
NETMOD Q. Ma

Internet-Draft Q. Wu

Intended status: Standards Track Huawei

Expires: 24 April 2024 B. Lengyel

 Ericsson

 H. Li

 HPE

 22 October 2023

 YANG Metadata Annotation for Immutable Flag

 draft-ma-netmod-immutable-flag-09

Abstract

 This document defines a way to formally document existing behavior,

 implemented by servers in production, on the immutability of some

 system configuration nodes, using a YANG metadata annotation called

 "immutable" to flag which nodes are immutable.

 Clients may use "immutable" annotations provided by the server, to

 know beforehand why certain otherwise valid configuration requests

 will cause the server to return an error.

 The immutable flag is descriptive, documenting existing behavior, not

 proscriptive, dictating server behavior.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 24 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Ma, et al. Expires 24 April 2024 [Page 1]

Internet-Draft Immutable Flag October 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Terminology . 4

 1.2. Applicability . 5

 2. Solution Overview . 5

 3. "Immutable" Metadata Annotation 5

 3.1. Definition . 6

 3.2. "with-immutable" Parameter 6

 4. Use of "immutable" Flag for Different Statements 6

 4.1. The "leaf" Statement 7

 4.2. The "leaf-list" Statement 7

 4.3. The "container" Statement 7

 4.4. The "list" Statement 7

 4.5. The "anydata" Statement 7

 4.6. The "anyxml" Statement 7

 5. Immutability of Interior Nodes 8

 6. Interaction between Immutable Flag and <system> 8

 7. Interaction between Immutable Flag and NACM 9

 8. YANG Module . 9

 9. IANA Considerations . 11

 9.1. The "IETF XML" Registry 12

 9.2. The "YANG Module Names" Registry 12

 10. Security Considerations 12

 Acknowledgements . 12

 References . 12

 Normative References . 12

 Informative References . 13

 Appendix A. Detailed Use Cases 14

 A.1. UC1 - Modeling of server capabilities 14

 A.2. UC2 - HW based auto-configuration - Interface Example . . 15

 A.3. UC3 - Predefined Administrator Roles 15

 A.4. UC4 - Declaring immutable system configuration from an

 LNE’s perspective . 16

 Appendix B. Existing implementations 16

 Appendix C. Changes between revisions 16

 Appendix D. Open Issues tracking 19

 Authors’ Addresses . 19

Ma, et al. Expires 24 April 2024 [Page 2]

Internet-Draft Immutable Flag October 2023

1. Introduction

 This document defines a way to formally document as a YANG metadata

 annotation an existing model handling behavior that has been used by

 multiple standard organizations and vendors. It is the aim to create

 one single standard solution for documenting non-modifiable system

 data declared as configuration, instead of the multiple existing

 vendor and organization specific solutions. See Appendix B for

 existing implementations.

 YANG [RFC7950] is a data modeling language used to model both state

 and configuration data, based on the "config" statement. However,

 there exists some system configuration data that cannot be modified

 by the client (it is immutable), but still needs to be declared as

 "config true" to:

 * allow configuration of data nodes under immutable lists or

 containers;

 * place "when", "must" and "leafref" constraints between

 configuration and immutable data nodes.

 * ensure the existence of specific list entries that are provided

 and needed by the system, while additional list entries can be

 created, modified or deleted;

 If the server always rejects the client attempts to override

 immutable system configuration [I-D.ietf-netmod-system-config]

 because it internally thinks it immutable, it should document this

 towards the clients in a machine-readable way rather than writing as

 plain text in the description statement.

 This document defines a way to formally document existing behavior,

 implemented by servers in production, on the immutability of some

 system configuration nodes, using a YANG metadata annotation

 [RFC7952] called "immutable" to flag which nodes are immutable.

 This document does not apply to the server not having any immutable

 system configuration. While in some cases immutability may be

 needed, it also has disadvantages, therefore it SHOULD be avoided

 wherever possible.

 The following is a list of already implemented and potential use

 cases.

