only including the ’x’ parameter in G_X and
 G_Y. For Elliptic Curve Keys of type EC2, compact representation MAY
 be used also in the COSE_Key. COSE always uses compact output for

Selander, et al. Expires 25 July 2024 [Page 21]

Internet-Draft EDHOC January 2024

 Elliptic Curve Keys of type EC2. If the COSE implementation requires
 a ’y’ parameter, the value y = false or a calculated y-coordinate can
 be used, see Appendix B.

3.8. External Authorization Data (EAD)

 In order to reduce round trips and the number of messages, or to
 simplify processing, external security applications may be integrated
 into EDHOC by transporting authorization related data in the
 messages.

 EDHOC allows processing of external authorization data (EAD) to be
 defined in a separate specification, and sent in dedicated fields of
 the four EDHOC messages (EAD_1, EAD_2, EAD_3, EAD_4). EAD is opaque
 data to EDHOC.

 Each EAD field, EAD_x for x = 1, 2, 3 or 4, is a CBOR sequence (see
 Appendix C.1) consisting of one or more EAD items. An EAD item ead
 is a CBOR sequence of an ead_label and an optional ead_value, see
 Figure 7 and Appendix C.2 for the CDDL definitions.

 ead = (
 ead_label : int,
 ? ead_value : bstr,
)

 Figure 7: EAD item.

 A security application may register one or more EAD labels, see
 Section 10.5, and specify the associated processing and security
 considerations. The IANA registry contains the absolute value of the
 ead_label, |ead_label|; the same ead_value applies independently of
 sign of ead_label.

 An EAD item can be either critical or non-critical, determined by the
 sign of the ead_label in the EAD item transported in the EAD field.
 A negative value indicates that the EAD item is critical and a non-
 negative value indicates that the EAD item is non-critical.

 If an endpoint receives a critical EAD item it does not recognize, or
 a critical EAD item that contains information that it cannot process,
 then the endpoint MUST send an EDHOC error message back as defined in
 Section 6, and the EDHOC session MUST be aborted. The EAD item
 specification defines the error processing. A non-critical EAD item
 can be ignored.

Selander, et al. Expires 25 July 2024 [Page 22]

Internet-Draft EDHOC January 2024

 The security application registering a new EAD item needs to describe
 under what conditions the EAD item is critical or non-critical, and
 thus whether the ead_label is used with negative or positive sign.
 ead_label = 0 is used for padding, see Section 3.8.1.

 The security application may define multiple uses of certain EAD
 items, e.g., the same EAD item may be used in different EDHOC
 messages. Multiple occurrences of an EAD item in one EAD field may
 also be specified, but the criticality of the repeated EAD item is
 expected to be the same.

 The EAD fields of EDHOC MUST only be used with registered EAD items,
 see Section 10.5. Examples of the use of EAD are provided in
 Appendix E.

3.8.1. Padding

 EDHOC message_1 and the plaintext of message_2, message_3 and
 message_4 can be padded with the use of the corresponding EAD_x
 field, for x = 1, 2, 3, 4. Padding in EAD_1 mitigates amplification
 attacks (see Section 9.7), and padding in EAD_2, EAD_3, and EAD_4
 hides the true length of the plaintext (see Section 9.6). Padding
 MUST be ignored and discarded by the receiving application.

 Padding is obtained by using an EAD item with ead_label = 0 and a
 (pseudo-)randomly generated byte string of appropriate length as
 ead_value, noting that the ead_label and the CBOR encoding of
 ead_value also add bytes. Examples:

 * One byte padding (optional ead_value omitted):

 - EAD_x = 0x00

 * Two bytes padding, using the empty byte string (0x40) as
 ead_value:

 - EAD_x = 0x0040

 * Three bytes padding, constructed from the pseudorandomly generated
 ead_value 0xe9 encoded as byte string:

 - EAD_x = 0x0041e9

 Multiple occurrences of EAD items with ead_label = 0 are allowed.
 Certain padding lengths require the use of at least two such EAD
 items.

Selander, et al. Expires 25 July 2024 [Page 23]

Internet-Draft EDHOC January 2024

 Note that padding is non-critical because the intended behaviour when
 receiving is to ignore it.

3.9. Application Profile

 EDHOC requires certain parameters to be agreed upon between Initiator
 and Responder. Some parameters can be negotiated through the
 protocol execution (specifically, cipher suite, see Section 3.6) but
 other parameters are only communicated and may not be negotiated
 (e.g., which authentication method is used, see Section 3.2). Yet
 other parameters need to be known out-of-band to ensure successful
 completion, e.g., whether message_4 is used or not. The application
 decides which endpoint is Initiator and which is Responder.

 The purpose of an application profile is to describe the intended use
 of EDHOC to allow for the relevant processing and verifications to be
 made, including things like:

 1. How the endpoint detects that an EDHOC message is received. This
 includes how EDHOC messages are transported, for example in the
 payload of a CoAP message with a certain Uri-Path or Content-
 Format; see Appendix A.2.

 * The method of transporting EDHOC messages may also describe
 data carried along with the messages that are needed for the
 transport to satisfy the requirements of Section 3.4, e.g.,
 connection identifiers used with certain messages, see
 Appendix A.2.

 2. Authentication method (METHOD; see Section 3.2).

 3. Profile for authentication credentials (CRED_I, CRED_R; see
 Section 3.5.2), e.g., profile for certificate or CCS, including
 supported authentication key algorithms (subject public key
 algorithm in X.509 or C509 certificate).

 4. Type used to identify credentials (ID_CRED_I, ID_CRED_R; see
 Section 3.5.3).

 5. Use and type of external authorization data (EAD_1, EAD_2, EAD_3,
 EAD_4; see Section 3.8).

 6. Identifier used as the identity of the endpoint; see
 Appendix D.2.

 7. If message_4 shall be sent/expected, and if not, how to ensure a
 protected application message is sent from the Responder to the
 Initiator; see Section 5.5.

Selander, et al. Expires 25 July 2024 [Page 24]

Internet-Draft EDHOC January 2024

 The application profile may also contain information about supported
 cipher suites. The procedure for selecting and verifying a cipher
 suite is still performed as described in Section 5.2.1 and
 Section 6.3, but it may become simplified by this knowledge. EDHOC
 messages can be processed without the application profile, i.e., the
 EDHOC messages includes information about the type and length of all
 fields.

 An example of an application profile is shown in Appendix F.

 For some parameters, like METHOD, type of ID_CRED field or EAD, the
 receiver of an EDHOC message is able to verify compliance with the
 application profile, and if it needs to fail because of lack of
 compliance, to infer the reason why the EDHOC session failed.

 For other encodings, like the profiling of CRED_x in the case that it
 is not transported, it may not be possible to verify that lack of
 compliance with the application profile was the reason for failure:
 Integrity verification in message_2 or message_3 may fail not only
 because of a wrong credential. For example, in case the Initiator
 uses a public key certificate by reference (i.e., not transported
 within the protocol) then both endpoints need to use an identical
 data structure as CRED_I or else the integrity verification will
 fail.

 Note that it is not necessary for the endpoints to specify a single
 transport for the EDHOC messages. For example, a mix of CoAP and
 HTTP may be used along the path, and this may still allow correlation
 between messages.

 The application profile may be dependent on the identity of the other
 endpoint, or other information carried in an EDHOC message, but it
 then applies only to the later phases of the protocol when such
 information is known. (The Initiator does not know the identity of
 the Responder before having verified message_2, and the Responder
 does not know the identity of the Initiator before having verified
 message_3.)

 Other conditions may be part of the application profile, such as what
 is the target application or use (if there is more than one
 application/use) to the extent that EDHOC can distinguish between
 them. In case multiple application profiles are used, the receiver
 needs to be able to determine which is applicable for a given EDHOC
 session, for example based on URI to which the EDHOC message is sent,
 or external authorization data type.

4. Key Derivation

Selander, et al. Expires 25 July 2024 [Page 25]

Internet-Draft EDHOC January 2024

4.1. Keys for EDHOC Message Processing

 EDHOC uses Extract-and-Expand [RFC5869] with the EDHOC hash algorithm
 in the selected cipher suite to derive keys used in message
 processing. This section defines EDHOC_Extract (Section 4.1.1) and
 EDHOC_Expand (Section 4.1.2), and how to use them to derive PRK_out
 (Section 4.1.3) which is the shared secret session key resulting from
 a completed EDHOC session.

 EDHOC_Extract is used to derive fixed-length uniformly pseudorandom
 keys (PRK) from ECDH shared secrets. EDHOC_Expand is used to define
 EDHOC_KDF for generating MACs and for deriving output keying material
 (OKM) from PRKs.

 In EDHOC a specific message is protected with a certain pseudorandom
 key, but how the key is derived depends on the authentication method
 (Section 3.2) as detailed in Section 5.

4.1.1. EDHOC_Extract

 The pseudorandom keys (PRKs) used for EDHOC message processing are
 derived using EDHOC_Extract:

 PRK = EDHOC_Extract(salt, IKM)

 where the input keying material (IKM) and salt are defined for each
 PRK below.

 The definition of EDHOC_Extract depends on the EDHOC hash algorithm
 of the selected cipher suite:

 * if the EDHOC hash algorithm is SHA-2, then EDHOC_Extract(salt,
 IKM) = HKDF-Extract(salt, IKM) [RFC5869]

 * if the EDHOC hash algorithm is SHAKE128, then EDHOC_Extract(salt,
 IKM) = KMAC128(salt, IKM, 256, "")

 * if the EDHOC hash algorithm is SHAKE256, then EDHOC_Extract(salt,
 IKM) = KMAC256(salt, IKM, 512, "")

 where the Keccak message authentication code (KMAC) is specified in
 [SP800-185].

 The rest of the section defines the pseudorandom keys PRK_2e,
 PRK_3e2m and PRK_4e3m; their use is shown in Figure 8. The index of
 a PRK indicates its use or in what message protection operation it is
 involved. For example, PRK_3e2m is involved in the encryption of
 message 3 and in calculating the MAC of message 2.

Selander, et al. Expires 25 July 2024 [Page 26]

Internet-Draft EDHOC January 2024

4.1.1.1. PRK_2e

 The pseudorandom key PRK_2e is derived with the following input:

 * The salt SHALL be TH_2.

 * The IKM SHALL be the ephemeral-ephemeral ECDH shared secret G_XY
 (calculated from G_X and Y or G_Y and X) as defined in
 Section 6.3.1 of [RFC9053]. The use of G_XY gives forward
 secrecy, in the sense that compromise of the private
 authentication keys does not compromise past session keys.

 Example: Assuming the use of curve25519, the ECDH shared secret G_XY
 is the output of the X25519 function [RFC7748]:

 G_XY = X25519(Y, G_X) = X25519(X, G_Y)

 Example: Assuming the use of SHA-256 the extract phase of HKDF
 produces PRK_2e as follows:

 PRK_2e = HMAC-SHA-256(TH_2, G_XY)

4.1.1.2. PRK_3e2m

 The pseudorandom key PRK_3e2m is derived as follows:

 If the Responder authenticates with a static Diffie-Hellman key, then
 PRK_3e2m = EDHOC_Extract(SALT_3e2m, G_RX), where

 * SALT_3e2m is derived from PRK_2e, see Section 4.1.2, and

 * G_RX is the ECDH shared secret calculated from G_R and X, or G_X
 and R (the Responder’s private authentication key, see
 Section 3.5.1),

 else PRK_3e2m = PRK_2e.

4.1.1.3. PRK_4e3m

 The pseudorandom key PRK_4e3m is derived as follows:

 If the Initiator authenticates with a static Diffie-Hellman key, then
 PRK_4e3m = EDHOC_Extract(SALT_4e3m, G_IY), where

 * SALT_4e3m is derived from PRK_3e2m, see Section 4.1.2, and

Selander, et al. Expires 25 July 2024 [Page 27]

Internet-Draft EDHOC January 2024

 * G_IY is the ECDH shared secret calculated from G_I and Y, or G_Y
 and I (the Initiator’s private authentication key, see
 Section 3.5.1),

 else PRK_4e3m = PRK_3e2m.

4.1.2. EDHOC_Expand and EDHOC_KDF

 The output keying material (OKM) - including keys, IVs, and salts -
 are derived from the PRKs using the EDHOC_KDF, which is defined
 through EDHOC_Expand:

 OKM = EDHOC_KDF(PRK, info_label, context, length)
 = EDHOC_Expand(PRK, info, length)

 where info is encoded as the CBOR sequence

 info = (
 info_label : int,
 context : bstr,
 length : uint,
)

 where

 * info_label is an int

 * context is a bstr

 * length is the length of OKM in bytes

 When EDHOC_KDF is used to derive OKM for EDHOC message processing,
 then context includes one of the transcript hashes TH_2, TH_3, or
 TH_4 defined in Sections 5.3.2 and 5.4.2.

 The definition of EDHOC_Expand depends on the EDHOC hash algorithm of
 the selected cipher suite:

 * if the EDHOC hash algorithm is SHA-2, then EDHOC_Expand(PRK,
 info, length) = HKDF-Expand(PRK, info, length) [RFC5869]

 * if the EDHOC hash algorithm is SHAKE128, then EDHOC_Expand(PRK,
 info, length) = KMAC128(PRK, info, L, "")

 * if the EDHOC hash algorithm is SHAKE256, then EDHOC_Expand(PRK,
 info, length) = KMAC256(PRK, info, L, "")

 where L = 8 length, the output length in bits.

Selander, et al. Expires 25 July 2024 [Page 28]

Internet-Draft EDHOC January 2024

 Figure 8 lists derivations made with EDHOC_KDF, where

 * hash_length - length of output size of the EDHOC hash algorithm of
 the selected cipher suite

 * key_length - length of the encryption key of the EDHOC AEAD
 algorithm of the selected cipher suite

 * iv_length - length of the initialization vector of the EDHOC AEAD
 algorithm of the selected cipher suite

 Further details of the key derivation and how the output keying
 material is used are specified in Section 5.

 KEYSTREAM_2 = EDHOC_KDF(PRK_2e, 0, TH_2, plaintext_length)
 SALT_3e2m = EDHOC_KDF(PRK_2e, 1, TH_2, hash_length)
 MAC_2 = EDHOC_KDF(PRK_3e2m, 2, context_2, mac_length_2)
 K_3 = EDHOC_KDF(PRK_3e2m, 3, TH_3, key_length)
 IV_3 = EDHOC_KDF(PRK_3e2m, 4, TH_3, iv_length)
 SALT_4e3m = EDHOC_KDF(PRK_3e2m, 5, TH_3, hash_length)
 MAC_3 = EDHOC_KDF(PRK_4e3m, 6, context_3, mac_length_3)
 PRK_out = EDHOC_KDF(PRK_4e3m, 7, TH_4, hash_length)
 K_4 = EDHOC_KDF(PRK_4e3m, 8, TH_4, key_length)
 IV_4 = EDHOC_KDF(PRK_4e3m, 9, TH_4, iv_length)
 PRK_exporter = EDHOC_KDF(PRK_out, 10, h’’, hash_length)

 Figure 8: Key derivations using EDHOC_KDF. h’’ is CBOR diagnostic
 notation for the empty byte string, 0x40.

4.1.3. PRK_out

 The pseudorandom key PRK_out, derived as shown in Figure 8, is the
 output session key of a completed EDHOC session.

 Keys for applications are derived using EDHOC_Exporter (see
 Section 4.2.1) from PRK_exporter, which in turn is derived from
 PRK_out as shown in Figure 8. For the purpose of generating
 application keys, it is sufficient to store PRK_out or PRK_exporter.
 (Note that the word "store" used here does not imply that the
 application has access to the plaintext PRK_out since that may be
 reserved for code within a Trusted Execution Environment, see
 Section 9.8).

4.2. Keys for EDHOC Applications

 This section defines EDHOC_Exporter in terms of EDHOC_KDF and
 PRK_exporter. A key update function is defined in Appendix H.

Selander, et al. Expires 25 July 2024 [Page 29]

Internet-Draft EDHOC January 2024

4.2.1. EDHOC_Exporter

 Keying material for the application can be derived using the
 EDHOC_Exporter interface defined as:

 EDHOC_Exporter(exporter_label, context, length)
 = EDHOC_KDF(PRK_exporter, exporter_label, context, length)

 where

 * exporter_label is a registered uint from the EDHOC_Exporter Label
 registry (Section 10.1)

 * context is a bstr defined by the application

 * length is a uint defined by the application

 The (exporter_label, context) pair used in EDHOC_Exporter must be
 unique, i.e., an (exporter_label, context) MUST NOT be used for two
 different purposes. However, an application can re-derive the same
 key several times as long as it is done securely. For example, in
 most encryption algorithms the same key can be reused with different
 nonces. The context can for example be the empty CBOR byte string.

 Examples of use of the EDHOC_Exporter are given in Appendix A.

5. Message Formatting and Processing

 This section specifies formatting of the messages and processing
 steps. Error messages are specified in Section 6. Annotated traces
 of EDHOC sessions are provided in [I-D.ietf-lake-traces].

 An EDHOC message is encoded as a sequence of CBOR data items (CBOR
 Sequence, [RFC8742]). Additional optimizations are made to reduce
 message overhead.

 While EDHOC uses the COSE_Key, COSE_Sign1, and COSE_Encrypt0
 structures, only a subset of the parameters is included in the EDHOC
 messages, see Appendix C.3. In order to recreate the COSE object,
 the recipient endpoint may need to add parameters to the COSE headers
 not included in the EDHOC message, for example the parameter ’alg’ to
 COSE_Sign1 or COSE_Encrypt0.

Selander, et al. Expires 25 July 2024 [Page 30]

Internet-Draft EDHOC January 2024

5.1. EDHOC Message Processing Outline

 For each new/ongoing EDHOC session, the endpoints are assumed to keep
 an associated protocol state containing identifiers, keying material,
 etc. used for subsequent processing of protocol related data. The
 protocol state is assumed to be associated with an application
 profile (Section 3.9) which provides the context for how messages are
 transported, identified, and processed.

 EDHOC messages SHALL be processed according to the current protocol
 state. The following steps are expected to be performed at reception
 of an EDHOC message:

 1. Detect that an EDHOC message has been received, for example by
 means of port number, URI, or media type (Section 3.9).

 2. Retrieve the protocol state according to the message correlation,
 see Section 3.4.1. If there is no protocol state, in the case of
 message_1, a new protocol state is created. The Responder
 endpoint needs to make use of available denial-of-service
 mitigation (Section 9.7).

 3. If the message received is an error message, then process it
 according to Section 6, else process it as the expected next
 message according to the protocol state.

 The message processing steps SHALL be processed in order, unless
 otherwise stated. If the processing fails for some reason then,
 typically, an error message is sent, the EDHOC session is aborted,
 and the protocol state erased. When the composition and sending of
 one message is completed and before the next message is received,
 error messages SHALL NOT be sent.

 After having successfully processed the last message (message_3 or
 message_4 depending on application profile) the EDHOC session is
 completed, after which no error messages are sent and EDHOC session
 output MAY be maintained even if error messages are received.
 Further details are provided in the following subsections and in
 Section 6.

 Different instances of the same message MUST NOT be processed in one
 EDHOC session. Note that processing will fail if the same message
 appears a second time for EDHOC processing in the same EDHOC session
 because the state of the protocol has moved on and now expects
 something else. Message deduplication MUST be done by the transport
 protocol (see Section 3.4) or, if not supported by the transport, as
 described in Section 7.

Selander, et al. Expires 25 July 2024 [Page 31]

Internet-Draft EDHOC January 2024

5.2. EDHOC Message 1

5.2.1. Formatting of Message 1

 message_1 SHALL be a CBOR Sequence (see Appendix C.1) as defined
 below

 message_1 = (
 METHOD : int,
 SUITES_I : suites,
 G_X : bstr,
 C_I : bstr / -24..23,
 ? EAD_1,
)

 suites = [2* int] / int
 EAD_1 = 1* ead

 where:

 * METHOD - authentication method, see Section 3.2.

 * SUITES_I - array of cipher suites which the Initiator supports
 constructed as specified in Section 5.2.2.

 * G_X - the ephemeral public key of the Initiator

 * C_I - variable length connection identifier. Note that connection
 identifiers are byte strings but certain values are represented as
 integers in the message, see Section 3.3.2.

 * EAD_1 - external authorization data, see Section 3.8.

5.2.2. Initiator Composition of Message 1

 The processing steps are detailed below and in Section 6.3.

 The Initiator SHALL compose message_1 as follows:

 * Construct SUITES_I as an array of cipher suites supported by I in
 order of preference by I with the first cipher suite in the array
 being the most preferred by I, and the last being the one selected
 by I for this EDHOC session. If the cipher suite most preferred
 by I is selected then SUITES_I contains only that cipher suite and
 is encoded as an int. All cipher suites, if any, preferred by I
 over the selected one MUST be included. (See also Section 6.3.)

Selander, et al. Expires 25 July 2024 [Page 32]

Internet-Draft EDHOC January 2024

 - The selected suite is based on what the Initiator can assume to
 be supported by the Responder; if the Initiator previously
 received from the Responder an error message with error code 2
 containing SUITES_R (see Section 6.3) indicating cipher suites
 supported by the Responder, then the Initiator SHOULD select
 its most preferred supported cipher suite among those (bearing
 in mind that error messages may be forged).

 - The Initiator MUST NOT change its order of preference for
 cipher suites, and MUST NOT omit a cipher suite preferred to
 the selected one because of previous error messages received
 from the Responder.

 * Generate an ephemeral ECDH key pair using the curve in the
 selected cipher suite and format it as a COSE_Key. Let G_X be the
 ’x’ parameter of the COSE_Key.

 * Choose a connection identifier C_I and store it during the EDHOC
 session.

 * Encode message_1 as a sequence of CBOR encoded data items as
 specified in Section 5.2.1

5.2.3. Responder Processing of Message 1

 The Responder SHALL process message_1 in the following order:

 * Decode message_1 (see Appendix C.1).

 * Process message_1, in particular verify that the selected cipher
 suite is supported and that no prior cipher suite as ordered in
 SUITES_I is supported.

 * If all processing completed successfully, and if EAD_1 is present,
 then make it available to the application for EAD processing.

 If any processing step fails, then the Responder MUST send an EDHOC
 error message back as defined in Section 6, and the EDHOC session
 MUST be aborted.

5.3. EDHOC Message 2

5.3.1. Formatting of Message 2

 message_2 SHALL be a CBOR Sequence (see Appendix C.1) as defined
 below

Selander, et al. Expires 25 July 2024 [Page 33]

Internet-Draft EDHOC January 2024

 message_2 = (
 G_Y_CIPHERTEXT_2 : bstr,
)

 where:

 * G_Y_CIPHERTEXT_2 - the concatenation of G_Y (i.e., the ephemeral
 public key of the Responder) and CIPHERTEXT_2.

5.3.2. Responder Composition of Message 2

 The Responder SHALL compose message_2 as follows:

 * Generate an ephemeral ECDH key pair using the curve in the
 selected cipher suite and format it as a COSE_Key. Let G_Y be the
 ’x’ parameter of the COSE_Key.

 * Choose a connection identifier C_R and store it for the length of
 the EDHOC session.

 * Compute the transcript hash TH_2 = H(G_Y, H(message_1)) where
 H() is the EDHOC hash algorithm of the selected cipher suite. The
 input to the hash function is a CBOR Sequence. Note that
 H(message_1) can be computed and cached already in the processing
 of message_1.

 * Compute MAC_2 as in Section 4.1.2 with context_2 = << C_R,
 ID_CRED_R, TH_2, CRED_R, ? EAD_2 >> (see Appendix C.1 for
 notation)

 - If the Responder authenticates with a static Diffie-Hellman key
 (method equals 1 or 3), then mac_length_2 is the EDHOC MAC
 length of the selected cipher suite. If the Responder
 authenticates with a signature key (method equals 0 or 2), then
 mac_length_2 is equal to hash_length.

 - C_R - variable length connection identifier. Note that
 connection identifiers are byte strings but certain values are
 represented as integers in the message, see Section 3.3.2.

 - ID_CRED_R - identifier to facilitate the retrieval of CRED_R,
 see Section 3.5.3

 - CRED_R - CBOR item containing the authentication credential of
 the Responder, see Section 3.5.2

 - EAD_2 - external authorization data, see Section 3.8

Selander, et al. Expires 25 July 2024 [Page 34]

Internet-Draft EDHOC January 2024

 * If the Responder authenticates with a static Diffie-Hellman key
 (method equals 1 or 3), then Signature_or_MAC_2 is MAC_2. If the
 Responder authenticates with a signature key (method equals 0 or
 2), then Signature_or_MAC_2 is the ’signature’ field of a
 COSE_Sign1 object, computed as specified in Section 4.4 of
 [RFC9053] using the signature algorithm of the selected cipher
 suite, the private authentication key of the Responder, and the
 following parameters as input (see Appendix C.3 for an overview of
 COSE and Appendix C.1 for notation):

 - protected = << ID_CRED_R >>

 - external_aad = << TH_2, CRED_R, ? EAD_2 >>

 - payload = MAC_2

 * CIPHERTEXT_2 is calculated with a binary additive stream cipher,
 using a keystream generated with EDHOC_Expand, and the following
 plaintext:

 - PLAINTEXT_2 = (C_R, ID_CRED_R / bstr / -24..23,
 Signature_or_MAC_2, ? EAD_2)

 o If ID_CRED_R contains a single ’kid’ parameter, i.e.,
 ID_CRED_R = { 4 : kid_R }, then the compact encoding is
 applied, see Section 3.5.3.2.

 o C_R - variable length connection identifier. Note that
 connection identifiers are byte strings but certain values
 are represented as integers in the message, see
 Section 3.3.2.

 - Compute KEYSTREAM_2 as in Section 4.1.2, where plaintext_length
 is the length of PLAINTEXT_2. For the case of plaintext_length
 exceeding the EDHOC_KDF output size, see Appendix G.

 - CIPHERTEXT_2 = PLAINTEXT_2 XOR KEYSTREAM_2

 * Encode message_2 as a sequence of CBOR encoded data items as
 specified in Section 5.3.1.

5.3.3. Initiator Processing of Message 2

 The Initiator SHALL process message_2 in the following order:

 * Decode message_2 (see Appendix C.1).

Selander, et al. Expires 25 July 2024 [Page 35]

Internet-Draft EDHOC January 2024

 * Retrieve the protocol state using available message correlation
 (e.g., the CoAP Token, the 5-tuple, or the prepended C_I, see
 Section 3.4.1).

 * Decrypt CIPHERTEXT_2, see Section 5.3.2.

 * If all processing completed successfully, then make ID_CRED_R and
 (if present) EAD_2 available to the application for
 authentication- and EAD processing. When and how to perform
 authentication is up to the application.

 * Obtain the authentication credential (CRED_R) and the
 authentication key of R from the application (or by other means).

 * Verify Signature_or_MAC_2 using the algorithm in the selected
 cipher suite. The verification process depends on the method, see
 Section 5.3.2. Make the result of the verification available to
 the application.

 If any processing step fails, then the Initiator MUST send an EDHOC
 error message back as defined in Section 6, and the EDHOC session
 MUST be aborted.

5.4. EDHOC Message 3

5.4.1. Formatting of Message 3

 message_3 SHALL be a CBOR Sequence (see Appendix C.1) as defined
 below

 message_3 = (
 CIPHERTEXT_3 : bstr,
)

5.4.2. Initiator Composition of Message 3

 The Initiator SHALL compose message_3 as follows:

 * Compute the transcript hash TH_3 = H(TH_2, PLAINTEXT_2, CRED_R)
 where H() is the EDHOC hash algorithm of the selected cipher
 suite. The input to the hash function is a CBOR Sequence. Note
 that TH_3 can be computed and cached already in the processing of
 message_2.

 * Compute MAC_3 as in Section 4.1.2, with context_3 = << ID_CRED_I,
 TH_3, CRED_I, ? EAD_3 >>

Selander, et al. Expires 25 July 2024 [Page 36]

Internet-Draft EDHOC January 2024

 - If the Initiator authenticates with a static Diffie-Hellman key
 (method equals 2 or 3), then mac_length_3 is the EDHOC MAC
 length of the selected cipher suite. If the Initiator
 authenticates with a signature key (method equals 0 or 1), then
 mac_length_3 is equal to hash_length.

 - ID_CRED_I - identifier to facilitate the retrieval of CRED_I,
 see Section 3.5.3

 - CRED_I - CBOR item containing the authentication credential of
 the Initiator, see Section 3.5.2

 - EAD_3 - external authorization data, see Section 3.8

 * If the Initiator authenticates with a static Diffie-Hellman key
 (method equals 2 or 3), then Signature_or_MAC_3 is MAC_3. If the
 Initiator authenticates with a signature key (method equals 0 or
 1), then Signature_or_MAC_3 is the ’signature’ field of a
 COSE_Sign1 object, computed as specified in Section 4.4 of
 [RFC9052] using the signature algorithm of the selected cipher
 suite, the private authentication key of the Initiator, and the
 following parameters as input (see Appendix C.3):

 - protected = << ID_CRED_I >>

 - external_aad = << TH_3, CRED_I, ? EAD_3 >>

 - payload = MAC_3

 * Compute a COSE_Encrypt0 object as defined in Sections 5.2 and 5.3
 of [RFC9052], with the EDHOC AEAD algorithm of the selected cipher
 suite, using the encryption key K_3, the initialization vector
 IV_3 (if used by the AEAD algorithm), the plaintext PLAINTEXT_3,
 and the following parameters as input (see Appendix C.3):

 - protected = h’’

 - external_aad = TH_3

 - K_3 and IV_3 are defined in Section 4.1.2

 - PLAINTEXT_3 = (ID_CRED_I / bstr / -24..23, Signature_or_MAC_3,
 ? EAD_3)

 o If ID_CRED_I contains a single ’kid’ parameter, i.e.,
 ID_CRED_I = { 4 : kid_I }, then the compact encoding is
 applied, see Section 3.5.3.2.

Selander, et al. Expires 25 July 2024 [Page 37]

Internet-Draft EDHOC January 2024

 CIPHERTEXT_3 is the ’ciphertext’ of COSE_Encrypt0.

 * Compute the transcript hash TH_4 = H(TH_3, PLAINTEXT_3, CRED_I)
 where H() is the EDHOC hash algorithm of the selected cipher
 suite. The input to the hash function is a CBOR Sequence.

 * Calculate PRK_out as defined in Figure 8. The Initiator can now
 derive application keys using the EDHOC_Exporter interface, see
 Section 4.2.1.

 * Encode message_3 as a CBOR data item as specified in
 Section 5.4.1.

 * Make the connection identifiers (C_I, C_R) and the application
 algorithms in the selected cipher suite available to the
 application.

 After creating message_3, the Initiator can compute PRK_out, see
 Section 4.1.3, and derive application keys using the EDHOC_Exporter
 interface, see Section 4.2.1. The Initiator SHOULD NOT persistently
 store PRK_out or application keys until the Initiator has verified
 message_4 or a message protected with a derived application key, such
 as an OSCORE message, from the Responder and the application has
 authenticated the Responder. This is similar to waiting for an
 acknowledgment (ACK) in a transport protocol. The Initiator SHOULD
 NOT send protected application data until the application has
 authenticated the Responder.

5.4.3. Responder Processing of Message 3

 The Responder SHALL process message_3 in the following order:

 * Decode message_3 (see Appendix C.1).

 * Retrieve the protocol state using available message correlation
 (e.g., the CoAP Token, the 5-tuple, or the prepended C_R, see
 Section 3.4.1).

 * Decrypt and verify the COSE_Encrypt0 as defined in Sections 5.2
 and 5.3 of [RFC9052], with the EDHOC AEAD algorithm in the
 selected cipher suite, and the parameters defined in
 Section 5.4.2.

 * If all processing completed successfully, then make ID_CRED_I and
 (if present) EAD_3 available to the application for
 authentication- and EAD processing. When and how to perform
 authentication is up to the application.

Selander, et al. Expires 25 July 2024 [Page 38]

Internet-Draft EDHOC January 2024

 * Obtain the authentication credential (CRED_I) and the
 authentication key of I from the application (or by other means).

 * Verify Signature_or_MAC_3 using the algorithm in the selected
 cipher suite. The verification process depends on the method, see
 Section 5.4.2. Make the result of the verification available to
 the application.

 * Make the connection identifiers (C_I, C_R) and the application
 algorithms in the selected cipher suite available to the
 application.

 After processing message_3, the Responder can compute PRK_out, see
 Section 4.1.3, and derive application keys using the EDHOC_Exporter
 interface, see Section 4.2.1. The Responder SHOULD NOT persistently
 store PRK_out or application keys until the application has
 authenticated the Initiator. The Responder SHOULD NOT send protected
 application data until the application has authenticated the
 Initiator.

 If any processing step fails, then the Responder MUST send an EDHOC
 error message back as defined in Section 6, and the EDHOC session
 MUST be aborted.

5.5. EDHOC Message 4

 This section specifies message_4 which is OPTIONAL to support. Key
 confirmation is normally provided by sending an application message
 from the Responder to the Initiator protected with a key derived with
 the EDHOC_Exporter, e.g., using OSCORE (see Appendix A). In
 deployments where no protected application message is sent from the
 Responder to the Initiator, message_4 MUST be supported and MUST be
 used. Two examples of such deployments are:

 1. When EDHOC is only used for authentication and no application
 data is sent.

 2. When application data is only sent from the Initiator to the
 Responder.

 Further considerations about when to use message_4 are provided in
 Section 3.9 and Section 9.1.

5.5.1. Formatting of Message 4

 message_4 SHALL be a CBOR Sequence (see Appendix C.1) as defined
 below

Selander, et al. Expires 25 July 2024 [Page 39]

Internet-Draft EDHOC January 2024

 message_4 = (
 CIPHERTEXT_4 : bstr,
)

5.5.2. Responder Composition of Message 4

 The Responder SHALL compose message_4 as follows:

 * Compute a COSE_Encrypt0 as defined in Sections 5.2 and 5.3 of
 [RFC9052], with the EDHOC AEAD algorithm of the selected cipher
 suite, using the encryption key K_4, the initialization vector
 IV_4 (if used by the AEAD algorithm), the plaintext PLAINTEXT_4,
 and the following parameters as input (see Appendix C.3):

 - protected = h’’

 - external_aad = TH_4

 - K_4 and IV_4 are defined in Section 4.1.2

 - PLAINTEXT_4 = (? EAD_4)

 o EAD_4 - external authorization data, see Section 3.8.

 CIPHERTEXT_4 is the ’ciphertext’ of COSE_Encrypt0.

 * Encode message_4 as a CBOR data item as specified in
 Section 5.5.1.

5.5.3. Initiator Processing of Message 4

 The Initiator SHALL process message_4 as follows:

 * Decode message_4 (see Appendix C.1).

 * Retrieve the protocol state using available message correlation
 (e.g., the CoAP Token, the 5-tuple, or the prepended C_I, see
 Section 3.4.1).

 * Decrypt and verify the COSE_Encrypt0 as defined in Sections 5.2
 and 5.3 of [RFC9052], with the EDHOC AEAD algorithm in the
 selected cipher suite, and the parameters defined in
 Section 5.5.2.

 * Make (if present) EAD_4 available to the application for EAD
 processing.

Selander, et al. Expires 25 July 2024 [Page 40]

Internet-Draft EDHOC January 2024

 If any processing step fails, then the Initiator MUST send an EDHOC
 error message back as defined in Section 6, and the EDHOC session
 MUST be aborted.

 After verifying message_4, the Initiator is assured that the
 Responder has calculated the key PRK_out (key confirmation) and that
 no other party can derive the key.

6. Error Handling

 This section defines the format for error messages, and the
 processing associated with the currently defined error codes.
 Additional error codes may be registered, see Section 10.4.

 Many kinds of errors that can occur during EDHOC processing. As in
 CoAP, an error can be triggered by errors in the received message or
 internal errors in the receiving endpoint. Except for processing and
 formatting errors, it is up to the application when to send an error
 message. Sending error messages is essential for debugging but MAY
 be skipped if, for example, an EDHOC session cannot be found or due
 to denial-of-service reasons, see Section 9.7. Error messages in
 EDHOC are always fatal. After sending an error message, the sender
 MUST abort the EDHOC session. The receiver SHOULD treat an error
 message as an indication that the other party likely has aborted the
 EDHOC session. But since error messages might be forged, the
 receiver MAY try to continue the EDHOC session.

 An EDHOC error message can be sent by either endpoint as a reply to
 any non-error EDHOC message. How errors at the EDHOC layer are
 transported depends on lower layers, which need to enable error
 messages to be sent and processed as intended.

 error SHALL be a CBOR Sequence (see Appendix C.1) as defined below

 error = (
 ERR_CODE : int,
 ERR_INFO : any,
)

 Figure 9: EDHOC error message.

 where:

 * ERR_CODE - error code encoded as an integer. The value 0 is
 reserved for success and can only be used internally, all other
 values (negative or positive) indicate errors.

Selander, et al. Expires 25 July 2024 [Page 41]

Internet-Draft EDHOC January 2024

 * ERR_INFO - error information. Content and encoding depend on
 error code.

 The remainder of this section specifies the currently defined error
 codes, see Figure 10. Additional error codes and corresponding error
 information may be specified.

 +----------+---------------+--+
 | ERR_CODE | ERR_INFO Type | Description |
 +==========+===============+==+
 | 0 | | This value is reserved |
 +----------+---------------+--+
 | 1 | tstr | Unspecified error |
 +----------+---------------+--+
 | 2 | suites | Wrong selected cipher suite |
 +----------+---------------+--+
 | 3 | true | Unknown credential referenced |
 +----------+---------------+--+

 Figure 10: EDHOC error codes and error information.

6.1. Success

 Error code 0 MAY be used internally in an application to indicate
 success, i.e., as a standard value in case of no error, e.g., in
 status reporting or log files. Error code 0 MUST NOT be used as part
 of the EDHOC message exchange. If an endpoint receives an error
 message with error code 0, then it MUST abort the EDHOC session and
 MUST NOT send an error message.

6.2. Unspecified Error

 Error code 1 is used for errors that do not have a specific error
 code defined. ERR_INFO MUST be a text string containing a human-
 readable diagnostic message which SHOULD be written in English, for
 example "Method not supported". The diagnostic text message is
 mainly intended for software engineers that during debugging need to
 interpret it in the context of the EDHOC specification. The
 diagnostic message SHOULD be provided to the calling application
 where it SHOULD be logged.

Selander, et al. Expires 25 July 2024 [Page 42]

Internet-Draft EDHOC January 2024

6.3. Wrong Selected Cipher Suite

 Error code 2 MUST only be used when replying to message_1 in case the
 cipher suite selected by the Initiator is not supported by the
 Responder, or if the Responder supports a cipher suite more preferred
 by the Initiator than the selected cipher suite, see Section 5.2.3.
 In this case, ERR_INFO = SUITES_R and is of type suites, see
 Section 5.2.1. If the Responder does not support the selected cipher
 suite, then SUITES_R MUST include one or more supported cipher
 suites. If the Responder supports a cipher suite in SUITES_I other
 than the selected cipher suite (independently of if the selected
 cipher suite is supported or not) then SUITES_R MUST include the
 supported cipher suite in SUITES_I which is most preferred by the
 Initiator. SUITES_R MAY include a single cipher suite, in which case
 it is encoded as an int. If the Responder does not support any
 cipher suite in SUITES_I, then it SHOULD include all its supported
 cipher suites in SUITES_R.

 In contrast to SUITES_I, the order of the cipher suites in SUITES_R
 has no significance.

6.3.1. Cipher Suite Negotiation

 After receiving SUITES_R, the Initiator can determine which cipher
 suite to select (if any) for the next EDHOC run with the Responder.

 If the Initiator intends to contact the Responder in the future, the
 Initiator SHOULD remember which selected cipher suite to use until
 the next message_1 has been sent, otherwise the Initiator and
 Responder will likely run into an infinite loop where the Initiator
 selects its most preferred cipher suite and the Responder sends an
 error with supported cipher suites. After a completed EDHOC session,
 the Initiator MAY remember the selected cipher suite to use in future
 EDHOC sessions. Note that if the Initiator or Responder is updated
 with new cipher suite policies, any cached information may be
 outdated.

 Note that the Initiator’s list of supported cipher suites and order
 of preference is fixed (see Section 5.2.1 and Section 5.2.2).
 Furthermore, the Responder SHALL only accept message_1 if the
 selected cipher suite is the first cipher suite in SUITES_I that the
 Responder also supports (see Section 5.2.3). Following this
 procedure ensures that the selected cipher suite is the most
 preferred (by the Initiator) cipher suite supported by both parties.
 For examples, see Section 6.3.2.

