
Messaging Layer Security R. Barnes
Internet-Draft S. Nandakumar
Intended status: Informational Cisco
Expires: 5 September 2024 4 March 2024

 Additional MLS Credentials
 draft-barnes-mls-addl-creds-01

Abstract

 This specification defines two new kinds of credentials for use
 within the Message Layer Security (MLS) credential framework:
 UserInfo Verifiable Credentials and multi-credentials. UserInfo
 Verifiable Credentials allow clients to present credentials that
 associate OpenID Connect attributes to a signature key pair held by
 the client. Multi-credentials allow clients to present authenticated
 attributes from multiple sources, or to present credentials in
 different formats to support groups with heterogeneous credential
 support.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-barnes-mls-addl-creds/.

 Discussion of this document takes place on the Messaging Layer
 Security Working Group mailing list (mailto:mls@ietf.org), which is
 archived at https://mailarchive.ietf.org/arch/browse/mls/. Subscribe
 at https://www.ietf.org/mailman/listinfo/mls/.

 Source for this draft and an issue tracker can be found at
 https://github.com/bifurcation/mls-userinfo-vc.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Barnes & Nandakumar Expires 5 September 2024 [Page 1]

Internet-Draft Additional MLS Credentials March 2024

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 5 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. UserInfo Verifiable Credentials 3
 3.1. UserInfo VC Life-Cycle 4
 3.2. UserInfoVC . 6
 3.3. Credential Validation 7
 3.4. Mapping between JWK Key Types and MLS Ciphersuites . . . 8
 4. Multi-Credentials . 8
 4.1. Credential Bindings 9
 4.2. Verifying a Multi-Credential 10
 5. Security Considerations 10
 6. Privacy Considerations 11
 7. IANA Considerations . 11
 7.1. MLS Credential Types 11
 8. Normative References . 11
 Authors’ Addresses . 12

1. Introduction

 MLS provides end-to-end authenticated key exchange
 [I-D.ietf-mls-protocol]. Each client participating in an MLS group
 is authenticated with a credential. The MLS credential structure is
 extensible: New MLS credential formats can be defined which support
 new mechanisms for authenticating clients.

Barnes & Nandakumar Expires 5 September 2024 [Page 2]

Internet-Draft Additional MLS Credentials March 2024

 In this document, we define two new types of credential:

 * Credentials based on OpenID Connect UserInfo Verifiable
 Credentials

 * Multi-credentials that present several credentials at once

 UserInfo Verifiable Credentials (VCs) are a mechanism by which an
 OpenID Provider can bind user attributes to a signature key pair.
 OpenID Connect is already widely deployed as a mechanism for
 connecting authentication services to applications, and the OpenID
 Foundation is in the process of standardizing the extensions required
 for OpenID Providers to issue UserInfo VCs.

 Multi-credentials address use cases where there might not be a single
 credential that captures all of a client’s authenticated attributes.
 For example, an enterprise messaging client may wish to provide
 attributes both from its messaging service, to prove that its user
 has a given handle in that service, and from its corporate owner, to
 prove that its user is an employee of the corporation. Multi-
 credentials can also be used in migration scenarios, where some
 clients in a group might wish to rely on a newer type of credential,
 but other clients haven’t yet been upgraded.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 This specification uses terms from the MLS Protocol specification.
 In particular, we refer to the MLS Credential object, which
 represents an association between a client’s identity and the
 signature key pair that the client will use to sign messages in the
 MLS key exchange protocol.

3. UserInfo Verifiable Credentials

 As described in the MLS architecture, MLS requires an Authentication
 Service (AS) as well as a Delivery Service (DS)
 [I-D.ietf-mls-architecture]. The full security goals of MLS are only
 realized if the AS and DS are non-colluding. In other words,
 applications can deploy MLS to get end-to-end encryption (acting as
 MLS Delivery Service), but they need to partner with a non-colluding
 Authentication Service in order to achieve full end-to-end security.

Barnes & Nandakumar Expires 5 September 2024 [Page 3]

Internet-Draft Additional MLS Credentials March 2024

 OpenID Connect is widely used to integrate identity providers with
 applications, but its current core protocol doesn’t provide the
 binding to cryptographic keys required for use in MLS. When OpenID
 Connect is coupled with the "Verifiable Credentials" framework,
 however, it can be used to provision clients with signed "UserInfo
 VC" objects that contain the critical elements of a credential to be
 used in MLS:

 * Identity attributes for the user of a client

 * A public key whose private key is held by a client

 * A signature over the above by a trusted identity provider

 The required updates to OpenID Connect are specfied in
 [OpenIDUserInfoVC]. That document defines a profile of the OpenID
 for Verifiable Credential Issuance protocol for issuing "UserInfo
 Verifiable Credentials". These credentials bind a signature key pair
 to the user attributes typically exposed through the OpenID Connect
 UserInfo endpoint.

 A "UserInfoVC" credential encapsulates a UserInfo Verifiable
 Credential object, so that it can be used for authenticating an MLS
 client. We also describe the validation process that MLS clients use
 to verify UserInfoVC objects that they receive via MLS.

3.1. UserInfo VC Life-Cycle

Barnes & Nandakumar Expires 5 September 2024 [Page 4]

Internet-Draft Additional MLS Credentials March 2024

 +----+
 | | (1) Generate signature key pair
 | V
 +----------+ +----------+
	<˜˜˜(2) OpenID Connect Login˜˜˜˜˜˜>	
	-------(3) Credential Request----->	OpenID
Client 1	(type=UserInfoCredential,	Provider
	token & proof)	(OP)
	<------(4) Credential Response-----	
	(credential)	
 +----------+ +----------+
 : ^
 : (5) UserInfoVC in MLS KeyPackage |
 : |
 v |
 +----------+ |
	(6) Fetch JWK set, Verify JWT
	Signature
Client 2	<--
	----+
	<---+ OP’s JWK
 +----------+

 OpenID Connect UserInfo VC MLS Credential Flow

 Figure 1: The protocol interactions to issue and verify a UserInfo VC

 The basic steps showing OIDC Verifiable Credential based MLS
 credential flow are shown in Figure 1.

 Client 1 is an MLS client that acts as a Holder in the VC model.
 Client 2 is also an MLS client, but acts in the Verifier role in the
 VC model. Both clients implement certain OpenID Connect operations
 to obtain and verify UserInfo VC objects.

 1. Client 1 generates a signature key pair using an algorithm that
 is supported by both MLS and UserInfo VC.

 2. Client 1 performs an OpenID Connect login interaction with the
 scope "userinfo_credential" to obtain UserInfo VCs.

Barnes & Nandakumar Expires 5 September 2024 [Page 5]

Internet-Draft Additional MLS Credentials March 2024

 3. Client 1 sends a Credential Request specifying that it desires a
 UserInfo VC, together with a proof that it controls the private
 key of a signature key pair and the access token.

 4. The OpenID Provider verifies the proof and create a Credential
 Response containing the UserInfo VC attesting the claims that
 would have been provided by the UserInfo endpoint and public key
 corresponding to the private key used to compute the proof in the
 Credential Request.

 5. Client 1 generates a UserInfoVC MLS Credential object with the
 signed UserInfo VC JWT. Client 1 embeds the UserInfoVC in an MLS
 KeyPackage object and signs the KeyPackage object with the
 corresponding private key.

 6. Client 1 sends the KeyPackage to Client 2, e.g., by posting it to
 a directory from which Client 2 fetches it when it wants to add
 Client 1 to a group.

 7. Client 2 verifies the signature on the KeyPackage and extracts
 the UserInfoVC credential. Client 2 uses OpenID Connect
 Discovery to fetch the OpenID Provider’s JWK set.

 8. Client 2 verifies the signed UserInfo VC using the the
 appropriate key from the OpenID Provider’s JWK set.

 If all checks pass, Client 2 has a high degree of assurance of the
 identity of Client 1. At this point Client 1’s KeyPackage (including
 the VerifiableCredential) will be included in the MLS group’s ratchet
 tree and distributed to the other members of the group. The other
 members of the group can verify the VerifiableCredential in the same
 way as Client 2.

3.2. UserInfoVC

 A new credential type UserInfoVC is defined as shown below. This
 credential type is indicated with the CredentialType value
 userinfo_vc (see Section 7).

 struct {
 opaque jwt<0..2^32-1>;
 } UserInfoVC;

Barnes & Nandakumar Expires 5 September 2024 [Page 6]

Internet-Draft Additional MLS Credentials March 2024

 The jwt field contains the signed JWT-formatted UserInfo VC object
 (as defined in [OpenIDUserInfoVC]), encoded using UTF-8. The payload
 of object MUST provide iss and vc claims. The iss claim is used to
 look up the OpenID Provider’s metadata. The vc claim contains
 authenticated user attributes and a public key binding.
 Specifically, the field vc.credentialSubject.id contains a did:jwk
 URI describing the subject’s public key as a JWK.

3.3. Credential Validation

 An MLS client validates a UserInfoVC credential in the context of an
 MLS LeafNode with the following steps:

 * Verify that the jwt field parses successfully into a JWT
 [!@RFC7519], whose payload parses into UserInfo object as defined
 in Section 5.3.2 of [!@OpenID].