 UC1 Modeling of server capabilities

 UC2 HW based auto-configuration

Ma, et al. Expires 24 April 2024 [Page 3]

Internet-Draft Immutable Flag October 2023

 UC3 Predefined administrator roles

 UC4 Declaring immutable system configuration from an LNE’s

 perspective

 Appendix A describes the use cases in detail.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 The following terms are defined in [RFC6241]:

 * configuration data

 The following terms are defined in [RFC7950]:

 * data node

 * leaf

 * leaf-list

 * container

 * list

 * anydata

 * anyxml

 * interior node

 * data tree

 The following terms are defined in [RFC8341]:

 * access operation

 * write access

 The following terms are defined in this document:

 immutable flag: A read-only state value the server provides to

Ma, et al. Expires 24 April 2024 [Page 4]

Internet-Draft Immutable Flag October 2023

 describe system data it considers immutable. The immutability of

 data nodes is conveyed via a YANG metadata annotation called

 "immutable".

1.2. Applicability

 This document focuses on the configuration which can only be created,

 updated and deleted by the server.

 The immutable annotation information is also visible in read-only

 datastores like <system> (if exists), <intended> and <operational>

 when a "with-immutable" parameter is carried (see Section 3.2),

 however this only serves as descriptive information about the

 instance node itself, but has no effect on the handling of the read-

 only datastore.

 Configuration data must have the same immutability in different

 writable datastores. The immutability of data nodes is protocol and

 user independent. The immutability and configured value of an

 existing node must only change by software upgrade or hardware

 resource/license change.

2. Solution Overview

 Immutable configuration can only be created by the system regardless

 of the implementation of <system> [I-D.ietf-netmod-system-config].

 Immutable configuration is present in <system> (if implements). It

 may be updated or deleted depending on factors like software upgrade

 or hardware resources/license change. Immutable configuration does

 not appear in <running> unless it is copied explicitly or

 automatically (e.g., by "resolve-system" parameter)

 [I-D.ietf-netmod-system-config].

 A client may create/delete immutable nodes with same values as found

 in <system> (if exists) in read-write configuration datastore (e.g.,

 <running>), which merely mean making immutable nodes visible/

 invisible in read-write configuration datastore (e.g., <running>).

 The "immutable" flag is intended to be descriptive.

3. "Immutable" Metadata Annotation

Ma, et al. Expires 24 April 2024 [Page 5]

Internet-Draft Immutable Flag October 2023

3.1. Definition

 The "immutable" metadata annotation takes as an value which is a

 boolean type, it is not returned unless a client explicitly requests

 through a "with-immutable" parameter (see Section 3.2). If the

 "immutable" metadata annotation for data node instances is not

 specified, the default "immutable" value is the same as the

 immutability of its parent node in the data tree. The immutable

 metadata annotation value for a top-level instance node is false if

 not specified.

 Note that "immutable" metadata annotation is used to annotate data

 node instances. A list may have multiple entries/instances in the

 data tree, "immutable" can annotate some of the instances as read-

 only, while others are read-write.

3.2. "with-immutable" Parameter

 The YANG model defined in this document (see Section 8) augments the

 <get-config>, <get> operation defined in RFC 6241, and the <get-data>

 operation defined in RFC 8526 with a new parameter named "with-

 immutable". When this parameter is present, it requests that the

 server includes "immutable" metadata annotations in its response.

 This parameter may be used for read-only configuration datastores,

 e.g., <system> (if exists), <intended> and <operational>, but the

 "immutable" metadata annotation returned indicates the immutability

 towards read-write configuration datastores, e.g., <startup>,

 <candidate> and <running>. If the "immutable" metadata annotation

 for returned child nodes are omitted, it has the same immutability as

 its parent node. The immutability of top hierarchy of returned nodes

 is false by default.

 Note that "immutable" metadata annotation is not included in a

 response unless a client explicitly requests them with a "with-

 immutable" parameter.

4. Use of "immutable" Flag for Different Statements

 This section defines what the immutable flag means to the client for

 each instance of YANG data node statement.

 Throughout this section, the word "change" refers to create, update,

 and delete.

Ma, et al. Expires 24 April 2024 [Page 6]

Internet-Draft Immutable Flag October 2023

4.1. The "leaf" Statement

 When a leaf node instance is immutable, its value cannot change.

4.2. The "leaf-list" Statement

 When a leaf-list node instance is immutable, its value cannot change.