Selander, et al. Expires 25 July 2024 [Page 43]

Internet-Draft EDHOC January 2024

 If the selected cipher suite is not the first cipher suite which the
 Responder supports in SUITES_I received in message_1, then the
 Responder MUST abort the EDHOC session, see Section 5.2.3. If
 SUITES_I in message_1 is manipulated, then the integrity verification
 of message_2 containing the transcript hash TH_2 will fail and the
 Initiator will abort the EDHOC session.

6.3.2. Examples

 Assume that the Initiator supports the five cipher suites 5, 6, 7, 8,
 and 9 in decreasing order of preference. Figures 11 and 12 show two
 examples of how the Initiator can format SUITES_I and how SUITES_R is
 used by Responders to give the Initiator information about the cipher
 suites that the Responder supports.

 In Example 1 (Figure 11), the Responder supports cipher suite 6 but
 not the initially selected cipher suite 5. The Responder rejects the
 first message_1 with an error indicating support for suite 6 in
 SUITES_R. The Initiator also supports suite 6, and therefore selects
 suite 6 in the second message_1. The Initiator prepends in SUITES_I
 the selected suite 6 with the more preferred suites, in this case
 suite 5, to mitigate a potential attack on the cipher suite
 negotiation.

 Initiator Responder
 | METHOD, SUITES_I = 5, G_X, C_I, EAD_1 |
 +-->|
 | message_1 |
 | |
 | ERR_CODE = 2, SUITES_R = 6 |
 |<--+
 | error |
 | |
 | METHOD, SUITES_I = [5, 6], G_X, C_I, EAD_1 |
 +-->|
 | message_1 |

 Figure 11: Cipher suite negotiation example 1.

Selander, et al. Expires 25 July 2024 [Page 44]

Internet-Draft EDHOC January 2024

 In Example 2 (Figure 12), the Responder supports cipher suites 8 and
 9 but not the more preferred (by the Initiator) cipher suites 5, 6 or
 7. To illustrate the negotiation mechanics we let the Initiator
 first make a guess that the Responder supports suite 6 but not suite
 5. Since the Responder supports neither 5 nor 6, it rejects the
 first message_1 with an error indicating support for suites 8 and 9
 in SUITES_R (in any order). The Initiator also supports suites 8 and
 9, and prefers suite 8, so selects suite 8 in the second message_1.
 The Initiator prepends in SUITES_I the selected suite 8 with the more
 preferred suites in order of preference, in this case suites 5, 6 and
 7, to mitigate a potential attack on the cipher suite negotiation.

 Note 1. If the Responder had supported suite 5, then the first
 message_1 would not have been accepted either, since the Responder
 observes that suite 5 is more preferred by the Initiator than the
 selected suite 6. In that case the Responder would have included
 suite 5 in SUITES_R of the response, and it would then have become
 the selected and only suite in the second message_1.

 Note 2. For each message_1 the Initiator MUST generate a new
 ephemeral ECDH key pair matching the selected cipher suite.

 Initiator Responder
 | METHOD, SUITES_I = [5, 6], G_X, C_I, EAD_1 |
 +-->|
 | message_1 |
 | |
 | ERR_CODE = 2, SUITES_R = [9, 8] |
 |<--+
 | error |
 | |
 | METHOD, SUITES_I = [5, 6, 7, 8], G_X, C_I, EAD_1 |
 +-->|
 | message_1 |

 Figure 12: Cipher suite negotiation example 2.

6.4. Unknown Credential Referenced

 Error code 3 is used for errors due to a received credential
 identifier (ID_CRED_R in message_2 or ID_CRED_I message_3) containing
 a reference to a credential which the receiving endpoint does not
 have access to. The intent with this error code is that the endpoint
 who sent the credential identifier should for the next EDHOC session
 try another credential identifier supported according to the
 application profile.

Selander, et al. Expires 25 July 2024 [Page 45]

Internet-Draft EDHOC January 2024

 For example, an application profile could list x5t and x5chain as
 supported credential identifiers, and state that x5t should be used
 if it can be assumed that the X.509 certificate is available at the
 receiving side. This error code thus enables the certificate chain
 to be sent only when needed, bearing in mind that error messages are
 not protected so an adversary can try to cause unnecessary large
 credential identifiers.

 For the error code 3, the error information SHALL be the CBOR simple
 value true (0xf5). Error code 3 MUST NOT be used when the received
 credential identifier type is not supported.

7. EDHOC Message Deduplication

 EDHOC by default assumes that message duplication is handled by the
 transport, in this section exemplified with CoAP, see Appendix A.2.

 Deduplication of CoAP messages is described in Section 4.5 of
 [RFC7252]. This handles the case when the same Confirmable (CON)
 message is received multiple times due to missing acknowledgment on
 the CoAP messaging layer. The recommended processing in [RFC7252] is
 that the duplicate message is acknowledged (ACK), but the received
 message is only processed once by the CoAP stack.

 Message deduplication is resource demanding and therefore not
 supported in all CoAP implementations. Since EDHOC is targeting
 constrained environments, it is desirable that EDHOC can optionally
 support transport layers which do not handle message duplication.
 Special care is needed to avoid issues with duplicate messages, see
 Section 5.1.

 The guiding principle here is similar to the deduplication processing
 on the CoAP messaging layer: a received duplicate EDHOC message SHALL
 NOT result in another instance of the next EDHOC message. The result
 MAY be that a duplicate next EDHOC message is sent, provided it is
 still relevant with respect to the current protocol state. In any
 case, the received message MUST NOT be processed more than once in
 the same EDHOC session. This is called "EDHOC message
 deduplication".

 An EDHOC implementation MAY store the previously sent EDHOC message
 to be able to resend it.

 In principle, if the EDHOC implementation would deterministically
 regenerate the identical EDHOC message previously sent, it would be
 possible to instead store the protocol state to be able to recreate
 and resend the previously sent EDHOC message. However, even if the
 protocol state is fixed, the message generation may introduce

Selander, et al. Expires 25 July 2024 [Page 46]

Internet-Draft EDHOC January 2024

 differences which compromise security. For example, in the
 generation of message_3, if I is performing a (non-deterministic)
 ECDSA signature (say, method 0 or 1, cipher suite 2 or 3) then
 PLAINTEXT_3 is randomized, but K_3 and IV_3 are the same, leading to
 a key and nonce reuse.

 The EDHOC implementation MUST NOT store previous protocol state and
 regenerate an EDHOC message if there is a risk that the same key and
 IV are used for two (or more) distinct messages.

 The previous message or protocol state MUST NOT be kept longer than
 what is required for retransmission, for example, in the case of CoAP
 transport, no longer than the EXCHANGE_LIFETIME (see Section 4.8.2 of
 [RFC7252]).

8. Compliance Requirements

 In the absence of an application profile specifying otherwise:

 An implementation MAY support only Initiator or only Responder.

 An implementation MAY support only a single method. None of the
 methods are mandatory-to-implement.

 Implementations MUST support ’kid’ parameters. None of the other
 COSE header parameters are mandatory-to-implement.

 An implementation MAY support only a single credential type (CCS,
 CWT, X.509, C509). None of the credential types are mandatory-to-
 implement.

 Implementations MUST support the EDHOC_Exporter.

 Implementations MAY support message_4. Error codes (ERR_CODE) 1 and
 2 MUST be supported.

 Implementations MUST support EAD.

 Implementations MUST support cipher suite 2 and 3. Cipher suites 2
 (AES-CCM-16-64-128, SHA-256, 8, P-256, ES256, AES-CCM-16-64-128, SHA-
 256) and 3 (AES-CCM-16-128-128, SHA-256, 16, P-256, ES256, AES-CCM-
 16-64-128, SHA-256) only differ in the size of the MAC length, so
 supporting one or both of these is not significantly different.
 Implementations only need to implement the algorithms needed for
 their supported methods.

9. Security Considerations

Selander, et al. Expires 25 July 2024 [Page 47]

Internet-Draft EDHOC January 2024

9.1. Security Properties

 EDHOC has similar security properties as can be expected from the
 theoretical SIGMA-I protocol [SIGMA] and the Noise XX pattern
 [Noise], which are similar to methods 0 and 3, respectively. Proven
 security properties are detailed in the security analysis
 publications referenced at the end of this section.

 Using the terminology from [SIGMA], EDHOC provides forward secrecy,
 mutual authentication with aliveness, consistency, and peer
 awareness. As described in [SIGMA], message_3 provides peer
 awareness to the Responder while message_4 provides peer awareness to
 the Initiator. By including the authentication credentials in the
 transcript hash, EDHOC protects against Duplicate Signature Key
 Selection (DSKS)-like identity mis-binding attack that the MAC-then-
 Sign variant of SIGMA-I is otherwise vulnerable to.

 As described in [SIGMA], different levels of identity protection are
 provided to the Initiator and the Responder. EDHOC provides identity
 protection of the Initiator against active attacks and identity
 protection of the Responder against passive attacks. An active
 attacker can get the credential identifier of the Responder by
 eavesdropping on the destination address used for transporting
 message_1 and then sending its own message_1 to the same address.
 The roles should be assigned to protect the most sensitive identity/
 identifier, typically that which is not possible to infer from
 routing information in the lower layers.

 EDHOC messages might change in transit due to a noisy channel or
 through modification by an attacker. Changes in message_1 and
 message_2 (except Signature_or_MAC_2 when the signature scheme is not
 strongly unforgeable) are detected when verifying Signature_or_MAC_2.
 Changes to not strongly unforgeable Signature_or_MAC_2, and message_3
 are detected when verifying CIPHERTEXT_3. Changes to message_4 are
 detected when verifying CIPHERTEXT_4.

 Compared to [SIGMA], EDHOC adds an explicit method type and expands
 the message authentication coverage to additional elements such as
 algorithms, external authorization data, and previous plaintext
 messages. This protects against an attacker replaying messages or
 injecting messages from another EDHOC session.

Selander, et al. Expires 25 July 2024 [Page 48]

Internet-Draft EDHOC January 2024

 EDHOC also adds selection of connection identifiers and downgrade
 protected negotiation of cryptographic parameters, i.e., an attacker
 cannot affect the negotiated parameters. A single session of EDHOC
 does not include negotiation of cipher suites, but it enables the
 Responder to verify that the selected cipher suite is the most
 preferred cipher suite by the Initiator which is supported by both
 the Initiator and the Responder, and to abort the EDHOC session if
 not.

 As required by [RFC7258], IETF protocols need to mitigate pervasive
 monitoring when possible. EDHOC therefore only supports methods with
 ephemeral Diffie-Hellman and provides a key update function (see
 Appendix H) for lightweight application protocol rekeying. Either of
 these provides forward secrecy, in the sense that compromise of the
 private authentication keys does not compromise past session keys
 (PRK_out), and compromise of a session key does not compromise past
 session keys. Frequently re-running EDHOC with ephemeral Diffie-
 Hellman forces attackers to perform dynamic key exfiltration where
 the attacker must have continuous interactions with the collaborator,
 which is a significant sustained attack.

 To limit the effect of breaches, it is important to limit the use of
 symmetric group keys for bootstrapping. EDHOC therefore strives to
 make the additional cost of using raw public keys and self-signed
 certificates as small as possible. Raw public keys and self-signed
 certificates are not a replacement for a public key infrastructure
 but SHOULD be used instead of symmetric group keys for bootstrapping.

 Compromise of the long-term keys (private signature or static DH
 keys) does not compromise the security of completed EDHOC sessions.
 Compromising the private authentication keys of one party lets an
 active attacker impersonate that compromised party in EDHOC sessions
 with other parties but does not let the attacker impersonate other
 parties in EDHOC sessions with the compromised party. Compromise of
 the long-term keys does not enable a passive attacker to compromise
 future session keys (PRK_out). Compromise of the HDKF input
 parameters (ECDH shared secret) leads to compromise of all session
 keys derived from that compromised shared secret. Compromise of one
 session key does not compromise other session keys. Compromise of
 PRK_out leads to compromise of all keying material derived with the
 EDHOC_Exporter.

 Based on the cryptographic algorithms requirements Section 9.3, EDHOC
 provides a minimum of 64-bit security against online brute force
 attacks and a minimum of 128-bit security against offline brute force
 attacks. To break 64-bit security against online brute force an
 attacker would on average have to send 4.3 billion messages per
 second for 68 years, which is infeasible in constrained IoT radio

Selander, et al. Expires 25 July 2024 [Page 49]

Internet-Draft EDHOC January 2024

 technologies. A forgery against a 64-bit MAC in EDHOC breaks the
 security of all future application data, while a forgery against a
 64-bit MAC in the subsequent application protocol (e.g., OSCORE
 [RFC8613]) typically only breaks the security of the data in the
 forged packet.

 As the EDHOC session is aborted when verification fails, the security
 against online attacks is given by the sum of the strength of the
 verified signatures and MACs (including MAC in AEAD). As an example,
 if EDHOC is used with method 3, cipher suite 2, and message_4, the
 Responder is authenticated with 128-bit security against online
 attacks (the sum of the 64-bit MACs in message_2 and message_4). The
 same principle applies for MACs in an application protocol keyed by
 EDHOC as long as EDHOC is rerun when verification of the first MACs
 in the application protocol fails. As an example, if EDHOC with
 method 3 and cipher suite 2 is used as in Figure 2 of
 [I-D.ietf-core-oscore-edhoc], 128-bit mutual authentication against
 online attacks can be achieved after completion of the first OSCORE
 request and response.

 After sending message_3, the Initiator is assured that no other party
 than the Responder can compute the key PRK_out. While the Initiator
 can securely send protected application data, the Initiator SHOULD
 NOT persistently store the keying material PRK_out until the
 Initiator has verified message_4 or a message protected with a
 derived application key, such as an OSCORE message, from the
 Responder. After verifying message_3, the Responder is assured that
 an honest Initiator has computed the key PRK_out. The Responder can
 securely derive and store the keying material PRK_out, and send
 protected application data.

 External authorization data sent in message_1 (EAD_1) or message_2
 (EAD_2) should be considered unprotected by EDHOC, see Section 9.5.
 EAD_2 is encrypted but the Responder has not yet authenticated the
 Initiator and the encryption does not provide confidentiality against
 active attacks.

 External authorization data sent in message_3 (EAD_3) or message_4
 (EAD_4) is protected between Initiator and Responder by the protocol,
 but note that EAD fields may be used by the application before the
 message verification is completed, see Section 3.8. Designing a
 secure mechanism that uses EAD is not necessarily straightforward.
 This document only provides the EAD transport mechanism, but the
 problem of agreeing on the surrounding context and the meaning of the
 information passed to and from the application remains. Any new uses
 of EAD should be subject to careful review.

Selander, et al. Expires 25 July 2024 [Page 50]

Internet-Draft EDHOC January 2024

 Key compromise impersonation (KCI): In EDHOC authenticated with
 signature keys, EDHOC provides KCI protection against an attacker
 having access to the long-term key or the ephemeral secret key. With
 static Diffie-Hellman key authentication, KCI protection would be
 provided against an attacker having access to the long-term Diffie-
 Hellman key, but not to an attacker having access to the ephemeral
 secret key. Note that the term KCI has typically been used for
 compromise of long-term keys, and that an attacker with access to the
 ephemeral secret key can only attack that specific EDHOC session.

 Repudiation: If an endpoint authenticates with a signature, the other
 endpoint can prove that the endpoint performed a run of the protocol
 by presenting the data being signed as well as the signature itself.
 With static Diffie-Hellman key authentication, the authenticating
 endpoint can deny having participated in the protocol.

 Earlier versions of EDHOC have been formally analyzed [Bruni18]
 [Norrman20] [CottierPointcheval22] [Jacomme23] [GuentherIlunga22] and
 the specification has been updated based on the analysis.

9.2. Cryptographic Considerations

 The SIGMA protocol requires that the encryption of message_3 provides
 confidentiality against active attackers and EDHOC message_4 relies
 on the use of authenticated encryption. Hence, the message
 authenticating functionality of the authenticated encryption in EDHOC
 is critical: authenticated encryption MUST NOT be replaced by plain
 encryption only, even if authentication is provided at another level
 or through a different mechanism.

 To reduce message overhead EDHOC does not use explicit nonces and
 instead relies on the ephemeral public keys to provide randomness to
 each EDHOC session. A good amount of randomness is important for the
 key generation, to provide liveness, and to protect against
 interleaving attacks. For this reason, the ephemeral keys MUST NOT
 be used in more than one EDHOC message, and both parties SHALL
 generate fresh random ephemeral key pairs. Note that an ephemeral
 key may be used to calculate several ECDH shared secrets. When
 static Diffie-Hellman authentication is used the same ephemeral key
 is used in both ephemeral-ephemeral and ephemeral-static ECDH.

 As discussed in [SIGMA], the encryption of message_2 does only need
 to protect against passive attacker as active attackers can always
 get the Responder’s identity by sending their own message_1. EDHOC
 uses the EDHOC_Expand function (typically HKDF-Expand) as a binary
 additive stream cipher which is proven secure as long as the expand
 function is a PRF. HKDF-Expand is not often used as a stream cipher
 as it is slow on long messages, and most applications require both

Selander, et al. Expires 25 July 2024 [Page 51]

Internet-Draft EDHOC January 2024

 confidentiality with indistinguishability under chosen ciphertext
 (IND-CCA) as well as integrity protection. For the encryption of
 message_2, any speed difference is negligible, IND-CCA does not
 increase security, and integrity is provided by the inner MAC (and
 signature depending on method).

 Requirements for how to securely generate, validate, and process the
 public keys depend on the elliptic curve. For X25519 and X448, the
 requirements are defined in [RFC7748]. For X25519 and X448, the
 check for all-zero output as specified in Section 6 of [RFC7748] MUST
 be done. For secp256r1, secp384r1, and secp521r1, the requirements
 are defined in Section 5 of [SP-800-56A]. For secp256r1, secp384r1,
 and secp521r1, at least partial public-key validation MUST be done.

 The same authentication credential MAY be used for both the Initiator
 and Responder roles. As noted in Section 12 of [RFC9052] the use of
 a single key for multiple algorithms is strongly discouraged unless
 proven secure by a dedicated cryptographic analysis. In particular
 this recommendation applies to using the same private key for static
 Diffie-Hellman authentication and digital signature authentication.
 A preliminary conjecture is that a minor change to EDHOC may be
 sufficient to fit the analysis of secure shared signature and ECDH
 key usage in [Degabriele11] and [Thormarker21].

 The property that a completed EDHOC session implies that another
 identity has been active is upheld as long as the Initiator does not
 have its own identity in the set of Responder identities it is
 allowed to communicate with. In Trust on first use (TOFU) use cases,
 see Appendix D.5, the Initiator should verify that the Responder’s
 identity is not equal to its own. Any future EDHOC methods using
 e.g., pre-shared keys might need to mitigate this in other ways.
 However, an active attacker can gain information about the set of
 identities an Initiator is willing to communicate with. If the
 Initiator is willing to communicate with all identities except its
 own an attacker can determine that a guessed Initiator identity is
 correct. To not leak any long-term identifiers, using a freshly
 generated authentication key as identity in each initial TOFU session
 is RECOMMENDED.

Selander, et al. Expires 25 July 2024 [Page 52]

Internet-Draft EDHOC January 2024

 NIST SP 800-56A [SP-800-56A] forbids deriving secret and non-secret
 randomness from the same KDF instance, but this decision has been
 criticized by Krawczyk [HKDFpaper] and doing so is common practice.
 In addition to IVs, other examples are the challenge in EAP-TTLS, the
 RAND in 3GPP AKAs, and the Session-Id in EAP-TLS 1.3. Note that part
 of KEYSTREAM_2 is also non-secret randomness as it is known or
 predictable to an attacker. The more recent NIST SP 800-108
 [SP-800-108] aligns with [HKDFpaper] and states that for a secure
 KDF, the revelation of one portion of the derived keying material
 must not degrade the security of any other portion of that keying
 material.

9.3. Cipher Suites and Cryptographic Algorithms

 When using private cipher suite or registering new cipher suites, the
 choice of key length used in the different algorithms needs to be
 harmonized, so that a sufficient security level is maintained for
 authentication credentials, the EDHOC session, and the protection of
 application data. The Initiator and the Responder should enforce a
 minimum security level.

 The output size of the EDHOC hash algorithm MUST be at least
 256-bits, i.e., the hash algorithms SHA-1 and SHA-256/64 (SHA-256
 truncated to 64-bits) SHALL NOT be supported for use in EDHOC except
 for certificate identification with x5t and c5t. For security
 considerations of SHA-1, see [RFC6194]. As EDHOC integrity protects
 the whole authentication credentials, the choice of hash algorithm in
 x5t and c5t does not affect security, and using the same hash
 algorithm as in the cipher suite, but with as much truncation as
 possible, is RECOMMENDED. That is, when the EDHOC hash algorithm is
 SHA-256, using SHA-256/64 in x5t and c5t is RECOMMENDED. The EDHOC
 MAC length MUST be at least 8 bytes and the tag length of the EDHOC
 AEAD algorithm MUST be at least 64-bits. Note that secp256k1 is only
 defined for use with ECDSA and not for ECDH. Note that some COSE
 algorithms are marked as not recommended in the COSE IANA registry.

9.4. Post-Quantum Considerations

 As of the publication of this specification, it is unclear when or
 even if a quantum computer of sufficient size and power to exploit
 public key cryptography will exist. Deployments that need to
 consider risks decades into the future should transition to Post-
 Quantum Cryptography (PQC) in the not-too-distant future. Many other
 systems should take a slower wait-and-see approach where PQC is
 phased in when the quantum threat is more imminent. Current PQC
 algorithms have limitations compared to Elliptic Curve Cryptography
 (ECC) and the data sizes would be problematic in many constrained IoT
 systems.

Selander, et al. Expires 25 July 2024 [Page 53]

Internet-Draft EDHOC January 2024

 Symmetric algorithms used in EDHOC such as SHA-256 and AES-CCM-
 16-64-128 are practically secure against even large quantum
 computers. Two of NIST’s security levels for quantum-resistant
 public-key cryptography are based on AES-128 and SHA-256. Quantum
 computer will likely be expensive, slow due to heavy error
 correction, and Grovers algorithm, which is proven to be optimal,
 cannot effectively be parallelized. Grovers algorithm will provide
 little or no advantage in attacking AES, and AES-128 will remain
 secure for decades to come [NISTPQC].

 EDHOC supports all signature algorithms defined by COSE, including
 PQC signature algorithms such as HSS-LMS. EDHOC is currently only
 specified for use with key exchange algorithms of type ECDH curves,
 but any Key Encapsulation Method (KEM), including PQC KEMs, can be
 used in method 0. While the key exchange in method 0 is specified
 with terms of the Diffie-Hellman protocol, the key exchange adheres
 to a KEM interface: G_X is then the public key of the Initiator, G_Y
 is the encapsulation, and G_XY is the shared secret. Use of PQC KEMs
 to replace static DH authentication would likely require a
 specification updating EDHOC with new methods.

9.5. Unprotected Data and Privacy

 The Initiator and the Responder must make sure that unprotected data
 and metadata do not reveal any sensitive information. This also
 applies for encrypted data sent to an unauthenticated party. In
 particular, it applies to EAD_1, ID_CRED_R, EAD_2, and error
 messages. Using the same EAD_1 in several EDHOC sessions allows
 passive eavesdroppers to correlate the different sessions. Note that
 even if ead_value is encrypted outside of EDHOC, the ead_labels in
 EAD_1 is revealed to passive attackers and the ead_labels in EAD_2 is
 revealed to active attackers. Another consideration is that the list
 of supported cipher suites may potentially be used to identify the
 application. The Initiator and the Responder must also make sure
 that unauthenticated data does not trigger any harmful actions. In
 particular, this applies to EAD_1 and error messages.

Selander, et al. Expires 25 July 2024 [Page 54]

Internet-Draft EDHOC January 2024

 An attacker observing network traffic may use connection identifiers
 sent in clear in EDHOC or the subsequent application protocol to
 correlate packets sent on different paths or at different times. The
 attacker may use this information for traffic flow analysis or to
 track an endpoint. Application protocols using connection
 identifiers from EDHOC SHOULD provide mechanisms to update the
 connection identifiers and MAY provide mechanisms to issue several
 simultaneously active connection identifiers. See [RFC9000] for a
 non-constrained example of such mechanisms. Connection identifiers
 can e.g., be chosen randomly among the set of unused 1-byte
 connection identifiers. Connection identity privacy mechanisms are
 only useful when there are not fixed identifiers such as IP address
 or MAC address in the lower layers.

9.6. Updated Internet Threat Model Considerations

 Since the publication of [RFC3552] there has been an increased
 awareness of the need to protect against endpoints that are
 compromised, malicious, or whose interests simply do not align with
 the interests of users
 [I-D.arkko-arch-internet-threat-model-guidance]. [RFC7624] describes
 an updated threat model for Internet confidentiality, see
 Section 9.1. [I-D.arkko-arch-internet-threat-model-guidance] further
 expands the threat model. Implementations and users should take
 these threat models into account and consider actions to reduce the
 risk of tracking by other endpoints. In particular, even data sent
 protected to the other endpoint such as ID_CRED fields and EAD fields
 can be used for tracking, see Section 2.7 of
 [I-D.arkko-arch-internet-threat-model-guidance].

 The fields ID_CRED_I, ID_CRED_R, EAD_2, EAD_3, and EAD_4 have
 variable length, and information regarding the length may leak to an
 attacker. A passive attacker may, e.g., be able to differentiate
 endpoints using identifiers of different length. To mitigate this
 information leakage an implementation may ensure that the fields have
 fixed length or use padding. An implementation may, e.g., only use
 fixed length identifiers like ’kid’ of length 1. Alternatively,
 padding may be used (see Section 3.8.1) to hide the true length of,
 e.g., certificates by value in ’x5chain’ or ’c5c’.

9.7. Denial-of-Service

 EDHOC itself does not provide countermeasures against denial-of-
 service attacks. In particular, by sending a number of new or
 replayed message_1 an attacker may cause the Responder to allocate
 state, perform cryptographic operations, and amplify messages. To
 mitigate such attacks, an implementation SHOULD make use of available
 lower layer mechanisms. For instance, when EDHOC is transferred as

Selander, et al. Expires 25 July 2024 [Page 55]

Internet-Draft EDHOC January 2024

 an exchange of CoAP messages, the CoAP server can use the Echo option
 defined in [RFC9175] which forces the CoAP client to demonstrate
 reachability at its apparent network address. To avoid an additional
 roundtrip the Initiator can reduce the amplification factor by
 padding message_1, i.e., using EAD_1, see Section 3.8.1. Note that
 while the Echo option mitigates some resource exhaustion aspects of
 spoofing, it does not protect against a distributed denial-of-service
 attack made by real, potentially compromised, clients. Similarly,
 limiting amplification only reduces the impact, which still may be
 significant because of a large number of clients engaged in the
 attack.

 An attacker can also send faked message_2, message_3, message_4, or
 error in an attempt to trick the receiving party to send an error
 message and abort the EDHOC session. EDHOC implementations MAY
 evaluate if a received message is likely to have been forged by an
 attacker and ignore it without sending an error message or aborting
 the EDHOC session.

9.8. Implementation Considerations

 The availability of a secure random number generator is essential for
 the security of EDHOC. If no true random number generator is
 available, a random seed MUST be provided from an external source and
 used with a cryptographically secure pseudorandom number generator.
 As each pseudorandom number must only be used once, an implementation
 needs to get a unique input to the pseudorandom number generator
 after reboot, or continuously store state in nonvolatile memory.
 Appendix B.1.1 in [RFC8613] describes issues and solution approaches
 for writing to nonvolatile memory. Intentionally or unintentionally
 weak or predictable pseudorandom number generators can be abused or
 exploited for malicious purposes. [RFC8937] describes a way for
 security protocol implementations to augment their (pseudo)random
 number generators using a long-term private key and a deterministic
 signature function. This improves randomness from broken or
 otherwise subverted random number generators. The same idea can be
 used with other secrets and functions such as a Diffie-Hellman
 function or a symmetric secret and a PRF like HMAC or KMAC. It is
 RECOMMENDED to not trust a single source of randomness and to not put
 unaugmented random numbers on the wire.

 For many constrained IoT devices it is problematic to support several
 crypto primitives. Existing devices can be expected to support
 either ECDSA or EdDSA. If ECDSA is supported, "deterministic ECDSA"
 as specified in [RFC6979] MAY be used. Pure deterministic elliptic-
 curve signatures such as deterministic ECDSA and EdDSA have gained
 popularity over randomized ECDSA as their security do not depend on a
 source of high-quality randomness. Recent research has however found

Selander, et al. Expires 25 July 2024 [Page 56]

Internet-Draft EDHOC January 2024

 that implementations of these signature algorithms may be vulnerable
 to certain side-channel and fault injection attacks due to their
 determinism. See e.g., Section 1 of
 [I-D.irtf-cfrg-det-sigs-with-noise] for a list of attack papers. As
 suggested in Section 2.1.1 of [RFC9053] this can be addressed by
 combining randomness and determinism.

 Appendix D of [I-D.ietf-lwig-curve-representations] describes how
 Montgomery curves such as X25519 and X448 and (twisted) Edwards
 curves as curves such as Ed25519 and Ed448 can be mapped to and from
 short-Weierstrass form for implementation on platforms that
 accelerate elliptic curve group operations in short-Weierstrass form.

 All private keys, symmetric keys, and IVs MUST be secret. Only the
 Responder SHALL have access to the Responder’s private authentication
 key and only the Initiator SHALL have access to the Initiator’s
 private authentication key. Implementations should provide
 countermeasures to side-channel attacks such as timing attacks.
 Intermediate computed values such as ephemeral ECDH keys and ECDH
 shared secrets MUST be deleted after key derivation is completed.

 The Initiator and the Responder are responsible for verifying the
 integrity and validity of certificates. Verification of validity may
 require the use of a Real-Time Clock (RTC). The selection of trusted
 CAs should be done very carefully and certificate revocation should
 be supported. The choice of revocation mechanism is left to the
 application. For example, in case of X.509 certificates, Certificate
 Revocation Lists [RFC5280] or OCSP [RFC6960] may be used.

 Similar considerations as for certificates are needed for CWT/CCS.
 The endpoints are responsible for verifying the integrity and
 validity of CWT/CCS, and to handle revocation. The application needs
 to determine what trust anchors are relevant, and have a well-defined
 trust-establishment process. A self-signed certificate/CWT or CCS
 appearing in the protocol cannot be a trigger to modify the set of
 trust anchors. One common way for a new trust anchor to be added to
 (or removed from) a device is by means firmware upgrade. See
 [RFC9360] for a longer discussion on trust and validation in
 constrained devices.

Selander, et al. Expires 25 July 2024 [Page 57]

Internet-Draft EDHOC January 2024

 Just like for certificates, the contents of the COSE header
 parameters ’kcwt’ and ’kccs’ defined in Section 10.6 must be
 processed as untrusted input. Endpoints that intend to rely on the
 assertions made by a CWT/CCS obtained from any of these methods need
 to validate the contents. For ’kccs’, which enables transport of raw
 public keys, the data structure used does not include any protection
 or verification data. ’kccs’ may be used for unauthenticated
 operations, e.g. trust on first use, with the limitations and caveats
 entailed, see Appendix D.5.

 The Initiator and the Responder are allowed to select the connection
 identifier C_I and C_R, respectively, for the other party to use in
 the ongoing EDHOC session as well as in a subsequent application
 protocol (e.g., OSCORE [RFC8613]). The choice of connection
 identifier is not security critical in EDHOC but intended to simplify
 the retrieval of the right security context in combination with using
 short identifiers. If the wrong connection identifier of the other
 party is used in a protocol message it will result in the receiving
 party not being able to retrieve a security context (which will abort
 the EDHOC session) or retrieve the wrong security context (which also
 aborts the EDHOC session as the message cannot be verified).

 If two nodes unintentionally initiate two simultaneous EDHOC sessions
 with each other even if they only want to complete a single EDHOC
 session, they MAY abort the EDHOC session with the lexicographically
 smallest G_X. Note that in cases where several EDHOC sessions with
 different parameter sets (method, COSE headers, etc.) are used, an
 attacker can affect which parameter set will be used by blocking some
 of the parameter sets.

 If supported by the device, it is RECOMMENDED that at least the long-
 term private keys are stored in a Trusted Execution Environment (TEE,
 see for example [RFC9397]) and that sensitive operations using these
 keys are performed inside the TEE. To achieve even higher security
 it is RECOMMENDED that additional operations such as ephemeral key
 generation, all computations of shared secrets, and storage of the
 PRK keys can be done inside the TEE. The use of a TEE aims at
 preventing code within that environment to be tampered with, and
 preventing data used by such code to be read or tampered with by code
 outside that environment.

Selander, et al. Expires 25 July 2024 [Page 58]

Internet-Draft EDHOC January 2024

 Note that HKDF-Expand has a relatively small maximum output length of
 255 hash_length, where hash_length is the output size in bytes of
 the EDHOC hash algorithm of the selected cipher suite. This means
 that when SHA-256 is used as hash algorithm, PLAINTEXT_2 cannot be
 longer than 8160 bytes. This is probably not a limitation for most
 intended applications, but to be able to support for example long
 certificate chains or large external authorization data, there is a
 backwards compatible method specified in Appendix G.

 The sequence of transcript hashes in EDHOC (TH_2, TH_3, TH_4) does
 not make use of a so-called running hash. This is a design choice as
 running hashes are often not supported on constrained platforms.

 When parsing a received EDHOC message, implementations MUST abort the
 EDHOC session if the message does not comply with the CDDL for that
 message. Implementations are not required to support non-
 deterministic encodings and MAY abort the EDHOC session if the
 received EDHOC message is not encoded using deterministic CBOR.
 Implementations MUST abort the EDHOC session if validation of a
 received public key fails or if any cryptographic field has the wrong
 length.

10. IANA Considerations

 This Section gives IANA Considerations and, unless otherwise noted,
 conforms with [RFC8126].

10.1. EDHOC Exporter Label Registry

 IANA is requested to create a new registry under the new registry
 group "Ephemeral Diffie-Hellman Over COSE (EDHOC)" as follows:

 Registry Name: EDHOC Exporter Label

 Reference: [[this document]]

Selander, et al. Expires 25 July 2024 [Page 59]

Internet-Draft EDHOC January 2024

 +-------------+------------------------------+-------------------+
 | Label | Description | Reference |
 +=============+==============================+===================+
 | 0 | Derived OSCORE Master Secret | [[this document]] |
 +-------------+------------------------------+-------------------+
 | 1 | Derived OSCORE Master Salt | [[this document]] |
 +-------------+------------------------------+-------------------+
 | 2-22 | Unassigned | |
 +-------------+------------------------------+-------------------+
 | 23 | Reserved | [[this document]] |
 +-------------+------------------------------+-------------------+
 | 24-32767 | Unassigned | |
 +-------------+------------------------------+-------------------+
 | 32768-65535 | Private Use | |
 +-------------+------------------------------+-------------------+

 Figure 13: EDHOC exporter label.

 +-------------+-------------------------------------+
 | Range | Registration Procedures |
 +=============+=====================================+
 | 0 to 23 | Standards Action |
 +-------------+-------------------------------------+
 | 24 to 32767 | Expert Review |
 +-------------+-------------------------------------+

10.2. EDHOC Cipher Suites Registry

 IANA is requested to create a new registry under the new registry
 group "Ephemeral Diffie-Hellman Over COSE (EDHOC)" as follows:

 Registry Name: EDHOC Cipher Suites

 Reference: [[this document]]

 The columns of the registry are Value, Array and Description, where
 Value is an integer and the other columns are text strings. The
 initial contents of the registry are:

 Value: -24
 Array: N/A
 Description: Private Use
 Reference: [[this document]]

 Value: -23
 Array: N/A
 Description: Private Use
 Reference: [[this document]]

Selander, et al. Expires 25 July 2024 [Page 60]

Internet-Draft EDHOC January 2024

 Value: -22
 Array: N/A
 Description: Private Use
 Reference: [[this document]]

 Value: -21
 Array: N/A
 Description: Private Use
 Reference: [[this document]]

 Value: 0
 Array: 10, -16, 8, 4, -8, 10, -16
 Description: AES-CCM-16-64-128, SHA-256, 8, X25519, EdDSA,
 AES-CCM-16-64-128, SHA-256
 Reference: [[this document]]

 Value: 1
 Array: 30, -16, 16, 4, -8, 10, -16
 Description: AES-CCM-16-128-128, SHA-256, 16, X25519, EdDSA,
 AES-CCM-16-64-128, SHA-256
 Reference: [[this document]]

 Value: 2
 Array: 10, -16, 8, 1, -7, 10, -16
 Description: AES-CCM-16-64-128, SHA-256, 8, P-256, ES256,
 AES-CCM-16-64-128, SHA-256
 Reference: [[this document]]

 Value: 3
 Array: 30, -16, 16, 1, -7, 10, -16
 Description: AES-CCM-16-128-128, SHA-256, 16, P-256, ES256,
 AES-CCM-16-64-128, SHA-256
 Reference: [[this document]]

 Value: 4
 Array: 24, -16, 16, 4, -8, 24, -16
 Description: ChaCha20/Poly1305, SHA-256, 16, X25519, EdDSA,
 ChaCha20/Poly1305, SHA-256
 Reference: [[this document]]

 Value: 5
 Array: 24, -16, 16, 1, -7, 24, -16
 Description: ChaCha20/Poly1305, SHA-256, 16, P-256, ES256,
 ChaCha20/Poly1305, SHA-256
 Reference: [[this document]]

Selander, et al. Expires 25 July 2024 [Page 61]

Internet-Draft EDHOC January 2024

 Value: 6
 Array: 1, -16, 16, 4, -7, 1, -16
 Description: A128GCM, SHA-256, 16, X25519, ES256,
 A128GCM, SHA-256
 Reference: [[this document]]

 Value: 23
 Reserved
 Reference: [[this document]]

 Value: 24
 Array: 3, -43, 16, 2, -35, 3, -43
 Description: A256GCM, SHA-384, 16, P-384, ES384,
 A256GCM, SHA-384
 Reference: [[this document]]

 Value: 25
 Array: 24, -45, 16, 5, -8, 24, -45
 Description: ChaCha20/Poly1305, SHAKE256, 16, X448, EdDSA,
 ChaCha20/Poly1305, SHAKE256
 Reference: [[this document]]

 +----------------+-------------------------------------+
 | Range | Registration Procedures |
 +================+=====================================+
 | -65536 to -25 | Specification Required |
 +----------------+-------------------------------------+
 | -20 to 23 | Standards Action with Expert Review |
 +----------------+-------------------------------------+
 | 24 to 65535 | Specification Required |
 +----------------+-------------------------------------+

10.3. EDHOC Method Type Registry

 IANA is requested to create a new registry under the new registry
 group "Ephemeral Diffie-Hellman Over COSE (EDHOC)" as follows:

 Registry Name: EDHOC Method Type

 Reference: [[this document]]

 The columns of the registry are Value, Initiator Authentication Key,
 and Responder Authentication Key, and Reference, where Value is an
 integer and the key columns are text strings describing the
 authentication keys.

 The initial contents of the registry are shown in Figure 4. Method
 23 is Reserved.

Selander, et al. Expires 25 July 2024 [Page 62]

Internet-Draft EDHOC January 2024

 +----------------+-------------------------------------+
 | Range | Registration Procedures |
 +================+=====================================+
 | -65536 to -25 | Specification Required |
 +----------------+-------------------------------------+
 | -24 to 23 | Standards Action with Expert Review |
 +----------------+-------------------------------------+
 | 24 to 65535 | Specification Required |
 +----------------+-------------------------------------+

10.4. EDHOC Error Codes Registry

 IANA is requested to create a new registry under the new registry
 group "Ephemeral Diffie-Hellman Over COSE (EDHOC)" as follows:

 Registry Name: EDHOC Error Codes

 Reference: [[this document]]

 The columns of the registry are ERR_CODE, ERR_INFO Type, Description,
 and Reference, where ERR_CODE is an integer, ERR_INFO is a CDDL
 defined type, and Description is a text string. The initial contents
 of the registry are shown in Figure 10. Error code 23 is Reserved.

 +----------------+-------------------------------------+
 | Range | Registration Procedures |
 +================+=====================================+
 | -65536 to -25 | Expert Review |
 +----------------+-------------------------------------+
 | -24 to 23 | Standards Action |
 +----------------+-------------------------------------+
 | 24 to 65535 | Expert Review |
 +----------------+-------------------------------------+

10.5. EDHOC External Authorization Data Registry

 IANA is requested to create a new registry under the new registry
 group "Ephemeral Diffie-Hellman Over COSE (EDHOC)" as follows:

 Registry Name: EDHOC External Authorization Data

 Reference: [[this document]]

 The columns of the registry are Name, Label, Description, and
 Reference, where Label is a non-negative integer and the other
 columns are text strings. The initial contents of the registry is
 shown in Figure 14. EAD label 23 is Reserved.