 * Verify that an iss claim is present in the UserInfo VC payload and
 that "iss" value represents and issuer that is trusted according
 to the client’s local policy.

 * Verify the JWT signature:

 - Fetch the issuer metadata using OIDC Discovery
 [@!OpenID.Discovery].

 - Use the jwks_uri field in the metadata to fetch the JWK set.

 - Verify that the JWT signature verifies under one of the keys in
 the JWK set.

 * Verify the key binding:

 - Verify that a vc claim is present in the UserInfo VC payload.

 - Verify that the value of the claim is a JSON object that
 contains a credentialSubject field, as defined in Section 4 of
 openid-userinfo-vc.

 - Verify id field exists and it MUST be a a Decentralized
 Identifier with DID method jwk (W3c.did-core).

 - Verify that the jwk field parses as a JWK.

 - Verify that the signature_key in the LeafNode matches the key
 in the id field.

Barnes & Nandakumar Expires 5 September 2024 [Page 7]

Internet-Draft Additional MLS Credentials March 2024

 If all of the above checks pass, the client can use the signature key
 in the JWK for verifying MLS signatures using the signature scheme
 corresponding to the kty and crv parameters in the JWK. The identity
 attributes in the JWT should be associated with the MLS client that
 presented the credential.

3.4. Mapping between JWK Key Types and MLS Ciphersuites

 Below table maps JWK key types (kty) and elliptic curves (crv) to the
 equivalent MLS signature scheme.

 +=====+=========+==============================+
 | kty | crv | TLS/MLS signature scheme |
 +=====+=========+==============================+
 | EC | P-256 | ECDSA with P-256 and SHA-256 |
 +-----+---------+------------------------------+
 | EC | P-384 | ECDSA with P-384 and SHA-384 |
 +-----+---------+------------------------------+
 | EC | P-521 | ECDSA with P-521 and SHA-512 |
 +-----+---------+------------------------------+
 | EC | Ed25519 | Ed25519 |
 +-----+---------+------------------------------+
 | EC | Ed448 | Ed448 |
 +-----+---------+------------------------------+

 Table 1

4. Multi-Credentials

 New credential types MultiCredential and WeakMultiCredential are
 defined as shown below. These credential types are indicated with
 CredentialType values multi and weak-multi (see Section 7).

Barnes & Nandakumar Expires 5 September 2024 [Page 8]

Internet-Draft Additional MLS Credentials March 2024

 struct {
 CipherSuite cipher_suite;
 Credential credential;
 SignaturePublicKey credential_key;

 /* SignWithLabel(., "CredentialBindingTBS", CredentialBindingTBS) */
 opaque signature<V>;
 } CredentialBinding

 struct {
 CredentialBinding bindings<V>;
 } MultiCredential;

 struct {
 CredentialBinding bindings<V>;
 } WeakMultiCredential;

 The two types of credentials are processed in exactly the same way.
 The only difference is in how they are treated when evaluating
 support by other clients, as discussed below.

4.1. Credential Bindings

 A multi-credential consists of a collection of "credential bindings".
 Each credential binding is a signed statement by the holder of the
 credential that the signature key in the LeafNode belongs to the
 holder of that credential. Specifically, the signature is computed
 using the MLS SignWithLabel function, with label
 "CredentialBindingTBS" and with a content that covers the contents of
 the CredentialBinding, plus the signature_key field from the LeafNode
 in which this credential will be embedded.

 struct {
 CipherSuite cipher_suite;
 Credential credential;
 SignaturePublicKey credential_key;
 SignaturePublicKey signature_key;
 } CredentialBindingTBS;

 The cipher_suite for a credential is NOT REQUIRED to match the cipher
 suite for the MLS group in which it is used, but MUST meet the
 support requirements with regard to support by group members
 discussed below.

Barnes & Nandakumar Expires 5 September 2024 [Page 9]

Internet-Draft Additional MLS Credentials March 2024

4.2. Verifying a Multi-Credential

 A credential binding is supported by a client if the client supports
 the credential type and cipher suite of the binding. A credential
 binding is valid in the context of a given LeafNode if both of the
 following are true:

 * The credential is valid according to the MLS Authentication
 Service.

 * The credential_key corresponds to the specified credential, in the
 same way that the signature_key would have to correspond to the
 credential if the credential were presented in a LeafNode.

 * The signature field is valid with respect to the signature_key
 value in the leaf node.

 A client that receives a credential of type multi in a LeafNode MUST
 verify that all of the following are true:

 * All members of the group support credential type multi.

 * For each credential binding in the multi-credential:

 - Every member of the group supports the cipher suite and
 credential type values for the binding.

 - The binding is valid in the context of the LeafNode.

 A client that receives a credential of type weak-multi in a LeafNode
 MUST verify that all of the following are true:

 * All members of the group support credential type multi.

 * Each member of the group supports at least one binding in the
 multi-credential. (Different members may support different
 subsets.)

 * Every binding that this client supports is valid in the context of
 the LeafNode.

5. Security Considerations

 The validation procedures for UserInfoVC credentials verify that a
 JWT came from a given issuer. It doesn’t verify that the issuer is
 authorative for the claimed attributes. The client needs to verify
 that the issuer is trusted to assert the claimed attributes.

Barnes & Nandakumar Expires 5 September 2024 [Page 10]

Internet-Draft Additional MLS Credentials March 2024

6. Privacy Considerations

 UserInfo can contain sensitive info such as human names, phone
 numbers, and using these credentials in MLS will expose this
 information to other group members, and potentially others if used in
 a prepublished KeyPackage.

7. IANA Considerations

7.1. MLS Credential Types

 IANA is requested to register add the following new entries to the
 MLS Credential Type registry.

 +========+=============+=============+===========+
 | Value | Name | Recommended | Reference |
 +========+=============+=============+===========+
 | 0x0003 | userinfo-vc | Y | RFC XXXX |
 +--------+-------------+-------------+-----------+
 | 0x0004 | multi | Y | RFC XXXX |
 +--------+-------------+-------------+-----------+
 | 0x0005 | weak-multi | Y | RFC XXXX |
 +--------+-------------+-------------+-----------+

 Table 2

8. Normative References

 [I-D.ietf-mls-architecture]
 Beurdouche, B., Rescorla, E., Omara, E., Inguva, S., and
 A. Duric, "The Messaging Layer Security (MLS)
 Architecture", Work in Progress, Internet-Draft, draft-
 ietf-mls-architecture-12, 3 March 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-mls-
 architecture-12>.

 [I-D.ietf-mls-protocol]
 Barnes, R., Beurdouche, B., Robert, R., Millican, J.,
 Omara, E., and K. Cohn-Gordon, "The Messaging Layer
 Security (MLS) Protocol", Work in Progress, Internet-
 Draft, draft-ietf-mls-protocol-20, 27 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-mls-
 protocol-20>.

Barnes & Nandakumar Expires 5 September 2024 [Page 11]

Internet-Draft Additional MLS Credentials March 2024

 [OpenIDUserInfoVC]
 Ansari, M., Barnes, R., Kasselman, P., and K. Yasuda,
 "OpenID Connect UserInfo Verifiable Credentials 1.0", 15
 December 2022, <https://openid.net/specs/openid-connect-
 userinfo-vc-1_0.html>.

Authors’ Addresses

 Richard Barnes
 Cisco
 Email: rlb@ipv.sx

 Suhas Nandakumar
 Cisco
 Email: snandaku@cisco.com

Barnes & Nandakumar Expires 5 September 2024 [Page 12]

Network Working Group R. Robert

Internet-Draft Phoenix R&D

Intended status: Informational 23 October 2023

Expires: 25 April 2024

 The Messaging Layer Security (MLS) Extensions

 draft-ietf-mls-extensions-03

Abstract

 This document describes extensions to the Messaging Layer Security

 (MLS) protocol.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at

 https://github.com/mlswg/mls-extensions.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 25 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

Robert Expires 25 April 2024 [Page 1]

Internet-Draft MLS October 2023

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Change Log . 3

 2. Safe Extensions . 4

 2.1. Safe Extension API 4

 2.1.1. Security . 5

 2.1.2. Common Data Structures 5

 2.1.3. Hybrid Public Key Encryption (HPKE) 6

 2.1.4. Signature Keys 7

 2.1.5. Exporting Secrets 7

 2.1.6. Pre-Shared Keys (PSKs) 8

 2.1.7. Extension Designer Tools 9

 2.2. Extension Design Guidance 11

 2.2.1. Storing State in Extensions 11

 3. Extensions . 12

 3.1. AppAck . 12

 3.1.1. Description . 12

 3.2. Targeted messages . 13

 3.2.1. Description . 13

 3.2.2. Format . 14

 3.2.3. Encryption . 15

 3.2.4. Authentication 16

 3.2.5. Guidance on authentication schemes 18

 3.3. Content Advertisement 18

 3.3.1. Description . 18

 3.3.2. Syntax . 19

 3.3.3. Expected Behavior 20

 3.3.4. Framing of application_data 20

 3.4. SelfRemove Proposal 21

 3.4.1. Extension Description 21

 3.5. Last resort KeyPackages 23

 3.5.1. Description . 23

 3.5.2. Format . 24

 4. IANA Considerations . 24

 4.1. MLS Wire Formats . 24

 4.1.1. MLS Extension Message 24

 4.2. MLS Extension Types 24

 4.2.1. targeted_messages_capability MLS Extension 24

 4.2.2. targeted_messages MLS Extension 25

 4.2.3. accepted_media_types MLS Extension 25

 4.2.4. required_media_types MLS Extension 25

 4.2.5. last_resort_key_package MLS Extension 26

 4.3. MLS Proposal Types 26

Robert Expires 25 April 2024 [Page 2]