 When the "immutable" YANG metadata annotation is used on all existing

 leaf-list instances, or if a leaf-list inherits immutability from an

 ancestor, it means that the leaf-list as a whole cannot change:

 entries cannot be added, removed, or reordered, in case the leaf-list

 is "ordered-by user".

4.3. The "container" Statement

 When a container node instance is immutable, it cannot change, unless

 the immutability of its descendant node is toggled.

 By default, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 5).

4.4. The "list" Statement

 When a list node instance is immutable, it cannot change, unless the

 immutability of its descendant node is toggled, per the description

 elsewhere in this section.

 By default, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 5). This statement is applicable

 only to the "immutable" YANG extension, as the "list" node does not

 itself appear in data trees.

4.5. The "anydata" Statement

 When an anydata node instance is immutable, it cannot change.

 Additionally, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 5).

4.6. The "anyxml" Statement

 When an "anyxml" node instance is immutable, it cannot change.

 Additionally, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 5).

Ma, et al. Expires 24 April 2024 [Page 7]

Internet-Draft Immutable Flag October 2023

5. Immutability of Interior Nodes

 Immutability is a conceptual operational state value that is

 recursively applied to descendants, which may reset the immutability

 state as needed, thereby affecting their descendants. There is no

 limit to the number of times the immutability state may change in a

 data tree.

 For example, given the following application configuration XML

 snippets:

 <application im:immutable="true">

 <name>predefined-ftp</name>

 <protocol>ftp</protocol>

 <port-number im:immutable="false">69</port-number>

 </application>

 The list entry named "predefined-ftp" is immutable="true", but its

 child node "port-number" has the immutable="false" (thus the client

 can override this value). The other child node (e.g., "protocol")

 not specifying its immutability explicitly inherits immutability from

 its parent node thus is also immutable="true".

6. Interaction between Immutable Flag and <system>

 The system datastore is defined to hold system configuration provided

 by the device itself and make system configuration visible to clients

 in order for being referenced or configurable prior to present in

 <operational>. However, the device may allow some system-initialized

 node to be overridden, while others may not. System configuration

 exists regardless of whether <system> is implemented.

 This document defines a way to allow a server annotate instances of

 non-modifiable system configuration with metadata when system

 configuration is retrieved. A client aware of the "immutable"

 annotation can explicitly ask the server to return it via the "with-

 immutable" parameter in the request, thus is able to avoid making

 unnecessary modification attempts to immutable configuration. Legacy

 clients unaware of the "immutable" annotation don’t see any changes

 and encounter an error as always.

Ma, et al. Expires 24 April 2024 [Page 8]

Internet-Draft Immutable Flag October 2023

7. Interaction between Immutable Flag and NACM

 The server rejects an operation request due to immutability when it

 tries to perform the operation on the request data. It happens after

 any access control processing, if the Network Configuration Access

 Control Model (NACM) [RFC8341] is implemented on a server. For

 example, if an operation requests to override an immutable

 configuration data, but the server checks the user is not authorized

 to perform the requested access operation on the request data, the

 request is rejected with an "access-denied" error.

8. YANG Module

 <CODE BEGINS>

 file="ietf-immutable@2023-10-16.yang"

 //RFC Ed.: replace XXXX with RFC number and remove this note

 module ietf-immutable {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-immutable";

 prefix im;

 import ietf-yang-metadata {

 prefix md;

 }

 import ietf-netconf {

 prefix nc;

 reference

 "RFC 6241: Network Configuration Protocol (NETCONF)";

 }

 import ietf-netconf-nmda {

 prefix ncds;

 reference

 "RFC 8526: NETCONF Extensions to Support the Network

 Management Datastore Architecture";

 }

 organization

 "IETF Network Modeling (NETMOD) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>

Ma, et al. Expires 24 April 2024 [Page 9]

Internet-Draft Immutable Flag October 2023

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

 Author: Hongwei Li

 <mailto:flycoolman@gmail.com>";

 description

 "This module defines a metadata annotation called ’immutable’

 to allow the server to formally document existing behavior on

 the mutability of some system configuration. Clients may use

 ’immutable’ metadata annotation provided by the server to know

 beforehand why certain otherwise valid configuration requests

 will cause the server to return an error.