Selander, et al. Expires 25 July 2024 [Page 63]

Internet-Draft EDHOC January 2024

 +-----------+-------+------------------------+-------------------+
 | Name | Label | Description | Reference |
 +===========+=======+========================+===================+
 | Padding | 0 | Randomly generated | [[this document]] |
 | | | CBOR byte string | Section 3.8.1 |
 +-----------+-------+------------------------+-------------------+

 Figure 14: EAD labels.

 +-------------+-------------------------------------+
 | Range | Registration Procedures |
 +=============+=====================================+
 | 0 to 23 | Standards Action with Expert Review |
 +-------------+-------------------------------------+
 | 24 to 65535 | Specification Required |
 +-------------+-------------------------------------+

10.6. COSE Header Parameters Registry

 IANA is requested to register the following entries in the "COSE
 Header Parameters" registry under the registry group "CBOR Object
 Signing and Encryption (COSE)" (see Figure 15): The value of the
 ’kcwt’ header parameter is a COSE Web Token (CWT) [RFC8392], and the
 value of the ’kccs’ header parameter is a CWT Claims Set (CCS), see
 Section 1.4. The CWT/CCS must contain a COSE_Key in a ’cnf’ claim
 [RFC8747]. The Value Registry for this item is empty and omitted
 from the table below.

 +------+-------+---------------+------------------------------------+
 | Name | Label | Value Type | Description |
 +======+=======+===============+====================================+
 | kcwt | TBD1 | COSE_Messages | A CBOR Web Token (CWT) containing |
 | | | | a COSE_Key in a ’cnf’ claim and |
 | | | | possibly other claims. CWT is |
 | | | | defined in RFC 8392. COSE_Messages |
 | | | | is defined in RFC 9052. |
 +------+-------+---------------+------------------------------------+
 | kccs | TBD2 | map | A CWT Claims Set (CCS) containing |
 | | | | a COSE_Key in a ’cnf’ claim and |
 | | | | possibly other claims. CCS is |
 | | | | defined in RFC 8392. |
 +------+-------+---------------+------------------------------------+

 Figure 15: COSE header parameter labels.

Selander, et al. Expires 25 July 2024 [Page 64]

Internet-Draft EDHOC January 2024

10.7. The Well-Known URI Registry

 IANA is requested to add the well-known URI "edhoc" to the "Well-
 Known URIs" registry.

 * URI suffix: edhoc

 * Change controller: IETF

 * Specification document(s): [[this document]]

 * Related information: None

10.8. Media Types Registry

 IANA is requested to add the media types "application/edhoc+cbor-seq"
 and "application/cid-edhoc+cbor-seq" to the "Media Types" registry.

10.8.1. application/edhoc+cbor-seq Media Type Registration

 * Type name: application

 * Subtype name: edhoc+cbor-seq

 * Required parameters: N/A

 * Optional parameters: N/A

 * Encoding considerations: binary

 * Security considerations: See Section 7 of this document.

 * Interoperability considerations: N/A

 * Published specification: [[this document]] (this document)

 * Applications that use this media type: To be identified

 * Fragment identifier considerations: N/A

 * Additional information:

 - Magic number(s): N/A

 - File extension(s): N/A

 - Macintosh file type code(s): N/A

Selander, et al. Expires 25 July 2024 [Page 65]

Internet-Draft EDHOC January 2024

 * Person & email address to contact for further information: See
 "Authors’ Addresses" section.

 * Intended usage: COMMON

 * Restrictions on usage: N/A

 * Author: See "Authors’ Addresses" section.

 * Change Controller: IESG

10.8.2. application/cid-edhoc+cbor-seq Media Type Registration

 * Type name: application

 * Subtype name: cid-edhoc+cbor-seq

 * Required parameters: N/A

 * Optional parameters: N/A

 * Encoding considerations: binary

 * Security considerations: See Section 7 of this document.

 * Interoperability considerations: N/A

 * Published specification: [[this document]] (this document)

 * Applications that use this media type: To be identified

 * Fragment identifier considerations: N/A

 * Additional information:

 - Magic number(s): N/A

 - File extension(s): N/A

 - Macintosh file type code(s): N/A

 * Person & email address to contact for further information: See
 "Authors’ Addresses" section.

 * Intended usage: COMMON

 * Restrictions on usage: N/A

Selander, et al. Expires 25 July 2024 [Page 66]

Internet-Draft EDHOC January 2024

 * Author: See "Authors’ Addresses" section.

 * Change Controller: IESG

10.9. CoAP Content-Formats Registry

 IANA is requested to add the media types "application/edhoc+cbor-seq"
 and "application/cid-edhoc+cbor-seq" to the "CoAP Content-Formats"
 registry under the registry group "Constrained RESTful Environments
 (CoRE) Parameters".

+--------------------------------+----------+------+-------------------+
| Media Type | Encoding | ID | Reference |
+================================+==========+======+===================+
| application/edhoc+cbor-seq | - | TBD5 | [[this document]] |
| application/cid-edhoc+cbor-seq | - | TBD6 | [[this document]] |
+--------------------------------+----------+------+-------------------+

 Figure 16: CoAP Content-Format IDs

10.10. Resource Type (rt=) Link Target Attribute Values Registry

 IANA is requested to add the resource type "core.edhoc" to the
 "Resource Type (rt=) Link Target Attribute Values" registry under the
 registry group "Constrained RESTful Environments (CoRE) Parameters".

 * Value: "core.edhoc"

 * Description: EDHOC resource.

 * Reference: [[this document]]

10.11. Expert Review Instructions

 The IANA Registries established in this document are defined as
 "Expert Review", "Specification Required" or "Standards Action with
 Expert Review". This section gives some general guidelines for what
 the experts should be looking for, but they are being designated as
 experts for a reason so they should be given substantial latitude.

 Expert reviewers should take into consideration the following points:

Selander, et al. Expires 25 July 2024 [Page 67]

Internet-Draft EDHOC January 2024

 * Clarity and correctness of registrations. Experts are expected to
 check the clarity of purpose and use of the requested entries.
 Expert needs to make sure the values of algorithms are taken from
 the right registry, when that is required. Experts should
 consider requesting an opinion on the correctness of registered
 parameters from relevant IETF working groups. Encodings that do
 not meet these objective of clarity and completeness should not be
 registered.

 * Experts should take into account the expected usage of fields when
 approving code point assignment. The length of the encoded value
 should be weighed against how many code points of that length are
 left, the size of device it will be used on, and the number of
 code points left that encode to that size.

 * Even for "Expert Review" specifications are recommended. When
 specifications are not provided for a request where Expert Review
 is the assignment policy, the description provided needs to have
 sufficient information to verify the code points above.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, April
 2002, <https://www.rfc-editor.org/info/rfc3279>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

Selander, et al. Expires 25 July 2024 [Page 68]

Internet-Draft EDHOC January 2024

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090,
 DOI 10.17487/RFC6090, February 2011,
 <https://www.rfc-editor.org/info/rfc6090>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [RFC8410] Josefsson, S. and J. Schaad, "Algorithm Identifiers for
 Ed25519, Ed448, X25519, and X448 for Use in the Internet
 X.509 Public Key Infrastructure", RFC 8410,
 DOI 10.17487/RFC8410, August 2018,
 <https://www.rfc-editor.org/info/rfc8410>.

Selander, et al. Expires 25 July 2024 [Page 69]

Internet-Draft EDHOC January 2024

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [RFC8724] Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
 Zuniga, "SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation", RFC 8724,
 DOI 10.17487/RFC8724, April 2020,
 <https://www.rfc-editor.org/info/rfc8724>.

 [RFC8742] Bormann, C., "Concise Binary Object Representation (CBOR)
 Sequences", RFC 8742, DOI 10.17487/RFC8742, February 2020,
 <https://www.rfc-editor.org/info/rfc8742>.

 [RFC8747] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March
 2020, <https://www.rfc-editor.org/info/rfc8747>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

 [RFC9052] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Structures and Process", STD 96, RFC 9052,
 DOI 10.17487/RFC9052, August 2022,
 <https://www.rfc-editor.org/info/rfc9052>.

 [RFC9053] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Initial Algorithms", RFC 9053, DOI 10.17487/RFC9053,
 August 2022, <https://www.rfc-editor.org/info/rfc9053>.

 [RFC9175] Amsüss, C., Preuß Mattsson, J., and G. Selander,
 "Constrained Application Protocol (CoAP): Echo, Request-
 Tag, and Token Processing", RFC 9175,
 DOI 10.17487/RFC9175, February 2022,
 <https://www.rfc-editor.org/info/rfc9175>.

Selander, et al. Expires 25 July 2024 [Page 70]

Internet-Draft EDHOC January 2024

 [RFC9360] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Header Parameters for Carrying and Referencing X.509
 Certificates", RFC 9360, DOI 10.17487/RFC9360, February
 2023, <https://www.rfc-editor.org/info/rfc9360>.

11.2. Informative References

 [Bruni18] Bruni, A., Sahl Jørgensen, T., Grønbech Petersen, T., and
 C. Schürmann, "Formal Verification of Ephemeral Diffie-
 Hellman Over COSE (EDHOC)", November 2018,
 <https://www.springerprofessional.de/en/formal-
 verification-of-ephemeral-diffie-hellman-over-cose-
 edhoc/16284348>.

 [CborMe] Bormann, C., "CBOR Playground", May 2018,
 <https://cbor.me/>.

 [CNSA] NSA, "Commercial National Security Algorithm Suite",
 August 2015, <https://en.wikipedia.org/wiki/
 Commercial_National_Security_Algorithm_Suite>.

 [CottierPointcheval22]
 Cottier, B. and D. Pointcheval, "Security Analysis of the
 EDHOC protocol", September 2022,
 <https://arxiv.org/abs/2209.03599>.

 [Degabriele11]
 Degabriele, J. P., Lehmann, A., Paterson, K. G., Smart, N.
 P., and M. Strefler, "On the Joint Security of Encryption
 and Signature in EMV", December 2011,
 <https://eprint.iacr.org/2011/615>.

 [GuentherIlunga22]
 Günther, F. and M. Ilunga, "Careful with MAc-then-SIGn: A
 Computational Analysis of the EDHOC Lightweight
 Authenticated Key Exchange Protocol", December 2022,
 <https://eprint.iacr.org/2022/1705>.

 [HKDFpaper]
 Krawczyk, H., "Cryptographic Extraction and Key
 Derivation: The HKDF Scheme", May 2010,
 <https://eprint.iacr.org/2010/264.pdf>.

Selander, et al. Expires 25 July 2024 [Page 71]

Internet-Draft EDHOC January 2024

 [I-D.arkko-arch-internet-threat-model-guidance]
 Arkko, J. and S. Farrell, "Internet Threat Model
 Guidance", Work in Progress, Internet-Draft, draft-arkko-
 arch-internet-threat-model-guidance-00, 12 July 2021,
 <https://datatracker.ietf.org/doc/html/draft-arkko-arch-
 internet-threat-model-guidance-00>.

 [I-D.ietf-core-oscore-edhoc]
 Palombini, F., Tiloca, M., Höglund, R., Hristozov, S., and
 G. Selander, "Using Ephemeral Diffie-Hellman Over COSE
 (EDHOC) with the Constrained Application Protocol (CoAP)
 and Object Security for Constrained RESTful Environments
 (OSCORE)", Work in Progress, Internet-Draft, draft-ietf-
 core-oscore-edhoc-10, 29 November 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-core-
 oscore-edhoc-10>.

 [I-D.ietf-core-oscore-key-update]
 Höglund, R. and M. Tiloca, "Key Update for OSCORE
 (KUDOS)", Work in Progress, Internet-Draft, draft-ietf-
 core-oscore-key-update-06, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-core-
 oscore-key-update-06>.

 [I-D.ietf-cose-cbor-encoded-cert]
 Mattsson, J. P., Selander, G., Raza, S., Höglund, J., and
 M. Furuhed, "CBOR Encoded X.509 Certificates (C509
 Certificates)", Work in Progress, Internet-Draft, draft-
 ietf-cose-cbor-encoded-cert-07, 20 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cose-
 cbor-encoded-cert-07>.

 [I-D.ietf-iotops-security-protocol-comparison]
 Mattsson, J. P., Palombini, F., and M. Vuini,
 "Comparison of CoAP Security Protocols", Work in Progress,
 Internet-Draft, draft-ietf-iotops-security-protocol-
 comparison-03, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-iotops-
 security-protocol-comparison-03>.

 [I-D.ietf-lake-reqs]
 Vuini, M., Selander, G., Mattsson, J. P., and D. Garcia-
 Carillo, "Requirements for a Lightweight AKE for OSCORE",
 Work in Progress, Internet-Draft, draft-ietf-lake-reqs-04,
 8 June 2020, <https://datatracker.ietf.org/doc/html/draft-
 ietf-lake-reqs-04>.

Selander, et al. Expires 25 July 2024 [Page 72]

Internet-Draft EDHOC January 2024

 [I-D.ietf-lake-traces]
 Selander, G., Mattsson, J. P., Serafin, M., Tiloca, M.,
 and M. Vuini, "Traces of EDHOC", Work in Progress,
 Internet-Draft, draft-ietf-lake-traces-08, 22 September
 2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
 lake-traces-08>.

 [I-D.ietf-lwig-curve-representations]
 Struik, R., "Alternative Elliptic Curve Representations",
 Work in Progress, Internet-Draft, draft-ietf-lwig-curve-
 representations-23, 21 January 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-lwig-
 curve-representations-23>.

 [I-D.ietf-rats-eat]
 Lundblade, L., Mandyam, G., O’Donoghue, J., and C.
 Wallace, "The Entity Attestation Token (EAT)", Work in
 Progress, Internet-Draft, draft-ietf-rats-eat-25, 15
 January 2024, <https://datatracker.ietf.org/doc/html/
 draft-ietf-rats-eat-25>.

 [I-D.irtf-cfrg-det-sigs-with-noise]
 Mattsson, J. P., Thormarker, E., and S. Ruohomaa,
 "Deterministic ECDSA and EdDSA Signatures with Additional
 Randomness", Work in Progress, Internet-Draft, draft-irtf-
 cfrg-det-sigs-with-noise-00, 8 August 2022,
 <https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-
 det-sigs-with-noise-00>.

 [I-D.selander-lake-authz]
 Selander, G., Mattsson, J. P., Vuini, M., Richardson,
 M., and A. Schellenbaum, "Lightweight Authorization using
 Ephemeral Diffie-Hellman Over COSE", Work in Progress,
 Internet-Draft, draft-selander-lake-authz-03, 7 July 2023,
 <https://datatracker.ietf.org/doc/html/draft-selander-
 lake-authz-03>.

 [Jacomme23]
 Jacomme, C., Klein, E., Kremer, S., and M. Racouchot, "A
 comprehensive, formal and automated analysis of the EDHOC
 protocol", October 2022,
 <https://hal.inria.fr/hal-03810102/>.

 [NISTPQC] "Post-Quantum Cryptography FAQs", August 2023,
 <https://csrc.nist.gov/Projects/post-quantum-cryptography/
 faqs>.

Selander, et al. Expires 25 July 2024 [Page 73]

Internet-Draft EDHOC January 2024

 [Noise] Perrin, T., "The Noise Protocol Framework, Revision 34",
 July 2018, <https://noiseprotocol.org/noise.html>.

 [Norrman20]
 Norrman, K., Sundararajan, V., and A. Bruni, "Formal
 Analysis of EDHOC Key Establishment for Constrained IoT
 Devices", September 2020,
 <https://arxiv.org/abs/2007.11427>.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 DOI 10.17487/RFC2986, November 2000,
 <https://www.rfc-editor.org/info/rfc2986>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
 Considerations for the SHA-0 and SHA-1 Message-Digest
 Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
 <https://www.rfc-editor.org/info/rfc6194>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC7624] Barnes, R., Schneier, B., Jennings, C., Hardie, T.,
 Trammell, B., Huitema, C., and D. Borkmann,
 "Confidentiality in the Face of Pervasive Surveillance: A
 Threat Model and Problem Statement", RFC 7624,
 DOI 10.17487/RFC7624, August 2015,
 <https://www.rfc-editor.org/info/rfc7624>.

Selander, et al. Expires 25 July 2024 [Page 74]

Internet-Draft EDHOC January 2024

 [RFC8366] Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

 [RFC8376] Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
 Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
 <https://www.rfc-editor.org/info/rfc8376>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8937] Cremers, C., Garratt, L., Smyshlyaev, S., Sullivan, N.,
 and C. Wood, "Randomness Improvements for Security
 Protocols", RFC 8937, DOI 10.17487/RFC8937, October 2020,
 <https://www.rfc-editor.org/info/rfc8937>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
 <https://www.rfc-editor.org/info/rfc9147>.

 [RFC9176] Amsüss, C., Ed., Shelby, Z., Koster, M., Bormann, C., and
 P. van der Stok, "Constrained RESTful Environments (CoRE)
 Resource Directory", RFC 9176, DOI 10.17487/RFC9176, April
 2022, <https://www.rfc-editor.org/info/rfc9176>.

 [RFC9397] Pei, M., Tschofenig, H., Thaler, D., and D. Wheeler,
 "Trusted Execution Environment Provisioning (TEEP)
 Architecture", RFC 9397, DOI 10.17487/RFC9397, July 2023,
 <https://www.rfc-editor.org/info/rfc9397>.

 [SECG] "Standards for Efficient Cryptography 1 (SEC 1)", May
 2009, <https://www.secg.org/sec1-v2.pdf>.

 [SIGMA] Krawczyk, H., "SIGMA - The ’SIGn-and-MAc’ Approach to
 Authenticated Diffie-Hellman and Its Use in the IKE-
 Protocols", June 2003,
 <https://www.iacr.org/cryptodb/archive/2003/
 CRYPTO/1495/1495.pdf>.

Selander, et al. Expires 25 July 2024 [Page 75]

Internet-Draft EDHOC January 2024

 [SP-800-108]
 Chen, L., "Recommendation for Key Derivation Using
 Pseudorandom Functions", NIST Special Publication 800-108
 Revision 1, August 2022,
 <https://doi.org/10.6028/NIST.SP.800-108r1>.

 [SP-800-56A]
 Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.
 Davis, "Recommendation for Pair-Wise Key-Establishment
 Schemes Using Discrete Logarithm Cryptography",
 NIST Special Publication 800-56A Revision 3, April 2018,
 <https://doi.org/10.6028/NIST.SP.800-56Ar3>.

 [SP800-185]
 John Kelsey, Shu-jen Chang, and Ray Perlner, "SHA-3
 Derived Functions cSHAKE, KMAC, TupleHash and
 ParallelHash", NIST Special Publication 800-185, December
 2016, <https://doi.org/10.6028/NIST.SP.800-185>.

 [Thormarker21]
 Thormarker, E., "On using the same key pair for Ed25519
 and an X25519 based KEM", April 2021,
 <https://eprint.iacr.org/2021/509.pdf>.

Appendix A. Use with OSCORE and Transfer over CoAP

 This appendix describes how to derive an OSCORE security context when
 EDHOC is used to key OSCORE, and how to transfer EDHOC messages over
 CoAP. The use of CoAP or OSCORE with EDHOC is optional, but if you
 are using CoAP or OSCORE, then certain normative requirements apply
 as detailed in the subsections.

A.1. Deriving the OSCORE Security Context

 This section specifies how to use EDHOC output to derive the OSCORE
 security context.

 After successful processing of EDHOC message_3, Client and Server
 derive Security Context parameters for OSCORE as follows (see
 Section 3.2 of [RFC8613]):

 * The Master Secret and Master Salt SHALL be derived by using the
 EDHOC_Exporter interface, see Section 4.2.1:

 - The EDHOC Exporter Labels for deriving the OSCORE Master Secret
 and the OSCORE Master Salt, are the uints 0 and 1,
 respectively.

Selander, et al. Expires 25 July 2024 [Page 76]

Internet-Draft EDHOC January 2024

 - The context parameter is h’’ (0x40), the empty CBOR byte
 string.

 - By default, oscore_key_length is the key length (in bytes) of
 the application AEAD Algorithm of the selected cipher suite for
 the EDHOC session. Also by default, oscore_salt_length has
 value 8. The Initiator and Responder MAY agree out-of-band on
 a longer oscore_key_length than the default, and on shorter or
 longer than the default oscore_salt_length.

 Master Secret = EDHOC_Exporter(0, h’’, oscore_key_length)
 Master Salt = EDHOC_Exporter(1, h’’, oscore_salt_length)

 * The AEAD Algorithm SHALL be the application AEAD algorithm of the
 selected cipher suite for the EDHOC session.

 * The HKDF Algorithm SHALL be the one based on the application hash
 algorithm of the selected cipher suite for the EDHOC session. For
 example, if SHA-256 is the application hash algorithm of the
 selected cipher suite, HKDF SHA-256 is used as HKDF Algorithm in
 the OSCORE Security Context.

 * The relationship between identifiers in OSCORE and EDHOC is
 specified in Section 3.3.3. The OSCORE Sender ID and Recipient ID
 SHALL be determined by the EDHOC connection identifiers C_R and
 C_I for the EDHOC session as shown in Figure 17.

 +-----------------+------------------+---------------------+
 | | OSCORE Sender ID | OSCORE Recipient ID |
 +=================+==================+=====================+
 | EDHOC Initiator | C_R | C_I |
 +-----------------+------------------+---------------------+
 | EDHOC Responder | C_I | C_R |
 +-----------------+------------------+---------------------+

 Figure 17: Usage of connection identifiers in OSCORE.

 Client and Server SHALL use the parameters above to establish an
 OSCORE Security Context, as per Section 3.2.1 of [RFC8613].

 From then on, Client and Server retrieve the OSCORE protocol state
 using the Recipient ID, and optionally other transport information
 such as the 5-tuple.

Selander, et al. Expires 25 July 2024 [Page 77]

Internet-Draft EDHOC January 2024

A.2. Transferring EDHOC over CoAP

 This section specifies how EDHOC can be transferred as an exchange of
 CoAP [RFC7252] messages. CoAP provides a reliable transport that can
 preserve packet ordering, provides flow and congestion control, and
 handles message duplication. CoAP can also perform fragmentation and
 mitigate certain denial-of-service attacks. The underlying CoAP
 transport should be used in reliable mode, in particular when
 fragmentation is used, to avoid, e.g., situations with hanging
 endpoints waiting for each other.

 EDHOC may run with the Initiator either being CoAP client or CoAP
 server. We denote the former by the "forward message flow" (see
 Appendix A.2.1) and the latter by the "reverse message flow" (see
 Appendix A.2.2). By default, we assume the forward message flow, but
 the roles SHOULD be chosen to protect the most sensitive identity,
 see Section 9.

 According to this specification, EDHOC is transferred in POST
 requests to the Uri-Path: "/.well-known/edhoc" (see Section 10.7),
 and 2.04 (Changed) responses. An application may define its own path
 that can be discovered, e.g., using a resource directory [RFC9176].
 Client applications can use the resource type "core.edhoc" to
 discover a server’s EDHOC resource, i.e., where to send a request for
 executing the EDHOC protocol, see Section 10.10. An alternative
 transfer of the forward message flow is specified in
 [I-D.ietf-core-oscore-edhoc].

 In order for the server to correlate a message received from a client
 to a message previously sent in the same EDHOC session over CoAP,
 messages sent by the client SHALL be prepended with the CBOR
 serialization of the connection identifier which the server has
 selected, see Section 3.4.1. This applies both to the forward and
 the reverse message flows. To indicate a new EDHOC session in the
 forward message flow, message_1 SHALL be prepended with the CBOR
 simple value true (0xf5). Even if CoAP is carried over a reliable
 transport protocol such as TCP, the prepending of identifiers
 specified here SHALL be practiced to enable interoperability
 independent of how CoAP is transported.

 The prepended identifiers are encoded in CBOR and thus self-
 delimiting. The representation of identifiers described in
 Section 3.3.2 SHALL be used. They are sent in front of the actual
 EDHOC message to keep track of messages in an EDHOC session, and only
 the part of the body following the identifier is used for EDHOC
 processing. In particular, the connection identifiers within the
 EDHOC messages are not impacted by the prepended identifiers.

Selander, et al. Expires 25 July 2024 [Page 78]

Internet-Draft EDHOC January 2024

 An EDHOC message has media type application/edhoc+cbor-seq, whereas
 an EDHOC message prepended by a connection identifier has media type
 application/cid-edhoc+cbor-seq, see Section 10.9.

 To mitigate certain denial-of-service attacks, the CoAP server MAY
 respond to the first POST request with a 4.01 (Unauthorized)
 containing an Echo option [RFC9175]. This forces the Initiator to
 demonstrate reachability at its apparent network address. If message
 fragmentation is needed, the EDHOC messages may be fragmented using
 the CoAP Block-Wise Transfer mechanism [RFC7959].

 EDHOC error messages need to be transported in response to a message
 that failed (see Section 6). EDHOC error messages transported with
 CoAP are carried in the payload.

 Note that the transport over CoAP can serve as a blueprint for other
 client-server protocols:

 * The client prepends the connection identifier selected by the
 server (or, for message_1, the CBOR simple value true) to any
 request message it sends.

 * The server does not send any such indicator, as responses are
 matched to request by the client-server protocol design.

A.2.1. The Forward Message Flow

 In the forward message flow the CoAP client is the Initiator and the
 CoAP server is the Responder. This flow protects the client identity
 against active attackers and the server identity against passive
 attackers.

 In the forward message flow, the CoAP Token enables correlation on
 the Initiator (client) side, and the prepended C_R enables
 correlation on the Responder (server) side.

 * EDHOC message_1 is sent in the payload of a POST request from the
 client to the server’s resource for EDHOC, prepended with the
 identifier true (0xf5) indicating a new EDHOC session.

 * EDHOC message_2 or the EDHOC error message is sent from the server
 to the client in the payload of the response, in the former case
 with response code 2.04 (Changed), in the latter with response
 code as specified in Appendix A.2.3.

 * EDHOC message_3 or the EDHOC error message is sent from the client
 to the server’s resource in the payload of a POST request,
 prepended with the connection identifier C_R.

Selander, et al. Expires 25 July 2024 [Page 79]

Internet-Draft EDHOC January 2024

 * If EDHOC message_4 is used, or in case of an error message, it is
 sent from the server to the client in the payload of the response,
 with response codes analogously to message_2. In case of an error
 message sent in response to message_4, it is sent analogously to
 error message sent in response to message_2.

 An example of a completed EDHOC session over CoAP in the forward
 message flow is shown in Figure 18.

 Client Server
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | | Content-Format: application/cid-edhoc+cbor-seq
 | | Payload: true, EDHOC message_1
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 | Content-Format: application/edhoc+cbor-seq
 | | Payload: EDHOC message_2
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | | Content-Format: application/cid-edhoc+cbor-seq
 | | Payload: C_R, EDHOC message_3
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 | Content-Format: application/edhoc+cbor-seq
 | | Payload: EDHOC message_4
 | |

 Figure 18: Example of the forward message flow.

 The forward message flow of EDHOC can be combined with an OSCORE
 exchange in a total of two round-trips, see
 [I-D.ietf-core-oscore-edhoc].

A.2.2. The Reverse Message Flow

 In the reverse message flow the CoAP client is the Responder and the
 CoAP server is the Initiator. This flow protects the server identity
 against active attackers and the client identity against passive
 attackers.

 In the reverse message flow, the CoAP Token enables correlation on
 the Responder (client) side, and the prepended C_I enables
 correlation on the Initiator (server) side.

Selander, et al. Expires 25 July 2024 [Page 80]

Internet-Draft EDHOC January 2024

 * To trigger a new EDHOC session, the client makes an empty POST
 request to the server’s resource for EDHOC.

 * EDHOC message_1 is sent from the server to the client in the
 payload of the response with response code 2.04 (Changed).

 * EDHOC message_2 or the EDHOC error message is sent from the client
 to the server’s resource in the payload of a POST request,
 prepended with the connection identifier C_I.

 * EDHOC message_3 or the EDHOC error message is sent from the server
 to the client in the payload of the response, in the former case
 with response code 2.04 (Changed), in the latter with response
 code as specified in Appendix A.2.3.

 * If EDHOC message_4 is used, or in case of an error message, it is
 sent from the client to the server’s resource in the payload of a
 POST request, prepended with the connection identifier C_I. In
 case of an error message sent in response to message_4, it is sent
 analogously to an error message sent in response to message_2.

 An example of a completed EDHOC session over CoAP in the reverse
 message flow is shown in Figure 19.

 Client Server
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 | Content-Format: application/edhoc+cbor-seq
 | | Payload: EDHOC message_1
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | | Content-Format: application/cid-edhoc+cbor-seq
 | | Payload: C_I, EDHOC message_2
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 | Content-Format: application/edhoc+cbor-seq
 | | Payload: EDHOC message_3
 | |

 Figure 19: Example of the reverse message flow.

Selander, et al. Expires 25 July 2024 [Page 81]

Internet-Draft EDHOC January 2024

A.2.3. Errors in EDHOC over CoAP

 When using EDHOC over CoAP, EDHOC error messages sent as CoAP
 responses MUST be sent in the payload of error responses, i.e., they
 MUST specify a CoAP error response code. In particular, it is
 RECOMMENDED that such error responses have response code either 4.00
 (Bad Request) in case of client error (e.g., due to a malformed EDHOC
 message), or 5.00 (Internal Server Error) in case of server error
 (e.g., due to failure in deriving EDHOC keying material). The
 Content-Format of the error response MUST be set to application/
 edhoc+cbor-seq, see Section 10.9.

Appendix B. Compact Representation

 This section defines a format for compact representation based on the
 Elliptic-Curve-Point-to-Octet-String Conversion defined in
 Section 2.3.3 of [SECG].

 As described in Section 4.2 of [RFC6090] the x-coordinate of an
 elliptic curve public key is a suitable representative for the entire
 point whenever scalar multiplication is used as a one-way function.
 One example is ECDH with compact output, where only the x-coordinate
 of the computed value is used as the shared secret.

 In EDHOC, compact representation is used for the ephemeral public
 keys (G_X and G_Y), see Section 3.7. Using the notation from [SECG],
 the output is an octet string of length ceil((log2 q) / 8), where
 ceil(x) is the smallest integer not less than x. See [SECG] for a
 definition of q, M, X, xp, and ˜yp. The steps in Section 2.3.3 of
 [SECG] are replaced by:

 1. Convert the field element xp to an octet string X of length ceil(
 (log2 q) / 8) octets using the conversion routine specified in
 Section 2.3.5 of [SECG].

 2. Output M = X

 The encoding of the point at infinity is not supported.

 Compact representation does not change any requirements on
 validation, see Section 9.2. Using compact representation has some
 security benefits. An implementation does not need to check that the
 point is not the point at infinity (the identity element).
 Similarly, as not even the sign of the y-coordinate is encoded,
 compact representation trivially avoids so-called "benign
 malleability" attacks where an attacker changes the sign, see [SECG].

Selander, et al. Expires 25 July 2024 [Page 82]

Internet-Draft EDHOC January 2024

 The following may be needed for validation or compatibility with APIs
 that do not support compact representation or do not support the full
 [SECG] format:

 * If a compressed y-coordinate is required, then the value ˜yp set
 to zero can be used. The compact representation described above
 can in such a case be transformed into the SECG point compressed
 format by prepending it with the single byte 0x02 (i.e., M =
 0x02 || X).

 * If an uncompressed y-coordinate is required, then a y-coordinate
 has to be calculated following Section 2.3.4 of [SECG] or
 Appendix C of [RFC6090]. Any of the square roots (see [SECG] or
 [RFC6090]) can be used. The uncompressed SECG format is M =
 0x04 || X || Y.

 For example: The curve P-256 has the parameters (using the notation
 in [RFC6090])

 * p = 2^256 2^224 + 2^192 + 2^96 1

 * a = -3

 * b = 410583637251521421293261297800472684091144410159937255
 54835256314039467401291

 Given an example x:

 * x = 115792089183396302095546807154740558443406795108653336
 398970697772788799766525

 we can calculate y as the square root w = (x^3 + a x + b)^((p +
 1)/4) (mod p)

 * y = 834387180070192806820075864918626005281451259964015754
 16632522940595860276856

 Note that this does not guarantee that (x, y) is on the correct
 elliptic curve. A full validation according to Section 5.6.2.3.3 of
 [SP-800-56A] can be achieved by also checking that 0 x < p and that
 y^2 x^3 + a x + b (mod p).

Appendix C. Use of CBOR, CDDL, and COSE in EDHOC

 This Appendix is intended to help implementors not familiar with CBOR
 [RFC8949], CDDL [RFC8610], COSE [RFC9052], and HKDF [RFC5869].

Selander, et al. Expires 25 July 2024 [Page 83]

Internet-Draft EDHOC January 2024

C.1. CBOR and CDDL

 The Concise Binary Object Representation (CBOR) [RFC8949] is a data
 format designed for small code size and small message size. CBOR
 builds on the JSON data model but extends it by e.g., encoding binary
 data directly without base64 conversion. In addition to the binary
 CBOR encoding, CBOR also has a diagnostic notation that is readable
 and editable by humans. The Concise Data Definition Language (CDDL)
 [RFC8610] provides a way to express structures for protocol messages
 and APIs that use CBOR. [RFC8610] also extends the diagnostic
 notation.

 CBOR data items are encoded to or decoded from byte strings using a
 type-length-value encoding scheme, where the three highest order bits
 of the initial byte contain information about the major type. CBOR
 supports several types of data items, in addition to integers (int,
 uint), simple values, byte strings (bstr), and text strings (tstr),
 CBOR also supports arrays [] of data items, maps {} of pairs of data
 items, and sequences [RFC8742] of data items. Some examples are
 given below.

 The EDHOC specification sometimes use CDDL names in CBOR diagnostic
 notation as in e.g., << ID_CRED_R, ? EAD_2 >>. This means that EAD_2
 is optional and that ID_CRED_R and EAD_2 should be substituted with
 their values before evaluation. I.e., if ID_CRED_R = { 4 : h’’ } and
 EAD_2 is omitted then << ID_CRED_R, ? EAD_2 >> = << { 4 : h’’ } >>,
 which encodes to 0x43a10440. We also make use of the occurrence
 symbol "*", like in e.g., 2* int, meaning two or more CBOR integers.

 For a complete specification and more examples, see [RFC8949] and
 [RFC8610]. We recommend implementors get used to CBOR by using the
 CBOR playground [CborMe].

Selander, et al. Expires 25 July 2024 [Page 84]

Internet-Draft EDHOC January 2024

 Diagnostic Encoded Type

 1 0x01 unsigned integer
 24 0x1818 unsigned integer
 -24 0x37 negative integer
 -25 0x3818 negative integer
 true 0xf5 simple value
 h’’ 0x40 byte string
 h’12cd’ 0x4212cd byte string
 ’12cd’ 0x4431326364 byte string
 "12cd" 0x6431326364 text string
 { 4 : h’cd’ } 0xa10441cd map
 << 1, 2, true >> 0x430102f5 byte string
 [1, 2, true] 0x830102f5 array
 (1, 2, true) 0x0102f5 sequence
 1, 2, true 0x0102f5 sequence

 Figure 20: Examples of use of CBOR and CDDL.

C.2. CDDL Definitions

 This section compiles the CDDL definitions for ease of reference.

 suites = [2* int] / int

 ead = (
 ead_label : int,
 ? ead_value : bstr,
)

 EAD_1 = 1* ead
 EAD_2 = 1* ead
 EAD_3 = 1* ead
 EAD_4 = 1* ead

 message_1 = (
 METHOD : int,
 SUITES_I : suites,
 G_X : bstr,
 C_I : bstr / -24..23,
 ? EAD_1,
)

 message_2 = (
 G_Y_CIPHERTEXT_2 : bstr,
)

Selander, et al. Expires 25 July 2024 [Page 85]

Internet-Draft EDHOC January 2024

 PLAINTEXT_2 = (
 C_R,
 ID_CRED_R : map / bstr / -24..23,
 Signature_or_MAC_2 : bstr,
 ? EAD_2,
)

 message_3 = (
 CIPHERTEXT_3 : bstr,
)

 PLAINTEXT_3 = (
 ID_CRED_I : map / bstr / -24..23,
 Signature_or_MAC_3 : bstr,
 ? EAD_3,
)

 message_4 = (
 CIPHERTEXT_4 : bstr,
)

 PLAINTEXT_4 = (
 ? EAD_4,
)

 error = (
 ERR_CODE : int,
 ERR_INFO : any,
)

 info = (
 info_label : int,
 context : bstr,
 length : uint,
)

C.3. COSE

 CBOR Object Signing and Encryption (COSE) [RFC9052] describes how to
 create and process signatures, message authentication codes, and
 encryption using CBOR. COSE builds on JOSE, but is adapted to allow
 more efficient processing in constrained devices. EDHOC makes use of
 COSE_Key, COSE_Encrypt0, and COSE_Sign1 objects in the message
 processing:

 * ECDH ephemeral public keys of type EC2 or OKP in message_1 and
 message_2 consist of the COSE_Key parameter named ’x’, see
 Section 7.1 and 7.2 of [RFC9053]

Selander, et al. Expires 25 July 2024 [Page 86]

Internet-Draft EDHOC January 2024

 * The ciphertexts in message_3 and message_4 consist of a subset of
 the single recipient encrypted data object COSE_Encrypt0, which is
 described in Sections 5.2-5.3 of [RFC9052]. The ciphertext is
 computed over the plaintext and associated data, using an
 encryption key and an initialization vector. The associated data
 is an Enc_structure consisting of protected headers and externally
 supplied data (external_aad). COSE constructs the input to the
 AEAD [RFC5116] for message_i (i = 3 or 4, see Section 5.4 and
 Section 5.5, respectively) as follows:

 - Secret key K = K_i

 - Nonce N = IV_i

 - Plaintext P for message_i

 - Associated Data A = ["Encrypt0", h’’, TH_i]

 * Signatures in message_2 of method 0 and 2, and in message_3 of
 method 0 and 1, consist of a subset of the single signer data
 object COSE_Sign1, which is described in Sections 4.2-4.4 of
 [RFC9052]. The signature is computed over a Sig_structure
 containing payload, protected headers and externally supplied data
 (external_aad) using a private signature key and verified using
 the corresponding public signature key. For COSE_Sign1, the
 message to be signed is:

 ["Signature1", protected, external_aad, payload]

 where protected, external_aad and payload are specified in
 Section 5.3 and Section 5.4.

 Different header parameters to identify X.509 or C509 certificates by
 reference are defined in [RFC9360] and
 [I-D.ietf-cose-cbor-encoded-cert]:

 * by a hash value with the ’x5t’ or ’c5t’ parameters, respectively:

 - ID_CRED_x = { 34 : COSE_CertHash }, for x = I or R,

 - ID_CRED_x = { TBD3 : COSE_CertHash }, for x = I or R;

 * or by a URI with the ’x5u’ or ’c5u’ parameters, respectively:

 - ID_CRED_x = { 35 : uri }, for x = I or R,

 - ID_CRED_x = { TBD4 : uri }, for x = I or R.

Selander, et al. Expires 25 July 2024 [Page 87]

Internet-Draft EDHOC January 2024

 When ID_CRED_x does not contain the actual credential, it may be very
 short, e.g., if the endpoints have agreed to use a key identifier
 parameter ’kid’:

 * ID_CRED_x = { 4 : kid_x }, where kid_x : kid, for x = I or R. For
 further optimization, see Section 3.5.3.

 Note that ID_CRED_x can contain several header parameters, for
 example { x5u, x5t } or { kid, kid_context }.

 ID_CRED_x MAY also identify the credential by value. For example, a
 certificate chain can be transported in an ID_CRED field with COSE
 header parameter c5c or x5chain, defined in
 [I-D.ietf-cose-cbor-encoded-cert] and [RFC9360] and credentials of
 type CWT and CCS can be transported with the COSE header parameters
 registered in Section 10.6.

Appendix D. Authentication Related Verifications

 EDHOC performs certain authentication related operations, see
 Section 3.5, but in general it is necessary to make additional
 verifications beyond EDHOC message processing. Which verifications
 that are needed depend on the deployment, in particular the trust
 model and the security policies, but most commonly it can be
 expressed in terms of verifications of credential content.

 EDHOC assumes the existence of mechanisms (certification authority or
 other trusted third party, pre-provisioning, etc.) for generating and
 distributing authentication credentials and other credentials, as
 well as the existence of trust anchors (CA certificates, trusted
 public keys, etc.). For example, a public key certificate or CWT may
 rely on a trusted third party whose public key is pre-provisioned,
 whereas a CCS or a self-signed certificate/CWT may be used when trust
 in the public key can be achieved by other means, or in the case of
 Trust on first use, see Appendix D.5.