Internet-Draft MLS October 2023

 4.3.1. Extension Proposal 26

 4.3.2. Extension Path Proposal 26

 4.3.3. Extension External Proposal 27

 4.3.4. AppAck Proposal 27

 4.3.5. SelfRemove Proposal 27

 4.4. MLS Credential Types 27

 4.4.1. Extension Credential 28

 4.5. MLS Signature Labels 28

 4.5.1. Labeled Extension Content 28

 5. Security considerations 28

 5.1. AppAck . 28

 5.2. Targeted Messages . 28

 5.3. Content Advertisement 28

 5.4. SelfRemove . 29

 6. References . 29

 6.1. Normative References 29

 6.2. Informative References 29

 Contributors . 30

 Author’s Address . 30

1. Introduction

 This document describes extensions to [mls-protocol] that are not

 part of the main protocol specification. The protocol specification

 includes a set of core extensions that are likely to be useful to

 many applications. The extensions described in this document are

 intended to be used by applications that need to extend the MLS

 protocol.

1.1. Change Log

 RFC EDITOR PLEASE DELETE THIS SECTION.

 draft-03

 * Add Last Resort KeyPackage extension

 * Add Safe Extensions framework

 * Add SelfRemove Proposal

 draft-02

 * No changes (prevent expiration)

 draft-01

 * Add Content Advertisement extensions

Robert Expires 25 April 2024 [Page 3]

Internet-Draft MLS October 2023

 draft-00

 * Initial adoption of draft-robert-mls-protocol-00 as a WG item.

 * Add Targeted Messages extension (*)

2. Safe Extensions

 The MLS specification is extensible in a variety of ways (see

 Section 13 of the [RFC9420]) and describes the negotiation and other

 handling of extensions and their data within the protocol. However,

 it does not provide guidance on how extensions can or should safely

 interact with the base MLS protocol. The goal of this section is to

 simplify the task of developing MLS extensions.

 More concretely, this section defines the Safe Extension API, a

 library of extension components which simplifies development and

 security analysis of extensions, provides general guidance on using

 the built-in functionality of the base MLS protocol to build

 extensions, defines specific examples of extensions built on top of

 the Safe Extension API alongside the built-in mechanisms of the base

 MLS protocol, defines a number of labels registered in IANA which can

 be safely used by extensions, so that the only value an extension

 developer must add to the IANA registry themselves is a unique

 ExtensionType.

2.1. Safe Extension API

 The Safe Extension API is a library that defines a number of

 components from which extensions can be built. In particular, these

 components provide extensions the ability to:

 * Make use of selected private and public key material from the MLS

 specification, e.g. to encrypt, decrypt, sign, verify and derive

 fresh key material.

 * Inject key material via PSKs in a safe way to facilitate state

 agreement without the use of a group context extension.

 * Export secrets from MLS in a way that, in contrast to the built-in

 export functionality of MLS, preserves forward secrecy of the

 exported secrets within an epoch.

 The Safe Extension API is not an extension itself, it only defines

 components from which other extensions can be built. Some of these

 components modify the MLS protocol and, therefore, so do the

 extensions built from them.

Robert Expires 25 April 2024 [Page 4]

Internet-Draft MLS October 2023

 Where possible, the API makes use of mechanisms defined in the MLS

 specification. For example, part of the safe API is the use of the

 SignWithLabel function described in Section 5.1.2 of [RFC9420].

2.1.1. Security

 An extension is called safe if it does not modify the base MLS

 protocol or other MLS extensions beyond using components of the Safe

 Extension API. The Safe Extension API provides the following

 security guarantee: If an application uses MLS and only safe MLS

 extensions, then the security guarantees of the base MLS protocol and

 the security guarantees of safe extensions, each analyzed in

 isolation, still hold for the composed extended MLS protocol. In

 other words, the Safe Extension API protects applications from

 careless extension developers. As long as all used extensions are

 safe, it is not possible that a combination of extensions (the

 developers of which did not know about each other) impedes the

 security of the base MLS protocol or any used extension. No further

 analysis of the combination is necessary. This also means that any

 security vulnerabilities introduced by one extension do not spread to

 other extensions or the base MLS.

2.1.2. Common Data Structures

 Most components of the Safe Extension API use the value ExtensionType

 which is a unique uint16 identifier assigned to an extension in the

 MLS Extension Types IANA registry (see Section 17.3 of [RFC9420]).

 Most Safe Extension API components also use the following data

 structure, which provides domain separation by extension_type of

 various extension_data.

 struct {

 ExtensionType extension_type;

 opaque extension_data<V>;

 } ExtensionContent;

 Where extension_type is set to the type of the extension to which the

 extension_data belongs.

 If in addition a label is required, the following data structure is

 used.

 struct {

 opaque label;

 ExtensionContent extension_content;

 } LabeledExtensionContent;

Robert Expires 25 April 2024 [Page 5]

Internet-Draft MLS October 2023

2.1.3. Hybrid Public Key Encryption (HPKE)

 This component of the Safe Extension API allows extensions to make

 use of all HPKE key pairs generated by MLS. An extension identified

 by an ExtensionType can use any HPKE key pair for any operation

 defined in [RFC9180], such as encryption, exporting keys and the PSK

 mode, as long as the info input to Setup<MODE>S and Setup<MODE>R is

 set to LabeledExtensionContent with extension_type set to

 ExtensionType. The extension_data can be set to an arbitrary Context

 specified by the extension designer (and can be empty if not needed).

 For example, an extension can use a key pair PublicKey, PrivateKey to

 encrypt data as follows:

 SafeEncryptWithContext(ExtensionType, PublicKey, Context, Plaintext) =

 SealBase(PublicKey, LabeledExtensionContent, "", Plaintext)

 SafeDecryptWithContext(ExtensionType, PrivateKey, Context, KEMOutput, Cipherte

xt) =

 OpenBase(KEMOutput, PrivateKey, LabeledExtensionContent, "", Ciphertext)

 Where the fields of LabeledExtensionContent are set to

 label = "MLS 1.0 ExtensionData"

 extension_type = ExtensionType

 extension_data = Context

 For operations involving the secret key, ExtensionType MUST be set to

 the ExtensionType of the implemented extension, and not to the type

 of any other extension. In particular, this means that an extension

 cannot decrypt data meant for another extension, while extensions can

 encrypt data to other extensions.

 In general, a ciphertext encrypted with a PublicKey can be decrypted

 by any entity who has the corresponding PrivateKey at a given point

 in time according to the MLS protocol (or extension). For

 convenience, the following list summarizes lifetimes of MLS key

 pairs.

 * The key pair of a non-blank ratchet tree node. The PrivateKey of

 such a key pair is known to all members in the nodes subtree. In

 particular, a PrivateKey of a leaf node is known only to the

 member in that leaf. A member in the subtree stores the

 PrivateKey for a number of epochs, as long as the PublicKey does

 not change. The key pair of the root node SHOULD NOT be used,

 since the external key pair recalled below gives better security.

 * The external_priv, external_pub key pair used for external

 initialization. The external_priv key is known to all group

 members in the current epoch. A member stores external_priv only

Robert Expires 25 April 2024 [Page 6]

Internet-Draft MLS October 2023

 for the current epoch. Using this key pair gives better security

 guarantees than using the key pair of the root of the ratchet tree

 and should always be preferred.

 * The init_key in a KeyPackage and the corresponding secret key.

 The secret key is known only to the owner of the KeyPackage and is

 deleted immediately after it is used to join a group.

2.1.4. Signature Keys

 MLS session states contain a number of signature keys including the

 ones in the LeafNode structs. Extensions can safely sign content and

 verify signatures using these keys via the SafeSignWithLabel and

 SafeVerifyWithLabel functions, respectively, much like how the basic

 MLS protocol uses SignWithLabel and VerifyWithLabel.

 In more detail, an extension identified by ExtensionType should sign

 and verify using:

 SafeSignWithLabel(ExtensionType, SignatureKey, Label, Content) =

 SignWithLabel(SignatureKey, "LabeledExtensionContent", LabeledExtensionCon

tent)

 SafeVerifyWithLabel(ExtensionType, VerificationKey, Label, Content, SignatureV

alue) =

 VerifyWithLabel(VerificationKey, "LabeledExtensionContent", LabeledExtensi

onContent, SignatureValue)

 Where the fields of LabeledExtensionContent are set to

 label = Label

 extension_type = ExtensionType

 extension_data = Content

 For signing operations, the ExtensionType MUST be set to the

 ExtensionType of the implemented extension, and not to the type of

 any other extension. In particular, this means that an extension

 cannot produce signatures in place of other extensions. However,

 extensions can verify signatures computed by other extensions. Note

 that domain separation is ensured by explicitly including the

 ExtensionType with every operation.