 Copyright (c) 2023 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust’s

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,

 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,

 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2023-10-16 {

 description

 "Initial revision.";

 // RFC Ed.: replace XXXX and remove this comment

 reference

 "RFC XXXX: YANG Metadata Annotation for Immutable Flag";

 }

 md:annotation immutable {

 type boolean;

 description

 "The ’immutable’ metadata annotation indicates the

 immutability of an instantiated data node.

Ma, et al. Expires 24 April 2024 [Page 10]

Internet-Draft Immutable Flag October 2023

 The ’immutable’ metadata annotation takes as a value ’true’

 or ’false’. If the ’immutable’ metadata annotation for data

 node instances is not specified, the default value is the

 same as the value of its parent node in the data tree. The

 default value for a top-level instance node is false if not

 specified.";

 }

 grouping with-immutable-grouping {

 description

 "Grouping for the with-immutable parameter that augments the

 RPC operations.";

 leaf with-immutable {

 type empty;

 description

 "If this parameter is present, the server will return the

 ’immutable’ annotation for configuration that it

 internally thinks it immutable. When present, this

 parameter allows the server to formally document existing

 behavior on the mutability of some configuration nodes.";

 }

 }

 augment "/ncds:get-data/ncds:input" {

 description

 "Allows the server to include ’immutable’ metadata

 annotations in its response to get-data operation.";

 uses with-immutable-grouping;

 }

 augment "/nc:get-config/nc:input" {

 description

 "Allows the server to include ’immutable’ metadata

 annotations in its response to get-config operation.";

 uses with-immutable-grouping;

 }

 augment "/nc:get/nc:input" {

 description

 "Allows the server to include ’immutable’ metadata

 annotations in its response to get operation.";

 uses with-immutable-grouping;

 }

 }

 <CODE ENDS>

9. IANA Considerations

Ma, et al. Expires 24 April 2024 [Page 11]

Internet-Draft Immutable Flag October 2023

9.1. The "IETF XML" Registry

 This document registers one XML namespace URN in the ’IETF XML

 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-immutable

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

9.2. The "YANG Module Names" Registry

 This document registers one module name in the ’YANG Module Names’

 registry, defined in [RFC6020].

 name: ietf-immutable

 prefix: im

 namespace: urn:ietf:params:xml:ns:yang:ietf-immutable

 RFC: XXXX

 // RFC Ed.: replace XXXX and remove this comment

10. Security Considerations

 The YANG module specified in this document defines a YANG extension

 and a metadata Annotation. These can be used to further restrict

 write access but cannot be used to extend access rights.

 This document does not define any protocol-accessible data nodes.

 Since immutable information is tied to applied configuration values,

 it is only accessible to clients that have the permissions to read

 the applied configuration values.

 The security considerations for the Defining and Using Metadata with

 YANG (see Section 9 of [RFC7952]) apply to the metadata annotation

 defined in this document.

Acknowledgements

 Thanks to Kent Watsen, Andy Bierman, Robert Wilton, Jan Lindblad,

 Reshad Rahman, Anthony Somerset, Lou Berger, Joe Clarke, Scott

 Mansfield, and Juergen Schoenwaelder for reviewing, and providing

 important inputs to, this document.

References

Normative References

Ma, et al. Expires 24 April 2024 [Page 12]

Internet-Draft Immutable Flag October 2023

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for

 the Network Configuration Protocol (NETCONF)", RFC 6020,

 DOI 10.17487/RFC6020, October 2010,

 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",

 RFC 7952, DOI 10.17487/RFC7952, August 2016,

 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration

 Access Control Model", STD 91, RFC 8341,

 DOI 10.17487/RFC8341, March 2018,

 <https://www.rfc-editor.org/info/rfc8341>.

Informative References

 [I-D.ietf-netmod-system-config]

 Ma, Q., Wu, Q., and C. Feng, "System-defined

 Configuration", Work in Progress, Internet-Draft, draft-

 ietf-netmod-system-config-03, 19 October 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 system-config-03>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface

 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,

 <https://www.rfc-editor.org/info/rfc8343>.

Ma, et al. Expires 24 April 2024 [Page 13]

Internet-Draft Immutable Flag October 2023

 [RFC8530] Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and X.

 Liu, "YANG Model for Logical Network Elements", RFC 8530,

 DOI 10.17487/RFC8530, March 2019,

 <https://www.rfc-editor.org/info/rfc8530>.