 In this section we provide some examples of such verifications.
 These verifications are the responsibility of the application but may
 be implemented as part of an EDHOC library.

D.1. Validating the Authentication Credential

 The authentication credential may contain, in addition to the
 authentication key, other parameters that needs to be verified. For
 example:

Selander, et al. Expires 25 July 2024 [Page 88]

Internet-Draft EDHOC January 2024

 * In X.509 and C509 certificates, signature keys typically have key
 usage "digitalSignature" and Diffie-Hellman public keys typically
 have key usage "keyAgreement" [RFC3279][RFC8410].

 * In X.509 and C509 certificates validity is expressed using Not
 After and Not Before. In CWT and CCS, the exp and nbf claims
 have similar meanings.

D.2. Identities

 The application must decide on allowing a connection or not depending
 on the intended endpoint, and in particular whether it is a specific
 identity or in a set of identities. To prevent misbinding attacks,
 the identity of the endpoint is included in a MAC verified through
 the protocol. More details and examples are provided in this
 section.

 Policies for what connections to allow are typically set based on the
 identity of the other endpoint, and endpoints typically only allow
 connections from a specific identity or a small restricted set of
 identities. For example, in the case of a device connecting to a
 network, the network may only allow connections from devices which
 authenticate with certificates having a particular range of serial
 numbers and signed by a particular CA. Conversely, a device may only
 be allowed to connect to a network which authenticates with a
 particular public key.

 * When a Public Key Infrastructure (PKI) is used with certificates,
 the identity is the subject whose unique name, e.g., a domain
 name, a Network Access Identifier (NAI), or an Extended Unique
 Identifier (EUI), is included in the endpoint’s certificate.

 * Similarly, when a PKI is used with CWTs, the identity is the
 subject identified by the relevant claim(s), such as ’sub’
 (subject).

 * When PKI is not used (e.g., CCS, self-signed certificate/CWT) the
 identity is typically directly associated with the authentication
 key of the other party. For example, if identities can be
 expressed in the form of unique subject names assigned to public
 keys, then a binding to identity is achieved by including both
 public key and associated subject name in the authentication
 credential: CRED_I or CRED_R may be a self-signed certificate/CWT
 or CCS containing the authentication key and the subject name, see
 Section 3.5.2. Each endpoint thus needs to know the specific
 authentication key/unique associated subject name, or set of
 public authentication keys/unique associated subject names, which
 it is allowed to communicate with.

Selander, et al. Expires 25 July 2024 [Page 89]

Internet-Draft EDHOC January 2024

 To prevent misbinding attacks in systems where an attacker can
 register public keys without proving knowledge of the private key,
 SIGMA [SIGMA] enforces a MAC to be calculated over the "identity".
 EDHOC follows SIGMA by calculating a MAC over the whole
 authentication credential, which in case of an X.509 or C509
 certificate includes the "subject" and "subjectAltName" fields, and
 in the case of CWT or CCS includes the "sub" claim.

 (While the SIGMA paper only focuses on the identity, the same
 principle is true for other information such as policies associated
 with the public key.)

D.3. Certification Path and Trust Anchors

 When a Public Key Infrastructure (PKI) is used with certificates, the
 trust anchor is a Certification Authority (CA) certificate. Each
 party needs at least one CA public key certificate, or just the CA
 public key. The certification path contains proof that the subject
 of the certificate owns the public key in the certificate. Only
 validated public-key certificates are to be accepted.

 Similarly, when a PKI is used with CWTs, each party needs to have at
 least one trusted third party public key as trust anchor to verify
 the end entity CWTs. The trusted third party public key can, e.g.,
 be stored in a self-signed CWT or in a CCS.

 The signature of the authentication credential needs to be verified
 with the public key of the issuer. X.509 and C509 certificates
 includes the Issuer field. In CWT and CCS, the iss claim has a
 similar meaning. The public key is either a trust anchor or the
 public key in another valid and trusted credential in a certification
 path from trust anchor to authentication credential.

 Similar verifications as made with the authentication credential (see
 Appendix D.1) are also needed for the other credentials in the
 certification path.

 When PKI is not used (CCS, self-signed certificate/CWT), the trust
 anchor is the authentication key of the other party, in which case
 there is no certification path.

Selander, et al. Expires 25 July 2024 [Page 90]

Internet-Draft EDHOC January 2024

D.4. Revocation Status

 The application may need to verify that the credentials are not
 revoked, see Section 9.8. Some use cases may be served by short-
 lived credentials, for example, where the validity of the credential
 is on par with the interval between revocation checks. But, in
 general, credential lifetime and revocation checking are
 complementary measures to control credential status. Revocation
 information may be transported as External Authentication Data (EAD),
 see Appendix E.

D.5. Unauthenticated Operation

 EDHOC might be used without authentication by allowing the Initiator
 or Responder to communicate with any identity except its own. Note
 that EDHOC without mutual authentication is vulnerable to active on-
 path attacks and therefore unsafe for general use. However, it is
 possible to later establish a trust relationship with an unknown or
 not-yet-trusted endpoint. Some examples:

 * The EDHOC authentication credential can be verified out-of-band at
 a later stage.

 * The EDHOC session key can be bound to an identity out-of-band at a
 later stage.

 * Trust on first use (TOFU) can be used to verify that several EDHOC
 connections are made to the same identity. TOFU combined with
 proximity is a common IoT deployment model which provides good
 security if done correctly. Note that secure proximity based on
 short range wireless technology requires very low signal strength
 or very low latency.

Appendix E. Use of External Authorization Data

 In order to reduce the number of messages and round trips, or to
 simplify processing, external security applications may be integrated
 into EDHOC by transporting related external authorization data (EAD)
 in the messages.

 The EAD format is specified in Section 3.8, this section contains
 examples and further details of how EAD may be used with an
 appropriate accompanying specification.

 * One example is third party assisted authorization, requested with
 EAD_1, and an authorization artifact (voucher, cf. [RFC8366])
 returned in EAD_2, see [I-D.selander-lake-authz].

Selander, et al. Expires 25 July 2024 [Page 91]

Internet-Draft EDHOC January 2024

 * Another example is remote attestation, requested in EAD_2, and an
 Entity Attestation Token (EAT, [I-D.ietf-rats-eat]) returned in
 EAD_3.

 * A third example is certificate enrolment, where a Certificate
 Signing Request (CSR, [RFC2986]) is included EAD_3, and the issued
 public key certificate (X.509 [RFC5280], C509
 [I-D.ietf-cose-cbor-encoded-cert]) or a reference thereof is
 returned in EAD_4.

 External authorization data should be considered unprotected by
 EDHOC, and the protection of EAD is the responsibility of the
 security application (third party authorization, remote attestation,
 certificate enrolment, etc.). The security properties of the EAD
 fields (after EDHOC processing) are discussed in Section 9.1.

 The content of the EAD field may be used in the EDHOC processing of
 the message in which they are contained. For example, authentication
 related information like assertions and revocation information,
 transported in EAD fields may provide input about trust anchors or
 validity of credentials relevant to the authentication processing.
 The EAD fields (like ID_CRED fields) are therefore made available to
 the application before the message is verified, see details of
 message processing in Section 5. In the first example above, a
 voucher in EAD_2 made available to the application can enable the
 Initiator to verify the identity or public key of the Responder
 before verifying the signature. An application allowing EAD fields
 containing authentication information thus may need to handle
 authentication related verifications associated with EAD processing.

 Conversely, the security application may need to wait for EDHOC
 message verification to complete. In the third example above, the
 validation of a CSR carried in EAD_3 is not started by the Responder
 before EDHOC has successfully verified message_3 and proven the
 possession of the private key of the Initiator.

 The security application may reuse EDHOC protocol fields which
 therefore need to be available to the application. For example, the
 security application may use the same crypto algorithms as in the
 EDHOC session and therefore needs access to the selected cipher suite
 (or the whole SUITES_I). The application may use the ephemeral
 public keys G_X and G_Y, as ephemeral keys or as nonces, see
 [I-D.selander-lake-authz].

 The processing of the EAD item (ead_label, ? ead_value) by the
 security application needs to be described in the specification where
 the ead_label is registered, see Section 10.5, including the optional
 ead_value for each message and actions in case of errors. An

Selander, et al. Expires 25 July 2024 [Page 92]

Internet-Draft EDHOC January 2024

 application may support multiple security applications that make use
 of EAD, which may result in multiple EAD items in one EAD field, see
 Section 3.8. Any dependencies on security applications with
 previously registered EAD items needs to be documented, and the
 processing needs to consider their simultaneous use.

 Since data carried in EAD may not be protected, or be processed by
 the application before the EDHOC message is verified, special
 considerations need to be made such that it does not violate security
 and privacy requirements of the service which uses this data, see
 Section 9.5. The content in an EAD item may impact the security
 properties provided by EDHOC. Security applications making use of
 the EAD items must perform the necessary security analysis.

Appendix F. Application Profile Example

 This appendix contains a rudimentary example of an application
 profile, see Section 3.9.

 For use of EDHOC with application X the following assumptions are
 made:

 1. Transfer in CoAP as specified in Appendix A.2 with requests
 expected by the CoAP server (= Responder) at /app1-edh, no
 Content-Format needed.

 2. METHOD = 1 (I uses signature key, R uses static DH key.)

 3. CRED_I is an IEEE 802.1AR IDevID encoded as a C509 certificate of
 type 0 [I-D.ietf-cose-cbor-encoded-cert].

 * R acquires CRED_I out-of-band, indicated in EAD_1.

 * ID_CRED_I = {4: h’’} is a ’kid’ with value the empty CBOR byte
 string.

 4. CRED_R is a CCS of type OKP as specified in Section 3.5.2.

 * The CBOR map has parameters 1 (kty), -1 (crv), and -2
 (x-coordinate).

 * ID_CRED_R is {TBD2 : CCS}. Editor’s note: TBD2 is the COSE
 header parameter value of ’kccs’, see Section 10.6

 5. External authorization data is defined and processed as specified
 in [I-D.selander-lake-authz].

Selander, et al. Expires 25 July 2024 [Page 93]

Internet-Draft EDHOC January 2024

 6. EUI-64 is used as the identity of the endpoint (see example in
 Section 3.5.2).

 7. No use of message_4: the application sends protected messages
 from R to I.

Appendix G. Long PLAINTEXT_2

 By the definition of encryption of PLAINTEXT_2 with KEYSTREAM_2, it
 is limited to lengths of PLAINTEXT_2 not exceeding the output of
 EDHOC_KDF, see Section 4.1.2. If the EDHOC hash algorithm is SHA-2
 then HKDF-Expand is used, which limits the length of the EDHOC_KDF
 output to 255 hash_length, where hash_length is the length of the
 output of the EDHOC hash algorithm given by the cipher suite. For
 example, with SHA-256 as EDHOC hash algorithm, the length of the hash
 output is 32 bytes and the maximum length of PLAINTEXT_2 is 255 32
 = 8160 bytes.

 While PLAINTEXT_2 is expected to be much shorter than 8 kB for the
 intended use cases, it seems nevertheless prudent to specify a
 solution for the event that this should turn out to be a limitation.

 A potential work-around is to use a cipher suite with a different
 hash function. In particular, the use of KMAC removes all practical
 limitations in this respect.

 This section specifies a solution which works with any hash function,
 by making use of multiple invocations of HKDF-Expand and negative
 values of info_label.

 Consider the PLAINTEXT_2 partitioned in parts P(i) of length equal to
 M = 255 hash_length, except possibly the last part P(last) which
 has 0 < length M.

 PLAINTEXT_2 = P(0) | P(1) | ... | P(last)

 where | indicates concatenation.

 The object is to define a matching KEYSTREAM_2 of the same length and
 perform the encryption in the same way as defined in Section 5.3.2:

 CIPHERTEXT_2 = PLAINTEXT_2 XOR KEYSTREAM_2

 Define the keystream as:

 KEYSTREAM_2 = OKM(0) | OKM(1) | ... | OKM(last)

 where

Selander, et al. Expires 25 July 2024 [Page 94]

Internet-Draft EDHOC January 2024

 OKM(i) = EDHOC_KDF(PRK_2e, -i, TH_2, length(P(i)))

 Note that if length(PLAINTEXT_2) M then P(0) = PLAINTEXT_2 and the
 definition of KEYSTREAM_2 = OKM(0) coincides with Figure 8.

 This describes the processing of the Responder when sending
 message_2. The Initiator makes the same calculations when receiving
 message_2, but interchanging PLAINTEXT_2 and CIPHERTEXT_2.

 An application profile may specify if it supports or not the method
 described in this appendix.

Appendix H. EDHOC_KeyUpdate

 To provide forward secrecy in an even more efficient way than re-
 running EDHOC, this section specifies the optional function
 EDHOC_KeyUpdate in terms of EDHOC_KDF and PRK_out.

 When EDHOC_KeyUpdate is called, a new PRK_out is calculated as a
 "hash" of the old PRK_out using the EDHOC_Expand function as
 illustrated by the following pseudocode. The change of PRK_out
 causes a change to PRK_exporter which enables the derivation of new
 application keys superseding the old ones, using EDHOC_Exporter, see
 Section 4.2.1.

 EDHOC_KeyUpdate(context):
 new PRK_out = EDHOC_KDF(old PRK_out, 11, context, hash_length)
 new PRK_exporter = EDHOC_KDF(new PRK_out, 10, h’’, hash_length)

 where hash_length denotes the output size in bytes of the EDHOC hash
 algorithm of the selected cipher suite.

 The EDHOC_KeyUpdate takes a context as input to enable binding of the
 updated PRK_out to some event that triggered the key update. The
 Initiator and the Responder need to agree on the context, which can,
 e.g., be a counter, a pseudorandom number, or a hash. To provide
 forward secrecy the old PRK_out and keys derived from it (old
 PRK_exporter and old application keys) must be deleted as soon as
 they are not needed. When to delete the old keys and how to verify
 that they are not needed is up to the application.

 An application using EDHOC_KeyUpdate needs to store PRK_out.
 Compromise of PRK_out leads to compromise of all keying material
 derived with the EDHOC_Exporter since the last invocation of the
 EDHOC_KeyUpdate function.

Selander, et al. Expires 25 July 2024 [Page 95]

Internet-Draft EDHOC January 2024

 While this key update method provides forward secrecy it does not
 give as strong security properties as re-running EDHOC.
 EDHOC_KeyUpdate can be used to meet cryptographic limits and provide
 partial protection against key leakage, but it provides significantly
 weaker security properties than re-running EDHOC with ephemeral
 Diffie-Hellman. Even with frequent use of EDHOC_KeyUpdate,
 compromise of one session key compromises all future session keys,
 and an attacker therefore only needs to perform static key
 exfiltration [RFC7624], which is less complicated and has a lower
 risk profile than the dynamic case, see Section 9.1.

 A similar method to do key update for OSCORE is KUDOS, see
 [I-D.ietf-core-oscore-key-update].

Appendix I. Example Protocol State Machine

 This appendix describes an example protocol state machine for the
 Initiator and for the Responder. States are denoted in all capitals
 and parentheses denote actions taken only in some circumstances.

 Note that this state machine is just an example, and that details of
 processing are omitted, for example:

 * When error messages are being sent (with one exception)

 * How credentials and EAD are processed by EDHOC and the application
 in the RCVD state

 * What verifications are made, which includes not only MACs and
 signatures

I.1. Initiator State Machine

 The Initiator sends message_1, triggering the state machine to
 transition from START to WAIT_M2, and waits for message_2.

 If the incoming message is an error message then the Initiator
 transitions from WAIT_M2 to ABORTED. In case of error code 2 (Wrong
 Selected Cipher Suite), the Initiator remembers the supported cipher
 suites for this particular Responder and transitions from ABORTED to
 START. The message_1 that the Initiator subsequently sends takes
 into account the cipher suites supported by the Responder.

 Upon receiving a non-error message, the Initiator transitions from
 WAIT_M2 to RCVD_M2 and processes the message. If a processing error
 occurs on message_2, then the Initiator transitions from RCVD_M2 to
 ABORTED. In case of successful processing of message_2, the
 Initiator transitions from RCVD_M2 to VRFD_M2.

Selander, et al. Expires 25 July 2024 [Page 96]

Internet-Draft EDHOC January 2024

 The Initiator prepares and processes message_3 for sending. If any
 processing error is encountered, the Initiator transitions from
 VRFD_M2 to ABORTED. If message_3 is successfully sent, the Initiator
 transitions from VRFD_M2 to COMPLETED.

 If the application profile includes message_4, then the Initiator
 waits for message_4. If the incoming message is an error message
 then the Initiator transitions from COMPLETED to ABORTED. Upon
 receiving a non-error message, the Initiator transitions from
 COMPLETED (="WAIT_M4") to RCVD_M4 and processes the message. If a
 processing error occurs on message_4, then the Initiator transitions
 from RCVD_M4 to ABORTED. In case of successful processing of
 message_4, the Initiator transitions from RCVD_M4 to PERSISTED
 (="VRFD_M4").

 If the application profile does not include message_4, then the
 Initiator waits for an incoming application message. If the
 decryption and verification of the application message is successful,
 then the Initiator transitions from COMPLETED to PERSISTED.

Selander, et al. Expires 25 July 2024 [Page 97]

Internet-Draft EDHOC January 2024

 +- - - - - - - - - -> START
 | |
 | Send message_1
 | |
 Receive error v
 ABORTED <---------------- WAIT_M2
 ^ |
 | | Receive message_2
 | |
 | Processing error v
 +-------------------- RCVD_M2
 ^ |
 | | Verify message_2
 | |
 | Processing error v
 +-------------------- VRFD_M2
 ^ |
 | | Send message_3
 | |
 | (Receive error) v
 +-------------------- COMPLETED ----------------+
 ^ | |
 | | (Receive message_4) |
 | | |
 | (Processing error) v | (Verify
 +------------------- (RCVD_M4) | application
 | | message)
 | (Verify message_4) |
 | |
 v |
 PERSISTED <---------------+

I.2. Responder State Machine

 Upon receiving message_1, the Responder transitions from START to
 RCVD_M1.

 If a processing error occurs on message_1, the Responder transitions
 from RCVD_M1 to ABORTED. This includes sending error message with
 error code 2 (Wrong Selected Cipher Suite) if the selected cipher
 suite in message_1 is not supported. In case of successful
 processing of message_1, the Responder transitions from RCVD_M1 to
 VRFD_M1.

 The Responder prepares and processes message_2 for sending. If any
 processing error is encountered, the Responder transitions from
 VRFD_M1 to ABORTED. If message_2 is successfully sent, the Initiator
 transitions from VRFD_M2 to WAIT_M3, and waits for message_3.

Selander, et al. Expires 25 July 2024 [Page 98]

Internet-Draft EDHOC January 2024

 If the incoming message is an error message then the Responder
 transitions from WAIT_M3 to ABORTED.

 Upon receiving message_3, the Responder transitions from WAIT_M3 to
 RCVD_M3. If a processing error occurs on message_3, the Responder
 transitions from RCVD_M3 to ABORTED. In case of successful
 processing of message_3, the Responder transitions from RCVD_M3 to
 COMPLETED (="VRFD_M3").

 If the application profile includes message_4, the Responder prepares
 and processes message_4 for sending. If any processing error is
 encountered, the Responder transitions from COMPLETED to ABORTED.

 If message_4 is successfully sent, or if the application profile does
 not include message_4, the Responder transitions from COMPLETED to
 PERSISTED.

 START
 |
 | Receive message_1
 |
 Processing error v
 ABORTED <---------------- RCVD_M1
 ^ |
 | | Verify message_1
 | |
 | Processing error v
 +-------------------- VRFD_M1
 ^ |
 | | Send message_2
 | |
 | Receive error v
 +-------------------- WAIT_M3
 ^ |
 | | Receive message_3
 | |
 | Processing error v
 +-------------------- RCVD_M3
 ^ |
 | | Verify message_3
 | |
 | (Processing error) v
 +------------------- COMPLETED
 |
 | (Send message_4)
 |
 v
 PERSISTED

Selander, et al. Expires 25 July 2024 [Page 99]

Internet-Draft EDHOC January 2024

Appendix J. Change Log

 RFC Editor: Please remove this appendix.

 * From -21 to -22

 - Normative text on transport capabilities.

 * From -20 to -21

 - Recommendation to use chain instead of bag

 - Improved text about

 o denial-of-service

 o deriving secret and non-secret randomness from the same KDF
 instance

 o practical security against quantum computers

 - Clarifications, including

 o several updates section 3.4. Transport

 o descriptions in COSE IANA registration

 o encoding in Figure 5, reading of Figure 17

 - Removed term "dummy"

 - Harmonizing captions

 - Updated references

 - Acknowledgments

 * From -19 to -20

 - C_R encrypted in message_2

 - C_R removed from TH_2

 - Error code for unknown referenced credential

 - Error code 0 (success) explicitly reserved

 - Message deduplication section moved from appendix to body

Selander, et al. Expires 25 July 2024 [Page 100]

Internet-Draft EDHOC January 2024

 - Terminology

 o discontinued -> aborted

 o protocol run / exchange -> session

 - Clarifications, in particular

 o when to derive application keys

 o the role of the application for authentication

 - Security considerations for kccs and kcwt

 - Updated references

 * From -18 to -19

 - Clarifications:

 o Relation to SIGMA

 o Role of Static DH

 o Initiator and Responder roles

 o Transport properties

 o Construction of SUITES_I

 o Message correlation, new subsection 3.4.1, replacing former
 appendix H

 o Role of description about long PLAINTEXT_2

 o ead_label and ead_value

 o Message processing (Section 5)

 o Padding

 o Cipher suite negotiation example

 - Other updates:

 o Improved and stricter normative text in Appendix A

Selander, et al. Expires 25 July 2024 [Page 101]

Internet-Draft EDHOC January 2024

 o Naming and separate sections for the two message flows in
 Appendix A: Forward/Reverse message flow,

 o Table index style captions

 o Aligning with COSE terminology: header map -> header_map

 o Aligning terminology, use of "_" instead of "-"

 o Prefixing "EDHOC_" to functions

 o Updated list of security analysis papers

 o New appendix with example state machine

 o Acknowledgements

 o Language improvements by native English speakers

 o Updated IANA section with registration procedures

 o New and updated references

 o Removed appendix H

 * From -17 to -18

 - Padding realised as EAD with ead_label = 0, PAD fields removed

 - Revised EAD syntax; ead is now EAD item; ead_value is now
 optional

 - Clarifications of

 o Identifier representation

 o Authentication credentials

 o RPK

 o Encoding of ID_CRED with kid

 o Representation of public keys, y-coordinate of ephemeral
 keys and validation

 o Processing after completed protocol

 o Making verifications available to the application

Selander, et al. Expires 25 July 2024 [Page 102]

Internet-Draft EDHOC January 2024

 o Relation between EDHOC and OSCORE identifiers

 - Terminology alignment in particular session / protocol;
 discontinue / terminate

 - Updated CDDL

 - Additional unicode encodings

 - Large number of nits from WGLC

 * From -16 to -17

 - EDHOC-KeyUpdate moved to appendix

 - Updated peer awareness properties based on SIGMA

 - Clarify use of random connection identifiers

 - Editorials related to appendix about messages with long
 PLAINTEXT_2

 - Updated acknowledgments (have we forgotten someone else? please
 send email)

 * From -15 to -16

 - TH_2 used as salt in the derivation of PRK_2e

 - CRED_R/CRED_I included in TH_3/TH_4

 - Distinguish label used in info, exporter or elsewhere

 - New appendix for optional handling arbitrarily large message_2

 o info_label type changed to int to support this

 - Updated security considerations

 - Implementation note about identifiers which are bstr/int

 - Clarifications, especifically about compact representation

 - Type bug fix in CDDL section

 * From -14 to -15

 - Connection identifiers and key identifiers are now byte strings

Selander, et al. Expires 25 July 2024 [Page 103]

Internet-Draft EDHOC January 2024

 o Represented as CBOR bstr in the EDHOC message

 + Unless they happen to encode a one-byte CBOR int

 o More examples

 - EAD updates and details

 o Definition of EAD item

 o Definition of critical / non-critical EAD item

 - New section in Appendix D: Unauthenticated Operation

 - Clarifications

 o Lengths used in EDHOC-KDF

 o Key derivation from PRK_out

 + EDHOC-KeyUpdate and EDHOC-Exporter

 o Padding

 - Security considerations

 o When a change in a message is detected

 o Confidentiality in case of active attacks

 o Connection identifiers should be unpredictable

 o Maximum length of message_2

 - Minor bugs

 * From -13 to -14

 - Merge of section 1.1 and 1.2

 - Connection and key identifiers restricted to be byte strings

 - Representation of byte strings as one-byte CBOR ints (-24..23)

 - Simplified mapping between EDHOC and OSCORE identifiers

 - Rewrite of 3.5

Selander, et al. Expires 25 July 2024 [Page 104]

Internet-Draft EDHOC January 2024

 o Clarification of authentication related operations performed
 by EDHOC

 o Authentication related verifications, including old section
 3.5.1, moved to new appendix D

 - Rewrite of 3.8

 o Move content about use of EAD to new appendix E

 o ead_value changed to bstr

 - EDHOC-KDF updated

 o transcript_hash argument removed

 o TH included in context argument

 o label argument is now type uint, all labels replaced

 - Key schedule updated

 o New salts derived to avoid reuse of same key with expand and
 extract

 o PRK_4x3m renamed PRK_4e3m

 o K_4 and IV_4 derived from PRK_4e3m

 o New PRK: PRK_out derived from PRK_4e3m and TH_4

 o Clarified main output of EDHOC is the shared secret PRK_out

 o Exporter defined by EDHOC-KDF and new PRK PRK_exporter
 derived from PRK_out

 o Key update defined by Expand instead of Extract

 - All applications of EDHOC-KDF in one place

 - Update of processing

 o EAD and ID_CRED passed to application when available

 o identity verification and credential retrieval omitted in
 protocol description

Selander, et al. Expires 25 July 2024 [Page 105]

Internet-Draft EDHOC January 2024

 o Transcript hash defined by plaintext messages instead of
 ciphertext

 o Changed order of input to TH_2

 o Removed general G_X checking against selfie-attacks

 - Support for padding of plaintext

 - Updated compliance requirements

 - Updated security considerations

 o Updated and more clear requirements on MAC length

 o Clarification of key confirmation

 o Forbid use of same key for signature and static DH

 - Updated appendix on message deduplication

 - Clarifications of

 o connection identifiers

 o cipher suites, including negotiation

 o EAD

 o Error messages

 - Updated media types

 - Applicability template renamed application profile

 - Editorials

 * From -12 to -13

 - no changes

 * From -12:

 - Shortened labels to derive OSCORE key and salt

 - ead_value changed to bstr

 - Removed general G_X checking against selfie-attacks

Selander, et al. Expires 25 July 2024 [Page 106]

Internet-Draft EDHOC January 2024

 - Updated and more clear requirements on MAC length

 - Clarifications from Kathleen, Stephen, Marco, Sean, Stefan,

 - Authentication Related Verifications moved to appendix

 - Updated MTI section and cipher suite

 - Updated security considerations

 * From -11 to -12:

 - Clarified applicability to KEMs

 - Clarified use of COSE header parameters

 - Updates on MTI

 - Updated security considerations

 - New section on PQC

 - Removed duplicate definition of cipher suites

 - Explanations of use of COSE moved to Appendix C.3

 - Updated internal references

 * From -10 to -11:

 - Restructured section on authentication parameters

 - Changed UCCS to CCS

 - Changed names and description of COSE header parameters for
 CWT/CCS

 - Changed several of the KDF and Exporter labels

 - Removed edhoc_aead_id from info (already in transcript_hash)

 - Added MTI section

 - EAD: changed CDDL names and added value type to registry

 - Updated Figures 1, 2, and 3

 - Some correction and clarifications

Selander, et al. Expires 25 July 2024 [Page 107]

Internet-Draft EDHOC January 2024

 - Added core.edhoc to CoRE Resource Type registry

 * From -09 to -10:

 - SUITES_I simplified to only contain the selected and more
 preferred suites

 - Info is a CBOR sequence and context is a bstr

 - Added kid to UCCS example

 - Separate header parameters for CWT and UCCS

 - CWT Confirmation Method kid extended to bstr / int

 * From -08 to -09:

 - G_Y and CIPHERTEXT_2 are now included in one CBOR bstr

 - MAC_2 and MAC_3 are now generated with EDHOC-KDF

 - Info field context is now general and explicit in EDHOC-KDF

 - Restructured Section 4, Key Derivation

 - Added EDHOC MAC length to cipher suite for use with static DH

 - More details on the use of CWT and UCCS

 - Restructured and clarified Section 3.5, Authentication
 Parameters

 - Replaced ’kid2’ with extension of ’kid’

 - EAD encoding now supports multiple ead types in one message

 - Clarified EAD type

 - Updated message sizes

 - Replaced perfect forward secrecy with forward secrecy

 - Updated security considerations

 - Replaced prepended ’null’ with ’true’ in the CoAP transport of
 message_1

 - Updated CDDL definitions

Selander, et al. Expires 25 July 2024 [Page 108]

Internet-Draft EDHOC January 2024

 - Expanded on the use of COSE

 * From -07 to -08:

 - Prepended C_x moved from the EDHOC protocol itself to the
 transport mapping

 - METHOD_CORR renamed to METHOD, corr removed

 - Removed bstr_identifier and use bstr / int instead; C_x can now
 be int without any implied bstr semantics

 - Defined COSE header parameter ’kid2’ with value type bstr / int
 for use with ID_CRED_x

 - Updated message sizes

 - New cipher suites with AES-GCM and ChaCha20 / Poly1305

 - Changed from one- to two-byte identifier of CNSA compliant
 suite

 - Separate sections on transport and connection id with further
 sub-structure

 - Moved back key derivation for OSCORE from draft-ietf-core-
 oscore-edhoc

 - OSCORE and CoAP specific processing moved to new appendix

 - Message 4 section moved to message processing section

 * From -06 to -07:

 - Changed transcript hash definition for TH_2 and TH_3

 - Removed "EDHOC signature algorithm curve" from cipher suite

 - New IANA registry "EDHOC Exporter Label"

 - New application defined parameter "context" in EDHOC-Exporter

 - Changed normative language for failure from MUST to SHOULD send
 error

 - Made error codes non-negative and 0 for success

 - Added detail on success error code

Selander, et al. Expires 25 July 2024 [Page 109]

Internet-Draft EDHOC January 2024

 - Aligned terminology "protocol instance" -> "session"

 - New appendix on compact EC point representation

 - Added detail on use of ephemeral public keys

 - Moved key derivation for OSCORE to draft-ietf-core-oscore-edhoc

 - Additional security considerations

 - Renamed "Auxililary Data" as "External Authorization Data"

 - Added encrypted EAD_4 to message_4

 * From -05 to -06:

 - New section 5.2 "Message Processing Outline"

 - Optional inital byte C_1 = null in message_1

 - New format of error messages, table of error codes, IANA
 registry

 - Change of recommendation transport of error in CoAP

 - Merge of content in 3.7 and appendix C into new section 3.7
 "Applicability Statement"

 - Requiring use of deterministic CBOR

 - New section on message deduplication

 - New appendix containin all CDDL definitions

 - New appendix with change log

 - Removed section "Other Documents Referencing EDHOC"

 - Clarifications based on review comments

 * From -04 to -05:

 - EDHOC-Rekey-FS -> EDHOC-KeyUpdate

 - Clarification of cipher suite negotiation

 - Updated security considerations

Selander, et al. Expires 25 July 2024 [Page 110]

Internet-Draft EDHOC January 2024

 - Updated test vectors

 - Updated applicability statement template

 * From -03 to -04:

 - Restructure of section 1

 - Added references to C509 Certificates

 - Change in CIPHERTEXT_2 -> plaintext XOR KEYSTREAM_2 (test
 vector not updated)

 - "K_2e", "IV_2e" -> KEYSTREAM_2

 - Specified optional message 4

 - EDHOC-Exporter-FS -> EDHOC-Rekey-FS

 - Less constrained devices SHOULD implement both suite 0 and 2

 - Clarification of error message

 - Added exporter interface test vector

 * From -02 to -03:

 - Rearrangements of section 3 and beginning of section 4

 - Key derivation new section 4

 - Cipher suites 4 and 5 added

 - EDHOC-EXPORTER-FS - generate a new PRK_4x3m from an old one

 - Change in CIPHERTEXT_2 -> COSE_Encrypt0 without tag (no change
 to test vector)

 - Clarification of error message

 - New appendix C applicability statement

 * From -01 to -02:

 - New section 1.2 Use of EDHOC

 - Clarification of identities

Selander, et al. Expires 25 July 2024 [Page 111]

Internet-Draft EDHOC January 2024

 - New section 4.3 clarifying bstr_identifier

 - Updated security considerations

 - Updated text on cipher suite negotiation and key confirmation

 - Test vector for static DH

 * From -00 to -01:

 - Removed PSK method

 - Removed references to certificate by value

Acknowledgments

 The authors want to thank Christian Amsüss, Alessandro Bruni,
 Karthikeyan Bhargavan, Carsten Bormann, Timothy Claeys, Baptiste
 Cottier, Roman Danyliw, Martin Disch, Martin Duke, Donald Eastlake,
 Lars Eggert, Stephen Farrell, Loïc Ferreira, Theis Grønbech Petersen,
 Felix Günther, Dan Harkins, Klaus Hartke, Russ Housley, Stefan
 Hristozov, Marc Ilunga, Charlie Jacomme, Elise Klein, Erik Kline,
 Steve Kremer, Alexandros Krontiris, Ilari Liusvaara, Rafa Marín-
 López, Kathleen Moriarty, David Navarro, Karl Norrman, Salvador
 Pérez, Radia Perlman, David Pointcheval, Maïwenn Racouchot, Eric
 Rescorla, Michael Richardson, Thorvald Sahl Jørgensen, Zaheduzzaman
 Sarker, Jim Schaad, Michael Scharf, Carsten Schürmann, John Scudder,
 Ludwig Seitz, Brian Sipos, Stanislav Smyshlyaev, Valery Smyslov,
 Peter van der Stok, Rene Struik, Vaishnavi Sundararajan, Erik
 Thormarker, Marco Tiloca, Sean Turner, Michel Veillette, Malia
 Vuini, Paul Wouters, and Lei Yan for reviewing and commenting on
 intermediate versions of the draft. We are especially indebted to
 the late Jim Schaad for his continuous reviewing and implementation
 of early versions of this and other drafts.

 Work on this document has in part been supported by the H2020 project
 SIFIS-Home (grant agreement 952652).

Authors’ Addresses

 Göran Selander
 Ericsson AB
 SE-164 80 Stockholm
 Sweden
 Email: goran.selander@ericsson.com

Selander, et al. Expires 25 July 2024 [Page 112]

Internet-Draft EDHOC January 2024

 John Preuß Mattsson
 Ericsson AB
 SE-164 80 Stockholm
 Sweden
 Email: john.mattsson@ericsson.com

 Francesca Palombini
 Ericsson AB
 SE-164 80 Stockholm
 Sweden
 Email: francesca.palombini@ericsson.com

Selander, et al. Expires 25 July 2024 [Page 113]

LAKE Working Group G. Selander

Internet-Draft J. Preuß Mattsson

Intended status: Informational Ericsson

Expires: 30 July 2024 M. Serafin

 ASSA ABLOY

 M. Tiloca

 RISE

 M. Vuini

 Inria

 27 January 2024

 Traces of EDHOC

 draft-ietf-lake-traces-09

Abstract

 This document contains some example traces of Ephemeral Diffie-

 Hellman Over COSE (EDHOC).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 30 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Selander, et al. Expires 30 July 2024 [Page 1]

Internet-Draft Traces of EDHOC January 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Setup . 3

 1.2. Terminology and Requirements Language 4

 2. Authentication with Signatures, X.509 Certificates Identified

 by ’x5t’ . 4

 2.1. message_1 . 4

 2.2. message_2 . 6

 2.3. message_3 . 14

 2.4. message_4 . 23

 2.5. PRK_out and PRK_exporter 25

 2.6. OSCORE Parameters . 26

 2.7. Key Update . 28

 2.8. Certificates . 29

 3. Authentication with Static DH, CCS Identified by ’kid’ . . . 31

 3.1. message_1 (first time) 32

 3.2. error . 33

 3.3. message_1 (second time) 33

 3.4. message_2 . 35

 3.5. message_3 . 42

 3.6. message_4 . 49

 3.7. PRK_out and PRK_exporter 51

 3.8. OSCORE Parameters . 53

 3.9. Key Update . 54

 4. Invalid Traces . 56

 4.1. Encoding Errors . 56

 4.2. Crypto-related Errors 57

 4.3. Non-deterministic CBOR 59

 5. Security Considerations 59

 6. IANA Considerations . 59

 7. References . 59

 7.1. Normative References 59

 7.2. Informative References 60

 Acknowledgments . 61

 Authors’ Addresses . 61

Selander, et al. Expires 30 July 2024 [Page 2]

Internet-Draft Traces of EDHOC January 2024

1. Introduction

 EDHOC [I-D.ietf-lake-edhoc] is a lightweight authenticated key

 exchange protocol designed for highly constrained settings. This

 document contains annotated traces of EDHOC sessions, with input,

 output, and intermediate processing results to simplify testing of

 implementations. The traces have been verified by two independent

 implementations.

1.1. Setup

 EDHOC is run between an Initiator (I) and a Responder (R). The

 private/public key pairs and credentials of the Initiator and the

 Responder required to produce the protocol messages are shown in the

 traces when needed for the calculations.

 EDHOC messages and intermediate results are encoded in CBOR [RFC8949]

 and can therefore be displayed in CBOR diagnostic notation using,

 e.g., the CBOR playground [CborMe], which makes them easy to parse

 for humans. Credentials can also be encoded in CBOR, e.g. CBOR Web

 Tokens (CWT) [RFC8392].

 The document contains two traces:

 * Section 2 - Authentication with signature keys identified by the

 hash value of the X.509 certificates (provided in Section 2.8).

 The endpoints use EdDSA [RFC8032] for authentication and X25519

 [RFC7748] for ephemeral-ephemeral Diffie-Hellman key exchange.

 * Section 3 - Authentication with static Diffie-Hellman keys

 identified by short key identifiers labelling CWT Claim Sets

 (CCSs) [RFC8392]. The endpoints use NIST P-256 [SP-800-186] for

 both ephemeral-ephemeral and static-ephemeral Diffie-Hellman key

 exchange. This trace also illustrates the cipher suite

 negotiation, and provides an example of low protocol overhead,

 with messages sizes of (39, 45, 19) bytes.

 Examples of invalid EDHOC messages are found in Section 4.

 NOTE 1. The same name is used for hexadecimal byte strings and their

 CBOR encodings. The traces contain both the raw byte strings and the

 corresponding CBOR encoded data items.

 NOTE 2. If not clear from the context, remember that CBOR sequences

 and CBOR arrays assume CBOR encoded data items as elements.

Selander, et al. Expires 30 July 2024 [Page 3]

Internet-Draft Traces of EDHOC January 2024

 NOTE 3. When the protocol transporting EDHOC messages does not

 inherently provide correlation across all messages, like CoAP

 [RFC7252], then some messages typically are prepended with connection

 identifiers and potentially a message_1 indicator (see Sections 3.4.1

 and A.2 of [I-D.ietf-lake-edhoc]). Those bytes are not included in

 the traces in this document.

1.2. Terminology and Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

2. Authentication with Signatures, X.509 Certificates Identified by

 ’x5t’

 In this example the Initiator (I) and Responder (R) are authenticated

 with digital signatures (METHOD = 0). Both the Initiator and the

 Responder support cipher suite 0, which determines the algorithms:

 * EDHOC AEAD algorithm = AES-CCM-16-64-128

 * EDHOC hash algorithm = SHA-256

 * EDHOC MAC length in bytes (Static DH) = 8

 * EDHOC key exchange algorithm (ECDH curve) = X25519

 * EDHOC signature algorithm = EdDSA

 * Application AEAD algorithm = AES-CCM-16-64-128

 * Application hash algorithm = SHA-256

 The public keys are represented with X.509 certificates identified by

 the COSE header parameter ’x5t’.