2.1.5. Exporting Secrets

 An extension can use MLS as a group key agreement protocol by

 exporting symmetric keys. Such keys can be exported (i.e. derived

 from MLS key material) in two phases per epoch: Either at the start

 of the epoch, or during the epoch. Derivation at the start of the

 epoch has the added advantage that the source key material is deleted

 after use, allowing the derived key material to be deleted later even

 during the same MLS epoch to achieve forward secrecy. The following

Robert Expires 25 April 2024 [Page 7]

Internet-Draft MLS October 2023

 protocol secrets can be used to derive key from for use by

 extensions:

 * epoch_secret at the beginning of an epoch

 * extension_secret during an epoch

 The extension_secret is an additional secret derived from the

 epoch_secret at the beginning of the epoch in the same way as the

 other secrets listed in Table 4 of [RFC9420] using the label

 "extension".

 Any derivation performed by an extension either from the epoch_secret

 or the extension_secret has to use the following function:

 DeriveExtensionSecret(Secret, Label) =

 ExpandWithLabel(Secret, "ExtensionExport " + ExtensionType + " " + Label)

 Where ExpandWithLabel is defined in Section 8 of [RFC9420] and where

 ExtensionType MUST be set to the ExtensionType of the implemented

 extension.

2.1.6. Pre-Shared Keys (PSKs)

 PSKs represent key material that is injected into the MLS key

 schedule when creating or processing a commit as defined in

 Section 8.4 of [RFC9420]. Its injection into the key schedule means

 that all group members have to agree on the value of the PSK.

 While PSKs are typically cryptographic keys which due to their

 properties add to the overall security of the group, the PSK

 mechanism can also be used to ensure that all members of a group

 agree on arbitrary pieces of data represented as octet strings

 (without the necessity of sending the data itself over the wire).

 For example, an extension can use the PSK mechanism to enforce that

 all group members have access to and agree on a password or a shared

 file.

 This is achieved by creating a new epoch via a PSK proposal.

 Transitioning to the new epoch requires using the information agreed

 upon.

 To facilitate using PSKs in a safe way, this document defines a new

 PSKType for extensions. This provides domain separation between pre-

 shared keys used by the core MLS protocol and applications, and

 between those used by different extensions.

Robert Expires 25 April 2024 [Page 8]

Internet-Draft MLS October 2023

 enum {

 reserved(0),

 external(1),

 resumption(2),

 extensions(3),

 (255)

 } PSKType;

 struct {

 PSKType psktype;

 select (PreSharedKeyID.psktype) {

 case external:

 opaque psk_id<V>;

 case resumption:

 ResumptionPSKUsage usage;

 opaque psk_group_id<V>;

 uint64 psk_epoch;

 case extensions:

 ExtensionType extension_type;

 opaque psk_id<V>;

 };

 opaque psk_nonce<V>;

 } PreSharedKeyID;

2.1.7. Extension Designer Tools

 The safe extension API allows extension designers to sign and encrypt

 payloads without the need to register their own IANA labels.

 Following the same pattern, this document also provides ways for

 extension designers to define their own wire formats, proposals and

 credentials.

2.1.7.1. Wire Formats

 Extensions can define their own MLS messages by using the

 mls_extension_message MLS Wire Format. The mls_extension_message

 Wire Format is IANA registered specifically for this purpose and

 extends the select statement in the MLSMessage struct as follows:

 case mls_extension_message:

 ExtensionContent extension_content;

 The extension_type in extension_content MUST be set to the type of

 the extension in question. Processing of self-defined wire formats

 has to be defined by the extension.

Robert Expires 25 April 2024 [Page 9]

Internet-Draft MLS October 2023

2.1.7.2. Proposals

 Similar to wire formats, extensions can define their own proposals by

 using one of three dedicated extension proposal types:

 extension_proposal, extension_path_proposal and

 extension_external_propsal. Each type contains the same

 ExtensionContent struct, but is validated differently:

 extension_proposal requires no UpdatePath and can not be sent by an

 external sender extension_path_proposal requires an UpdatePath and

 can not be sent by an external sender extensions_external_proposal

 requires no UpdatePath and can be sent by an external sender.

 Each of the three proposal types is IANA registered and extends the

 select statement in the Proposal struct as follows:

 case extension_proposal:

 ExtensionContent extension_content;

 case extension_path_proposal:

 ExtensionContent extension_content;

 case extension_external_proposal:

 ExtensionContent extension_content;

 The extension_type MUST be set to the type of the extension in

 question.

 Processing and validation of self-defined proposals has to be defined

 by the extension. However, validation rules can lead to a previously

 valid commit to become invalid, not the other way around. This is

 with the exception of proposal validation for external commits, where

 self-defined proposals can be declared valid for use in external

 commits. More concretely, if an external commit is invalid, only

 because the self-defined proposal is part of it (the last rule in

 external commit proposal validation in Section 12.2 of [RFC9420]),

 then the self-defined validation rules may rule that the commit is

 instead valid.

2.1.7.3. Credentials

 Extension designers can also define their own credential types via

 the IANA registered extension_credential credential type. The

 extension_credential extends the select statement in the Credential

 struct as follows:

 case extension_credential:

 ExtensionContent extension_content;

Robert Expires 25 April 2024 [Page 10]

Internet-Draft MLS October 2023

 The extension_type in the extension_content must be set to that of

 the extension in question with the extension_data containing all

 other relevant data. Note that any credential defined in this way

 has to meet the requirements detailed in Section 5.3 of the MLS

 specification.

2.2. Extension Design Guidance

 While extensions can modify the protocol flow of MLS and the

 associated properties in arbitrary ways, the base MLS protocol

 already enables a number of functionalities that extensions can use

 without modifying MLS itself. Extension authors should consider

 using these built-in mechanisms before employing more intrusive

 changes to the protocol.

2.2.1. Storing State in Extensions

 Every type of MLS extension can have data associated with it and,

 depending on the type of extension (KeyPackage Extension,

 GroupContext Extension, etc.) that data is included in the

 corresponding MLS struct. This allows the authors of an extension to

 make use of any authentication or confidentiality properties that the

 struct is subject to as part of the protocol flow.

 * GroupContext Extensions: Any data in a group context extension is

 agreed-upon by all members of the group in the same way as the

 rest of the group state. As part of the GroupContext, it is also

 sent encrypted to new joiners via Welcome messages and (depending

 on the architecture of the application) may be available to

 external joiners. Note that in some scenarios, the GroupContext

 may also be visible to components that implement the delivery

 service.

 * GroupInfo Extensions: GroupInfo extensions are included in the

 GroupInfo struct and thus sent encrypted and authenticated by the

 signer of the GroupInfo to new joiners as part of Welcome

 messages. It can thus be used as a confidential and authenticated

 channel from the inviting group member to new joiners. Just like

 GroupContext extensions, they may also be visible to external

 joiners or even parts of the delivery service. Unlike

 GroupContext extensions, the GroupInfo struct is not part of the

 group state that all group members agree on.

 * KeyPackage Extensions: KeyPackages (and the extensions they

 include) are pre-published by individual clients for asynchronous

 group joining. They are included in Add proposals and become part

 of the group state once the Add proposal is committed. They are,

 however, removed from the group state when the owner of the

Robert Expires 25 April 2024 [Page 11]

Internet-Draft MLS October 2023

 KeyPackage does the first commit with a path. As such, KeyPackage

 extensions can be used to communicate data to anyone who wants to

 invite the owner to a group, as well as the other members of the

 group the owner is added to. Note that KeyPackage extensions are

 visible to the server that provides the KeyPackages for download,

 as well as any part of the delivery service that can see the

 public group state.

 * LeafNode Extensions: LeafNodes are a part of every KeyPackage and

 thus follow the same lifecycle. However, they are also part of

 any commit that includes an UpdatePath and clients generally have

 a leaf node in each group they are a member of. Leaf node

 extensions can thus be used to include member-specific data in a

 group state that can be updated by the owner at any time.

3. Extensions

3.1. AppAck

 Type: Proposal

3.1.1. Description

 An AppAck proposal is used to acknowledge receipt of application

 messages. Though this information implies no change to the group, it

 is structured as a Proposal message so that it is included in the

 group’s transcript by being included in Commit messages.

 struct {

 uint32 sender;

 uint32 first_generation;

 uint32 last_generation;

 } MessageRange;

 struct {

 MessageRange received_ranges<V>;

 } AppAck;

 An AppAck proposal represents a set of messages received by the

 sender in the current epoch. Messages are represented by the sender

 and generation values in the MLSCiphertext for the message. Each

 MessageRange represents receipt of a span of messages whose

 generation values form a continuous range from first_generation to

 last_generation, inclusive.