 [TR-531] ONF, "UML to YANG Mapping Guidelines,

 <https://wiki.opennetworking.org/download/

 attachments/376340494/Draft_TR-531_UML-YANG_Mapping_Gdls_v

 1.1.03.docx?version=5&modificationDate=1675432243513&api=v

 2>", February 2023.

 [TS28.623] 3GPP, "Telecommunication management; Generic Network

 Resource Model (NRM) Integration Reference Point (IRP);

 Solution Set (SS) definitions,

 <https://www.3gpp.org/ftp/Specs/

 archive/28_series/28.623/28623-i02.zip>".

 [TS32.156] 3GPP, "Telecommunication management; Fixed Mobile

 Convergence (FMC) Model repertoire,

 <https://www.3gpp.org/ftp/Specs/

 archive/32_series/32.156/32156-h10.zip>".

Appendix A. Detailed Use Cases

A.1. UC1 - Modeling of server capabilities

 System capabilities might be represented as system-defined data nodes

 in the model. Configurable data nodes might need constraints

 specified as "when", "must" or "path" statements to ensure that

 configuration is set according to the system’s capabilities. E.g.,

 * A timer can support the values 1,5,8 seconds. This is defined in

 the leaf-list ’supported-timer-values’.

 * When the configurable ’interface-timer’ leaf is set, it should be

 ensured that one of the supported values is used. The natural

 solution would be to make the ’interface-timer’ a leaf-ref

 pointing at the ’supported-timer-values’.

 However, this is not possible as ’supported-timer-values’ must be

 read-only thus config=false while ’interface-timer’ must be writable

 thus config=true. According to the rules of YANG it is not allowed

 to put a constraint between config true and false data nodes.

Ma, et al. Expires 24 April 2024 [Page 14]

Internet-Draft Immutable Flag October 2023

 The solution is that the supported-timer-values data node in the YANG

 Model shall be defined as "config true" and shall also be marked with

 the "immutable" extension making it unchangeable. After this the

 ’interface-timer’ shall be defined as a leaf-ref pointing at the

 ’supported-timer-values’.

A.2. UC2 - HW based auto-configuration - Interface Example

 [RFC8343] defines a YANG data model for the management of network

 interfaces. When a system-controlled interface is physically

 present, the system creates an interface entry with valid name and

 type values in <system> (if exists, see

 [I-D.ietf-netmod-system-config]).

 The system-generated type value is dependent on and represents the HW

 present, and as a consequence cannot be changed by the client. If a

 client tries to set the type of an interface to a value that can

 never be used by the system, the request will be rejected by the

 server. The data is modelled as "config true" and should be

 annotated as immutable.

 Seemingly an alternative would be to model the list and these leaves

 as "config false", but that does not work because:

 * The list cannot be marked as "config false", because it needs to

 contain configurable child nodes, e.g., ip-address or enabled;

 * The key leaf (name) cannot be marked as "config false" as the list

 itself is config true;

 * The type cannot be marked "config false", because we MAY need to

 reference the type to make different configuration nodes

 conditionally available.

A.3. UC3 - Predefined Administrator Roles

 User and group management is fundamental for setting up access

 control rules (see section 2.5 of [RFC8341]).

 A device may provide a predefined user account (e.g., a system

 administrator that is always available and has full privileges) for

 initial system set up and management of other users/groups. It is

 possible that clients can define a new user/group and grant it

 particular privileges, but the predefined administrator account and

 its granted access cannot be modified.

Ma, et al. Expires 24 April 2024 [Page 15]

Internet-Draft Immutable Flag October 2023

A.4. UC4 - Declaring immutable system configuration from an LNE’s

 perspective

 An LNE (logical network element) is an independently managed virtual

 network device made up of resources allocated to it from its host or

 parent network device [RFC8530]. The host device may allocate some

 resources to an LNE, which from an LNE’s perspective is provided by

 the system and may not be modifiable.

 For example, a host may allocate an interface to an LNE with a valid

 MTU value as its management interface, so that the allocated

 interface should then be accessible as the LNE-specific instance of

 the interface model. The assigned MTU value is system-created and

 immutable from the context of the LNE.