2.1. message_1

 Both endpoints are authenticated with signatures, i.e., METHOD = 0:

 METHOD (CBOR Data Item) (1 byte)

 00

 The Initiator selects cipher suite 0. A single cipher suite is

 encoded as an int:

Selander, et al. Expires 30 July 2024 [Page 4]

Internet-Draft Traces of EDHOC January 2024

 SUITES_I (CBOR Data Item) (1 byte)

 00

 The Initiator creates an ephemeral key pair for use with the EDHOC

 key exchange algorithm:

 Initiator’s ephemeral private key

 X (Raw Value) (32 bytes)

 89 2e c2 8e 5c b6 66 91 08 47 05 39 50 0b 70 5e 60 d0 08 d3 47 c5 81

 7e e9 f3 32 7c 8a 87 bb 03

 Initiator’s ephemeral public key

 G_X (Raw Value) (32 bytes)

 31 f8 2c 7b 5b 9c bb f0 f1 94 d9 13 cc 12 ef 15 32 d3 28 ef 32 63 2a

 48 81 a1 c0 70 1e 23 7f 04

 Initiator’s ephemeral public key

 G_X (CBOR Data Item) (34 bytes)

 58 20 31 f8 2c 7b 5b 9c bb f0 f1 94 d9 13 cc 12 ef 15 32 d3 28 ef 32

 63 2a 48 81 a1 c0 70 1e 23 7f 04

 The Initiator selects its connection identifier C_I to be the byte

 string 0x2d, which since it is represented by the 1-byte CBOR int -14

 is encoded as 0x2d:

 Connection identifier chosen by Initiator

 C_I (Raw Value) (1 byte)

 2d

 Connection identifier chosen by Initiator

 C_I (CBOR Data Item) (1 byte)

 2d

 No external authorization data:

 EAD_1 (CBOR Sequence) (0 bytes)

 The Initiator constructs message_1:

 message_1 =

 (

 0,

 0,

 h’31f82c7b5b9cbbf0f194d913cc12ef1532d328ef32632a48

 81a1c0701e237f04’,

 -14

)

Selander, et al. Expires 30 July 2024 [Page 5]

Internet-Draft Traces of EDHOC January 2024

 message_1 (CBOR Sequence) (37 bytes)

 00 00 58 20 31 f8 2c 7b 5b 9c bb f0 f1 94 d9 13 cc 12 ef 15 32 d3 28

 ef 32 63 2a 48 81 a1 c0 70 1e 23 7f 04 2d

2.2. message_2

 The Responder supports the most preferred and selected cipher suite

 0, so SUITES_I is acceptable.

 The Responder creates an ephemeral key pair for use with the EDHOC

 key exchange algorithm:

 Responder’s ephemeral private key

 Y (Raw Value) (32 bytes)

 e6 9c 23 fb f8 1b c4 35 94 24 46 83 7f e8 27 bf 20 6c 8f a1 0a 39 db

 47 44 9e 5a 81 34 21 e1 e8

 Responder’s ephemeral public key

 G_Y (Raw Value) (32 bytes)

 dc 88 d2 d5 1d a5 ed 67 fc 46 16 35 6b c8 ca 74 ef 9e be 8b 38 7e 62

 3a 36 0b a4 80 b9 b2 9d 1c

 Responder’s ephemeral public key

 G_Y (CBOR Data Item) (34 bytes)

 58 20 dc 88 d2 d5 1d a5 ed 67 fc 46 16 35 6b c8 ca 74 ef 9e be 8b 38

 7e 62 3a 36 0b a4 80 b9 b2 9d 1c

 The Responder selects its connection identifier C_R to be the byte

 string 0x18, which since it is not represented as a 1-byte CBOR int

 is encoded as h’18’ = 0x4118:

 Connection identifier chosen by Responder

 C_R (Raw Value) (1 byte)

 18

 Connection identifier chosen by Responder

 C_R (CBOR Data Item) (2 bytes)

 41 18

 The transcript hash TH_2 is calculated using the EDHOC hash

 algorithm:

 TH_2 = H(G_Y, H(message_1))

 H(message_1) (Raw Value) (32 bytes)

 c1 65 d6 a9 9d 1b ca fa ac 8d bf 2b 35 2a 6f 7d 71 a3 0b 43 9c 9d 64

 d3 49 a2 38 48 03 8e d1 6b

Selander, et al. Expires 30 July 2024 [Page 6]

Internet-Draft Traces of EDHOC January 2024

 H(message_1) (CBOR Data Item) (34 bytes)

 58 20 c1 65 d6 a9 9d 1b ca fa ac 8d bf 2b 35 2a 6f 7d 71 a3 0b 43 9c

 9d 64 d3 49 a2 38 48 03 8e d1 6b

 The input to calculate TH_2 is the CBOR sequence:

 G_Y, H(message_1)

 Input to calculate TH_2 (CBOR Sequence) (68 bytes)

 58 20 dc 88 d2 d5 1d a5 ed 67 fc 46 16 35 6b c8 ca 74 ef 9e be 8b 38

 7e 62 3a 36 0b a4 80 b9 b2 9d 1c 58 20 c1 65 d6 a9 9d 1b ca fa ac 8d

 bf 2b 35 2a 6f 7d 71 a3 0b 43 9c 9d 64 d3 49 a2 38 48 03 8e d1 6b

 TH_2 (Raw Value) (32 bytes)

 c6 40 5c 15 4c 56 74 66 ab 1d f2 03 69 50 0e 54 0e 9f 14 bd 3a 79 6a

 06 52 ca e6 6c 90 61 68 8d

 TH_2 (CBOR Data Item) (34 bytes)

 58 20 c6 40 5c 15 4c 56 74 66 ab 1d f2 03 69 50 0e 54 0e 9f 14 bd 3a

 79 6a 06 52 ca e6 6c 90 61 68 8d

 PRK_2e is specified in Section 4.1.1.1 of [I-D.ietf-lake-edhoc].

 First, the ECDH shared secret G_XY is computed from G_X and Y, or G_Y

 and X:

 G_XY (Raw Value) (ECDH shared secret) (32 bytes)

 e5 cd f3 a9 86 cd ac 5b 7b f0 46 91 e2 b0 7c 08 e7 1f 53 99 8d 8f 84

 2b 7c 3f b4 d8 39 cf 7b 28

 Then, PRK_2e is calculated using EDHOC_Extract() determined by the

 EDHOC hash algorithm:

 PRK_2e = EDHOC_Extract(salt, G_XY) =

 = HMAC-SHA-256(salt, G_XY)

 where salt is TH_2:

 salt (Raw Value) (32 bytes)

 c6 40 5c 15 4c 56 74 66 ab 1d f2 03 69 50 0e 54 0e 9f 14 bd 3a 79 6a

 06 52 ca e6 6c 90 61 68 8d

 PRK_2e (Raw Value) (32 bytes)

 d5 84 ac 2e 5d ad 5a 77 d1 4b 53 eb e7 2e f1 d5 da a8 86 0d 39 93 73

 bf 2c 24 0a fa 7b a8 04 da

Selander, et al. Expires 30 July 2024 [Page 7]

Internet-Draft Traces of EDHOC January 2024

 Since METHOD = 0, the Responder authenticates using signatures.

 Since the selected cipher suite is 0, the EDHOC signature algorithm

 is EdDSA.

 The Responder’s signature key pair using EdDSA:

 Responder’s private authentication key

 SK_R (Raw Value) (32 bytes)

 ef 14 0f f9 00 b0 ab 03 f0 c0 8d 87 9c bb d4 b3 1e a7 1e 6e 7e e7 ff

 cb 7e 79 55 77 7a 33 27 99

 Responder’s public authentication key

 PK_R (Raw Value) (32 bytes)

 a1 db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0 f2 c6 62

 c0 0b 3a c5 5d e9 2f 93 59

 PRK_3e2m is specified in Section 4.1.1.2 of [I-D.ietf-lake-edhoc].

 Since the Responder authenticates with signatures PRK_3e2m = PRK_2e.

 PRK_3e2m (Raw Value) (32 bytes)

 d5 84 ac 2e 5d ad 5a 77 d1 4b 53 eb e7 2e f1 d5 da a8 86 0d 39 93 73

 bf 2c 24 0a fa 7b a8 04 da

 The Responder constructs the remaining input needed to calculate

 MAC_2:

 MAC_2 = EDHOC_KDF(PRK_3e2m, 2, context_2, mac_length_2)

 context_2 = << C_R, ID_CRED_R, TH_2, CRED_R, ? EAD_2 >>

 CRED_R is identified by a 64-bit hash:

 ID_CRED_R =

 {

 34 : [-15, h’79f2a41b510c1f9b’]

 }

 where the COSE header value 34 (’x5t’) indicates a hash of an X.509

 certficate, and the COSE algorithm -15 indicates the hash algorithm

 SHA-256 truncated to 64 bits.

 ID_CRED_R (CBOR Data Item) (14 bytes)

 a1 18 22 82 2e 48 79 f2 a4 1b 51 0c 1f 9b

 CRED_R is a CBOR byte string of the DER encoding of the X.509

 certificate in Section 2.8.1:

Selander, et al. Expires 30 July 2024 [Page 8]

Internet-Draft Traces of EDHOC January 2024

 CRED_R (Raw Value) (241 bytes)

 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e c4 30 05 06 03 2b 65

 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52 6f 6f

 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38 32 34

 33 36 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31 20 30

 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 52 65 73 70 6f 6e 64 65 72

 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 a1 db 47

 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0 f2 c6 62 c0 0b 3a

 c5 5d e9 2f 93 59 30 05 06 03 2b 65 70 03 41 00 b7 23 bc 01 ea b0 92

 8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d 69 87 b0 32 47 8f ec fa f1 45

 37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10 18 37 eb 4a bc 94 95 65 d8 6d

 ce 51 cf ae 52 ab 82 c1 52 cb 02

 CRED_R (CBOR Data Item) (243 bytes)

 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e c4 30 05 06 03

 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52

 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38

 32 34 33 36 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31

 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 52 65 73 70 6f 6e 64

 65 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 a1

 db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0 f2 c6 62 c0

 0b 3a c5 5d e9 2f 93 59 30 05 06 03 2b 65 70 03 41 00 b7 23 bc 01 ea

 b0 92 8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d 69 87 b0 32 47 8f ec fa

 f1 45 37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10 18 37 eb 4a bc 94 95 65

 d8 6d ce 51 cf ae 52 ab 82 c1 52 cb 02

 No external authorization data:

 EAD_2 (CBOR Sequence) (0 bytes)

 context_2 = << C_R, ID_CRED_R, TH_2, CRED_R, ? EAD_2 >>

 context_2 (CBOR Sequence) (293 bytes)

 41 18 a1 18 22 82 2e 48 79 f2 a4 1b 51 0c 1f 9b 58 20 c6 40 5c 15 4c

 56 74 66 ab 1d f2 03 69 50 0e 54 0e 9f 14 bd 3a 79 6a 06 52 ca e6 6c

 90 61 68 8d 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e c4

 30 05 06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48

 4f 43 20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33

 31 36 30 38 32 34 33 36 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30

 5a 30 22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 52 65 73

 70 6f 6e 64 65 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70

 03 21 00 a1 db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0

 f2 c6 62 c0 0b 3a c5 5d e9 2f 93 59 30 05 06 03 2b 65 70 03 41 00 b7

 23 bc 01 ea b0 92 8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d 69 87 b0 32

 47 8f ec fa f1 45 37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10 18 37 eb 4a

 bc 94 95 65 d8 6d ce 51 cf ae 52 ab 82 c1 52 cb 02

Selander, et al. Expires 30 July 2024 [Page 9]

Internet-Draft Traces of EDHOC January 2024

 context_2 (CBOR byte string) (296 bytes)

 59 01 25 41 18 a1 18 22 82 2e 48 79 f2 a4 1b 51 0c 1f 9b 58 20 c6 40

 5c 15 4c 56 74 66 ab 1d f2 03 69 50 0e 54 0e 9f 14 bd 3a 79 6a 06 52

 ca e6 6c 90 61 68 8d 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62

 31 9e c4 30 05 06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12

 45 44 48 4f 43 20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32

 32 30 33 31 36 30 38 32 34 33 36 5a 17 0d 32 39 31 32 33 31 32 33 30

 30 30 30 5a 30 22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20

 52 65 73 70 6f 6e 64 65 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03

 2b 65 70 03 21 00 a1 db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac

 e3 3a a0 f2 c6 62 c0 0b 3a c5 5d e9 2f 93 59 30 05 06 03 2b 65 70 03

 41 00 b7 23 bc 01 ea b0 92 8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d 69

 87 b0 32 47 8f ec fa f1 45 37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10 18

 37 eb 4a bc 94 95 65 d8 6d ce 51 cf ae 52 ab 82 c1 52 cb 02

 MAC_2 is computed through EDHOC_Expand() using the EDHOC hash

 algorithm, see Section 4.1.2 of [I-D.ietf-lake-edhoc]:

 MAC_2 = HKDF-Expand(PRK_3e2m, info, mac_length_2), where

 info = (2, context_2, mac_length_2)

 Since METHOD = 0, mac_length_2 is given by the EDHOC hash algorithm.

 info for MAC_2 is:

 info =

 (

 2,

 h’4118a11822822e4879f2a41b510c1f9b5820c6405c154c56

 7466ab1df20369500e540e9f14bd3a796a0652cae66c9061

 688d58f13081ee3081a1a003020102020462319ec4300506

 032b6570301d311b301906035504030c124544484f432052

 6f6f742045643235353139301e170d323230333136303832

 3433365a170d3239313233313233303030305a3022312030

 1e06035504030c174544484f4320526573706f6e64657220

 45643235353139302a300506032b6570032100a1db47b951

 84854ad12a0c1a354e418aace33aa0f2c662c00b3ac55de9

 2f9359300506032b6570034100b723bc01eab0928e8b2b6c

 98de19cc3823d46e7d6987b032478fecfaf14537a1af14cc

 8be829c6b73044101837eb4abc949565d86dce51cfae52ab

 82c152cb02’,

 32

)

 where the last value is the output size of the EDHOC hash algorithm

 in bytes.

Selander, et al. Expires 30 July 2024 [Page 10]

Internet-Draft Traces of EDHOC January 2024

 info for MAC_2 (CBOR Sequence) (299 bytes)

 02 59 01 25 41 18 a1 18 22 82 2e 48 79 f2 a4 1b 51 0c 1f 9b 58 20 c6

 40 5c 15 4c 56 74 66 ab 1d f2 03 69 50 0e 54 0e 9f 14 bd 3a 79 6a 06

 52 ca e6 6c 90 61 68 8d 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04

 62 31 9e c4 30 05 06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c

 12 45 44 48 4f 43 20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d

 32 32 30 33 31 36 30 38 32 34 33 36 5a 17 0d 32 39 31 32 33 31 32 33

 30 30 30 30 5a 30 22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43

 20 52 65 73 70 6f 6e 64 65 72 20 45 64 32 35 35 31 39 30 2a 30 05 06

 03 2b 65 70 03 21 00 a1 db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a

 ac e3 3a a0 f2 c6 62 c0 0b 3a c5 5d e9 2f 93 59 30 05 06 03 2b 65 70

 03 41 00 b7 23 bc 01 ea b0 92 8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d

 69 87 b0 32 47 8f ec fa f1 45 37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10

 18 37 eb 4a bc 94 95 65 d8 6d ce 51 cf ae 52 ab 82 c1 52 cb 02 18 20

 MAC_2 (Raw Value) (32 bytes)

 86 2a 7e 5e f1 47 f9 a5 f4 c5 12 e1 b6 62 3c d6 6c d1 7a 72 72 07 2b

 fe 5b 60 2f fe 30 7e e0 e9

 MAC_2 (CBOR Data Item) (34 bytes)

 58 20 86 2a 7e 5e f1 47 f9 a5 f4 c5 12 e1 b6 62 3c d6 6c d1 7a 72 72

 07 2b fe 5b 60 2f fe 30 7e e0 e9

 Since METHOD = 0, Signature_or_MAC_2 is the ’signature’ of the

 COSE_Sign1 object.

 The Responder constructs the message to be signed:

Selander, et al. Expires 30 July 2024 [Page 11]

Internet-Draft Traces of EDHOC January 2024

 ["Signature1", << ID_CRED_R >>,

 << TH_2, CRED_R, ? EAD_2 >>, MAC_2] =

 [

 "Signature1",

 h’a11822822e4879f2a41b510c1f9b’,

 h’5820c6405c154c567466ab1df20369500e540e9f14bd3a79

 6a0652cae66c9061688d58f13081ee3081a1a00302010202

 0462319ec4300506032b6570301d311b301906035504030c

 124544484f4320526f6f742045643235353139301e170d32

 32303331363038323433365a170d32393132333132333030

 30305a30223120301e06035504030c174544484f43205265

 73706f6e6465722045643235353139302a300506032b6570

 032100a1db47b95184854ad12a0c1a354e418aace33aa0f2

 c662c00b3ac55de92f9359300506032b6570034100b723bc

 01eab0928e8b2b6c98de19cc3823d46e7d6987b032478fec

 faf14537a1af14cc8be829c6b73044101837eb4abc949565

 d86dce51cfae52ab82c152cb02’,

 h’862a7e5ef147f9a5f4c512e1b6623cd66cd17a7272072bfe

 5b602ffe307ee0e9’

]

 Message to be signed 2 (CBOR Data Item) (341 bytes)

 84 6a 53 69 67 6e 61 74 75 72 65 31 4e a1 18 22 82 2e 48 79 f2 a4 1b

 51 0c 1f 9b 59 01 15 58 20 c6 40 5c 15 4c 56 74 66 ab 1d f2 03 69 50

 0e 54 0e 9f 14 bd 3a 79 6a 06 52 ca e6 6c 90 61 68 8d 58 f1 30 81 ee

 30 81 a1 a0 03 02 01 02 02 04 62 31 9e c4 30 05 06 03 2b 65 70 30 1d

 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52 6f 6f 74 20 45

 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38 32 34 33 36 5a

 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31 20 30 1e 06 03

 55 04 03 0c 17 45 44 48 4f 43 20 52 65 73 70 6f 6e 64 65 72 20 45 64

 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 a1 db 47 b9 51 84

 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0 f2 c6 62 c0 0b 3a c5 5d e9

 2f 93 59 30 05 06 03 2b 65 70 03 41 00 b7 23 bc 01 ea b0 92 8e 8b 2b

 6c 98 de 19 cc 38 23 d4 6e 7d 69 87 b0 32 47 8f ec fa f1 45 37 a1 af

 14 cc 8b e8 29 c6 b7 30 44 10 18 37 eb 4a bc 94 95 65 d8 6d ce 51 cf

 ae 52 ab 82 c1 52 cb 02 58 20 86 2a 7e 5e f1 47 f9 a5 f4 c5 12 e1 b6

 62 3c d6 6c d1 7a 72 72 07 2b fe 5b 60 2f fe 30 7e e0 e9

 The Responder signs using the private authentication key SK_R

 Signature_or_MAC_2 (Raw Value) (64 bytes)

 c3 b5 bd 44 d1 e4 4a 08 5c 03 d3 ae de 4e 1e 6c 11 c5 72 a1 96 8c c3

 62 9b 50 5f 98 c6 81 60 8d 3d 1d e7 93 d1 c4 0e b5 dd 5d 89 ac f1 96

 6a ea 07 02 2b 48 cd c9 98 70 eb c4 03 74 e8 fa 6e 09

Selander, et al. Expires 30 July 2024 [Page 12]

Internet-Draft Traces of EDHOC January 2024

 Signature_or_MAC_2 (CBOR Data Item) (66 bytes)

 58 40 c3 b5 bd 44 d1 e4 4a 08 5c 03 d3 ae de 4e 1e 6c 11 c5 72 a1 96

 8c c3 62 9b 50 5f 98 c6 81 60 8d 3d 1d e7 93 d1 c4 0e b5 dd 5d 89 ac

 f1 96 6a ea 07 02 2b 48 cd c9 98 70 eb c4 03 74 e8 fa 6e 09

 The Responder constructs PLAINTEXT_2:

 PLAINTEXT_2 =

 (

 C_R,

 ID_CRED_R / bstr / -24..23,

 Signature_or_MAC_2,

 ? EAD_2

)

 PLAINTEXT_2 (CBOR Sequence) (82 bytes)

 41 18 a1 18 22 82 2e 48 79 f2 a4 1b 51 0c 1f 9b 58 40 c3 b5 bd 44 d1

 e4 4a 08 5c 03 d3 ae de 4e 1e 6c 11 c5 72 a1 96 8c c3 62 9b 50 5f 98

 c6 81 60 8d 3d 1d e7 93 d1 c4 0e b5 dd 5d 89 ac f1 96 6a ea 07 02 2b

 48 cd c9 98 70 eb c4 03 74 e8 fa 6e 09

 The input needed to calculate KEYSTREAM_2 is defined in Section 4.1.2

 of [I-D.ietf-lake-edhoc], using EDHOC_Expand() with the EDHOC hash

 algorithm:

 KEYSTREAM_2 = EDHOC_KDF(PRK_2e, 0, TH_2, plaintext_length) =

 = HKDF-Expand(PRK_2e, info, plaintext_length)

 where plaintext_length is the length in bytes of PLAINTEXT_2 in

 bytes, and info for KEYSTREAM_2 is:

 info =

 (

 0,

 h’c6405c154c567466ab1df20369500e540e9f14bd3a796a06

 52cae66c9061688d’,

 82

)

 where the last value is the length in bytes of PLAINTEXT_2.

 info for KEYSTREAM_2 (CBOR Sequence) (37 bytes)

 00 58 20 c6 40 5c 15 4c 56 74 66 ab 1d f2 03 69 50 0e 54 0e 9f 14 bd

 3a 79 6a 06 52 ca e6 6c 90 61 68 8d 18 52

Selander, et al. Expires 30 July 2024 [Page 13]

Internet-Draft Traces of EDHOC January 2024

 KEYSTREAM_2 (Raw Value) (82 bytes)

 fd 3e 7c 3f 2d 6b ee 64 3d 3c 9d 2f 28 47 03 5d 73 e2 ec b0 f8 db 5c

 d1 c6 85 4e 24 89 6a f2 11 88 b2 c4 34 4e 68 9e c2 98 42 83 d9 fb c6

 9c e1 c5 db 10 dc ff f2 4d f9 a4 9a 04 a9 40 58 27 7b c7 fa 9a d6 c6

 b1 94 ab 32 8b 44 5e b0 80 49 0c d7 86

 The Responder calculates CIPHERTEXT_2 as XOR between PLAINTEXT_2 and

 KEYSTREAM_2:

 CIPHERTEXT_2 (Raw Value) (82 bytes)

 bc 26 dd 27 0f e9 c0 2c 44 ce 39 34 79 4b 1c c6 2b a2 2f 05 45 9f 8d

 35 8c 8d 12 27 5a c4 2c 5f 96 de d5 f1 3c c9 08 4e 5b 20 18 89 a4 5e

 5a 60 a5 56 2d c1 18 61 9c 3d aa 2f d9 f4 c9 f4 d6 ed ad 10 9d d4 ed

 f9 59 62 aa fb af 9a b3 f4 a1 f6 b9 8f

 The Responder constructs message_2:

 message_2 =

 (

 G_Y_CIPHERTEXT_2

)

 where G_Y_CIPHERTEXT_2 is the bstr encoding of the concatenation of

 the raw values of G_Y and CIPHERTEXT_2.

 message_2 (CBOR Sequence) (116 bytes)

 58 72 dc 88 d2 d5 1d a5 ed 67 fc 46 16 35 6b c8 ca 74 ef 9e be 8b 38

 7e 62 3a 36 0b a4 80 b9 b2 9d 1c bc 26 dd 27 0f e9 c0 2c 44 ce 39 34

 79 4b 1c c6 2b a2 2f 05 45 9f 8d 35 8c 8d 12 27 5a c4 2c 5f 96 de d5

 f1 3c c9 08 4e 5b 20 18 89 a4 5e 5a 60 a5 56 2d c1 18 61 9c 3d aa 2f

 d9 f4 c9 f4 d6 ed ad 10 9d d4 ed f9 59 62 aa fb af 9a b3 f4 a1 f6 b9

 8f

2.3. message_3

 Since METHOD = 0, the Initiator authenticates using signatures.

 Since the selected cipher suite is 0, the EDHOC signature algorithm

 is EdDSA.

 The Initiator’s signature key pair using EdDSA:

 Initiator’s private authentication key

 SK_I (Raw Value) (32 bytes)

 4c 5b 25 87 8f 50 7c 6b 9d ae 68 fb d4 fd 3f f9 97 53 3d b0 af 00 b2

 5d 32 4e a2 8e 6c 21 3b c8

Selander, et al. Expires 30 July 2024 [Page 14]

Internet-Draft Traces of EDHOC January 2024

 Initiator’s public authentication key

 PK_I (Raw Value) (32 bytes)

 ed 06 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e 0f

 23 d8 cc 20 b7 30 85 14 1e

 PRK_4e3m is specified in Section 4.1.1.3 of [I-D.ietf-lake-edhoc].

 Since the Initiator authenticates with signatures PRK_4e3m =

 PRK_3e2m.

 PRK_4e3m (Raw Value) (32 bytes)

 d5 84 ac 2e 5d ad 5a 77 d1 4b 53 eb e7 2e f1 d5 da a8 86 0d 39 93 73

 bf 2c 24 0a fa 7b a8 04 da

 The transcript hash TH_3 is calculated using the EDHOC hash

 algorithm:

 TH_3 = H(TH_2, PLAINTEXT_2, CRED_R)

 Input to calculate TH_3 (CBOR Sequence) (359 bytes)

 58 20 c6 40 5c 15 4c 56 74 66 ab 1d f2 03 69 50 0e 54 0e 9f 14 bd 3a

 79 6a 06 52 ca e6 6c 90 61 68 8d 41 18 a1 18 22 82 2e 48 79 f2 a4 1b

 51 0c 1f 9b 58 40 c3 b5 bd 44 d1 e4 4a 08 5c 03 d3 ae de 4e 1e 6c 11

 c5 72 a1 96 8c c3 62 9b 50 5f 98 c6 81 60 8d 3d 1d e7 93 d1 c4 0e b5

 dd 5d 89 ac f1 96 6a ea 07 02 2b 48 cd c9 98 70 eb c4 03 74 e8 fa 6e

 09 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e c4 30 05 06

 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20

 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30

 38 32 34 33 36 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22

 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 52 65 73 70 6f 6e

 64 65 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00

 a1 db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0 f2 c6 62

 c0 0b 3a c5 5d e9 2f 93 59 30 05 06 03 2b 65 70 03 41 00 b7 23 bc 01

 ea b0 92 8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d 69 87 b0 32 47 8f ec

 fa f1 45 37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10 18 37 eb 4a bc 94 95

 65 d8 6d ce 51 cf ae 52 ab 82 c1 52 cb 02

 TH_3 (Raw Value) (32 bytes)

 5b 7d f9 b4 f5 8f 24 0c e0 41 8e 48 19 1b 5f ff 3a 22 b5 ca 57 f6 69

 b1 67 77 99 65 92 e9 28 bc

 TH_3 (CBOR Data Item) (34 bytes)

 58 20 5b 7d f9 b4 f5 8f 24 0c e0 41 8e 48 19 1b 5f ff 3a 22 b5 ca 57

 f6 69 b1 67 77 99 65 92 e9 28 bc

 The Initiator constructs the remaining input needed to calculate

 MAC_3:

Selander, et al. Expires 30 July 2024 [Page 15]

Internet-Draft Traces of EDHOC January 2024

 MAC_3 = EDHOC_KDF(PRK_4e3m, 6, context_3, mac_length_3)

 where

 context_3 = << ID_CRED_I, TH_3, CRED_I, ? EAD_3 >>

 CRED_I is identified by a 64-bit hash:

 ID_CRED_I =

 {

 34 : [-15, h’c24ab2fd7643c79f’]

 }

 where the COSE header value 34 (’x5t’) indicates a hash of an X.509

 certficate, and the COSE algorithm -15 indicates the hash algorithm

 SHA-256 truncated to 64 bits.

 ID_CRED_I (CBOR Data Item) (14 bytes)

 a1 18 22 82 2e 48 c2 4a b2 fd 76 43 c7 9f

 CRED_I is a CBOR byte string of the DER encoding of the X.509

 certificate in Section 2.8.2:

 CRED_I (Raw Value) (241 bytes)

 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e a0 30 05 06 03 2b 65

 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52 6f 6f

 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38 32 34

 30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31 20 30

 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49 6e 69 74 69 61 74 6f 72

 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 ed 06 a8

 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e 0f 23 d8 cc

 20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41 00 52 12 41 d8 b3 a7 70

 99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df 29 10 b3 92 75 ae 48

 b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21 22 67 dd 05 ee ff 27 b9

 e7 a8 13 fa 57 4b 72 a0 0b 43 0b

 CRED_I (CBOR Data Item) (243 bytes)

 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e a0 30 05 06 03

 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52

 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38

 32 34 30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31

 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49 6e 69 74 69 61 74

 6f 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 ed

 06 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e 0f 23

 d8 cc 20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41 00 52 12 41 d8 b3

 a7 70 99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df 29 10 b3 92 75

 ae 48 b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21 22 67 dd 05 ee ff

 27 b9 e7 a8 13 fa 57 4b 72 a0 0b 43 0b

Selander, et al. Expires 30 July 2024 [Page 16]

Internet-Draft Traces of EDHOC January 2024

 No external authorization data:

 EAD_3 (CBOR Sequence) (0 bytes)

 context_3 = << ID_CRED_I, TH_3, CRED_I, ? EAD_3 >>

 context_3 (CBOR Sequence) (291 bytes)

 a1 18 22 82 2e 48 c2 4a b2 fd 76 43 c7 9f 58 20 5b 7d f9 b4 f5 8f 24

 0c e0 41 8e 48 19 1b 5f ff 3a 22 b5 ca 57 f6 69 b1 67 77 99 65 92 e9

 28 bc 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e a0 30 05

 06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43

 20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36

 30 38 32 34 30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30

 22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49 6e 69 74 69

 61 74 6f 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21

 00 ed 06 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e

 0f 23 d8 cc 20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41 00 52 12 41

 d8 b3 a7 70 99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df 29 10 b3

 92 75 ae 48 b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21 22 67 dd 05

 ee ff 27 b9 e7 a8 13 fa 57 4b 72 a0 0b 43 0b

 context_3 (CBOR byte string) (294 bytes)

 59 01 23 a1 18 22 82 2e 48 c2 4a b2 fd 76 43 c7 9f 58 20 5b 7d f9 b4

 f5 8f 24 0c e0 41 8e 48 19 1b 5f ff 3a 22 b5 ca 57 f6 69 b1 67 77 99

 65 92 e9 28 bc 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e

 a0 30 05 06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44

 48 4f 43 20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30

 33 31 36 30 38 32 34 30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30

 30 5a 30 22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49 6e

 69 74 69 61 74 6f 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65

 70 03 21 00 ed 06 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3

 02 f4 3e 0f 23 d8 cc 20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41 00

 52 12 41 d8 b3 a7 70 99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df

 29 10 b3 92 75 ae 48 b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21 22

 67 dd 05 ee ff 27 b9 e7 a8 13 fa 57 4b 72 a0 0b 43 0b

 MAC_3 is computed through EDHOC_Expand() using the EDHOC hash

 algorithm, see Section 4.1.2 of [I-D.ietf-lake-edhoc]:

 MAC_3 = HKDF-Expand(PRK_4e3m, info, mac_length_3), where

 info = (6, context_3, mac_length_3)

 where context_3 = << ID_CRED_I, TH_3, CRED_I, ? EAD_3 >>

 Since METHOD = 0, mac_length_3 is given by the EDHOC hash algorithm.

 info for MAC_3 is:

Selander, et al. Expires 30 July 2024 [Page 17]

Internet-Draft Traces of EDHOC January 2024

 info =

 (

 6,

 h’a11822822e48c24ab2fd7643c79f58205b7df9b4f58f240c

 e0418e48191b5fff3a22b5ca57f669b16777996592e928bc

 58f13081ee3081a1a003020102020462319ea0300506032b

 6570301d311b301906035504030c124544484f4320526f6f

 742045643235353139301e170d3232303331363038323430

 305a170d3239313233313233303030305a30223120301e06

 035504030c174544484f4320496e69746961746f72204564

 3235353139302a300506032b6570032100ed06a8ae61a829

 ba5fa54525c9d07f48dd44a302f43e0f23d8cc20b7308514

 1e300506032b6570034100521241d8b3a770996bcfc9b9ea

 d4e7e0a1c0db353a3bdf2910b39275ae48b756015981850d

 27db6734e37f67212267dd05eeff27b9e7a813fa574b72a0

 0b430b’,

 32

)

 where the last value is the output size of the EDHOC hash algorithm

 in bytes.

 info for MAC_3 (CBOR Sequence) (297 bytes)

 06 59 01 23 a1 18 22 82 2e 48 c2 4a b2 fd 76 43 c7 9f 58 20 5b 7d f9

 b4 f5 8f 24 0c e0 41 8e 48 19 1b 5f ff 3a 22 b5 ca 57 f6 69 b1 67 77

 99 65 92 e9 28 bc 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31

 9e a0 30 05 06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45

 44 48 4f 43 20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32

 30 33 31 36 30 38 32 34 30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30

 30 30 5a 30 22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49

 6e 69 74 69 61 74 6f 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b

 65 70 03 21 00 ed 06 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44

 a3 02 f4 3e 0f 23 d8 cc 20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41

 00 52 12 41 d8 b3 a7 70 99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b

 df 29 10 b3 92 75 ae 48 b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21

 22 67 dd 05 ee ff 27 b9 e7 a8 13 fa 57 4b 72 a0 0b 43 0b 18 20

 MAC_3 (Raw Value) (32 bytes)

 39 b1 27 c1 30 12 9a fa 30 61 8c 75 13 29 e6 37 cc 37 34 27 0d 4b 01

 25 84 45 a8 ee 02 da a3 bd

 MAC_3 (CBOR Data Item) (34 bytes)

 58 20 39 b1 27 c1 30 12 9a fa 30 61 8c 75 13 29 e6 37 cc 37 34 27 0d 4b

 01 25 84 45 a8 ee 02 da a3 bd

 Since METHOD = 0, Signature_or_MAC_3 is the ’signature’ of the

 COSE_Sign1 object.

Selander, et al. Expires 30 July 2024 [Page 18]

Internet-Draft Traces of EDHOC January 2024

 The Initiator constructs the message to be signed:

 ["Signature1", << ID_CRED_I >>,

 << TH_3, CRED_I, ? EAD_3 >>, MAC_3] =

 [

 "Signature1",

 h’a11822822e48c24ab2fd7643c79f’,

 h’58205b7df9b4f58f240ce0418e48191b5fff3a22b5ca57f6

 69b16777996592e928bc58f13081ee3081a1a00302010202

 0462319ea0300506032b6570301d311b301906035504030c

 124544484f4320526f6f742045643235353139301e170d32

 32303331363038323430305a170d32393132333132333030

 30305a30223120301e06035504030c174544484f4320496e

 69746961746f722045643235353139302a300506032b6570

 032100ed06a8ae61a829ba5fa54525c9d07f48dd44a302f4

 3e0f23d8cc20b73085141e300506032b6570034100521241

 d8b3a770996bcfc9b9ead4e7e0a1c0db353a3bdf2910b392

 75ae48b756015981850d27db6734e37f67212267dd05eeff

 27b9e7a813fa574b72a00b430b’,

 h’39b127c130129afa30618c751329e637cc3734270d4b0125

 8445a8ee02daa3bd’

]

 Message to be signed 3 (CBOR Data Item) (341 bytes)

 84 6a 53 69 67 6e 61 74 75 72 65 31 4e a1 18 22 82 2e 48 c2 4a b2 fd

 76 43 c7 9f 59 01 15 58 20 5b 7d f9 b4 f5 8f 24 0c e0 41 8e 48 19 1b

 5f ff 3a 22 b5 ca 57 f6 69 b1 67 77 99 65 92 e9 28 bc 58 f1 30 81 ee

 30 81 a1 a0 03 02 01 02 02 04 62 31 9e a0 30 05 06 03 2b 65 70 30 1d

 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52 6f 6f 74 20 45

 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38 32 34 30 30 5a

 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31 20 30 1e 06 03

 55 04 03 0c 17 45 44 48 4f 43 20 49 6e 69 74 69 61 74 6f 72 20 45 64

 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 ed 06 a8 ae 61 a8

 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e 0f 23 d8 cc 20 b7 30

 85 14 1e 30 05 06 03 2b 65 70 03 41 00 52 12 41 d8 b3 a7 70 99 6b cf

 c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df 29 10 b3 92 75 ae 48 b7 56 01

 59 81 85 0d 27 db 67 34 e3 7f 67 21 22 67 dd 05 ee ff 27 b9 e7 a8 13

 fa 57 4b 72 a0 0b 43 0b 58 20 39 b1 27 c1 30 12 9a fa 30 61 8c 75 13

 29 e6 37 cc 37 34 27 0d 4b 01 25 84 45 a8 ee 02 da a3 bd

 The Initiator signs using the private authentication key SK_I:

 Signature_or_MAC_3 (Raw Value) (64 bytes)

 96 e1 cd 5f ce ad fa c1 b5 af 81 94 43 f7 09 24 f5 71 99 55 95 7f d0

 26 55 be b4 77 5e 1a 73 18 6a 0d 1d 3e a6 83 f0 8f 8d 03 dc ec b9 cf

 15 4e 1c 6f 55 5a 1e 12 ca 11 8c e4 2b db a6 87 89 07

Selander, et al. Expires 30 July 2024 [Page 19]

Internet-Draft Traces of EDHOC January 2024

 Signature_or_MAC_3 (CBOR Data Item) (66 bytes)

 58 40 96 e1 cd 5f ce ad fa c1 b5 af 81 94 43 f7 09 24 f5 71 99 55 95

 7f d0 26 55 be b4 77 5e 1a 73 18 6a 0d 1d 3e a6 83 f0 8f 8d 03 dc ec

 b9 cf 15 4e 1c 6f 55 5a 1e 12 ca 11 8c e4 2b db a6 87 89 07

 The Initiator constructs PLAINTEXT_3:

 PLAINTEXT_3 =

 (

 ID_CRED_I / bstr / -24..23,

 Signature_or_MAC_3,

 ? EAD_3

)

 PLAINTEXT_3 (CBOR Sequence) (80 bytes)

 a1 18 22 82 2e 48 c2 4a b2 fd 76 43 c7 9f 58 40 96 e1 cd 5f ce ad fa

 c1 b5 af 81 94 43 f7 09 24 f5 71 99 55 95 7f d0 26 55 be b4 77 5e 1a

 73 18 6a 0d 1d 3e a6 83 f0 8f 8d 03 dc ec b9 cf 15 4e 1c 6f 55 5a 1e

 12 ca 11 8c e4 2b db a6 87 89 07

 The Initiator constructs the associated data for message_3:

 A_3 =

 [

 "Encrypt0",

 h’’,

 h’5b7df9b4f58f240ce0418e48191b5fff3a22b5ca57f669b1

 6777996592e928bc’

]

 A_3 (CBOR Data Item) (45 bytes)

 83 68 45 6e 63 72 79 70 74 30 40 58 20 5b 7d f9 b4 f5 8f 24 0c e0 41

 8e 48 19 1b 5f ff 3a 22 b5 ca 57 f6 69 b1 67 77 99 65 92 e9 28 bc

 The Initiator constructs the input needed to derive the key K_3, see

 Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash

 algorithm:

 K_3 = EDHOC_KDF(PRK_3e2m, 3, TH_3, key_length)

 = HKDF-Expand(PRK_3e2m, info, key_length),

 where key_length is the key length in bytes for the EDHOC AEAD

 algorithm, and info for K_3 is:

Selander, et al. Expires 30 July 2024 [Page 20]

Internet-Draft Traces of EDHOC January 2024

 info =

 (

 3,

 h’5b7df9b4f58f240ce0418e48191b5fff3a22b5ca57f669b1

 6777996592e928bc’,

 16

)

 where the last value is the key length in bytes for the EDHOC AEAD

 algorithm.

 info for K_3 (CBOR Sequence) (36 bytes)

 03 58 20 5b 7d f9 b4 f5 8f 24 0c e0 41 8e 48 19 1b 5f ff 3a 22 b5 ca

 57 f6 69 b1 67 77 99 65 92 e9 28 bc 10

 K_3 (Raw Value) (16 bytes)

 da 19 5e 5f 64 8a c6 3b 0e 8f b0 c4 55 20 51 39

 The Initiator constructs the input needed to derive the nonce IV_3,

 see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash

 algorithm:

 IV_3 = EDHOC_KDF(PRK_3e2m, 4, TH_3, iv_length)

 = HKDF-Expand(PRK_3e2m, info, iv_length),

 where iv_length is the nonce length in bytes for the EDHOC AEAD

 algorithm, and info for IV_3 is:

 info =

 (

 4,

 h’5b7df9b4f58f240ce0418e48191b5fff3a22b5ca57f669b1

 6777996592e928bc’,

 13

)

 where the last value is the nonce length in bytes for the EDHOC AEAD

 algorithm.

 info for IV_3 (CBOR Sequence) (36 bytes)

 04 58 20 5b 7d f9 b4 f5 8f 24 0c e0 41 8e 48 19 1b 5f ff 3a 22 b5 ca

 57 f6 69 b1 67 77 99 65 92 e9 28 bc 0d

 IV_3 (Raw Value) (13 bytes)

 38 d8 c6 4c 56 25 5a ff a4 49 f4 be d7

Selander, et al. Expires 30 July 2024 [Page 21]

Internet-Draft Traces of EDHOC January 2024

 The Initiator calculates CIPHERTEXT_3 as ’ciphertext’ of

 COSE_Encrypt0 applied using the EDHOC AEAD algorithm with plaintext

 PLAINTEXT_3, additional data A_3, key K_3 and nonce IV_3.