 AppAck proposals are sent as a guard against the Delivery Service

 dropping application messages. The sequential nature of the

 generation field provides a degree of loss detection, since gaps in

Robert Expires 25 April 2024 [Page 12]

Internet-Draft MLS October 2023

 the generation sequence indicate dropped messages. AppAck completes

 this story by addressing the scenario where the Delivery Service

 drops all messages after a certain point, so that a later generation

 is never observed. Obviously, there is a risk that AppAck messages

 could be suppressed as well, but their inclusion in the transcript

 means that if they are suppressed then the group cannot advance at

 all.

 The schedule on which sending AppAck proposals are sent is up to the

 application, and determines which cases of loss/suppression are

 detected. For example:

 * The application might have the committer include an AppAck

 proposal whenever a Commit is sent, so that other members could

 know when one of their messages did not reach the committer.

 * The application could have a client send an AppAck whenever an

 application message is sent, covering all messages received since

 its last AppAck. This would provide a complete view of any losses

 experienced by active members.

 * The application could simply have clients send AppAck proposals on

 a timer, so that all participants’ state would be known.

 An application using AppAck proposals to guard against loss/

 suppression of application messages also needs to ensure that AppAck

 messages and the Commits that reference them are not dropped. One

 way to do this is to always encrypt Proposal and Commit messages, to

 make it more difficult for the Delivery Service to recognize which

 messages contain AppAcks. The application can also have clients

 enforce an AppAck schedule, reporting loss if an AppAck is not

 received at the expected time.

3.2. Targeted messages

3.2.1. Description

 MLS application messages make sending encrypted messages to all group

 members easy and efficient. Sometimes application protocols mandate

 that messages are only sent to specific group members, either for

 privacy or for efficiency reasons.

 Targeted messages are a way to achieve this without having to create

 a new group with the sender and the specific recipients which might

 not be possible or desired. Instead, targeted messages define the

 format and encryption of a message that is sent from a member of an

 existing group to another member of that group.

Robert Expires 25 April 2024 [Page 13]

Internet-Draft MLS October 2023

 The goal is to provide a one-shot messaging mechanism that provides

 confidentiality and authentication.

 Targeted Messages makes use the Safe Extension API as defined in

 Section 2.1. reuse mechanisms from [mls-protocol], in particular

 [hpke].

3.2.2. Format

 This extension uses the mls_extension_message WireFormat as defined

 in Section Section 2.1.7.1, where the content is a TargetedMessage.

 struct {

 opaque group_id<V>;

 uint64 epoch;

 uint32 recipient_leaf_index;

 opaque authenticated_data<V>;

 opaque encrypted_sender_auth_data<V>;

 opaque hpke_ciphertext<V>;

 } TargetedMessage;

 enum {

 hpke_auth_psk(0),

 signature_hpke_psk(1),

 } TargetedMessageAuthScheme;

 struct {

 uint32 sender_leaf_index;

 TargetedMessageAuthScheme authentication_scheme;

 select (authentication_scheme) {

 case HPKEAuthPsk:

 case SignatureHPKEPsk:

 opaque signature<V>;

 }

 opaque kem_output<V>;

 } TargetedMessageSenderAuthData;

 struct {

 opaque group_id<V>;

 uint64 epoch;

 uint32 recipient_leaf_index;

 opaque authenticated_data<V>;

 TargetedMessageSenderAuthData sender_auth_data;

 } TargetedMessageTBM;

 struct {

 opaque group_id<V>;

 uint64 epoch;

Robert Expires 25 April 2024 [Page 14]

Internet-Draft MLS October 2023

 uint32 recipient_leaf_index;

 opaque authenticated_data<V>;

 uint32 sender_leaf_index;

 TargetedMessageAuthScheme authentication_scheme;

 opaque kem_output<V>;

 opaque hpke_ciphertext<V>;

 } TargetedMessageTBS;

 struct {

 opaque group_id<V>;

 uint64 epoch;

 opaque label<V> = "MLS 1.0 targeted message psk";

 } PSKId;

 Note that TargetedMessageTBS is only used with the

 TargetedMessageAuthScheme.SignatureHPKEPsk authentication mode.

3.2.3. Encryption

 Targeted messages uses HPKE to encrypt the message content between

 two leaves.

3.2.3.1. Sender data encryption

 In addition, TargetedMessageSenderAuthData is encrypted in a similar

 way to MLSSenderData as described in section 6.3.2 in [mls-protocol].

 The TargetedMessageSenderAuthData.sender_leaf_index field is the leaf

 index of the sender. The

 TargetedMessageSenderAuthData.authentication_scheme field is the

 authentication scheme used to authenticate the sender. The

 TargetedMessageSenderAuthData.signature field is the signature of the

 TargetedMessageTBS structure. The

 TargetedMessageSenderAuthData.kem_output field is the KEM output of

 the HPKE encryption.

 The key and nonce provided to the AEAD are computed as the KDF of the

 first KDF.Nh bytes of the hpke_ciphertext generated in the following

 section. If the length of the hpke_ciphertext is less than KDF.Nh,

 the whole hpke_ciphertext is used. In pseudocode, the key and nonce

 are derived as:

Robert Expires 25 April 2024 [Page 15]

Internet-Draft MLS October 2023

 sender_auth_data_secret

 = DeriveExtensionSecret(extension_secret, "targeted message sender auth data

")

 ciphertext_sample = hpke_ciphertext[0..KDF.Nh-1]

 sender_data_key = ExpandWithLabel(sender_auth_data_secret, "key",

 ciphertext_sample, AEAD.Nk)

 sender_data_nonce = ExpandWithLabel(sender_auth_data_secret, "nonce",

 ciphertext_sample, AEAD.Nn)

 The Additional Authenticated Data (AAD) for the SenderAuthData

 ciphertext is the first three fields of TargetedMessage:

 struct {

 opaque group_id<V>;

 uint64 epoch;

 uint32 recipient_leaf_index;

 } SenderAuthDataAAD;

3.2.3.2. Padding

 The TargetedMessage structure does not include a padding field. It

 is the responsibility of the sender to add padding to the message as

 used in the next section.

3.2.4. Authentication

 For ciphersuites that support it, HPKE mode_auth_psk is used for

 authentication. For other ciphersuites, HPKE mode_psk is used along

 with a signature. The authentication scheme is indicated by the

 authentication_scheme field in TargetedMessageContent. See

 Section 3.2.5 for more information.

 For the PSK part of the authentication, clients export a dedicated

 secret:

 targeted_message_psk

 = DeriveExtensionSecret(extension_secret, "targeted message psk")

 The functions SealAuth and OpenAuth defined in [hpke] are used as

 described in Section 2.1.3 with an empty context. Other functions

 are defined in [mls-protocol].

3.2.4.1. Authentication with HPKE

 The sender MUST set the authentication scheme to

 TargetedMessageAuthScheme.HPKEAuthPsk.

Robert Expires 25 April 2024 [Page 16]

Internet-Draft MLS October 2023

 As described in Section 2.1.3 the hpke_context is a

 LabeledExtensionContent struct with the following content, where

 group_context is the serialized context of the group.

 label = "MLS 1.0 ExtensionData"

 extension_type = ExtensionType

 extension_data = group_context

 The sender then computes the following:

 (kem_output, hpke_ciphertext) = SealAuthPSK(receiver_node_public_key,

 hpke_context,

 targeted_message_tbm,

 message,

 targeted_message_psk,

 psk_id,

 sender_node_private_key)

 The recipient computes the following:

 message = OpenAuthPSK(kem_output,

 receiver_node_private_key,

 hpke_context,

 targeted_message_tbm,

 hpke_ciphertext,

 targeted_message_psk,

 psk_id,

 sender_node_public_key)

3.2.4.2. Authentication with signatures

 The sender MUST set the authentication scheme to

 TargetedMessageAuthScheme.SignatureHPKEPsk. The signature is done

 using the signature_key of the sender’s LeafNode and the

 corresponding signature scheme used in the group.

 The sender then computes the following with hpke_context defined as

 in Section 3.2.4.1:

 (kem_output, hpke_ciphertext) = SealPSK(receiver_node_public_key,

 hpke_context,

 targeted_message_tbm,

 message,

 targeted_message_psk,

 epoch)

 The signature is computed as follows, where the extension_type is the

 type of this extension (see Section 4).

Robert Expires 25 April 2024 [Page 17]

Internet-Draft MLS October 2023

 signature = SafeSignWithLabel(extension_type, ., "TargetedMessageTBS", targete

d_message_tbs)

 The recipient computes the following:

 message = OpenPSK(kem_output,

 receiver_node_private_key,

 hpke_context,

 targeted_message_tbm,

 hpke_ciphertext,

 targeted_message_psk,

 epoch)

 The recipient MUST verify the message authentication:

 SafeVerifyWithLabel.verify(extension_type,

 sender_leaf_node.signature_key,

 "TargetedMessageTBS",

 targeted_message_tbs,

 signature)

3.2.5. Guidance on authentication schemes

 If the groups ciphersuite does not support HPKE mode_auth_psk,

 implementations MUST choose

 TargetedMessageAuthScheme.SignatureHPKEPsk.

 If the groups ciphersuite does support HPKE mode_auth_psk,

 implementations CAN choose TargetedMessageAuthScheme.HPKEAuthPsk if

 better efficiency and/or repudiability is desired. Implementations

 SHOULD consult [hpke-security-considerations] beforehand.