Appendix B. Existing implementations

 There are already a number of full or partial implementations of

 immutability.

 3GPP TS 32.156 [TS32.156] and 28.623 [TS28.623]: Requirements and

 a partial solution

 ITU-T using ONF TR-531[TR-531] concept on information model level

 but no YANG representation.

 Ericsson: requirements and solution

 YumaPro: requirements and solution

 Nokia: partial requirements and solution

 Huawei: partial requirements and solution

 Cisco using the concept at least in some YANG modules

 Junos OS provides a hidden and immutable configuration group

 called junos-defaults

Appendix C. Changes between revisions

 Note to RFC Editor (To be removed by RFC Editor)

 v08 - v09

 * Remove immutable YANG extension definition to simplify the

 solution

Ma, et al. Expires 24 April 2024 [Page 16]

Internet-Draft Immutable Flag October 2023

 * Add a new section to discuss the interaction between immutable

 flag and <system>

 * Remove the error response example in Appendix A.

 * rewrite UC3, rename it to "Predefined Administrator Roles"

 v06 - v07

 * Use a Boolean type for the immutable value in YANG extension and

 metadata annotation

 * Define a "with-immutable" parameter and state that immutable

 metadata annotation is not included in a response unless a client

 explicitly requests them with a "with-immutable" parameter

 * reword the abstract and related introduction section to highlight

 immutable flag is descriptive

 * Add a new section to define immutability of interior nodes, and

 merge with "Inheritance of Immutable configuration" section

 * Add a new section to define what the immutable flag means for each

 YANG data node

 * Define the "immutable flag" term.

 * Add an item in the open issues tracking: Should the "immutable"

 metadata annotation also be returned for nodes described as

 immutable in the YANG schema so that there is a single source of

 truth?

 v05 - v06

 * Remove immutable BGP AS number case

 * Fix nits

 v04 - v05

 * Emphasized that the proposal tries to formally document existing

 allowed behavior

 * Reword the abstract and introduction sections;

 * Restructure the document;

 * Simplified the interface example in Appendix;

Ma, et al. Expires 24 April 2024 [Page 17]

Internet-Draft Immutable Flag October 2023

 * Add immutable BGP AS number and peer-type configuration example.

 * Added temporary section in Appendix B about list of existing non-

 standard solutions

 * Clarified inheritance of immutability

 * Clarified that this draft is not dependent on the existence of the

 <system> datastore.

 v03 - v04

 * Clarify how immutable flag interacts with NACM mechanism.

 v02 - v03

 * rephrase and avoid using "server MUST reject" statement, and try

 to clarify that this documents aims to provide visibility into

 existing immutable behavior;

 * Add a new section to discuss the inheritance of immutability;

 * Clarify that deletion to an immutable node in <running> which is

 instantiated in <system> and copied into <running> should always

 be allowed;

 * Clarify that write access restriction due to general YANG rules

 has no need to be marked as immutable.

 * Add an new section named "Acknowledgements";

 * editoral changes.

 v01 - v02

 * clarify the relation between the creation/deletion of the

 immutable data node with its parent data node;

 * Add a "TODO" comment about the inheritance of the immutable

 property;

 * Define that the server should reject write attempt to the

 immutable data node at an <edit-config> operation time, rather

 than waiting until a <commit> or <validate> operation takes place;

 v00 - v01

 * Added immutable extension

Ma, et al. Expires 24 April 2024 [Page 18]

Internet-Draft Immutable Flag October 2023

 * Added new use-cases for immutable extension and annotation

 * Added requirement that an update that means no effective change

 should always be allowed

 * Added clarification that immutable is only applied to read-write

 datastore

 * Narrowed the applied scope of metadata annotation to list/leaf-

 list instances

Appendix D. Open Issues tracking

 * Is this needed: error-code definition for edit failure because of

 immutability

Authors’ Addresses

 Qiufang Ma

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

 Email: maqiufang1@huawei.com

 Qin Wu

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

 Email: bill.wu@huawei.com

 Balazs Lengyel

 Ericsson

 Email: balazs.lengyel@ericsson.com

 Hongwei Li

 HPE

 Email: flycoolman@gmail.com

Ma, et al. Expires 24 April 2024 [Page 19]

	draft-ma-netmod-immutable-flag-09