 CIPHERTEXT_3 (Raw Value) (88 bytes)

 25 c3 45 88 4a aa eb 22 c5 27 f9 b1 d2 b6 78 72 07 e0 16 3c 69 b6 2a

 0d 43 92 81 50 42 72 03 c3 16 74 e4 51 4e a6 e3 83 b5 66 eb 29 76 3e

 fe b0 af a5 18 77 6a e1 c6 5f 85 6d 84 bf 32 af 3a 78 36 97 04 66 dc

 b7 1f 76 74 5d 39 d3 02 5e 77 03 e0 c0 32 eb ad 51 94 7c

 message_3 is the CBOR bstr encoding of CIPHERTEXT_3:

 message_3 (CBOR Sequence) (90 bytes)

 58 58 25 c3 45 88 4a aa eb 22 c5 27 f9 b1 d2 b6 78 72 07 e0 16 3c 69

 b6 2a 0d 43 92 81 50 42 72 03 c3 16 74 e4 51 4e a6 e3 83 b5 66 eb 29

 76 3e fe b0 af a5 18 77 6a e1 c6 5f 85 6d 84 bf 32 af 3a 78 36 97 04

 66 dc b7 1f 76 74 5d 39 d3 02 5e 77 03 e0 c0 32 eb ad 51 94 7c

 The transcript hash TH_4 is calculated using the EDHOC hash

 algorithm:

 TH_4 = H(TH_3, PLAINTEXT_3, CRED_I)

 Input to calculate TH_4 (CBOR Sequence) (357 bytes)

 58 20 5b 7d f9 b4 f5 8f 24 0c e0 41 8e 48 19 1b 5f ff 3a 22 b5 ca 57

 f6 69 b1 67 77 99 65 92 e9 28 bc a1 18 22 82 2e 48 c2 4a b2 fd 76 43

 c7 9f 58 40 96 e1 cd 5f ce ad fa c1 b5 af 81 94 43 f7 09 24 f5 71 99

 55 95 7f d0 26 55 be b4 77 5e 1a 73 18 6a 0d 1d 3e a6 83 f0 8f 8d 03

 dc ec b9 cf 15 4e 1c 6f 55 5a 1e 12 ca 11 8c e4 2b db a6 87 89 07 58

 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e a0 30 05 06 03 2b

 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52 6f

 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38 32

 34 30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31 20

 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49 6e 69 74 69 61 74 6f

 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 ed 06

 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e 0f 23 d8

 cc 20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41 00 52 12 41 d8 b3 a7

 70 99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df 29 10 b3 92 75 ae

 48 b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21 22 67 dd 05 ee ff 27

 b9 e7 a8 13 fa 57 4b 72 a0 0b 43 0b

 TH_4 (Raw Value) (32 bytes)

 0e b8 68 f2 63 cf 35 55 dc cd 39 6d d8 de c2 9d 37 50 d5 99 be 42 d5

 a4 1a 5a 37 c8 96 f2 94 ac

 TH_4 (CBOR Data Item) (34 bytes)

 58 20 0e b8 68 f2 63 cf 35 55 dc cd 39 6d d8 de c2 9d 37 50 d5 99 be

 42 d5 a4 1a 5a 37 c8 96 f2 94 ac

Selander, et al. Expires 30 July 2024 [Page 22]

Internet-Draft Traces of EDHOC January 2024

2.4. message_4

 No external authorization data:

 EAD_4 (CBOR Sequence) (0 bytes)

 The Responder constructs PLAINTEXT_4:

 PLAINTEXT_4 =

 (

 ? EAD_4

)

 PLAINTEXT_4 (CBOR Sequence) (0 bytes)

 The Responder constructs the associated data for message_4:

 A_4 =

 [

 "Encrypt0",

 h’’,

 h’0eb868f263cf3555dccd396dd8dec29d3750d599be42d5a4

 1a5a37c896f294ac’

]

 A_4 (CBOR Data Item) (45 bytes)

 83 68 45 6e 63 72 79 70 74 30 40 58 20 0e b8 68 f2 63 cf 35 55 dc cd

 39 6d d8 de c2 9d 37 50 d5 99 be 42 d5 a4 1a 5a 37 c8 96 f2 94 ac

 The Responder constructs the input needed to derive the EDHOC

 message_4 key, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the

 EDHOC hash algorithm:

 K_4 = EDHOC_KDF(PRK_4e3m, 8, TH_4, key_length)

 = HKDF-Expand(PRK_4x3m, info, key_length)

 where key_length is the key length in bytes for the EDHOC AEAD

 algorithm, and info for K_4 is:

 info =

 (

 8,

 h’0eb868f263cf3555dccd396dd8dec29d3750d599be42d5a4

 1a5a37c896f294ac’,

 16

)

Selander, et al. Expires 30 July 2024 [Page 23]

Internet-Draft Traces of EDHOC January 2024

 where the last value is the key length in bytes for the EDHOC AEAD

 algorithm.

 info for K_4 (CBOR Sequence) (36 bytes)

 08 58 20 0e b8 68 f2 63 cf 35 55 dc cd 39 6d d8 de c2 9d 37 50 d5 99

 be 42 d5 a4 1a 5a 37 c8 96 f2 94 ac 10

 K_4 (Raw Value) (16 bytes)

 df 8c b5 86 1e 1f df ed d3 b2 30 15 a3 9d 1e 2e

 The Responder constructs the input needed to derive the EDHOC

 message_4 nonce, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using

 the EDHOC hash algorithm:

 IV_4 = EDHOC_KDF(PRK_4e3m, 9, TH_4, iv_length)

 = HKDF-Expand(PRK_4x3m, info, iv_length)

 where length is the nonce length in bytes for the EDHOC AEAD

 algorithm, and info for IV_4 is:

 info =

 (

 9,

 h’0eb868f263cf3555dccd396dd8dec29d3750d599be42d5a4

 1a5a37c896f294ac’,

 13

)

 where the last value is the nonce length in bytes for the EDHOC AEAD

 algorithm.

 info for IV_4 (CBOR Sequence) (36 bytes)

 09 58 20 0e b8 68 f2 63 cf 35 55 dc cd 39 6d d8 de c2 9d 37 50 d5 99

 be 42 d5 a4 1a 5a 37 c8 96 f2 94 ac 0d

 IV_4 (Raw Value) (13 bytes)

 12 8e c6 58 d9 70 d7 38 0f 74 fc 6c 27

 The Responder calculates CIPHERTEXT_4 as ’ciphertext’ of

 COSE_Encrypt0 applied using the EDHOC AEAD algorithm with plaintext

 PLAINTEXT_4, additional data A_4, key K_4 and nonce IV_4.

 CIPHERTEXT_4 (8 bytes)

 4f 0e de e3 66 e5 c8 83

 message_4 is the CBOR bstr encoding of CIPHERTEXT_4:

Selander, et al. Expires 30 July 2024 [Page 24]

Internet-Draft Traces of EDHOC January 2024

 message_4 (CBOR Sequence) (9 bytes)

 48 4f 0e de e3 66 e5 c8 83

2.5. PRK_out and PRK_exporter

 PRK_out is specified in Section 4.1.3 of [I-D.ietf-lake-edhoc].

 PRK_out = EDHOC_KDF(PRK_4e3m, 7, TH_4, hash_length) =

 = HKDF-Expand(PRK_4e3m, info, hash_length)

 where hash_length is the length in bytes of the output of the EDHOC

 hash algorithm, and info for PRK_out is:

 info =

 (

 7,

 h’0eb868f263cf3555dccd396dd8dec29d3750d599be42d5a4

 1a5a37c896f294ac’,

 32

)

 where the last value is the length in bytes of the output of the

 EDHOC hash algorithm.

 info for PRK_out (CBOR Sequence) (37 bytes)

 07 58 20 0e b8 68 f2 63 cf 35 55 dc cd 39 6d d8 de c2 9d 37 50 d5 99

 be 42 d5 a4 1a 5a 37 c8 96 f2 94 ac 18 20

 PRK_out (Raw Value) (32 bytes)

 b7 44 cb 7d 8a 87 cc 04 47 c3 35 0e 16 5b 25 0d ab 12 ec 45 33 25 ab

 b9 22 b3 03 07 e5 c3 68 f0

 The OSCORE Master Secret and OSCORE Master Salt are derived with the

 EDHOC_Exporter as specified in Section 4.2.1 of

 [I-D.ietf-lake-edhoc].

 EDHOC_Exporter(label, context, length)

 = EDHOC_KDF(PRK_exporter, label, context, length)

 where PRK_exporter is derived from PRK_out:

 PRK_exporter = EDHOC_KDF(PRK_out, 10, h’’, hash_length) =

 = HKDF-Expand(PRK_out, info, hash_length)

 where hash_length is the length in bytes of the output of the EDHOC

 hash algorithm, and info for the PRK_exporter is:

Selander, et al. Expires 30 July 2024 [Page 25]

Internet-Draft Traces of EDHOC January 2024

 info =

 (

 10,

 h’’,

 32

)

 where the last value is the length in bytes of the output of the

 EDHOC hash algorithm.

 info for PRK_exporter (CBOR Sequence) (4 bytes)

 0a 40 18 20

 PRK_exporter (Raw Value) (32 bytes)

 2a ae c8 fc 4a b3 bc 32 95 de f6 b5 51 05 1a 2f a5 61 42 4d b3 01 fa

 84 f6 42 f5 57 8a 6d f5 1a

2.6. OSCORE Parameters

 The derivation of OSCORE parameters is specified in Appendix A.1 of

 [I-D.ietf-lake-edhoc].

 The AEAD and Hash algorithms to use in OSCORE are given by the

 selected cipher suite:

 Application AEAD Algorithm (int)

 10

 Application Hash Algorithm (int)

 -16

 The mapping from EDHOC connection identifiers to OSCORE Sender/

 Recipient IDs is defined in Section 3.3.3 of [I-D.ietf-lake-edhoc].

 C_R is mapped to the Recipient ID of the server, i.e., the Sender ID

 of the client. The byte string 0x18, which as C_R is encoded as the

 CBOR byte string 0x4118, is converted to the server Recipient ID

 0x18.

 Client’s OSCORE Sender ID (Raw Value) (1 byte)

 18

 C_I is mapped to the Recipient ID of the client, i.e., the Sender ID

 of the server. The byte string 0x2d, which as C_I is encoded as the

 CBOR integer 0x2d is converted to the client Recipient ID 0x2d.

 Server’s OSCORE Sender ID (Raw Value) (1 byte)

 2d

Selander, et al. Expires 30 July 2024 [Page 26]

Internet-Draft Traces of EDHOC January 2024

 The OSCORE Master Secret is computed through EDHOC_Expand() using the

 Application hash algorithm, see Appendix A.1 of

 [I-D.ietf-lake-edhoc]:

 OSCORE Master Secret = EDHOC_Exporter(0, h’’, oscore_key_length)

 = EDHOC_KDF(PRK_exporter, 0, h’’, oscore_key_length)

 = HKDF-Expand(PRK_exporter, info, oscore_key_length)

 where oscore_key_length is by default the key length in bytes for the

 Application AEAD algorithm, and info for the OSCORE Master Secret is:

 info =

 (

 0,

 h’’,

 16

)

 where the last value is the key length in bytes for the Application

 AEAD algorithm.

 info for OSCORE Master Secret (CBOR Sequence) (3 bytes)

 00 40 10

 OSCORE Master Secret (Raw Value) (16 bytes)

 1e 1c 6b ea c3 a8 a1 ca c4 35 de 7e 2f 9a e7 ff

 The OSCORE Master Salt is computed through EDHOC_Expand() using the

 Application hash algorithm, see Section 4.2 of [I-D.ietf-lake-edhoc]:

 OSCORE Master Salt = EDHOC_Exporter(1, h’’, oscore_salt_length)

 = EDHOC_KDF(PRK_exporter, 1, h’’, oscore_salt_length)

 = HKDF-Expand(PRK_4x3m, info, oscore_salt_length)

 where oscore_salt_length is the length in bytes of the OSCORE Master

 Salt, and info for the OSCORE Master Salt is:

 info =

 (

 1,

 h’’,

 8

)

 where the last value is the length in bytes of the OSCORE Master

 Salt.

Selander, et al. Expires 30 July 2024 [Page 27]

Internet-Draft Traces of EDHOC January 2024

 info for OSCORE Master Salt (CBOR Sequence) (3 bytes)

 01 40 08

 OSCORE Master Salt (Raw Value) (8 bytes)

 ce 7a b8 44 c0 10 6d 73

2.7. Key Update

 Key update is defined in Appendix H of [I-D.ietf-lake-edhoc].

 EDHOC_KeyUpdate(context):

 PRK_out = EDHOC_KDF(PRK_out, 11, context, hash_length)

 = HKDF-Expand(PRK_out, info, hash_length)

 where hash_length is the length in bytes of the output of the EDHOC

 hash function, and context for KeyUpdate is

 context for KeyUpdate (Raw Value) (16 bytes)

 d6 be 16 96 02 b8 bc ea a0 11 58 fd b8 20 89 0c

 context for KeyUpdate (CBOR Data Item) (17 bytes)

 50 d6 be 16 96 02 b8 bc ea a0 11 58 fd b8 20 89 0c

 and where info for key update is:

 info =

 (

 11,

 h’d6be169602b8bceaa01158fdb820890c’,

 32

)

 PRK_out after KeyUpdate (Raw Value) (32 bytes)

 da 6e ac d9 a9 85 f4 fb a9 ae c2 a9 29 90 22 97 6b 25 b1 4e 89 fa 15

 97 94 f2 8d 82 fa f2 da ad

 After key update, the PRK_exporter needs to be derived anew:

 PRK_exporter = EDHOC_KDF(PRK_out, 10, h’’, hash_length) =

 = HKDF-Expand(PRK_out, info, hash_length)

 where info and hash_length are unchanged as in Section 2.5.

 PRK_exporter after KeyUpdate (Raw Value) (32 bytes)

 00 14 d2 52 5e e0 d8 e2 13 ea 59 08 02 8e 9a 1c e9 a0 1c 30 54 6f 09

 30 c0 44 d3 8d b5 36 2c 05

 The OSCORE Master Secret is derived with the updated PRK_exporter:

Selander, et al. Expires 30 July 2024 [Page 28]

Internet-Draft Traces of EDHOC January 2024

 OSCORE Master Secret =

 = HKDF-Expand(PRK_exporter, info, oscore_key_length)

 where info and key_length are unchanged as in Section 2.6.

 OSCORE Master Secret after KeyUpdate (Raw Value) (16 bytes)

 ee 0f f5 42 c4 7e b0 e0 9c 69 30 76 49 bd bb e5

 The OSCORE Master Salt is derived with the updated PRK_exporter:

 OSCORE Master Salt = HKDF-Expand(PRK_exporter, info, salt_length)

 where info and salt_length are unchanged as in Section 2.6.

 OSCORE Master Salt after KeyUpdate (Raw Value) (8 bytes)

 80 ce de 2a 1e 5a ab 48

2.8. Certificates

2.8.1. Responder Certificate

 Version: 3 (0x2)

 Serial Number: 1647419076 (0x62319ec4)

 Signature Algorithm: ED25519

 Issuer: CN = EDHOC Root Ed25519

 Validity

 Not Before: Mar 16 08:24:36 2022 GMT

 Not After : Dec 31 23:00:00 2029 GMT

 Subject: CN = EDHOC Responder Ed25519

 Subject Public Key Info:

 Public Key Algorithm: ED25519

 ED25519 Public-Key:

 pub:

 a1 db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41

 8a ac e3 3a a0 f2 c6 62 c0 0b 3a c5 5d e9 2f

 93 59

 Signature Algorithm: ED25519

 Signature Value:

 b7 23 bc 01 ea b0 92 8e 8b 2b 6c 98 de 19 cc 38 23 d4

 6e 7d 69 87 b0 32 47 8f ec fa f1 45 37 a1 af 14 cc 8b

 e8 29 c6 b7 30 44 10 18 37 eb 4a bc 94 95 65 d8 6d ce

 51 cf ae 52 ab 82 c1 52 cb 02

2.8.2. Initiator Certificate

Selander, et al. Expires 30 July 2024 [Page 29]

Internet-Draft Traces of EDHOC January 2024

 Version: 3 (0x2)

 Serial Number: 1647419040 (0x62319ea0)

 Signature Algorithm: ED25519

 Issuer: CN = EDHOC Root Ed25519

 Validity

 Not Before: Mar 16 08:24:00 2022 GMT

 Not After : Dec 31 23:00:00 2029 GMT

 Subject: CN = EDHOC Initiator Ed25519

 Subject Public Key Info:

 Public Key Algorithm: ED25519

 ED25519 Public-Key:

 pub:

 ed 06 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f

 48 dd 44 a3 02 f4 3e 0f 23 d8 cc 20 b7 30 85

 14 1e

 Signature Algorithm: ED25519

 Signature Value:

 52 12 41 d8 b3 a7 70 99 6b cf c9 b9 ea d4 e7 e0 a1 c0

 db 35 3a 3b df 29 10 b3 92 75 ae 48 b7 56 01 59 81 85

 0d 27 db 67 34 e3 7f 67 21 22 67 dd 05 ee ff 27 b9 e7

 a8 13 fa 57 4b 72 a0 0b 43 0b

2.8.3. Common Root Certificate

Selander, et al. Expires 30 July 2024 [Page 30]

Internet-Draft Traces of EDHOC January 2024

 Version: 3 (0x2)

 Serial Number: 1647418996 (0x62319e74)

 Signature Algorithm: ED25519

 Issuer: CN = EDHOC Root Ed25519

 Validity

 Not Before: Mar 16 08:23:16 2022 GMT

 Not After : Dec 31 23:00:00 2029 GMT

 Subject: CN = EDHOC Root Ed25519

 Subject Public Key Info:

 Public Key Algorithm: ED25519

 ED25519 Public-Key:

 pub:

 2b 7b 3e 80 57 c8 64 29 44 d0 6a fe 7a 71 d1

 c9 bf 96 1b 62 92 ba c4 b0 4f 91 66 9b bb 71

 3b e4

 X509v3 extensions:

 X509v3 Key Usage: critical

 Certificate Sign

 X509v3 Basic Constraints: critical

 CA:TRUE

 Signature Algorithm: ED25519

 Signature Value:

 4b b5 2b bf 15 39 b7 1a 4a af 42 97 78 f2 9e da 7e 81

 46 80 69 8f 16 c4 8f 2a 6f a4 db e8 25 41 c5 82 07 ba

 1b c9 cd b0 c2 fa 94 7f fb f0 f0 ec 0e e9 1a 7f f3 7a

 94 d9 25 1f a5 cd f1 e6 7a 0f

3. Authentication with Static DH, CCS Identified by ’kid’

 In this example the Initiator and the Responder are authenticated

 with ephemeral-static Diffie-Hellman (METHOD = 3). The Initiator

 supports cipher suites 6 and 2 (in order of preference) and the

 Responder only supports cipher suite 2. After an initial negotiation

 message exchange, cipher suite 2 is used, which determines the

 algorithms:

 * EDHOC AEAD algorithm = AES-CCM-16-64-128

 * EDHOC hash algorithm = SHA-256

 * EDHOC MAC length in bytes (Static DH) = 8

 * EDHOC key exchange algorithm (ECDH curve) = P-256

 * EDHOC signature algorithm = ES256

 * Application AEAD algorithm = AES-CCM-16-64-128

Selander, et al. Expires 30 July 2024 [Page 31]

Internet-Draft Traces of EDHOC January 2024

 * Application hash algorithm = SHA-256

 The public keys are represented as raw public keys (RPK), encoded in

 a CWT Claims Set (CCS) and identified by the COSE header parameter

 ’kid’.

3.1. message_1 (first time)

 Both endpoints are authenticated with static DH, i.e., METHOD = 3:

 METHOD (CBOR Data Item) (1 byte)

 03

 The Initiator selects its preferred cipher suite 6. A single cipher

 suite is encoded as an int:

 SUITES_I (CBOR Data Item) (1 byte)

 06

 The Initiator creates an ephemeral key pair for use with the EDHOC

 key exchange algorithm:

 Initiator’s ephemeral private key

 X (Raw Value) (32 bytes)

 5c 41 72 ac a8 b8 2b 5a 62 e6 6f 72 22 16 f5 a1 0f 72 aa 69 f4 2c 1d

 1c d3 cc d7 bf d2 9c a4 e9

 Initiator’s ephemeral public key, ’x’-coordinate

 G_X (Raw Value) (32 bytes)

 74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b ea 5b 3d 8f 65 f3 26

 20 b7 49 be e8 d2 78 ef a9

 Initiator’s ephemeral public key, ’x’-coordinate

 G_X (CBOR Data Item) (34 bytes)

 58 20 74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b ea 5b 3d 8f 65

 f3 26 20 b7 49 be e8 d2 78 ef a9

 The Initiator selects its connection identifier C_I to be the byte

 string 0x0e, which since it is represented by the 1-byte CBOR int 14

 is encoded as 0x0e:

 Connection identifier chosen by Initiator

 C_I (Raw Value) (1 byte)

 0e

 Connection identifier chosen by Initiator

 C_I (CBOR Data Item) (1 byte)

 0e

Selander, et al. Expires 30 July 2024 [Page 32]

Internet-Draft Traces of EDHOC January 2024

 No external authorization data:

 EAD_1 (CBOR Sequence) (0 bytes)

 The Initiator constructs message_1:

 message_1 =

 (

 3,

 6,

 h’741a13d7ba048fbb615e94386aa3b61bea5b3d8f65f32620

 b749bee8d278efa9’,

 14

)

 message_1 (CBOR Sequence) (37 bytes)

 03 06 58 20 74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b ea 5b 3d

 8f 65 f3 26 20 b7 49 be e8 d2 78 ef a9 0e

3.2. error

 The Responder does not support cipher suite 6 and sends an error with

 ERR_CODE 2 containing SUITES_R as ERR_INFO. The Responder proposes

 cipher suite 2, a single cipher suite thus encoded as an int.

 SUITES_R

 02

 error (CBOR Sequence) (2 bytes)

 02 02

3.3. message_1 (second time)

 Same steps are performed as for message_1 the first time,

 Section 3.1, but with updated SUITES_I.

 Both endpoints are authenticated with static DH, i.e., METHOD = 3:

 METHOD (CBOR Data Item) (1 byte)

 03

 The Initiator selects cipher suite 2 and indicates the more preferred

 cipher suite(s), in this case 6, all encoded as the array [6, 2]:

 SUITES_I (CBOR Data Item) (3 bytes)

 82 06 02

Selander, et al. Expires 30 July 2024 [Page 33]

Internet-Draft Traces of EDHOC January 2024

 The Initiator creates an ephemeral key pair for use with the EDHOC

 key exchange algorithm:

 Initiator’s ephemeral private key

 X (Raw Value) (32 bytes)

 36 8e c1 f6 9a eb 65 9b a3 7d 5a 8d 45 b2 1b dc 02 99 dc ea a8 ef 23

 5f 3c a4 2c e3 53 0f 95 25

 Initiator’s ephemeral public key, ’x’-coordinate

 G_X (Raw Value) (32 bytes)

 8a f6 f4 30 eb e1 8d 34 18 40 17 a9 a1 1b f5 11 c8 df f8 f8 34 73 0b

 96 c1 b7 c8 db ca 2f c3 b6

 Initiator’s ephemeral public key, one ’y’-coordinate

 (Raw Value) (32 bytes)

 51 e8 af 6c 6e db 78 16 01 ad 1d 9c 5f a8 bf 7a a1 57 16 c7 c0 6a 5d

 03 85 03 c6 14 ff 80 c9 b3

 Initiator’s ephemeral public key, ’x’-coordinate

 G_X (CBOR Data Item) (34 bytes)

 58 20 8a f6 f4 30 eb e1 8d 34 18 40 17 a9 a1 1b f5 11 c8 df f8 f8 34

 73 0b 96 c1 b7 c8 db ca 2f c3 b6

 The Initiator selects its connection identifier C_I to be the byte

 string 0x37, which since it is represented by the 1-byte CBOR int -24

 is encoded as 0x37:

 Connection identifier chosen by Initiator

 C_I (Raw Value) (1 byte)

 37

 Connection identifier chosen by Initiator

 C_I (CBOR Data Item) (1 byte)

 37

 No external authorization data:

 EAD_1 (CBOR Sequence) (0 bytes)

 The Initiator constructs message_1:

Selander, et al. Expires 30 July 2024 [Page 34]

Internet-Draft Traces of EDHOC January 2024

 message_1 =

 (

 3,

 [6, 2],

 h’8af6f430ebe18d34184017a9a11bf511c8dff8f834730b96

 c1b7c8dbca2fc3b6’,

 -24

)

 message_1 (CBOR Sequence) (39 bytes)

 03 82 06 02 58 20 8a f6 f4 30 eb e1 8d 34 18 40 17 a9 a1 1b f5 11 c8

 df f8 f8 34 73 0b 96 c1 b7 c8 db ca 2f c3 b6 37

3.4. message_2

 The Responder supports the selected cipher suite 2 and not the by the

 Initiator more preferred cipher suite(s) 6, so SUITES_I is

 acceptable.

 The Responder creates an ephemeral key pair for use with the EDHOC

 key exchange algorithm:

 Responder’s ephemeral private key

 Y (Raw Value) (32 bytes)

 e2 f4 12 67 77 20 5e 85 3b 43 7d 6e ac a1 e1 f7 53 cd cc 3e 2c 69 fa

 88 4b 0a 1a 64 09 77 e4 18

 Responder’s ephemeral public key, ’x’-coordinate

 G_Y (Raw Value) (32 bytes)

 41 97 01 d7 f0 0a 26 c2 dc 58 7a 36 dd 75 25 49 f3 37 63 c8 93 42 2c

 8e a0 f9 55 a1 3a 4f f5 d5

 Responder’s ephemeral public key, one ’y’-coordinate

 (Raw Value) (32 bytes)

 5e 4f 0d d8 a3 da 0b aa 16 b9 d3 ad 56 a0 c1 86 0a 94 0a f8 59 14 91

 5e 25 01 9b 40 24 17 e9 9d

 Responder’s ephemeral public key, ’x’-coordinate

 G_Y (CBOR Data Item) (34 bytes)

 58 20 41 97 01 d7 f0 0a 26 c2 dc 58 7a 36 dd 75 25 49 f3 37 63 c8 93

 42 2c 8e a0 f9 55 a1 3a 4f f5 d5

 The Responder selects its connection identifier C_R to be the byte

 string 0x27, which since it is represented by the 1-byte CBOR int -8

 is encoded as 0x27:

Selander, et al. Expires 30 July 2024 [Page 35]

Internet-Draft Traces of EDHOC January 2024

 Connection identifier chosen by Responder

 C_R (raw value) (1 byte)

 27

 Connection identifier chosen by Responder

 C_R (CBOR Data Item) (1 byte)

 27

 The transcript hash TH_2 is calculated using the EDHOC hash

 algorithm:

 TH_2 = H(G_Y, H(message_1))

 H(message_1) (Raw Value) (32 bytes)

 ca 02 ca bd a5 a8 90 27 49 b4 2f 71 10 50 bb 4d bd 52 15 3e 87 52 75

 94 b3 9f 50 cd f0 19 88 8c

 H(message_1) (CBOR Data Item) (34 bytes)

 58 20 ca 02 ca bd a5 a8 90 27 49 b4 2f 71 10 50 bb 4d bd 52 15 3e 87

 52 75 94 b3 9f 50 cd f0 19 88 8c

 The input to calculate TH_2 is the CBOR sequence:

 G_Y, H(message_1)

 Input to calculate TH_2 (CBOR Sequence) (68 bytes)

 58 20 41 97 01 d7 f0 0a 26 c2 dc 58 7a 36 dd 75 25 49 f3 37 63 c8 93

 42 2c 8e a0 f9 55 a1 3a 4f f5 d5 58 20 ca 02 ca bd a5 a8 90 27 49 b4

 2f 71 10 50 bb 4d bd 52 15 3e 87 52 75 94 b3 9f 50 cd f0 19 88 8c

 TH_2 (Raw Value) (32 bytes)

 35 6e fd 53 77 14 25 e0 08 f3 fe 3a 86 c8 3f f4 c6 b1 6e 57 02 8f f3

 9d 52 36 c1 82 b2 02 08 4b

 TH_2 (CBOR Data Item) (34 bytes)

 58 20 35 6e fd 53 77 14 25 e0 08 f3 fe 3a 86 c8 3f f4 c6 b1 6e 57 02

 8f f3 9d 52 36 c1 82 b2 02 08 4b

 PRK_2e is specified in Section 4.1.1.1 of [I-D.ietf-lake-edhoc].

 First, the ECDH shared secret G_XY is computed from G_X and Y, or G_Y

 and X:

 G_XY (Raw Value) (ECDH shared secret) (32 bytes)

 2f 0c b7 e8 60 ba 53 8f bf 5c 8b de d0 09 f6 25 9b 4b 62 8f e1 eb 7d

 be 93 78 e5 ec f7 a8 24 ba

Selander, et al. Expires 30 July 2024 [Page 36]

Internet-Draft Traces of EDHOC January 2024

 Then, PRK_2e is calculated using EDHOC_Extract() determined by the

 EDHOC hash algorithm:

 PRK_2e = EDHOC_Extract(salt, G_XY) =

 = HMAC-SHA-256(salt, G_XY)

 where salt is TH_2:

 salt (Raw Value) (32 bytes)

 35 6e fd 53 77 14 25 e0 08 f3 fe 3a 86 c8 3f f4 c6 b1 6e 57 02 8f f3

 9d 52 36 c1 82 b2 02 08 4b

 PRK_2e (Raw Value) (32 bytes)

 5a a0 d6 9f 3e 3d 1e 0c 47 9f 0b 8a 48 66 90 c9 80 26 30 c3 46 6b 1d

 c9 23 71 c9 82 56 31 70 b5

 Since METHOD = 3, the Responder authenticates using static DH. The

 EDHOC key exchange algorithm is based on the same curve as for the

 ephemeral keys, which is P-256, since the selected cipher suite is 2.

 The Responder’s static Diffie-Hellman P-256 key pair:

 Responder’s private authentication key

 SK_R (Raw Value) (32 bytes)

 72 cc 47 61 db d4 c7 8f 75 89 31 aa 58 9d 34 8d 1e f8 74 a7 e3 03 ed

 e2 f1 40 dc f3 e6 aa 4a ac

 Responder’s public authentication key, ’x’-coordinate

 (Raw Value) (32 bytes)

 bb c3 49 60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2 17 91 a1 2a fb

 cb ac 93 62 20 46 dd 44 f0

 Responder’s public authentication key, ’y’-coordinate

 (Raw Value) (32 bytes)

 45 19 e2 57 23 6b 2a 0c e2 02 3f 09 31 f1 f3 86 ca 7a fd a6 4f cd e0

 10 8c 22 4c 51 ea bf 60 72

 Since the Responder authenticates with static DH (METHOD = 3),

 PRK_3e2m is derived from SALT_3e2m and G_RX.

 The input needed to calculate SALT_3e2m is defined in Section 4.1.2

 of [I-D.ietf-lake-edhoc], using EDHOC_Expand() with the EDHOC hash

 algorithm:

 SALT_3e2m = EDHOC_KDF(PRK_2e, 1, TH_2, hash_length) =

 = HKDF-Expand(PRK_2e, info, hash_length)

Selander, et al. Expires 30 July 2024 [Page 37]

Internet-Draft Traces of EDHOC January 2024

 where hash_length is the length in bytes of the output of the EDHOC

 hash algorithm, and info for SALT_3e2m is:

 info =

 (

 1,

 h’356efd53771425e008f3fe3a86c83ff4c6b16e57028ff39d

 5236c182b202084b’,

 32

)

 info for SALT_3e2m (CBOR Sequence) (37 bytes)

 01 58 20 35 6e fd 53 77 14 25 e0 08 f3 fe 3a 86 c8 3f f4 c6 b1 6e 57

 02 8f f3 9d 52 36 c1 82 b2 02 08 4b 18 20

 SALT_3e2m (Raw Value) (32 bytes)

 af 4e 10 3a 47 cb 3c f3 25 70 d5 c2 5a d2 77 32 bd 8d 81 78 e9 a6 9d

 06 1c 31 a2 7f 8e 3c a9 26

 PRK_3e2m is specified in Section 4.1.1.2 of [I-D.ietf-lake-edhoc].

 PRK_3e2m is derived from G_RX using EDHOC_Extract() with the EDHOC

 hash algorithm:

 PRK_3e2m = EDHOC_Extract(SALT_3e2m, G_RX) =

 = HMAC-SHA-256(SALT_3e2m, G_RX)

 where G_RX is the ECDH shared secret calculated from G_X and R, or

 G_R and X.

 G_RX (Raw Value) (ECDH shared secret) (32 bytes)

 f2 b6 ee a0 22 20 b9 5e ee 5a 0b c7 01 f0 74 e0 0a 84 3e a0 24 22 f6

 08 25 fb 26 9b 3e 16 14 23

 PRK_3e2m (Raw Value) (32 bytes)

 0c a3 d3 39 82 96 b3 c0 39 00 98 76 20 c1 1f 6f ce 70 78 1c 1d 12 19

 72 0f 9e c0 8c 12 2d 84 34

 The Responder constructs the remaining input needed to calculate

 MAC_2:

 MAC_2 = EDHOC_KDF(PRK_3e2m, 2, context_2, mac_length_2)

 context_2 = << C_R, ID_CRED_R, TH_2, CRED_R, ? EAD_2 >>

 CRED_R is identified by a ’kid’ with byte string value 0x32:

Selander, et al. Expires 30 July 2024 [Page 38]

Internet-Draft Traces of EDHOC January 2024

 ID_CRED_R =

 {

 4 : h’32’

 }

 ID_CRED_R (CBOR Data Item) (4 bytes)

 a1 04 41 32

 CRED_R is an RPK encoded as a CCS:

 { /CCS/

 2 : "example.edu", /sub/

 8 : { /cnf/

 1 : { /COSE_Key/

 1 : 2, /kty/

 2 : h’32’, /kid/

 -1 : 1, /crv/

 -2 : h’BBC34960526EA4D32E940CAD2A234148

 DDC21791A12AFBCBAC93622046DD44F0’, /x/

 -3 : h’4519E257236B2A0CE2023F0931F1F386

 CA7AFDA64FCDE0108C224C51EABF6072’ /y/

 }

 }

 }

 CRED_R (CBOR Data Item) (95 bytes)

 a2 02 6b 65 78 61 6d 70 6c 65 2e 65 64 75 08 a1 01 a5 01 02 02 41 32

 20 01 21 58 20 bb c3 49 60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2

 17 91 a1 2a fb cb ac 93 62 20 46 dd 44 f0 22 58 20 45 19 e2 57 23 6b

 2a 0c e2 02 3f 09 31 f1 f3 86 ca 7a fd a6 4f cd e0 10 8c 22 4c 51 ea

 bf 60 72

 No external authorization data:

 EAD_2 (CBOR Sequence) (0 bytes)

 context_2 = << C_R, ID_CRED_R, TH_2, CRED_R, ? EAD_2 >>

 context_2 (CBOR Sequence) (134 bytes)

 27 a1 04 41 32 58 20 35 6e fd 53 77 14 25 e0 08 f3 fe 3a 86 c8 3f f4

 c6 b1 6e 57 02 8f f3 9d 52 36 c1 82 b2 02 08 4b a2 02 6b 65 78 61 6d

 70 6c 65 2e 65 64 75 08 a1 01 a5 01 02 02 41 32 20 01 21 58 20 bb c3

 49 60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2 17 91 a1 2a fb cb ac

 93 62 20 46 dd 44 f0 22 58 20 45 19 e2 57 23 6b 2a 0c e2 02 3f 09 31

 f1 f3 86 ca 7a fd a6 4f cd e0 10 8c 22 4c 51 ea bf 60 72

Selander, et al. Expires 30 July 2024 [Page 39]

Internet-Draft Traces of EDHOC January 2024

 context_2 (CBOR byte string) (136 bytes)

 58 86 27 a1 04 41 32 58 20 35 6e fd 53 77 14 25 e0 08 f3 fe 3a 86 c8

 3f f4 c6 b1 6e 57 02 8f f3 9d 52 36 c1 82 b2 02 08 4b a2 02 6b 65 78

 61 6d 70 6c 65 2e 65 64 75 08 a1 01 a5 01 02 02 41 32 20 01 21 58 20

 bb c3 49 60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2 17 91 a1 2a fb

 cb ac 93 62 20 46 dd 44 f0 22 58 20 45 19 e2 57 23 6b 2a 0c e2 02 3f

 09 31 f1 f3 86 ca 7a fd a6 4f cd e0 10 8c 22 4c 51 ea bf 60 72

 MAC_2 is computed through EDHOC_Expand() using the EDHOC hash

 algorithm, see Section 4.1.2 of [I-D.ietf-lake-edhoc]:

 MAC_2 = HKDF-Expand(PRK_3e2m, info, mac_length_2), where

 info = (2, context_2, mac_length_2)

 Since METHOD = 3, mac_length_2 is given by the EDHOC MAC length.

 info for MAC_2 is:

 info =

 (

 2,

 h’27a10441325820356efd53771425e008f3fe3a86c83ff4c6

 b16e57028ff39d5236c182b202084ba2026b6578616d706c

 652e65647508a101a501020241322001215820bbc3496052

 6ea4d32e940cad2a234148ddc21791a12afbcbac93622046

 dd44f02258204519e257236b2a0ce2023f0931f1f386ca7a

 fda64fcde0108c224c51eabf6072’,

 8

)

 where the last value is the EDHOC MAC length in bytes.

 info for MAC_2 (CBOR Sequence) (138 bytes)

 02 58 86 27 a1 04 41 32 58 20 35 6e fd 53 77 14 25 e0 08 f3 fe 3a 86

 c8 3f f4 c6 b1 6e 57 02 8f f3 9d 52 36 c1 82 b2 02 08 4b a2 02 6b 65

 78 61 6d 70 6c 65 2e 65 64 75 08 a1 01 a5 01 02 02 41 32 20 01 21 58

 20 bb c3 49 60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2 17 91 a1 2a

 fb cb ac 93 62 20 46 dd 44 f0 22 58 20 45 19 e2 57 23 6b 2a 0c e2 02

 3f 09 31 f1 f3 86 ca 7a fd a6 4f cd e0 10 8c 22 4c 51 ea bf 60 72 08

 MAC_2 (Raw Value) (8 bytes)

 09 43 30 5c 89 9f 5c 54

 MAC_2 (CBOR Data Item) (9 bytes)

 48 09 43 30 5c 89 9f 5c 54

 Since METHOD = 3, Signature_or_MAC_2 is MAC_2:

Selander, et al. Expires 30 July 2024 [Page 40]

Internet-Draft Traces of EDHOC January 2024

 Signature_or_MAC_2 (Raw Value) (8 bytes)

 09 43 30 5c 89 9f 5c 54

 Signature_or_MAC_2 (CBOR Data Item) (9 bytes)

 48 09 43 30 5c 89 9f 5c 54

 The Responder constructs PLAINTEXT_2:

 PLAINTEXT_2 =

 (

 C_R,

 ID_CRED_R / bstr / -24..23,

 Signature_or_MAC_2,

 ? EAD_2

)

 Since ID_CRED_R contains a single ’kid’ parameter, only the byte

 string value is included in the plaintext, represented as described

 in Section 3.3.2 of [I-D.ietf-lake-edhoc]. The CBOR map { 4 : h’32’

 } is thus replaced, not by the CBOR byte string 0x4132, but by the

 CBOR int 0x32, since that is a one byte encoding of a CBOR integer

 (-19).

 PLAINTEXT_2 (CBOR Sequence) (11 bytes)

 27 32 48 09 43 30 5c 89 9f 5c 54

 The input needed to calculate KEYSTREAM_2 is defined in Section 4.1.2

 of [I-D.ietf-lake-edhoc], using EDHOC_Expand() with the EDHOC hash

 algorithm:

 KEYSTREAM_2 = EDHOC_KDF(PRK_2e, 0, TH_2, plaintext_length) =

 = HKDF-Expand(PRK_2e, info, plaintext_length)

 where plaintext_length is the length in bytes of PLAINTEXT_2, and

 info for KEYSTREAM_2 is:

 info =

 (

 0,

 h’356efd53771425e008f3fe3a86c83ff4c6b16e57028ff39d

 5236c182b202084b’,

 11

)

 where the last value is the length in bytes of PLAINTEXT_2.