3.3. Content Advertisement

3.3.1. Description

 This section describes two extensions to MLS. The first allows MLS

 clients to advertise their support for specific formats inside MLS

 application_data. These are expressed using the extensive IANA Media

 Types registry (formerly called MIME Types). The

 accepted_media_types LeafNode extension lists the formats a client

 supports inside application_data. The second, the

 required_media_types GroupContext extension specifies which media

 types need to be supported by all members of a particular MLS group.

 These allow clients to confirm that all members of a group can

 communicate. Note that when the membership of a group changes, or

 when the policy of the group changes, it is responsibility of the

 committer to insure that the membership and policies are compatible.

Robert Expires 25 April 2024 [Page 18]

Internet-Draft MLS October 2023

 Finally, this document defines a minimal framing format so MLS

 clients can signal which media type is being sent when multiple

 formats are permitted in the same group. As clients are upgraded to

 support new formats they can use these extensions to detect when all

 members support a new or more efficient encoding, or select the

 relevant format or formats to send.

 Note that the usage of IANA media types in general does not imply the

 usage of MIME Headers [RFC2045] for framing. Vendor-specific media

 subtypes starting with vnd. can be registered with IANA without

 standards action as described in [RFC6838]. Implementations which

 wish to send multiple formats in a single application message, may be

 interested in the multipart/alternative media type defined in

 [RFC2046] or may use or define another type with similar semantics

 (for example using TLS Presentation Language syntax [RFC8446]).

3.3.2. Syntax

 MediaType is a TLS encoding of a single IANA media type (including

 top-level type and subtype) and any of its parameters. Even if the

 parameter_value would have required formatting as a quoted-string in

 a text encoding, only the contents inside the quoted-string are

 included in parameter_value. MediaTypeList is an ordered list of

 MediaType objects.

 struct {

 opaque parameter_name<V>;

 /* Note: parameter_value never includes the quotation marks of an

 * RFC 2045 quoted-string */

 opaque parameter_value<V>;

 } Parameter;

 struct {

 /* media_type is an IANA top-level media type, a "/" character,

 * and the IANA media subtype */

 opaque media_type<V>;

 /* a list of zero or more parameters defined for the subtype */

 Parameter parameters<V>;

 } MediaType;

 struct {

 MediaType media_types<V>;

 } MediaTypeList;

 MediaTypeList accepted_media_types;

 MediaTypeList required_media_types;

Robert Expires 25 April 2024 [Page 19]

Internet-Draft MLS October 2023

 Example IANA media types with optional parameters:

 image/png

 text/plain ;charset="UTF-8"

 application/json

 application/vnd.example.msgbus+cbor

 For the example media type for text/plain, the media_type field would

 be text/plain, parameters would contain a single Parameter with a

 parameter_name of charset and a parameter_value of UTF-8.

3.3.3. Expected Behavior

 An MLS client which implements this section SHOULD include the

 accepted_media_types extension in its LeafNodes, listing all the

 media types it can receive. As usual, the client also includes

 accepted_media_types in its capabilities field in its LeafNodes

 (including LeafNodes inside its KeyPackages).

 When creating a new MLS group for an application using this

 specification, the group MAY include a required_media_type extension

 in the GroupContext Extensions. As usual, the client also includes

 required_media_types in its capabilities field in its LeafNodes

 (including LeafNodes inside its KeyPackages). When used in a group,

 the client MUST include the required_media_types and

 accepted_media_types extensions in the list of extensions in

 RequiredCapabilities.

 MLS clients SHOULD NOT add an MLS client to an MLS group with

 required_media_types unless the MLS client advertises it can support

 all of the required MediaTypes. As an exception, a client could be

 preconfigured to know that certain clients support the requried

 types. Likewise, an MLS client is already forbidden from issuing or

 committing a GroupContextExtensions Proposal which introduces

 required extensions which are not supported by all members in the

 resulting epoch.

3.3.4. Framing of application_data

 When an MLS group contains the required_media_types GroupContext

 extension, the application_data sent in that group is interpreted as

 ApplicationFraming as defined below:

 struct {

 MediaType media_type;

 opaque<V> application_content;

 } ApplicationFraming;

Robert Expires 25 April 2024 [Page 20]

Internet-Draft MLS October 2023

 The media_type MAY be zero length, in which case, the media type of

 the application_content is interpreted as the first MediaType

 specified in required_media_types.

3.4. SelfRemove Proposal

 The design of the MLS protocol prevents a member of an MLS group from

 removing itself immediately from the group. (To cause an immediate

 change in the group, a member must send a Commit message. However

 the sender of a Commit message knows the keying material of the new

 epoch and therefore needs to be part of the group.) Instead a member

 wishing to remove itself can send a Remove Proposal and wait for

 another member to Commit its Proposal.

 Unfortunately, MLS clients that join via an External Commit ignore

 pending, but otherwise valid, Remove Proposals. The member trying to

 remove itself has to monitor the group and send a new Remove Proposal

 in every new epoch until the member is removed. In a group with a

 burst of external joiners, a member connected over a high-latency

 link (or one that is merely unlucky) might have to wait several

 epochs to remove itself. A real-world situation in which this

 happens is a member trying to remove itself from a conference call as

 several dozen new participants are trying to join (often on the

 hour).

 This section describes a new SelfRemove Proposal extension type. It

 is designed to be included in External Commits.

3.4.1. Extension Description

 This document specifies a new MLS Proposal type called SelfRemove.

 Its syntax is described using the TLS Presentation Language

 [@!RFC8446] below (its content is an empty struct). It is allowed in

 External Commits and requires an UpdatePath. SelfRemove proposals

 are only allowed in a Commit by reference. SelfRemove cannot be sent

 as an external proposal.

Robert Expires 25 April 2024 [Page 21]

Internet-Draft MLS October 2023

 struct {} SelfRemove;

 struct {

 ProposalType msg_type;

 select (Proposal.msg_type) {

 case add: Add;

 case update: Update;

 case remove: Remove;

 case psk: PreSharedKey;

 case reinit: ReInit;

 case external_init: ExternalInit;

 case group_context_extensions: GroupContextExtensions;

 case self_remove: SelfRemove;

 };

 } Proposal;

 The description of behavior below only applies if all the members of

 a group support this extension in their capabilities; such a group is

 a "self-remove-capable group".

 An MLS client which supports this extension can send a SelfRemove

 Proposal whenever it would like to remove itself from a self-remove-

 capable group. Because the point of a SelfRemove Proposal is to be

 available to external joiners (which are not yet members), these

 proposals MUST be sent in an MLS PublicMessage.

 Whenever a member receives a SelfRemove Proposal, it includes it

 along with any other pending Propsals when sending a Commit. It

 already MUST send a Commit of pending Proposals before sending new

 application messages.

 When a member receives a Commit referencing one or more SelfRemove

 Proposals, it treats the proposal like a Remove Proposal, except the

 leaf node to remove is determined by looking in the Sender leaf_index

 of the original Proposal. The member is able to verify that the

 Sender was a member.

 Whenever a new joiner is about to join a self-remove-capable group

 with an External Commit, the new joiner MUST fetch any pending

 SelfRemove Proposals along with the GroupInfo object, and include the

 SelfRemove Proposals in its External Commit by reference. (An

 ExternalCommit can contain zero or more SelfRemove proposals). The

 new joiner MUST validate the SelfRemove Proposal before including it

 by reference, except that it skips the validation of the

 membership_tag because a non-member cannot verify membership.

Robert Expires 25 April 2024 [Page 22]

Internet-Draft MLS October 2023

 During validation, SelfRemove proposals are processed after Update

 proposals and before Remove proposals. If there is a pending

 SelfRemove proposal for a specific leaf node and a pending Remove

 proposal for the same leaf node, the Remove proposal is invalid. A

 client MUST NOT issue more than one SelfRemove proposal per epoch.

 The MLS Delivery Service (DS) needs to validate SelfRemove Proposals

 it receives (except that it cannot validate the membership_tag). If

 the DS provides a GroupInfo object to an external joiner, the DS

 SHOULD attach any SelfRemove proposals known to the DS to the

 GroupInfo object.

 As with Remove proposals, clients need to be able to receive a Commit

 message which removes them from the group via a SelfRemove. If the

 DS does not forward a Commit to a removed client, it needs to inform

 the removed client out-of-band.

3.5. Last resort KeyPackages

 Type: KeyPackage extension

3.5.1. Description

 Section 10 of [RFC9420] details that clients are required to pre-

 publish KeyPackages s.t. other clients can add them to groups

 asynchronously. It also states that they should not be re-used:

 KeyPackages are intended to be used only once and SHOULD NOT be

 reused except in the case of a "last resort" KeyPackage (see

 Section 16.8). Clients MAY generate and publish multiple

 KeyPackages to support multiple cipher suites.

 Section 16.8 of [RFC9420] then introduces the notion of last-resort

 KeyPackages as follows:

 An application MAY allow for reuse of a "last resort" KeyPackage

 in order to prevent denial-of-service attacks.

 However, [RFC9420] does not specify how to distinguish regular

 KeyPackages from last-resort ones. The last_resort_key_package

 KeyPackage extension defined in this section fills this gap and

 allows clients to specifically mark KeyPackages as KeyPackages of

 last resort that MAY be used more than once in scenarios where all

 other KeyPackages have already been used.

 The extension allows clients that pre-publish KeyPackages to signal

 to the Delivery Service which KeyPackage(s) are meant to be used as

 last resort KeyPackages.

Robert Expires 25 April 2024 [Page 23]

Internet-Draft MLS October 2023

 An additional benefit of using an extension rather than communicating

 the information out-of-band is that the extension is still present in

 Add proposals. Clients processing such Add proposals can

 authenticate that a KeyPackage is a last-resort KeyPackage and MAY

 make policy decisions based on that information.

3.5.2. Format

 The purpose of the extension is simply to mark a given KeyPackage,

 which means it carries no additional data.

 As a result, a LastResort Extension contains the ExtensionType with

 an empty extension_data field.

4. IANA Considerations

 This document requests the addition of various new values under the

 heading of "Messaging Layer Security". Each registration is

 organized under the relevant registry Type.

 RFC EDITOR: Please replace XXXX throughout with the RFC number

 assigned to this document

4.1. MLS Wire Formats

4.1.1. MLS Extension Message

 * Value: 0x0006

 * Name: mls_extension_message

 * Recommended: Y

 * Reference: RFC XXXX

4.2. MLS Extension Types

4.2.1. targeted_messages_capability MLS Extension

 The targeted_messages_capability MLS Extension Type is used in the

 capabilities field of LeafNodes to indicate the support for the

 Targeted Messages Extension. The extension does not carry any

 payload.

 * Value: 0x0006

 * Name: targeted_messages_capability

Robert Expires 25 April 2024 [Page 24]

Internet-Draft MLS October 2023

 * Message(s): LN: This extension may appear in LeafNode objects

 * Recommended: Y

 * Reference: RFC XXXX

4.2.2. targeted_messages MLS Extension

 The targeted_messages MLS Extension Type is used inside GroupContext

 objects. It indicates that the group supports the Targeted Messages

 Extension.

 * Value: 0x0007

 * Name: targeted_messages

 * Message(s): GC: This extension may appear in GroupContext objects

 * Recommended: Y

 * Reference: RFC XXXX

4.2.3. accepted_media_types MLS Extension

 The accepted_media_types MLS Extension Type is used inside LeafNode

 objects. It contains a MediaTypeList representing all the media

 types supported by the MLS client referred to by the LeafNode.

 * Value: 0x0008

 * Name: accepted_media_types

 * Message(s): LN: This extension may appear in LeafNode objects

 * Recommended: Y

 * Reference: RFC XXXX

4.2.4. required_media_types MLS Extension

 The required_media_types MLS Extension Type is used inside

 GroupContext objects. It contains a MediaTypeList representing the

 media types which are mandatory for all MLS members of the group to

 support.

 * Value: 0x0009

 * Name: required_media_types

Robert Expires 25 April 2024 [Page 25]

Internet-Draft MLS October 2023

 * Message(s): GC: This extension may appear in GroupContext objects

 * Recommended: Y

 * Reference: RFC XXXX

4.2.5. last_resort_key_package MLS Extension

 The last_resort_key_package MLS Extension Type is used inside

 KeyPackage objects. It marks the KeyPackage for usage in last resort

 scenarios and contains no additional data.

 * Value: 0x0009

 * Name: last_resort_key_package

 * Message(s): KP: This extension may appear in KeyPackage objects

 * Recommended: Y

 * Reference: RFC XXXX

4.3. MLS Proposal Types

4.3.1. Extension Proposal

 * Value: 0x0008

 * Name: extension_proposal

 * Recommended: Y

 * Path Required: N

 * External Sender: N

 * Reference: RFC XXXX

4.3.2. Extension Path Proposal

 * Value: 0x0009

 * Name: extension_path_proposal

 * Recommended: Y

 * Path Required: Y

Robert Expires 25 April 2024 [Page 26]

Internet-Draft MLS October 2023

 * External Sender: N

 * Reference: RFC XXXX

4.3.3. Extension External Proposal

 * Value: 0x000a

 * Name: extension_external_proposal

 * Recommended: Y

 * Path Required: N

 * External Sender: Y

 * Reference: RFC XXXX

4.3.4. AppAck Proposal

 * Value: 0x000b

 * Name: app_ack

 * Recommended: Y

 * Path Required: Y

 * Reference: RFC XXXX

4.3.5. SelfRemove Proposal

 The self_remove MLS Proposal Type is used for a member to remove

 itself from a group more efficiently than using a remove proposal

 type, as the self_remove type is permitted in External Commits.

 * Value: 0x000c

 * Name: self_remove

 * Recommended: Y

 * External: N

 * Path Required: Y

4.4. MLS Credential Types

Robert Expires 25 April 2024 [Page 27]

Internet-Draft MLS October 2023

4.4.1. Extension Credential

 * Value: 0x0000

 * Name: extension_credential

 * Recommended: Y

 * Reference: RFC XXXX

4.5. MLS Signature Labels

4.5.1. Labeled Extension Content

 * Label: "LabeledExtensionContent"

 * Recommended: Y

 * Reference: RFC XXXX

5. Security considerations

5.1. AppAck

 TBC

5.2. Targeted Messages

 In addition to the sender authentication, Targeted Messages are

 authenticated by using a preshared key (PSK) between the sender and

 the recipient. The PSK is exported from the group key schedule using

 the label "targeted message psk". This ensures that the PSK is only

 valid for a specific group and epoch, and the Forward Secrecy and

 Post-Compromise Security guarantees of the group key schedule apply

 to the targeted messages as well. The PSK also ensures that an

 attacker needs access to the private group state in addition to the

 HPKE/signature’s private keys. This improves confidentiality

 guarantees against passive attackers and authentication guarantees

 against active attackers.

5.3. Content Advertisement

 Use of the accepted_media_types and rejected_media_types extensions

 could leak some private information visible in KeyPackages and inside

 an MLS group. They could be used to infer a specific implementation,

 platform, or even version. Clients should consider carefully the

 privacy implications in their environment of making a list of

 acceptable media types available.

Robert Expires 25 April 2024 [Page 28]

Internet-Draft MLS October 2023

5.4. SelfRemove

 An external recipient of a SelfRemove Proposal cannot verify the

 membership_tag. However, an external joiner also has no way to

 completely validate a GroupInfo object that it receives. An insider

 can prevent an External Join by providing either an invalid GroupInfo

 object or an invalid SelfRemove Proposal. The security properties of

 external joins does not change with the addition of this proposal

 type.

6. References

6.1. Normative References

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/rfc/rfc8446>.

 [RFC9180] Barnes, R., Bhargavan, K., Lipp, B., and C. Wood, "Hybrid

 Public Key Encryption", RFC 9180, DOI 10.17487/RFC9180,

 February 2022, <https://www.rfc-editor.org/rfc/rfc9180>.

 [RFC9420] Barnes, R., Beurdouche, B., Robert, R., Millican, J.,

 Omara, E., and K. Cohn-Gordon, "The Messaging Layer

 Security (MLS) Protocol", RFC 9420, DOI 10.17487/RFC9420,

 July 2023, <https://www.rfc-editor.org/rfc/rfc9420>.

6.2. Informative References

 [hpke] "Hybrid Public Key Encryption", n.d., <https://www.rfc-

 editor.org/rfc/rfc9180.html](https://www.rfc-

 editor.org/rfc/rfc9180.html>.

 [hpke-security-considerations]

 "HPKE Security Considerations", n.d., <https://www.rfc-

 editor.org/rfc/rfc9180.html#name-key-compromise-

 impersonatio](https://www.rfc-editor.org/rfc/

 rfc9180.html#name-key-compromise-impersonatio>.

 [mls-protocol]

 "The Messaging Layer Security (MLS) Protocol", n.d.,

 <https://datatracker.ietf.org/doc/draft-ietf-mls-

 protocol/](https://datatracker.ietf.org/doc/draft-ietf-

 mls-protocol/>.

Robert Expires 25 April 2024 [Page 29]

Internet-Draft MLS October 2023

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail

 Extensions (MIME) Part One: Format of Internet Message

 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,

 <https://www.rfc-editor.org/rfc/rfc2045>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail

 Extensions (MIME) Part Two: Media Types", RFC 2046,

 DOI 10.17487/RFC2046, November 1996,

 <https://www.rfc-editor.org/rfc/rfc2046>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type

 Specifications and Registration Procedures", BCP 13,

 RFC 6838, DOI 10.17487/RFC6838, January 2013,

 <https://www.rfc-editor.org/rfc/rfc6838>.