Selander, et al. Expires 30 July 2024 [Page 41]

Internet-Draft Traces of EDHOC January 2024

 info for KEYSTREAM_2 (CBOR Sequence) (36 bytes)

 00 58 20 35 6e fd 53 77 14 25 e0 08 f3 fe 3a 86 c8 3f f4 c6 b1 6e 57

 02 8f f3 9d 52 36 c1 82 b2 02 08 4b 0b

 KEYSTREAM_2 (Raw Value) (11 bytes)

 bf 50 e9 e7 ba d0 bb 68 17 33 99

 The Responder calculates CIPHERTEXT_2 as XOR between PLAINTEXT_2 and

 KEYSTREAM_2:

 CIPHERTEXT_2 (Raw Value) (11 bytes)

 98 62 a1 ee f9 e0 e7 e1 88 6f cd

 The Responder constructs message_2:

 message_2 =

 (

 G_Y_CIPHERTEXT_2,

)

 where G_Y_CIPHERTEXT_2 is the bstr encoding of the concatenation of

 the raw values of G_Y and CIPHERTEXT_2.

 message_2 (CBOR Sequence) (45 bytes)

 58 2b 41 97 01 d7 f0 0a 26 c2 dc 58 7a 36 dd 75 25 49 f3 37 63 c8 93

 42 2c 8e a0 f9 55 a1 3a 4f f5 d5 98 62 a1 ee f9 e0 e7 e1 88 6f cd

3.5. message_3

 The transcript hash TH_3 is calculated using the EDHOC hash

 algorithm:

 TH_3 = H(TH_2, PLAINTEXT_2, CRED_R)

 Input to calculate TH_3 (CBOR Sequence) (140 bytes)

 58 20 35 6e fd 53 77 14 25 e0 08 f3 fe 3a 86 c8 3f f4 c6 b1 6e 57 02

 8f f3 9d 52 36 c1 82 b2 02 08 4b 27 32 48 09 43 30 5c 89 9f 5c 54 a2

 02 6b 65 78 61 6d 70 6c 65 2e 65 64 75 08 a1 01 a5 01 02 02 41 32 20

 01 21 58 20 bb c3 49 60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2 17

 91 a1 2a fb cb ac 93 62 20 46 dd 44 f0 22 58 20 45 19 e2 57 23 6b 2a

 0c e2 02 3f 09 31 f1 f3 86 ca 7a fd a6 4f cd e0 10 8c 22 4c 51 ea bf

 60 72

 TH_3 (Raw Value) (32 bytes)

 ad af 67 a7 8a 4b cc 91 e0 18 f8 88 27 62 a7 22 00 0b 25 07 03 9d f0

 bc 1b bf 0c 16 1b b3 15 5c

Selander, et al. Expires 30 July 2024 [Page 42]

Internet-Draft Traces of EDHOC January 2024

 TH_3 (CBOR Data Item) (34 bytes)

 58 20 ad af 67 a7 8a 4b cc 91 e0 18 f8 88 27 62 a7 22 00 0b 25 07 03

 9d f0 bc 1b bf 0c 16 1b b3 15 5c

 Since METHOD = 3, the Initiator authenticates using static DH. The

 EDHOC key exchange algorithm is based on the same curve as for the

 ephemeral keys, which is P-256, since the selected cipher suite is 2.

 The Initiator’s static Diffie-Hellman P-256 key pair:

 Initiator’s private authentication key

 SK_I (Raw Value) (32 bytes)

 fb 13 ad eb 65 18 ce e5 f8 84 17 66 08 41 14 2e 83 0a 81 fe 33 43 80

 a9 53 40 6a 13 05 e8 70 6b

 Initiator’s public authentication key, ’x’-coordinate

 (Raw Value) (32 bytes)

 ac 75 e9 ec e3 e5 0b fc 8e d6 03 99 88 95 22 40 5c 47 bf 16 df 96 66

 0a 41 29 8c b4 30 7f 7e b6

 Initiator’s public authentication key, ’y’-coordinate

 (Raw Value) (32 bytes)

 6e 5d e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52 a3 87 d2 57 e6 db

 3c 2a 93 df 21 ff 3a ff c8

 Since I authenticates with static DH (METHOD = 3), PRK_4e3m is

 derived from SALT_4e3m and G_IY.

 The input needed to calculate SALT_4e3m is defined in Section 4.1.2

 of [I-D.ietf-lake-edhoc], using EDHOC_Expand() with the EDHOC hash

 algorithm:

 SALT_4e3m = EDHOC_KDF(PRK_3e2m, 5, TH_3, hash_length) =

 = HKDF-Expand(PRK_3e2m, info, hash_length)

 where hash_length is the length in bytes of the output of the EDHOC

 hash algorithm, and info for SALT_4e3m is:

 info =

 (

 5,

 h’adaf67a78a4bcc91e018f8882762a722000b2507039df0bc

 1bbf0c161bb3155c’,

 32

)

Selander, et al. Expires 30 July 2024 [Page 43]

Internet-Draft Traces of EDHOC January 2024

 info for SALT_4e3m (CBOR Sequence) (37 bytes)

 05 58 20 ad af 67 a7 8a 4b cc 91 e0 18 f8 88 27 62 a7 22 00 0b 25 07

 03 9d f0 bc 1b bf 0c 16 1b b3 15 5c 18 20

 SALT_4e3m (Raw Value) (32 bytes)

 cf dd f9 51 5a 7e 46 e7 b4 db ff 31 cb d5 6c d0 4b a3 32 25 0d e9 ea

 5d e1 ca f9 f6 d1 39 14 a7

 PRK_4e3m is specified in Section 4.1.1.3 of [I-D.ietf-lake-edhoc].

 Since I authenticates with static DH (METHOD = 3), PRK_4e3m is

 derived from G_IY using EDHOC_Extract() with the EDHOC hash

 algorithm:

 PRK_4e3m = EDHOC_Extract(SALT_4e3m, G_IY) =

 = HMAC-SHA-256(SALT_4e3m, G_IY)

 where G_IY is the ECDH shared secret calculated from G_I and Y, or

 G_Y and I.

 G_IY (Raw Value) (ECDH shared secret) (32 bytes)

 08 0f 42 50 85 bc 62 49 08 9e ac 8f 10 8e a6 23 26 85 7e 12 ab 07 d7

 20 28 ca 1b 5f 36 e0 04 b3

 PRK_4e3m (Raw Value) (32 bytes)

 81 cc 8a 29 8e 35 70 44 e3 c4 66 bb 5c 0a 1e 50 7e 01 d4 92 38 ae ba

 13 8d f9 46 35 40 7c 0f f7

 The Initiator constructs the remaining input needed to calculate

 MAC_3:

 MAC_3 = EDHOC_KDF(PRK_4e3m, 6, context_3, mac_length_3)

 context_3 = << ID_CRED_I, TH_3, CRED_I, ? EAD_3 >>

 CRED_I is identified by a ’kid’ with byte string value 0x2b:

 ID_CRED_I =

 {

 4 : h’2b’

 }

 ID_CRED_I (CBOR Data Item) (4 bytes)

 a1 04 41 2b

 CRED_I is an RPK encoded as a CCS:

Selander, et al. Expires 30 July 2024 [Page 44]

Internet-Draft Traces of EDHOC January 2024

 { /CCS/

 2 : "42-50-31-FF-EF-37-32-39", /sub/

 8 : { /cnf/

 1 : { /COSE_Key/

 1 : 2, /kty/

 2 : h’2b’, /kid/

 -1 : 1, /crv/

 -2 : h’AC75E9ECE3E50BFC8ED6039988952240

 5C47BF16DF96660A41298CB4307F7EB6’ /x/

 -3 : h’6E5DE611388A4B8A8211334AC7D37ECB

 52A387D257E6DB3C2A93DF21FF3AFFC8’ /y/

 }

 }

 }

 CRED_I (CBOR Data Item) (107 bytes)

 a2 02 77 34 32 2d 35 30 2d 33 31 2d 46 46 2d 45 46 2d 33 37 2d 33 32

 2d 33 39 08 a1 01 a5 01 02 02 41 2b 20 01 21 58 20 ac 75 e9 ec e3 e5

 0b fc 8e d6 03 99 88 95 22 40 5c 47 bf 16 df 96 66 0a 41 29 8c b4 30

 7f 7e b6 22 58 20 6e 5d e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52

 a3 87 d2 57 e6 db 3c 2a 93 df 21 ff 3a ff c8

 No external authorization data:

 EAD_3 (CBOR Sequence) (0 bytes)

 context_3 = << ID_CRED_I, TH_3, CRED_I, ? EAD_3 >>

 context_3 (CBOR Sequence) (145 bytes)

 a1 04 41 2b 58 20 ad af 67 a7 8a 4b cc 91 e0 18 f8 88 27 62 a7 22 00

 0b 25 07 03 9d f0 bc 1b bf 0c 16 1b b3 15 5c a2 02 77 34 32 2d 35 30

 2d 33 31 2d 46 46 2d 45 46 2d 33 37 2d 33 32 2d 33 39 08 a1 01 a5 01

 02 02 41 2b 20 01 21 58 20 ac 75 e9 ec e3 e5 0b fc 8e d6 03 99 88 95

 22 40 5c 47 bf 16 df 96 66 0a 41 29 8c b4 30 7f 7e b6 22 58 20 6e 5d

 e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52 a3 87 d2 57 e6 db 3c 2a

 93 df 21 ff 3a ff c8

 context_3 (CBOR byte string) (147 bytes)

 58 91 a1 04 41 2b 58 20 ad af 67 a7 8a 4b cc 91 e0 18 f8 88 27 62 a7

 22 00 0b 25 07 03 9d f0 bc 1b bf 0c 16 1b b3 15 5c a2 02 77 34 32 2d

 35 30 2d 33 31 2d 46 46 2d 45 46 2d 33 37 2d 33 32 2d 33 39 08 a1 01

 a5 01 02 02 41 2b 20 01 21 58 20 ac 75 e9 ec e3 e5 0b fc 8e d6 03 99

 88 95 22 40 5c 47 bf 16 df 96 66 0a 41 29 8c b4 30 7f 7e b6 22 58 20

 6e 5d e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52 a3 87 d2 57 e6 db

 3c 2a 93 df 21 ff 3a ff c8

 MAC_3 is computed through EDHOC_Expand() using the EDHOC hash

 algorithm, see Section 4.1.2 of [I-D.ietf-lake-edhoc]:

Selander, et al. Expires 30 July 2024 [Page 45]

Internet-Draft Traces of EDHOC January 2024

 MAC_3 = HKDF-Expand(PRK_4e3m, info, mac_length_3), where

 info = (6, context_3, mac_length_3)

 Since METHOD = 3, mac_length_3 is given by the EDHOC MAC length.

 info for MAC_3 is:

 info =

 (

 6,

 h’a104412b5820adaf67a78a4bcc91e018f8882762a722000b

 2507039df0bc1bbf0c161bb3155ca2027734322d35302d33

 312d46462d45462d33372d33322d333908a101a501020241

 2b2001215820ac75e9ece3e50bfc8ed60399889522405c47

 bf16df96660a41298cb4307f7eb62258206e5de611388a4b

 8a8211334ac7d37ecb52a387d257e6db3c2a93df21ff3aff

 c8’,

 8

)

 where the last value is the EDHOC MAC length in bytes.

 info for MAC_3 (CBOR Sequence) (149 bytes)

 06 58 91 a1 04 41 2b 58 20 ad af 67 a7 8a 4b cc 91 e0 18 f8 88 27 62

 a7 22 00 0b 25 07 03 9d f0 bc 1b bf 0c 16 1b b3 15 5c a2 02 77 34 32

 2d 35 30 2d 33 31 2d 46 46 2d 45 46 2d 33 37 2d 33 32 2d 33 39 08 a1

 01 a5 01 02 02 41 2b 20 01 21 58 20 ac 75 e9 ec e3 e5 0b fc 8e d6 03

 99 88 95 22 40 5c 47 bf 16 df 96 66 0a 41 29 8c b4 30 7f 7e b6 22 58

 20 6e 5d e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52 a3 87 d2 57 e6

 db 3c 2a 93 df 21 ff 3a ff c8 08

 MAC_3 (Raw Value) (8 bytes)

 62 3c 91 df 41 e3 4c 2f

 MAC_3 (CBOR Data Item) (9 bytes)

 48 62 3c 91 df 41 e3 4c 2f

 Since METHOD = 3, Signature_or_MAC_3 is MAC_3:

 Signature_or_MAC_3 (Raw Value) (8 bytes)

 62 3c 91 df 41 e3 4c 2f

 Signature_or_MAC_3 (CBOR Data Item) (9 bytes)

 48 62 3c 91 df 41 e3 4c 2f

 The Initiator constructs PLAINTEXT_3:

Selander, et al. Expires 30 July 2024 [Page 46]

Internet-Draft Traces of EDHOC January 2024

 PLAINTEXT_3 =

 (

 ID_CRED_I / bstr / -24..23,

 Signature_or_MAC_3,

 ? EAD_3

)

 Since ID_CRED_I contains a single ’kid’ parameter, only the byte

 string value is included in the plaintext, represented as described

 in Section 3.3.2 of [I-D.ietf-lake-edhoc]. The CBOR map { 4 : h’2b’

 } is thus replaced, not by the CBOR byte string 0x412b, but by the

 CBOR int 0x2b, since that is a one byte encoding of a CBOR integer

 (-12).

 PLAINTEXT_3 (CBOR Sequence) (10 bytes)

 2b 48 62 3c 91 df 41 e3 4c 2f

 The Initiator constructs the associated data for message_3:

 A_3 =

 [

 "Encrypt0",

 h’’,

 h’adaf67a78a4bcc91e018f8882762a722000b2507039df0bc

 1bbf0c161bb3155c’

]

 A_3 (CBOR Data Item) (45 bytes)

 83 68 45 6e 63 72 79 70 74 30 40 58 20 ad af 67 a7 8a 4b cc 91 e0 18

 f8 88 27 62 a7 22 00 0b 25 07 03 9d f0 bc 1b bf 0c 16 1b b3 15 5c

 The Initiator constructs the input needed to derive the key K_3, see

 Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash

 algorithm:

 K_3 = EDHOC_KDF(PRK_3e2m, 3, TH_3, key_length)

 = HKDF-Expand(PRK_3e2m, info, key_length),

 where key_length is the key length in bytes for the EDHOC AEAD

 algorithm, and info for K_3 is:

 info =

 (

 3,

 h’adaf67a78a4bcc91e018f8882762a722000b2507039df0bc

 1bbf0c161bb3155c’,

 16

)

Selander, et al. Expires 30 July 2024 [Page 47]

Internet-Draft Traces of EDHOC January 2024

 where the last value is the key length in bytes for the EDHOC AEAD

 algorithm.

 info for K_3 (CBOR Sequence) (36 bytes)

 03 58 20 ad af 67 a7 8a 4b cc 91 e0 18 f8 88 27 62 a7 22 00 0b 25 07

 03 9d f0 bc 1b bf 0c 16 1b b3 15 5c 10

 K_3 (Raw Value) (16 bytes)

 8e 7a 30 04 20 00 f7 90 0e 81 74 13 1f 75 f3 ed

 The Initiator constructs the input needed to derive the nonce IV_3,

 see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash

 algorithm:

 IV_3 = EDHOC_KDF(PRK_3e2m, 4, TH_3, iv_length)

 = HKDF-Expand(PRK_3e2m, info, iv_length),

 where iv_length is the nonce length in bytes for the EDHOC AEAD

 algorithm, and info for IV_3 is:

 info =

 (

 4,

 h’adaf67a78a4bcc91e018f8882762a722000b2507039df0bc

 1bbf0c161bb3155c’,

 13

)

 where the last value is the nonce length in bytes for the EDHOC AEAD

 algorithm.

 info for IV_3 (CBOR Sequence) (36 bytes)

 04 58 20 ad af 67 a7 8a 4b cc 91 e0 18 f8 88 27 62 a7 22 00 0b 25 07

 03 9d f0 bc 1b bf 0c 16 1b b3 15 5c 0d

 IV_3 (Raw Value) (13 bytes)

 6d 83 00 c1 e2 3b 56 15 3a e7 0e e4 57

 The Initiator calculates CIPHERTEXT_3 as ’ciphertext’ of

 COSE_Encrypt0 applied using the EDHOC AEAD algorithm with plaintext

 PLAINTEXT_3, additional data A_3, key K_3 and nonce IV_3.

 CIPHERTEXT_3 (Raw Value) (18 bytes)

 e5 62 09 7b c4 17 dd 59 19 48 5a c7 89 1f fd 90 a9 fc

 message_3 is the CBOR bstr encoding of CIPHERTEXT_3:

Selander, et al. Expires 30 July 2024 [Page 48]

Internet-Draft Traces of EDHOC January 2024

 message_3 (CBOR Sequence) (19 bytes)

 52 e5 62 09 7b c4 17 dd 59 19 48 5a c7 89 1f fd 90 a9 fc

 The transcript hash TH_4 is calculated using the EDHOC hash

 algorithm:

 TH_4 = H(TH_3, PLAINTEXT_3, CRED_I)

 Input to calculate TH_4 (CBOR Sequence) (151 bytes)

 58 20 ad af 67 a7 8a 4b cc 91 e0 18 f8 88 27 62 a7 22 00 0b 25 07 03

 9d f0 bc 1b bf 0c 16 1b b3 15 5c 2b 48 62 3c 91 df 41 e3 4c 2f a2 02

 77 34 32 2d 35 30 2d 33 31 2d 46 46 2d 45 46 2d 33 37 2d 33 32 2d 33

 39 08 a1 01 a5 01 02 02 41 2b 20 01 21 58 20 ac 75 e9 ec e3 e5 0b fc

 8e d6 03 99 88 95 22 40 5c 47 bf 16 df 96 66 0a 41 29 8c b4 30 7f 7e

 b6 22 58 20 6e 5d e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52 a3 87

 d2 57 e6 db 3c 2a 93 df 21 ff 3a ff c8

 TH_4 (Raw Value) (32 bytes)

 c9 02 b1 e3 a4 32 6c 93 c5 55 1f 5f 3a a6 c5 ec c0 24 68 06 76 56 12

 e5 2b 5d 99 e6 05 9d 6b 6e

 TH_4 (CBOR Data Item) (34 bytes)

 58 20 c9 02 b1 e3 a4 32 6c 93 c5 55 1f 5f 3a a6 c5 ec c0 24 68 06 76

 56 12 e5 2b 5d 99 e6 05 9d 6b 6e

3.6. message_4

 No external authorization data:

 EAD_4 (CBOR Sequence) (0 bytes)

 The Responder constructs PLAINTEXT_4:

 PLAINTEXT_4 =

 (

 ? EAD_4

)

 PLAINTEXT_4 (CBOR Sequence) (0 bytes)

 The Responder constructs the associated data for message_4:

Selander, et al. Expires 30 July 2024 [Page 49]

Internet-Draft Traces of EDHOC January 2024

 A_4 =

 [

 "Encrypt0",

 h’’,

 h’c902b1e3a4326c93c5551f5f3aa6c5ecc0246806765612e5

 2b5d99e6059d6b6e’

]

 A_4 (CBOR Data Item) (45 bytes)

 83 68 45 6e 63 72 79 70 74 30 40 58 20 c9 02 b1 e3 a4 32 6c 93 c5 55

 1f 5f 3a a6 c5 ec c0 24 68 06 76 56 12 e5 2b 5d 99 e6 05 9d 6b 6e

 The Responder constructs the input needed to derive the EDHOC

 message_4 key, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the

 EDHOC hash algorithm:

 K_4 = EDHOC_KDF(PRK_4e3m, 8, TH_4, key_length)

 = HKDF-Expand(PRK_4e3m, info, key_length)

 where key_length is the key length in bytes for the EDHOC AEAD

 algorithm, and info for K_4 is:

 info =

 (

 8,

 h’c902b1e3a4326c93c5551f5f3aa6c5ecc0246806765612e5

 2b5d99e6059d6b6e’,

 16

)

 where the last value is the key length in bytes for the EDHOC AEAD

 algorithm.

 info for K_4 (CBOR Sequence) (36 bytes)

 08 58 20 c9 02 b1 e3 a4 32 6c 93 c5 55 1f 5f 3a a6 c5 ec c0 24 68 06

 76 56 12 e5 2b 5d 99 e6 05 9d 6b 6e 10

 K_4 (Raw Value) (16 bytes)

 d3 c7 78 72 b6 ee b5 08 91 1b db d3 08 b2 e6 a0

 The Responder constructs the input needed to derive the EDHOC

 message_4 nonce, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using

 the EDHOC hash algorithm:

 IV_4 = EDHOC_KDF(PRK_4e3m, 9, TH_4, iv_length)

 = HKDF-Expand(PRK_4e3m, info, iv_length)

Selander, et al. Expires 30 July 2024 [Page 50]

Internet-Draft Traces of EDHOC January 2024

 where iv_length is the nonce length in bytes for the EDHOC AEAD

 algorithm, and info for IV_4 is:

 info =

 (

 9,

 h’c902b1e3a4326c93c5551f5f3aa6c5ecc0246806765612e5

 2b5d99e6059d6b6e’,

 13

)

 where the last value is the nonce length in bytes for the EDHOC AEAD

 algorithm.

 info for IV_4 (CBOR Sequence) (36 bytes)

 09 58 20 c9 02 b1 e3 a4 32 6c 93 c5 55 1f 5f 3a a6 c5 ec c0 24 68 06

 76 56 12 e5 2b 5d 99 e6 05 9d 6b 6e 0d

 IV_4 (Raw Value) (13 bytes)

 04 ff 0f 44 45 6e 96 e2 17 85 3c 36 01

 The Responder calculates CIPHERTEXT_4 as ’ciphertext’ of

 COSE_Encrypt0 applied using the EDHOC AEAD algorithm with plaintext

 PLAINTEXT_4, additional data A_4, key K_4 and nonce IV_4.

 CIPHERTEXT_4 (8 bytes)

 28 c9 66 b7 ca 30 4f 83

 message_4 is the CBOR bstr encoding of CIPHERTEXT_4:

 message_4 (CBOR Sequence) (9 bytes)

 48 28 c9 66 b7 ca 30 4f 83

3.7. PRK_out and PRK_exporter

 PRK_out is specified in Section 4.1.3 of [I-D.ietf-lake-edhoc].

 PRK_out = EDHOC_KDF(PRK_4e3m, 7, TH_4, hash_length) =

 = HKDF-Expand(PRK_4e3m, info, hash_length)

 where hash_length is the length in bytes of the output of the EDHOC

 hash algorithm, and info for PRK_out is:

Selander, et al. Expires 30 July 2024 [Page 51]

Internet-Draft Traces of EDHOC January 2024

 info =

 (

 7,

 h’c902b1e3a4326c93c5551f5f3aa6c5ecc0246806765612e5

 2b5d99e6059d6b6e’,

 32

)

 where the last value is the length in bytes of the output of the

 EDHOC hash algorithm.

 info for PRK_out (CBOR Sequence) (37 bytes)

 07 58 20 c9 02 b1 e3 a4 32 6c 93 c5 55 1f 5f 3a a6 c5 ec c0 24 68 06

 76 56 12 e5 2b 5d 99 e6 05 9d 6b 6e 18 20

 PRK_out (Raw Value) (32 bytes)

 2c 71 af c1 a9 33 8a 94 0b b3 52 9c a7 34 b8 86 f3 0d 1a ba 0b 4d c5

 1b ee ae ab df ea 9e cb f8

 The OSCORE Master Secret and OSCORE Master Salt are derived with the

 EDHOC_Exporter as specified in 4.2.1 of [I-D.ietf-lake-edhoc].

 EDHOC_Exporter(label, context, length)

 = EDHOC_KDF(PRK_exporter, label, context, length)

 where PRK_exporter is derived from PRK_out:

 PRK_exporter = EDHOC_KDF(PRK_out, 10, h’’, hash_length) =

 = HKDF-Expand(PRK_out, info, hash_length)

 where hash_length is the length in bytes of the output of the EDHOC

 hash algorithm, and info for the PRK_exporter is:

 info =

 (

 10,

 h’’,

 32

)

 where the last value is the length in bytes of the output of the

 EDHOC hash algorithm.

 info for PRK_exporter (CBOR Sequence) (4 bytes)

 0a 40 18 20

Selander, et al. Expires 30 July 2024 [Page 52]

Internet-Draft Traces of EDHOC January 2024

 PRK_exporter (Raw Value) (32 bytes)

 e1 4d 06 69 9c ee 24 8c 5a 04 bf 92 27 bb cd 4c e3 94 de 7d cb 56 db

 43 55 54 74 17 1e 64 46 db

3.8. OSCORE Parameters

 The derivation of OSCORE parameters is specified in Appendix A.1 of

 [I-D.ietf-lake-edhoc].

 The AEAD and Hash algorithms to use in OSCORE are given by the

 selected cipher suite:

 Application AEAD Algorithm (int)

 10

 Application Hash Algorithm (int)

 -16

 The mapping from EDHOC connection identifiers to OSCORE Sender/

 Recipient IDs is defined in Section 3.3.3 of [I-D.ietf-lake-edhoc].

 C_R is mapped to the Recipient ID of the server, i.e., the Sender ID

 of the client. The byte string 0x27, which as C_R is encoded as the

 CBOR integer 0x27, is converted to the server Recipient ID 0x27.

 Client’s OSCORE Sender ID (Raw Value) (1 byte)

 27

 C_I is mapped to the Recipient ID of the client, i.e., the Sender ID

 of the server. The byte string 0x37, which as C_I is encoded as the

 CBOR integer 0x0e is converted to the client Recipient ID 0x37.

 Server’s OSCORE Sender ID (Raw Value) (1 byte)

 37

 The OSCORE Master Secret is computed through EDHOC_Expand() using the

 Application hash algorithm, see Appendix A.1 of

 [I-D.ietf-lake-edhoc]:

 OSCORE Master Secret = EDHOC_Exporter(0, h’’, oscore_key_length)

 = EDHOC_KDF(PRK_exporter, 0, h’’, oscore_key_length)

 = HKDF-Expand(PRK_exporter, info, oscore_key_length)

 where oscore_key_length is by default the key length in bytes for the

 Application AEAD algorithm, and info for the OSCORE Master Secret is:

Selander, et al. Expires 30 July 2024 [Page 53]

Internet-Draft Traces of EDHOC January 2024

 info =

 (

 0,

 h’’,

 16

)

 where the last value is the key length in bytes for the Application

 AEAD algorithm.

 info for OSCORE Master Secret (CBOR Sequence) (3 bytes)

 00 40 10

 OSCORE Master Secret (Raw Value) (16 bytes)

 f9 86 8f 6a 3a ca 78 a0 5d 14 85 b3 50 30 b1 62

 The OSCORE Master Salt is computed through EDHOC_Expand() using the

 Application hash algorithm, see Section 4.2 of [I-D.ietf-lake-edhoc]:

 OSCORE Master Salt = EDHOC_Exporter(1, h’’, oscore_salt_length)

 = EDHOC_KDF(PRK_exporter, 1, h’’, oscore_salt_length)

 = HKDF-Expand(PRK_4x3m, info, oscore_salt_length)

 where oscore_salt_length is the length in bytes of the OSCORE Master

 Salt, and info for the OSCORE Master Salt is:

 info =

 (

 1,

 h’’,

 8

)

 where the last value is the length in bytes of the OSCORE Master

 Salt.

 info for OSCORE Master Salt (CBOR Sequence) (3 bytes)

 01 40 08

 OSCORE Master Salt (Raw Value) (8 bytes)

 ad a2 4c 7d bf c8 5e eb

3.9. Key Update

 Key update is defined in Appendix H of [I-D.ietf-lake-edhoc].

Selander, et al. Expires 30 July 2024 [Page 54]

Internet-Draft Traces of EDHOC January 2024

 EDHOC_KeyUpdate(context):

 PRK_out = EDHOC_KDF(PRK_out, 11, context, hash_length)

 = HKDF-Expand(PRK_out, info, hash_length)

 where hash_length is the length in bytes of the output of the EDHOC

 hash function, context for KeyUpdate is

 context for KeyUpdate (Raw Value) (16 bytes)

 a0 11 58 fd b8 20 89 0c d6 be 16 96 02 b8 bc ea

 context for KeyUpdate (CBOR Data Item) (17 bytes)

 50 a0 11 58 fd b8 20 89 0c d6 be 16 96 02 b8 bc ea

 and where info for key update is:

 info =

 (

 11,

 h’a01158fdb820890cd6be169602b8bcea’,

 32

)

 PRK_out after KeyUpdate (Raw Value) (32 bytes)

 f9 79 53 77 43 fe 0b d6 b9 b1 41 dd bd 79 65 6c 52 e6 dc 7c 50 ad 80

 77 54 d7 4d 07 e8 7d 0d 16

 After key update the PRK_exporter needs to be derived anew:

 PRK_exporter = EDHOC_KDF(PRK_out, 10, h’’, hash_length) =

 = HKDF-Expand(PRK_out, info, hash_length)

 where info and hash_length are unchanged as in Section 3.7.

 PRK_exporter after KeyUpdate (Raw Value) (32 bytes)

 00 fc f7 db 9b 2e ad 73 82 4e 7e 83 03 63 c8 05 c2 96 f9 02 83 0f ac

 23 d8 6c 35 9c 75 2f 0f 17

 The OSCORE Master Secret is derived with the updated PRK_exporter:

 OSCORE Master Secret =

 = HKDF-Expand(PRK_exporter, info, oscore_key_length)

 where info and key_length are unchanged as in Section 2.6.

 OSCORE Master Secret after KeyUpdate (Raw Value) (16 bytes)

 49 f7 2f ac 02 b4 65 8b da 21 e2 da c6 6f c3 74

 The OSCORE Master Salt is derived with the updated PRK_exporter:

Selander, et al. Expires 30 July 2024 [Page 55]

Internet-Draft Traces of EDHOC January 2024

 OSCORE Master Salt = HKDF-Expand(PRK_exporter, info, salt_length)

 where info and salt_length are unchanged as in Section 2.6.

 OSCORE Master Salt after KeyUpdate (Raw Value) (8 bytes)

 dd 8b 24 f2 aa 9b 01 1a

4. Invalid Traces

 This section contains examples of invalid messages, which a compliant

 implementation will not compose and must or may reject according to

 [I-D.ietf-lake-edhoc], [RFC8949], [RFC9053], and [SP-800-56A]. This

 is just a small set of examples of different reasons a message might

 be invalid. The same types of invalidities applies to other fields

 and messages as well. Implementations should make sure to check for

 similar types of invalidities in all EHDOC fields and messages.

4.1. Encoding Errors

4.1.1. Surplus array encoding of message

 Invalid encoding of message_1 as array. Correct encoding is a CBOR

 sequence according to Section 5.2.1 of [I-D.ietf-lake-edhoc].

 Invalid message_1 (38 bytes)

 84 03 02 58 20 74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b ea 5b

 3d 8f 65 f3 26 20 b7 49 be e8 d2 78 ef a9 0e

4.1.2. Surplus bstr encoding of connection identifier

 Invalid encoding 41 0e of C_I = 0x0e. Correct encoding is 0e

 according to Section 3.3.2 of [I-D.ietf-lake-edhoc].

 Invalid message_1 (38 bytes)

 03 02 58 20 74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b ea 5b 3d

 8f 65 f3 26 20 b7 49 be e8 d2 78 ef a9 41 0e

4.1.3. Surplus array encoding of ciphersuite

 Invalid array encoding 81 02 of SUITES_I = 2. Correct encoding is 02

 according to Section 5.2.2 of [I-D.ietf-lake-edhoc].

 Invalid message_1 (38 bytes)

 03 81 02 58 20 74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b ea 5b

 3d 8f 65 f3 26 20 b7 49 be e8 d2 78 ef a9 0e

Selander, et al. Expires 30 July 2024 [Page 56]

Internet-Draft Traces of EDHOC January 2024

4.1.4. Text string encoding of ephemeral key

 Invalid type of the third element (G_X). Correct encoding is a byte

 string according to Section 5.2.1 of [I-D.ietf-lake-edhoc].

 Invalid message_1 (37 bytes)

 03 02 78 20 20 61 69 72 20 73 70 65 65 64 20 6F 66 20 61 20 75 6E 6C

 61 64 65 6E 20 73 77 61 6C 6C 6F 77 20 0e

4.1.5. Wrong number of CBOR sequence elements

 Invalid number of elements in the CBOR sequence. Correct number of

 elements is 1 according to Section 5.3.1 of [I-D.ietf-lake-edhoc].

 Invalid message_2 (46 bytes)

 58 20 41 97 01 d7 f0 0a 26 c2 dc 58 7a 36 dd 75 25 49 f3 37 63 c8 93

 42 2c 8e a0 f9 55 a1 3a 4f f5 d5 4B 98 62 a1 1d e4 2a 95 d7 85 38 6a

4.1.6. Surplus map encoding of ID_CRED field

 Invalid encoding a1 04 42 32 10 of ID_CRED_R in PLAINTEXT_2. Correct

 encoding is 42 32 10 according to Section 3.5.3.2 of

 [I-D.ietf-lake-edhoc].

 Invalid PLAINTEXT_2 (15 bytes)

 27 a1 04 42 32 10 48 fa 5e fa 2e bf 92 0b f3

4.1.7. Surplus bstr encoding of ID_CRED field

 Invalid encoding 41 32 of ID_CRED_R in PLAINTEXT_2. Correct encoding

 is 32 according to Section 3.5.3.2 of [I-D.ietf-lake-edhoc].

 Invalid PLAINTEXT_2 (12 bytes)

 27 41 32 48 fa 5e fa 2e bf 92 0b f3

4.2. Crypto-related Errors

4.2.1. Error in length of ephemeral key

 Invalid length of the third element (G_X). Selected cipher suite is

 cipher suite 24 with curve P-384 according to Sections 5.2.2, and

 10.2 of [I-D.ietf-lake-edhoc]. Correct length of x-coordinate is 48

 bytes according to Section 3.7 of [I-D.ietf-lake-edhoc] and

 Section 7.1.1 of [RFC9053].

 Invalid message_1 (40 bytes)

 03 82 02 18 18 58 20 74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b

 ea 5b 3d 8f 65 f3 26 20 b7 49 be e8 d2 78 ef a9 0e

Selander, et al. Expires 30 July 2024 [Page 57]

Internet-Draft Traces of EDHOC January 2024

4.2.2. Error in elliptic curve representation

 Invalid x-coordinate in G_X as x p. Requirement that x < p

 according to Section 9.2 of [I-D.ietf-lake-edhoc] and Section 5.6.2.3

 of [SP-800-56A].

 Invalid message_1 (37 bytes)

 03 02 58 20 ff ff ff ff 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00

 00 ff ff ff ff ff ff ff ff ff ff ff ff 0e

4.2.3. Error in elliptic curve point

 Invalid x-coordinate in (G_X) not corresponding to a point on the

 P-256 curve. Requirement that y^2 x^3 + a x + b (mod p)

 according to Section 9.2 of [I-D.ietf-lake-edhoc] and Section 5.6.2.3

 of [SP-800-56A].

 Invalid message_1 (37 bytes)

 03 02 58 20 a0 4e 73 60 1d f5 44 a7 0b a7 ea 1e 57 03 0f 7d 4b 4e b7

 f6 73 92 4e 58 d5 4c a7 7a 5e 7d 4d 4a 0e

4.2.4. Curve point of low order

 Curve25519 point of low order which fails the check for all-zero

 output according to Section 9.2 of [I-D.ietf-lake-edhoc].

 Invalid message_1 (37 bytes)

 03 00 58 20 ed ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 ff ff ff ff ff ff ff ff ff ff ff ff 7f 0e

4.2.5. Error in length of MAC

 Invalid length of third element (Signature_or_MAC_2). The length of

 Signature_or_MAC_2 is given by the cipher suite and the MAC length is

 at least 8 bytes according to Section 9.3 of [I-D.ietf-lake-edhoc].

 Invalid PLAINTEXT_2 (7 bytes)

 27 32 44 fa 5e fa 2e

4.2.6. Error in elliptic curve encoding

 Invalid encoding of third element (G_X). Correct encoding is with

 leading zeros according to Section 3.7 of [I-D.ietf-lake-edhoc] and

 Section 7.1.1 of [RFC9053].

 Invalid message_1 (36 bytes)

 03 02 58 1f d9 69 77 25 d2 3a 68 8b 12 d1 c7 e0 10 8a 08 c9 f7 1a 85

 a0 9c 20 81 49 76 ab 21 12 22 48 fc 0e

Selander, et al. Expires 30 July 2024 [Page 58]

Internet-Draft Traces of EDHOC January 2024

4.3. Non-deterministic CBOR

4.3.1. Unnecessary long encoding

 Invalid 16-bit encoding 19 00 03 of METHOD = 3. Correct is the

 deterministic encoding 03 according to Section 3.1 of

 [I-D.ietf-lake-edhoc] and Section 4.2.1 of [RFC8949], which states

 that the arguments for integers, lengths in major types 2 through 5,

 and tags are required to be as short as possible.

 Invalid message_1 (39 bytes)

 19 00 03 02 58 20 74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b ea

 5b 3d 8f 65 f3 26 20 b7 49 be e8 d2 78 ef a9 0e

4.3.2. Indefinite-length array encoding

 Invalid indefinite-length array encoding 9F 06 02 FF of SUITES_I =

 [6, 2]. Correct encoding is 82 06 02 according to Section 5.2.2 of

 [I-D.ietf-lake-edhoc].

 Invalid message_1 (40 bytes)

 03 9F 06 02 FF 58 20 74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b

 ea 5b 3d 8f 65 f3 26 20 b7 49 be e8 d2 78 ef a9 0e

5. Security Considerations

 This document contains examples of EDHOC [I-D.ietf-lake-edhoc] whose

 security considerations apply. The keys printed in these examples

 cannot be considered secret and MUST NOT be used.

6. IANA Considerations

 There are no IANA considerations.

7. References

7.1. Normative References

 [I-D.ietf-lake-edhoc]

 Selander, G., Mattsson, J. P., and F. Palombini,

 "Ephemeral Diffie-Hellman Over COSE (EDHOC)", Work in

 Progress, Internet-Draft, draft-ietf-lake-edhoc-23, 22

 January 2024, <https://datatracker.ietf.org/doc/html/

 draft-ietf-lake-edhoc-23>.

Selander, et al. Expires 30 July 2024 [Page 59]

Internet-Draft Traces of EDHOC January 2024

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

7.2. Informative References

 [CborMe] Bormann, C., "CBOR playground", August 2023,

 <https://cbor.me/>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

 Application Protocol (CoAP)", RFC 7252,

 DOI 10.17487/RFC7252, June 2014,

 <https://www.rfc-editor.org/rfc/rfc7252>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

 for Security", RFC 7748, DOI 10.17487/RFC7748, January

 2016, <https://www.rfc-editor.org/rfc/rfc7748>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

 Signature Algorithm (EdDSA)", RFC 8032,

 DOI 10.17487/RFC8032, January 2017,

 <https://www.rfc-editor.org/rfc/rfc8032>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,

 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,

 May 2018, <https://www.rfc-editor.org/rfc/rfc8392>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object

 Representation (CBOR)", STD 94, RFC 8949,

 DOI 10.17487/RFC8949, December 2020,

 <https://www.rfc-editor.org/rfc/rfc8949>.

 [RFC9053] Schaad, J., "CBOR Object Signing and Encryption (COSE):

 Initial Algorithms", RFC 9053, DOI 10.17487/RFC9053,

 August 2022, <https://www.rfc-editor.org/rfc/rfc9053>.

 [SP-800-186]

 Chen, L., Moody, D., Randall, K., Regenscheid, A., and A.

 Robinson, "Recommendations for Discrete Logarithm-based

 Cryptography: Elliptic Curve Domain Parameters",

 NIST Special Publication 800-186, February 2023,

 <https://doi.org/10.6028/NIST.SP.800-186>.

Selander, et al. Expires 30 July 2024 [Page 60]

Internet-Draft Traces of EDHOC January 2024

 [SP-800-56A]

 Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.

 Davis, "Recommendation for Pair-Wise Key-Establishment

 Schemes Using Discrete Logarithm Cryptography",

 NIST Special Publication 800-56A Revision 3, April 2018,

 <https://doi.org/10.6028/NIST.SP.800-56Ar3>.

Acknowledgments

 The authors want to thank all people verifying EDHOC test vectors

 and/or contributing to the interoperability testing including:

 Christian Amsüss, Timothy Claeys, Stefan Hristozov, Rikard Höglund,

 Christos Koulamas, Francesca Palombini, Lidia Pocero, Peter van der

 Stok, and Michel Veillette.

Authors’ Addresses

 Göran Selander

 Ericsson

 Sweden

 Email: goran.selander@ericsson.com

 John Preuß Mattsson

 Ericsson

 Sweden

 Email: john.mattsson@ericsson.com

 Marek Serafin

 ASSA ABLOY

 Poland

 Email: marek.serafin@assaabloy.com

 Marco Tiloca

 RISE

 Sweden

 Email: marco.tiloca@ri.se

 Malia Vuini

 Inria

 France

 Email: malisa.vucinic@inria.fr

Selander, et al. Expires 30 July 2024 [Page 61]

LAKE Working Group M. Tiloca
Internet-Draft RISE AB
Intended status: Informational 12 February 2024
Expires: 15 August 2024

 Implementation Considerations for Ephemeral Diffie-Hellman Over COSE
 (EDHOC)
 draft-tiloca-lake-edhoc-implem-cons-01

Abstract

 This document provides considerations for guiding the implementation
 of the authenticated key exchange protocol Ephemeral Diffie-Hellman
 Over COSE (EDHOC).

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the Lightweight
 Authenticated Key Exchange Working Group mailing list
 (lake@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/lake/.

 Source for this draft and an issue tracker can be found at
 https://gitlab.com/crimson84/draft-tiloca-lake-edhoc-implem-cons.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 15 August 2024.

Tiloca Expires 15 August 2024 [Page 1]

Internet-Draft Implementation Considerations for EDHOC February 2024

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. Handling of Invalid EDHOC Sessions and Application Keys . . . 3
 2.1. EDHOC Sessions Become Invalid 4
 2.2. Application Keys Become Invalid 5
 2.3. Application Keys or Bound Access Rights Become Invalid . 7
 3. Trust Models for Learning New Authentication Credentials . . 11
 4. Side Processing of Incoming EDHOC Messages 13
 4.1. EDHOC message_1 . 15
 4.2. EDHOC message_4 . 16
 4.3. EDHOC message_2 and message_3 16
 4.3.1. Pre-Verification Side Processing 16
 4.3.2. Post-Verification Side Processing 19
 4.3.3. Flowcharts . 19
 5. Security Considerations 23
 6. IANA Considerations . 23
 7. References . 23
 7.1. Normative References 23
 7.2. Informative References 24
 Acknowledgments . 25
 Author’s Address . 25

1. Introduction

 Ephemeral Diffie-Hellman Over COSE (EDHOC) [I-D.ietf-lake-edhoc] is a
 lightweight authenticated key exchange protocol, especially intended
 for use in constrained scenarios.

 During the development of EDHOC, a number of side topics were raised
 and discussed, as emerging from reviews of the protocol latest design
 and from implementation activities. These topics were identified as
 strongly pertaining to the implementation of EDHOC rather than to the

Tiloca Expires 15 August 2024 [Page 2]

Internet-Draft Implementation Considerations for EDHOC February 2024

 protocol in itself. Hence, they are not discussed in
 [I-D.ietf-lake-edhoc], which rightly focuses on specifying the actual
 protocol.

 At the same time, implementors of an application using the EDHOC
 protocol or of an "EDHOC library" enabling its use cannot simply
 ignore such topics, and will have to take them into account
 throughout their implementation work.

 In order to prevent multiple, independent re-discoveries and
 assessments of those topics, as well as to facilitate and guide
 implementation activities, this document collects such topics and
 discusses them through considerations about the implementation of
 EDHOC. At a high-level, the topics in question are summarized below.

 * Handling of completed EDHOC sessions when they become invalid, and
 of application keys derived from an EDHOC session when those
 become invalid. This topic is discussed in Section 2.

 * Enforcing of different trust models, with respect to learning new
 authentication credentials during an execution of EDHOC. This
 topic is discussed in Section 3.

 * Branched-off, side processing of incoming EDHOC messages, with
 particular reference to: i) fetching and validation of
 authentication credentials; and ii) processing of External
 Authorization Data (EAD) items, which in turn might play a role in
 the fetching and validation of authentication credentials. This
 topic is discussed in Section 4.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The reader is expected to be familiar with terms and concepts related
 to the EDHOC protocol and defined in [I-D.ietf-lake-edhoc].

2. Handling of Invalid EDHOC Sessions and Application Keys

 This section considers the most common situation where, given a
 certain peer, only the application at that peer has visibility and
 control of both:

 * The EDHOC sessions at that peer; and

Tiloca Expires 15 August 2024 [Page 3]

Internet-Draft Implementation Considerations for EDHOC February 2024

 * The application keys for that application at that peer, including
 the knowledge of whether they have been derived from an EDHOC
 session, i.e., by means of the EDHOC_Exporter interface after the
 successful completion of an execution of EDHOC (see Section 4.1 of
 [I-D.ietf-lake-edhoc]).

 Building on the above, the following expands on three relevant cases
 concerning the handling of EDHOC sessions and application keys, in
 the event that any of those becomes invalid.

 As a case in point to provide more concrete guidance, the following
 also considers the specific case where "applications keys" stands for
 the keying material and parameters that compose an OSCORE Security
 Context [RFC8613] and that are derived from an EDHOC session (see
 Appendix A.1 of [I-D.ietf-lake-edhoc]).

 Nevertheless, the same considerations are applicable in case EDHOC is
 used to derive other application keys, e.g., to key different
 security protocols than OSCORE or to provide the application with
 secure values bound to an EDHOC session.

2.1. EDHOC Sessions Become Invalid

 The application at a peer P may have learned that a completed EDHOC
 session S has to be invalidated. When S is marked as invalid, the
 application at P purges S and deletes each set of application keys
 (e.g., the OSCORE Security Context) that was generated from S.

 Then, the applications runs a new execution of the EDHOC protocol
 with the other peer. Upon successfully completing the EDHOC
 execution, the two peers derive and install a new set of application
 keys from this latest EDHOC session.

 The flowchart in Figure 1 shows the handling of an EDHOC session that
 has become invalid.

 Invalid Delete the EDHOC session Rerun Derive and
 EDHOC --> and the application keys --> EDHOC --> install new
 session derived from it application keys

 Figure 1: Handling of an EDHOC Session that has Become Invalid

Tiloca Expires 15 August 2024 [Page 4]

Internet-Draft Implementation Considerations for EDHOC February 2024

 An EDHOC session may have become invalid, for example, because an
 authentication credential CRED_X may have expired, or because P may
 have learned from a trusted source that CRED_X has been revoked.
 This effectively invalidates CRED_X, and therefore also invalidates
 any EDHOC session where CRED_X was used as authentication credential
 of either peer in the session (i.e., P itself or the other peer). In
 such a case, the application at P has to additionally delete CRED_X
 and any stored, corresponding credential identifier.

2.2. Application Keys Become Invalid

 The application at a peer P may have learned that a set of
 application keys is not safe to use anymore. When such a set is
 specifically an OSCORE Security Context, the application may have
 learned that from the used OSCORE library or from an OSCORE layer
 that takes part to the communication stack.

 A current set SET of application keys shared with another peer can
 become unsafe to use, for example, due to the following reasons.

 * SET has reached its pre-determined expiration time; or

 * SET has been established for a pre-defined, now elapsed amount of
 time, according to enforced application policies; or

 * Some elements of SET have been used enough times to approach
 cryptographic limits that should not be passed, e.g., according to
 the properties of the specifically used security algorithms. With
 particular reference to an OSCORE Security Context, such limits
 are discussed in [I-D.ietf-core-oscore-key-limits].

 When this happens, the application at the peer P proceeds as follows.

 1. If the following conditions both hold, then the application moves
 to step 2. Otherwise, it moves to step 3.

 * Let us define S as the EDHOC session from which the peer P has
 derived SET or the eldest SET’s ancestor set of application
 keys. Then, since the completion of S with the other peer,
 the application at P has received from the other peer at least
 one message protected with any set of application keys derived
 from S. That is, P has persisted S (see Section 5.4.2 of
 [I-D.ietf-lake-edhoc]).

Tiloca Expires 15 August 2024 [Page 5]

Internet-Draft Implementation Considerations for EDHOC February 2024

 * The peer P supports a key update protocol, as an alternative
 to performing a new execution of EDHOC with the other peer.
 When SET is specifically an OSCORE Security Context, this
 means that the peer P supports the key update protocol KUDOS
 defined in [I-D.ietf-core-oscore-key-update].

 2. The application at P runs the key update protocol mentioned at
 step 1 with the other peer, in order to update SET. When SET is
 specifically an OSCORE Security Context, this means that the
 application at P runs KUDOS with the other peer.

 If the key update protocol terminates successfully, the updated
 application keys are installed and no further actions are taken.
 Otherwise, the application at P moves to step 3.

 3. The application at the peer P performs the following actions.

 * It deletes SET.

 * It deletes the EDHOC session from which SET was generated, or
 from which the eldest SET’s ancestor set of application keys
 was generated before any key update occurred (e.g., by means
 of the EDHOC_KeyUpdate interface defined in Appendix H of
 [I-D.ietf-lake-edhoc] or other key update methods).

 * It runs a new execution of the EDHOC protocol with the other
 peer. Upon successfully completing the EDHOC execution, the
 two peers derive and install a new set of application keys
 from this latest EDHOC session.

 The flowchart in Figure 2 shows the handling of a set of application
 keys that has become invalid.

Tiloca Expires 15 August 2024 [Page 6]

Internet-Draft Implementation Considerations for EDHOC February 2024

 Invalid application keys

 |
 |
 v
 NO
 Are the ----> Delete the application ----> Rerun
 application keys keys and the EDHOC session EDHOC
 persisted?
 ^ ^ |
 | | | |
 | YES | | v
 v | |
 | | Derive and install
 Is KUDOS NO | | new application keys
 supported? ------------------+ |
 |
 | |
 | YES |
 v |
 |
 Run KUDOS |
 |
 | |
 | |
 v |
 |
 Has KUDOS NO |
 succeeded? ---------------------------+

 |
 | YES
 v

 Install the updated
 application keys

 Figure 2: Handling of a set of Application Keys that has Become
 Invalid

2.3. Application Keys or Bound Access Rights Become Invalid

 The following considers two peers that use the ACE framework for
 authentication and authorization in constrained environments (ACE)
 [RFC9200], and specifically the EDHOC and OSCORE profile of ACE
 defined in [I-D.ietf-ace-edhoc-oscore-profile].

Tiloca Expires 15 August 2024 [Page 7]

Internet-Draft Implementation Considerations for EDHOC February 2024

 When doing so, one of the two peers acts as ACE Resource Server (RS)
 hosting protected resources. The other peer acts as ACE Client,
 requests from an ACE Authorization Server (AS) an Access Token that
 specifies access rights for accessing protected resources at the RS,
 and uploads the Access Token to the RS as part of the ACE workflow.

 Consistent with the used EDHOC and OSCORE profile of ACE, the two
 peers run EDHOC in order to specifically derive an OSCORE Security
 Context as their shared set of application keys (see Appendix A.1 of
 [I-D.ietf-lake-edhoc]). In particular, the peer acting as ACE Client
 acts as EDHOC Initiator, while the peer acting as ACE RS acts as
 EDHOC Responder (see Section 2 of [I-D.ietf-lake-edhoc]). The
 successfully completed EDHOC session is bound to the Access Token.

 After that, the peer acting as ACE Client can access the protected
 resources hosted at the other peer, according to the access rights
 specified in the Access Token. The communications between the two
 peers are protected by means of the established OSCORE Security
 Context, which is also bound to the used Access Token.

 Later on, the application at one of the two peers P may have learned
 that the established OSCORE Security Context CTX is not safe to use
 anymore, e.g., from the used OSCORE library or from an OSCORE layer
 that takes part to the communication stack. The reasons that make
 CTX not safe to use anymore are the same ones discussed in
 Section 2.2 when considering a set of application keys in general,
 plus the event where the Access Token bound to CTX becomes invalid
 (e.g., it has expired or it has been revoked).

 When this happens, the application at the peer P proceeds as follows.

 1. If the following conditions both hold, then the application moves
 to step 2. Otherwise, it moves to step 3.

 * The Access Token is still valid. That is, it has not expired
 yet and the peer P is not aware that it has been revoked.

 * Let us define S as the EDHOC session from which the peer P has
 derived CTX or the eldest CTX’s ancestor OSCORE Security
 Context. Then, since the completion of S with the other peer,
 the application at P has received from the other peer at least
 one message protected with any set of application keys derived
 from S. That is, P has persisted S (see Section 5.4.2 of
 [I-D.ietf-lake-edhoc]).

Tiloca Expires 15 August 2024 [Page 8]

Internet-Draft Implementation Considerations for EDHOC February 2024

 2. If the peer P supports the key update protocol KUDOS
 [I-D.ietf-core-oscore-key-update], then P runs KUDOS with the
 other peer, in order to update CTX. If the execution of KUDOS
 terminates successfully, the updated OSCORE Security Context is
 installed and no further actions are taken.

 If the execution of KUDOS does not terminate successfully or if
 the peer P does not support KUDOS altogether, then the
 application at P moves to step 3.

 3. The application at the peer P performs the following actions.

 * If the Access Token is not valid anymore, the peer P deletes
 all the EDHOC sessions associated with the Access Token, as
 well as the OSCORE Security Context derived from each of those
 sessions.

 If the peer P acted as ACE Client, then P obtains a new Access
 Token from the ACE AS, and uploads it to the other peer acting
 as ACE RS.

 Finally, the application at P moves to step 4.

 * If the Access Token is valid while the OSCORE Security Context
 CTX is not, then the peer P deletes CTX.

 After that, the peer P deletes the EDHOC session from which
 CTX was generated, or from which the eldest CTX’s ancestor
 OSCORE Security Context was generated before any key update
 occurred (e.g., by means of KUDOS or other key update
 methods).

 Finally, the application at P moves to step 4.

 4. The peer P runs a new execution of the EDHOC protocol with the
 other peer. Upon successfully completing the EDHOC execution,
 the two peers derive and install a new OSCORE Security Context
 from this latest EDHOC session.

 The flowchart in Figure 3 shows the handling of an Access Token or of
 a set of application keys that have become invalid.

 Invalid token specifying CRED_I,
 or invalid application keys

 |
 |
 v

Tiloca Expires 15 August 2024 [Page 9]

Internet-Draft Implementation Considerations for EDHOC February 2024

 NO
 Is the token ----> Delete the associated --> Obtain and --> Rerun ---+
 still valid? EDHOC sessions and upload a EDHOC |
 the application keys new token |
 | derived from those ^ |
 | | |
 | YES | |
 v | |
 | |
 The application keys | |
 are not valid anymore | |
 | |
 | | |
 | | |
 v | |
 | |
 Are the NO | |
 application keys -----> Delete the application keys and ------+ |
 persisted? the associated EDHOC session |
 |
 | ^ ^ |
 | YES | | |
 v | | |
 | | |
 Is KUDOS NO | | |
 supported? ---------------------+ | v
 |
 | | Derive and install
 | YES | new application keys
 v |
 |
 Run KUDOS |
 |
 | |
 | |
 v |
 |
 Has KUDOS NO |
 succeeded? ------------------------------+

 |
 | YES
 v

 Install the updated
 application keys

Tiloca Expires 15 August 2024 [Page 10]

Internet-Draft Implementation Considerations for EDHOC February 2024

 Figure 3: Handling of an Access Token or of a set of Application
 Keys that have Become Invalid

3. Trust Models for Learning New Authentication Credentials

 A peer P relies on authentication credentials of other peers, in
 order to authenticate those peers when running EDHOC with them.

 There are different ways for P to acquire an authentication
 credential CRED of another peer. For example, CRED can be supplied
 to P out-of-band by a trusted provider.

 Alternatively, CRED can be specified by the other peer during the
 EDHOC execution with P. This relies on EDHOC message_2 or message_3,
 whose respective ID_CRED_R and ID_CRED_I can specify CRED by value,
 or instead a URI or other external reference where CRED can be
 retrieved from (see Section 3.5.3 of [I-D.ietf-lake-edhoc]).

 Also during the EDHOC execution, an External Authorization Data (EAD)
 field might include an EAD item that specifies CRED by value or
 reference. This is the case, e.g., for the EAD item defined in
 [I-D.ietf-ace-edhoc-oscore-profile], which is used in the EAD_3 field
 of EDHOC message_3 and transports (a reference to) an Access Token
 that in turn specifies CRED_I by value or by reference.

 When obtaining a new credential CRED, the peer P has to validate it
 before storing it. The validation steps to perform depend on the
 specific type of CRED (e.g., a public key certificate
 [RFC5280][I-D.ietf-cose-cbor-encoded-cert]), and can rely on (the
 authentication credential of) a trusted third party acting as a trust
 anchor.

 Upon retrieving a new CRED through the processing of a received EDHOC
 message and following the successful validation of CRED, the peer P
 stores CRED only if it assesses CRED to be also trusted, and must not
 store CRED otherwise.

 An exception applies for the two unauthenticated operations described
 in Appendix D.5 of [I-D.ietf-lake-edhoc], where a trust relationship
 with an unknown or not-yet-trusted endpoint is established later.
 That is, CRED is verified out-of-band at a later stage, or an EDHOC
 session key is bound to an identity out-of-band at a later stage.

 If P stores CRED, then P will consider CRED as valid and trusted
 until it possibly becomes invalid, e.g., because it expires or
 because P gains knowledge that it has been revoked.

Tiloca Expires 15 August 2024 [Page 11]

Internet-Draft Implementation Considerations for EDHOC February 2024

 When storing CRED, the peer P should generate the authentication
 credential identifier(s) corresponding to CRED and store them as
 associated with CRED. For example, if CRED is a public key
 certificate, an identifier of CRED can be the hash of the
 certificate. In general, P should generate and associate with CRED
 one corresponding identifier for each type of authentication
 credential identifier that P supports and that is compatible with
 CRED.

 In future executions of EDHOC with the other peer associated with
 CRED, this allows such other peer to specify CRED by reference, e.g.,
 by indicating its credential identifier as ID_CRED_R/ID_CRED_I in the
 EDHOC message_2 or message_3 addressed to the peer P. In turn, this
 allows P to retrieve CRED from its local storage.

 When processing a received EDHOC message M that specifies an
 authentication credential CRED, the peer P can enforce one of the
 following trust policies in order to determine whether to trust CRED.

 * NO-LEARNING: according to this policy, the peer P trusts CRED if
 and only if P is already storing CRED at message reception time.

 That is, upon receiving M, the peer P can continue the execution
 of EDHOC only if both the following conditions hold.

 - P currently stores CRED, as specified by reference or by value
 in ID_CRED_I/ID_CRED_R or in the value of an EAD item; and

 - CRED is still valid, i.e., P believes CRED to not be expired or
 revoked.

 * LEARNING: according to this policy, the peer P trusts CRED even if
 P is not already storing CRED at message reception time.

 That is, upon receiving M, the peer P performs the following
 steps.

 1. P retrieves CRED, as specified by reference or by value in
 ID_CRED_I/ID_CRED_R or in the value of an EAD item.

 2. P checks whether CRED is already being stored and if it is
 still valid. In such a case, P trusts CRED and can continue
 the EDHOC execution. Otherwise, P moves to step 3.

 3. P attempts to validate CRED. If the validation process is not
 successful, P aborts the EDHOC session with the other peer.
 Otherwise, P trusts and stores CRED, and can continue the
 EDHOC execution.

Tiloca Expires 15 August 2024 [Page 12]

Internet-Draft Implementation Considerations for EDHOC February 2024

 Irrespective of the adopted trust policy, P actually uses CRED only
 if it is determined to be fine to use in the context of the ongoing
 EDHOC session, also depending on the specific identity of the other
 peer (see Sections 3.5 and D.2 of [I-D.ietf-lake-edhoc]). If this is
 not the case, P aborts the EDHOC session with the other peer.

4. Side Processing of Incoming EDHOC Messages

 This section describes an approach that EDHOC peers can use upon
 receiving EDHOC messages, in order to fetch/validate authentication
 credentials and to process External Authorization Data (EAD) items.

 As per Section 9.1 of [I-D.ietf-lake-edhoc], the EDHOC protocol
 provides a transport mechanism for conveying EAD items, but
 specifications defining those items have to set the ground for
 "agreeing on the surrounding context and the meaning of the
 information passed to and from the application".

 The approach described in this section aims to help implementors
 navigate the surrounding context mentioned above, irrespective of the
 specific EAD items conveyed in the EDHOC messages. In particular,
 the described approach takes into account the following points.

 * The fetching and validation of the other peer’s authentication
 credential relies on ID_CRED_I in EDHOC message_2, or on ID_CRED_R
 in EDHOC message_3, or on the value of an EAD item. When this
 occurs upon receiving EDHOC message_2 or message_3, the decryption
 of the EDHOC message has to be completed first.

 The validation of the other peer’s authentication credential might
 depend on using the value of an EAD item, which in turn has to be
 validated first. For instance, an EAD item within the EAD_2 field
 may contain a voucher to be used for validating the other peer’s
 authentication credential (see [I-D.ietf-lake-authz]).

 * Some EAD items may be processed only after having successfully
 verified the EDHOC message, i.e., after a successful verification
 of the Signature_or_MAC field.

 For instance, an EAD item within the EAD_3 field may contain a
 Certificate Signing Request (CSR) [RFC2986]. Hence, such an EAD
 item can be processed only once the recipient peer has attained
 proof of the other peer possessing its private key.

 In order to conveniently handle such processing, the application can
 prepare in advance one "side-processor object" (SPO), which takes
 care of the operations above during the EDHOC execution.

Tiloca Expires 15 August 2024 [Page 13]

Internet-Draft Implementation Considerations for EDHOC February 2024

 In particular, the application provides EDHOC with the SPO before
 starting an EDHOC execution, during which EDHOC will temporarily
 transfer control to the SPO at the right point in time, in order to
 perform the required side-processing of an incoming EDHOC message.

 Furthermore, the application has to instruct the SPO about how to
 prepare any EAD item such that: it has to be included in an outgoing
 EDHOC message; and it is independent of the processing of other EAD
 items included in incoming EDHOC messages. This includes, for
 instance, the preparation of padding EAD items.

 At the right point in time during the processing of an incoming EDHOC
 message M at the peer P, EDHOC invokes the SPO and provides it with
 the following input:

 * When M is EDHOC message_2 or message_3, an indication of whether
 this invocation is happening before or after the message
 verification (i.e., before or after having verified the
 Signature_or_MAC field).

 * The full set of information related to the current EDHOC session.
 This especially includes the selected cipher suite and the
 ephemeral Diffie-Hellman public keys G_X and G_Y that the two
 peers have exchanged in the EDHOC session.

 * The other peers’ authentication credentials that the peer P
 stores.

 * All the decrypted information elements retrieved from M.

 * The EAD items included in M.

 - Note that EDHOC might do some preliminary work on M before
 invoking the SPO, in order to provide the SPO only with
 actually relevant EAD items. This requires the application to
 additionally provide EDHOC with the ead_labels of the EAD items
 that the peer P recognizes (see Section 3.8 of
 [I-D.ietf-lake-edhoc]).

 With such information available, EDHOC can early abort the
 current session in case M includes any EAD item which is both
 critical and not recognized by the peer P.

Tiloca Expires 15 August 2024 [Page 14]

Internet-Draft Implementation Considerations for EDHOC February 2024

 If no such EAD items are found, EDHOC can remove any padding
 EAD item (see Section 3.8.1 of [I-D.ietf-lake-edhoc]), as well
 as any EAD item which is neither critical nor recognized (since
 the SPO is going to ignore it anyway). As a result, EDHOC is
 able to provide the SPO only with EAD items that will be
 recognized and that require actual processing.

 - Note that, after having processed the EAD items, the SPO might
 actually need to store them throughout the whole EDHOC
 execution, e.g., in order to refer to them also when processing
 later EDHOC messages in the current EDHOC session.

 The SPO performs the following tasks on an incoming EDHOC message M.

 * The SPO fetches and/or validates the other peer’s authentication
 credential CRED, based on a dedicated EAD item of M or on the
 ID_CRED field of M (for EDHOC message_2 or message_3).

 * The SPO processes the EAD items conveyed in the EAD field of M.

 * The SPO stores the results of the performed operations, and makes
 such results available to the application.

 * When the SPO has completed its side processing and transfers
 control back to EDHOC, the SPO provides EDHOC with the produced
 EAD items to include in the EAD field of the next outgoing EDHOC
 message. The production of such EAD items can be triggered, e.g.,
 by:

 - The consumption of EAD items included in M; and

 - The execution of instructions that the SPO has received from
 the application, concerning EAD items to produce irrespective
 of other EAD items included in M.

 The following subsections describe more in detail the actions
 performed by the SPO on the different, incoming EDHOC messages.

4.1. EDHOC message_1

 During the processing of an incoming EDHOC message_1, EDHOC invokes
 the SPO only once, after the Responder peer has successfully decoded
 the message and accepted the selected cipher suite.

 If the EAD_1 field is present, the SPO processes the EAD items
 included therein.

Tiloca Expires 15 August 2024 [Page 15]

Internet-Draft Implementation Considerations for EDHOC February 2024

 Once all such EAD items have been processed the SPO transfers control
 back to EDHOC. When doing so, the SPO also provides EDHOC with any
 produced EAD items to include in the EAD field of the next outgoing
 EDHOC message.

 Then, EDHOC resumes its execution and advances its protocol state.

4.2. EDHOC message_4

 During the processing of an incoming EDHOC message_4, EDHOC invokes
 the SPO only once, after the Initiator peer has successfully
 decrypted the message.

 If the EAD_4 field is present, the SPO processes the EAD items
 included therein.

 Once all such EAD items have been processed, the SPO transfers
 control back to EDHOC, which resumes its execution and advances its
 protocol state.

4.3. EDHOC message_2 and message_3

 The following refers to "message_X" as an incoming EDHOC message_2 or
 message_3, and to "message verification" as the verification of
 Signature_or_MAC_X in message_X.

 During the processing of a message_X, EDHOC invokes the SPO two
 times:

 * Right after message_X has been decrypted and before its
 verification starts. Following this invocation, the SPO performs
 the actions described in Section 4.3.1.

 * Right after message_X has been successfully verified. Following
 this invocation, the SPO performs the actions described in
 Section 4.3.2.

 The flowcharts in Section 4.3.3 show the high-level interaction
 between the core EDHOC processing and the SPO, as well as the
 different steps taken for processing an incoming message_X.

4.3.1. Pre-Verification Side Processing

 The pre-verification side processing occurs in two sequential phases,
 namely PHASE_1 and PHASE_2.

Tiloca Expires 15 August 2024 [Page 16]

Internet-Draft Implementation Considerations for EDHOC February 2024

 PHASE_1 - During PHASE_1, the SPO at the recipient peer P determines
 CRED, i.e., the other peer’s authentication credential to use in the
 ongoing EDHOC session. In particular, the SPO performs the following
 steps.

 1. The SPO determines CRED based on ID_CRED_X or on an EAD item in
 message_X.

 Those may specify CRED by value or by reference, including a URI
 or other external reference where CRED can be retrieved from.

 If CRED is already installed, the SPO moves to step 2.
 Otherwise, the SPO moves to step 3.

 2. The SPO determines if the stored CRED is currently valid, e.g.,
 by asserting that CRED has not expired and has not been revoked.

 Performing such a validation may require the SPO to first
 process an EAD item included in message_X. For example, it can
 be an EAD item in EDHOC message_2, which confirms or revokes the
 validity of CRED_R specified by ID_CRED_R, as the result of an
 OCSP process [RFC6960].

 In case CRED is determined to be valid, the SPO moves to step 9.
 Otherwise, the SPO moves to step 11.

 3. The SPO attempts to retrieve CRED, and then moves to step 4.

 4. If the retrieval of CRED has succeeded, the SPO moves to step 5.
 Otherwise, the SPO moves to step 11.

 5. If the enforced trust policy for new authentication credentials
 is "NO-LEARNING" (see Section 3), the SPO moves to step 11.
 Otherwise, the SPO moves to step 6.

 6. If this step has been reached, the peer P enforces the trust
 policy "LEARNING" (see Section 3) and it is not already storing
 the retrieved CRED.

 Consistently, the SPO determines if CRED is currently valid,
 e.g., by asserting that CRED has not expired and has not been
 revoked. Then, the SPO moves to step 7.

Tiloca Expires 15 August 2024 [Page 17]

Internet-Draft Implementation Considerations for EDHOC February 2024

 Validating CRED may require the SPO to first process an EAD item
 included in message_X. For example, it can be an EAD item in
 EDHOC message_2 that: i) specifies a voucher for validating
 CRED_R as a CWT Claims Set (CCS) [RFC8392] transported by value
 in ID_CRED_R (see [I-D.ietf-lake-authz]); or instead ii) an OCSP
 response [RFC6960] for validating CRED_R as a certificate
 transported by value or reference in ID_CRED_R.

 7. If CRED has been determined valid, the SPO moves to step 8.
 Otherwise, the SPO moves to step 11.

 8. The SPO stores CRED as a valid and trusted authentication
 credential associated with the other peer, together with
 corresponding authentication credential identifiers (see
 Section 3). Then, the SPO moves to step 9.

 9. The SPO checks if CRED is fine to use in the context of the
 ongoing EDHOC session, also depending on the specific identity
 of the other peer (see Sections 3.5 and D.2 of
 [I-D.ietf-lake-edhoc]).

 If this is the case, the SPO moves to step 10. Otherwise, the
 SPO moves to step 11.

 10. P uses CRED as authentication credential of the other peer in
 the ongoing EDHOC session.

 Then, PHASE_1 ends, and the pre-verification side processing
 moves to the next PHASE_2 (see below).

 11. The SPO has not found a valid authentication credential
 associated with the other peer that can be used in the ongoing
 EDHOC session. Therefore, the EDHOC session with the other peer
 is aborted.

 PHASE_2 - During PHASE_2, the SPO processes any EAD item included in
 message_X such that both the following conditions hold.

 * The EAD item has _not_ been already processed during PHASE_1.

 * The EAD item can be processed before performing the verification
 of message_X.

 Once all such EAD items have been processed, the SPO transfers
 control back to EDHOC, which either aborts the ongoing EDHOC session
 or continues the processing of message_X with its corresponding
 message verification.

Tiloca Expires 15 August 2024 [Page 18]

Internet-Draft Implementation Considerations for EDHOC February 2024

4.3.2. Post-Verification Side Processing

 During the post-verification side processing, the SPO processes any
 EAD item included in message_X such that the processing of that EAD
 item had to wait for completing the successful message verification.

 The late processing of such EAD items is typically due to the fact
 that a pre-requirement has to be fulfilled first. For example, the
 recipient peer P has to have first asserted that the other peer does
 possess the private key corresponding to the public key of the other
 peer’s authentication credential CRED determined during the pre-
 verification side processing (see Section 4.3.1). This requirement
 is fulfilled after a successful message verification of message_X.

 Once all such EAD items have been processed, the SPO transfers
 control back to EDHOC. When doing so, the SPO also provides EDHOC
 with any produced EAD items to include in the EAD field of the next
 outgoing EDHOC message.

 Then, EDHOC resumes its execution and advances its protocol state.

4.3.3. Flowcharts

 The flowchart in Figure 4 shows the high-level interaction between
 the core EDHOC processing and the SPO, with particular reference to
 an incoming EDHOC message_2 or message_3.

 EDHOC message_X
 (X = 2 or 3)

 |
 |
 +-----|---+
 | | Core EDHOC processing |
 | v |
 | +-----------+ +----------------+ +----------------+ |
 | | Decode |--->| Retrieve the | | Advance the | |
 | | message_X | | protocol state | | protocol state | |
 | +-----------+ +----------------+ +----------------+ |
 | | ^ | | | | |
 | | | |
 | v | |
 | +--------------+ +--------------------+ | |
 | | Decrypt | | Verify | | |
 | | CYPHERTEXT_X | | Signature_or_MAC_X | | |
 | +--------------+ +--------------------+ | |
 | | ^ | | |
 | | | | | |

Tiloca Expires 15 August 2024 [Page 19]

Internet-Draft Implementation Considerations for EDHOC February 2024

 +----------------|-----------|-----------|---------|------------------+
 | | | |
 | | | |
 Divert | Get | Divert | Get | : EAD items :
 | back | | back | : for the next :
 | | | | : EDHOC message :
 | | | | :...............:
 | | | |
 +----------------|-----------|-----------|---------|------------------+
 | | | | | |
 | v | v | |
 | +---------------------------+ +-----------------------------+ |
 | | a) Retrieval and | | Processing of | |
 | | validation of CRED_X; | | post-verification EAD items | |
 | | b) Trust assessment | +-----------------------o-----+ |
 | | of CRED_X; | | |
 | | c) Processing of o-------- Shared state -------o |
 | | pre-verification | |
 | | EAD items | |
 | | | : Instructions about : |
 | | - (a) and (c) might have | : EAD items to : |
 | | to occur in parallel | : unconditionally : |
 | | - (b) depends on the | : produce for the : |
 | | used trust model | : next EDHOC message : |
 | +---------------------------+ :....................: |
 | |
 | Side-Processor Object |
 +---+

 Figure 4: High-Level Interaction Between the Core EDHOC
 Processing and the Side-Processor Object (SPO)

 The flowchart in Figure 5 shows the different steps taken for
 processing an incoming EDHOC message_2 and message_3.

 Incoming
 EDHOC message_X
 (X = 2 or 3)

 |
 |
 v
 +-------------------+
 | Decrypt message_X | (Core EDHOC Processing)
 +-------------------+
 |
 |

Tiloca Expires 15 August 2024 [Page 20]

Internet-Draft Implementation Considerations for EDHOC February 2024

 Control transferred to
 the side-processor object

 |
 +---------|---+
 | | Pre-verification side processing (PHASE_1) |
 | v |
 | +---------------------+ +--------------+ +-------------+ |
 | | 1. Does ID_CRED_X | NO | 3. Retrieve | | 4. Is the | |
 | | or an EAD item |---->| CRED via |--->| retrieval | |
 | | point to an already | | ID_CRED_X or | | of CRED | |
 | | stored CRED? | | an EAD item | | successful? | |
 | +---------------------+ +--------------+ +-------------+ |
 | | | | |
 | | | NO | YES |
 | | +--------------+ | |
 | | YES | | |
 | v v v |
 | +-----------------+ NO +-----------+ YES +----------------+ |
 | | 2. Is this CRED |-------->| 11. Abort |<-----| 5. Is the | |
 | | still valid? | | the EDHOC | | used policy | |
 | +-----------------+ | session | | "NO-LEARNING"? | |
 | | | | +----------------+ |
 | | YES | | | |
 | v | | The used policy | NO |
 | +--------------------+ NO | | is "LEARNING" | |
 | | 9. Is this CRED |----->| | v |
 | | good to use in the | +-----------+ +-------------+ |
 | | context of this | ^ | 6. Validate | |
 | | EDHOC session? |<--+ | | CRED | |
 | +--------------------+ | | +-------------+ |
 | | | | | |
 | | YES | | NO | |
 | | | | v |
 | | | +-----------------------------+ |
 | | | | 7. Is CRED valid? | |
 | | | +-----------------------------+ |
 | | | | |
 | | | | YES |
 | | | v |
 | v | +-----------------------------+ |
 | +------------------+ | | 8. Store CRED as valid and | |
 | | 10. Continue by | +--------| trusted. | |
 | | considering this | | | |
 | | CRED as the | | Pair CRED with consistent | |
 | | authentication | | credential identifiers, for | |
 | | credential of | | each supported type of | |
 | | the other peer | | credential identifier. | |

Tiloca Expires 15 August 2024 [Page 21]

Internet-Draft Implementation Considerations for EDHOC February 2024

 | +------------------+ +-----------------------------+ |
 | | |
 +---------|---+
 |
 |
 +---------|---+
 | | Pre-verification side processing (PHASE_2) |
 | v |
 | +---+ |
 | | Process the EAD items that have not been processed yet, | |
 | | and that can be processed before message verification | |
 | +---+ |
 | | |
 +---------|---+
 |
 |

 Control transferred back
 to the core EDHOC processing

 |
 |
 v
 +------------------+
 | Verify message_X | (core EDHOC processing)
 +------------------+
 |
 |

 Control transferred to
 the side-processor object

 |
 +---------|--+
 | | Post-verification processing |
 | v |
 | +---+ |
 | | Process the EAD items that have to be | |
 | | processed (also) after message verification | |
 | +---+ |
 | | |
 | | |
 | v |
 | +--+ |
 | | Make all the results of the EAD processing | |
 | | available to build the next EDHOC message | |
 | +--+ |
 | | |

Tiloca Expires 15 August 2024 [Page 22]

Internet-Draft Implementation Considerations for EDHOC February 2024

 +---------|--+
 |
 |

 Control transferred back
 to the core EDHOC processing

 |
 |
 v
 +----------------+
 | Advance the | (core EDHOC processing)
 | protocol state |
 +----------------+

 Figure 5: Processing steps for EDHOC message_2 and message_3

5. Security Considerations

 TBD

6. IANA Considerations

 This document has no actions for IANA.

7. References

7.1. Normative References

 [I-D.ietf-lake-edhoc]
 Selander, G., Mattsson, J. P., and F. Palombini,
 "Ephemeral Diffie-Hellman Over COSE (EDHOC)", Work in
 Progress, Internet-Draft, draft-ietf-lake-edhoc-23, 22
 January 2024, <https://datatracker.ietf.org/doc/html/
 draft-ietf-lake-edhoc-23>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Tiloca Expires 15 August 2024 [Page 23]

Internet-Draft Implementation Considerations for EDHOC February 2024

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/rfc/rfc8613>.

7.2. Informative References

 [I-D.ietf-ace-edhoc-oscore-profile]
 Selander, G., Mattsson, J. P., Tiloca, M., and R. Höglund,
 "Ephemeral Diffie-Hellman Over COSE (EDHOC) and Object
 Security for Constrained Environments (OSCORE) Profile for
 Authentication and Authorization for Constrained
 Environments (ACE)", Work in Progress, Internet-Draft,
 draft-ietf-ace-edhoc-oscore-profile-03, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-ace-
 edhoc-oscore-profile-03>.

 [I-D.ietf-core-oscore-key-limits]
 Höglund, R. and M. Tiloca, "Key Usage Limits for OSCORE",
 Work in Progress, Internet-Draft, draft-ietf-core-oscore-
 key-limits-02, 10 January 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-core-
 oscore-key-limits-02>.

 [I-D.ietf-core-oscore-key-update]
 Höglund, R. and M. Tiloca, "Key Update for OSCORE
 (KUDOS)", Work in Progress, Internet-Draft, draft-ietf-
 core-oscore-key-update-06, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-core-
 oscore-key-update-06>.

 [I-D.ietf-cose-cbor-encoded-cert]
 Mattsson, J. P., Selander, G., Raza, S., Höglund, J., and
 M. Furuhed, "CBOR Encoded X.509 Certificates (C509
 Certificates)", Work in Progress, Internet-Draft, draft-
 ietf-cose-cbor-encoded-cert-07, 20 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cose-
 cbor-encoded-cert-07>.

 [I-D.ietf-lake-authz]
 Selander, G., Mattsson, J. P., Vuini, M., and M.
 Richardson, "Lightweight Authorization using Ephemeral
 Diffie-Hellman Over COSE", Work in Progress, Internet-
 Draft, draft-ietf-lake-authz-00, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-lake-
 authz-00>.

Tiloca Expires 15 August 2024 [Page 24]

Internet-Draft Implementation Considerations for EDHOC February 2024

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 DOI 10.17487/RFC2986, November 2000,
 <https://www.rfc-editor.org/rfc/rfc2986>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/rfc/rfc5280>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/rfc/rfc6960>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/rfc/rfc8392>.

 [RFC9200] Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments Using the OAuth 2.0 Framework
 (ACE-OAuth)", RFC 9200, DOI 10.17487/RFC9200, August 2022,
 <https://www.rfc-editor.org/rfc/rfc9200>.

Acknowledgments

 The author sincerely thanks Christian Amsüss, Geovane Fedrecheski,
 Rikard Höglund, John Preuß Mattsson, Göran Selander, and Malia
 Vuini for their comments and feedback.

Author’s Address

 Marco Tiloca
 RISE AB
 Isafjordsgatan 22
 SE-16440 Stockholm Kista
 Sweden
 Email: marco.tiloca@ri.se

Tiloca Expires 15 August 2024 [Page 25]

	draft-ietf-lake-authz-01
	draft-ietf-lake-edhoc-23
	draft-ietf-lake-traces-09
	draft-tiloca-lake-edhoc-implem-cons-01