Contributors

 Joel Alwen

 Amazon

 Email: alwenjo@amazon.com

 Konrad Kohbrok

 Phoenix R&D

 Email: konrad.kohbrok@datashrine.de

 Rohan Mahy

 Wire

 Email: rohan@wire.com

 Marta Mularczyk

 Amazon

 Email: mulmarta@amazon.com

Author’s Address

 Raphael Robert

 Phoenix R&D

 Email: ietf@raphaelrobert.com

Robert Expires 25 April 2024 [Page 30]

MLS R. Mahy

Internet-Draft Wire

Intended status: Informational 22 October 2023

Expires: 24 April 2024

 KeyPackage Context Extension for Message Layer Security (MLS)

 draft-mahy-mls-kp-context-00

Abstract

 This document describes a Message Layer Security (MLS) KeyPackage

 extension to convey a specific context or anticipated use for the

 KeyPackage. It is useful when a client provides the KeyPackage out-

 of-band to another client, and wants the specific KeyPackage used

 only in the anticipated context, for example a specific MLS group.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at

 https://datatracker.ietf.org/doc/draft-mahy-mls-kp-context/.

 Discussion of this document takes place on the MLS Working Group

 mailing list (mailto:mls@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/mls/. Subscribe at

 https://www.ietf.org/mailman/listinfo/mls/.

 Source for this draft and an issue tracker can be found at

 https://github.com/rohan-wire/mls-kp-context/.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 24 April 2024.

Mahy Expires 24 April 2024 [Page 1]

Internet-Draft MLS KeyPackage Context October 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Terminology . 2

 2. Introduction . 2

 3. Extension Description . 3

 4. IANA Considerations . 3

 4.1. kp_context MLS Extension Type 3

 4.2. urn:ietf:mls:kp_context:group_id URN registration 4

 5. Security Considerations 4

 6. Normative References . 4

 Author’s Address . 5

1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 The terms MLS client, MLS group, LeafNode, GroupContext, KeyPackage,

 GroupContextExtensions Proposal, Credential, CredentialType, and

 RequiredCapabilities have the same meanings as in the MLS protocol

 [I-D.ietf-mls-protocol].

2. Introduction

 In some use cases of MLS, a client might wish to provide a KeyPackage

 to another client, but communicate that the specific KeyPackage is

 only to be used in a specific context, for example to join a specific

 MLS group. This document describes a KeyPackage extension that can

 convey that context.

Mahy Expires 24 April 2024 [Page 2]

Internet-Draft MLS KeyPackage Context October 2023

3. Extension Description

 This document specifies a KeyPackage MLS extension kp_context of type

 ContextPair. The syntax is described using the TLS Presentation

 Language [RFC8446]

 Each PerDomainTrustAnchor represents a specific identity domain which

 is expected and authorized to participate in the MLS group. It

 contains the domain name and the specific trust anchor used to

 validate identities for members in that domain.

 enum {

 reserved(0),

 groupid(1),

 uri(2),

 domain(3),

 jwk_thumbprint(4)

 (255)

 } ContextType;

 struct {

 ContextType context_type;

 opaque context_value<V>;

 } ContextPair;

 ContextPair kp_context;

4. IANA Considerations

 This document proposes registration of a new MLS Extension Type.

 RFC EDITOR: Please replace XXXX throughout with the RFC number

 assigned to this document

4.1. kp_context MLS Extension Type

 The kp_context MLS Extension Type is used inside KeyPackage objects.

 It contains a URN Anchors object representing the trust anchors which

 are expected for identity validation inside the MLS group.

 Template:

 Value: 0x000B

 Name: kp_context

 Message(s): This extension may appear in KeyPackage objects

 Recommended: Y

 Reference: RFC XXXX

Mahy Expires 24 April 2024 [Page 3]

Internet-Draft MLS KeyPackage Context October 2023

4.2. urn:ietf:mls:kp_context:group_id URN registration

 Namespace Identifier: Requested of IANA (formal) or assigned by IANA

 (informal).

 Version: 1

 Date: 2023-08-01

 Registrant:

 Rohan Mahy

 rohan.ietf@gmail.com

 Purpose: Described in Section 3 of RFCXXXX.

 Syntax: Described in Section 3 of RFCXXXX.

 Assignment: Described in Section 4.1 of RFCXXXX.

 Security and Privacy: Described in Section 5 of RFCXXXX.

 Interoperability: Described in Section 3 of this document.

 Resolution: Described in Section 3 of this document.

 Documentation: RFCXXXX

 Additional Information: none

 Revision Information: n/a

5. Security Considerations

 The Security Considerations of MLS apply.

 The use of this extension may reveal the client’s intentions or

 wishes in an out-of-band protocol, which may have weaker privacy

 protections than MLS handshake messages.

6. Normative References

 [I-D.ietf-mls-protocol]

 Barnes, R., Beurdouche, B., Robert, R., Millican, J.,

 Omara, E., and K. Cohn-Gordon, "The Messaging Layer

 Security (MLS) Protocol", Work in Progress, Internet-

 Draft, draft-ietf-mls-protocol-20, 27 March 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-mls-

 protocol-20>.

Mahy Expires 24 April 2024 [Page 4]

Internet-Draft MLS KeyPackage Context October 2023

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/rfc/rfc8446>.

Author’s Address

 Rohan Mahy

 Wire

 Email: rohan.mahy@wire.com

Mahy Expires 24 April 2024 [Page 5]

MLS R. Mahy

Internet-Draft M. Amiot

Intended status: Informational Wire

Expires: 11 January 2024 10 July 2023

 Messaging Layer Security Ciphersuite using X25519Kyber768Draft00 Key

 Exchange Mechanism

 draft-mahy-mls-x25519kyber768draft00-00

Abstract

 This document registers a new Messaging Layer Security (MLS)

 ciphersuite using the hybrid post-quantum resistant / traditional

 (PQ/T) Key Exchange Mechanism X25519Kyber768Draft00.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at

 https://datatracker.ietf.org/doc/draft-mahy-mls-

 x25519kyber768draft00/.

 Discussion of this document takes place on the MLS Working Group

 mailing list (mailto:mls@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/mls/. Subscribe at

 https://www.ietf.org/mailman/listinfo/mls/.

 Source for this draft and an issue tracker can be found at

 https://github.com/rohan-wire/mls-x25519kyber768draft00/.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 11 January 2024.

Mahy & Amiot Expires 11 January 2024 [Page 1]

Internet-Draft X25519Kyber768Draft00 ciphersuite for ML July 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 2. Security Considerations 2

 3. IANA Considerations . 3

 4. Normative References . 3

 Acknowledgments . 3

 Authors’ Addresses . 3

1. Introduction

 This document reserves a Messaging Layer Security (MLS)

 [I-D.ietf-mls-protocol] ciphersuite value based on the MLS default

 ciphersuite, but replacing the KEM with the hybrid post-quantum /

 traditional Key Exchange Mechanism X25519Kyber768Draft00

 [I-D.draft-westerbaan-cfrg-hpke-xyber768d00] which was assigned the

 Hybrid Public Key Encryption (HPKE) Key Exchange Mechanism (KEM)

 Identifier value 0x0030.

2. Security Considerations

 This ciphersuite uses a hybrid post-quantum/traditional KEM and a

 traditional signature algorithm. As such, it is designed to provide

 confidentiality against quantum and classical attacks, but provides

 authenticity against classical attacks only. This is actually very

 useful, because an attacker could store MLS-encrypted traffic that

 uses any classical KEM today. If years or decades in the future a

 quantum attack on classical KEMs becomes feasible, the traffic sent

 today (some of which could still be sensitive in the future) will

 then be readable. By contrast, an attack on a signature algorithm in

 MLS would require an active attack which can extract the private key

 during the signature key’s lifetime.

Mahy & Amiot Expires 11 January 2024 [Page 2]

Internet-Draft X25519Kyber768Draft00 ciphersuite for ML July 2023

 The security properties of

 [I-D.draft-westerbaan-cfrg-hpke-xyber768d00] apply.

3. IANA Considerations

 This document registers a new MLS Ciphersuite value.

 Value: 0x0030 (please)

 Name: MLS_128_X25519Kyber768Draft00_AES128GCM_SHA256_Ed25519

 Required: N

 Reference: This document

4. Normative References

 [I-D.draft-westerbaan-cfrg-hpke-xyber768d00]

 Westerbaan, B. and C. A. Wood, "X25519Kyber768Draft00

 hybrid post-quantum KEM for HPKE", Work in Progress,

 Internet-Draft, draft-westerbaan-cfrg-hpke-xyber768d00-02,

 4 May 2023, <https://datatracker.ietf.org/doc/html/draft-

 westerbaan-cfrg-hpke-xyber768d00-02>.

 [I-D.ietf-mls-protocol]

 Barnes, R., Beurdouche, B., Robert, R., Millican, J.,

 Omara, E., and K. Cohn-Gordon, "The Messaging Layer

 Security (MLS) Protocol", Work in Progress, Internet-

 Draft, draft-ietf-mls-protocol-20, 27 March 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-mls-

 protocol-20>.

Acknowledgments

 Thanks to Joël Alwen, Marta Mularczyk, and Britta Hale.

Authors’ Addresses

 Rohan Mahy

 Wire

 Email: rohan.mahy@wire.com

 Mathieu Amiot

 Wire

 Email: mathieu.amiot@wire.com

Mahy & Amiot Expires 11 January 2024 [Page 3]

	draft-barnes-mls-addl-creds-01
	draft-ietf-mls-extensions-03
	draft-mahy-mls-kp-context-00
	draft-mahy-mls-x25519kyber768draft00-00

