
Internet Engineering Task Force M. Lichvar
Internet-Draft Red Hat
Intended status: Standards Track 19 October 2023
Expires: 21 April 2024

 Network Time Protocol Version 5
 draft-ietf-ntp-ntpv5-01

Abstract

 This document describes the version 5 of the Network Time Protocol
 (NTP).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 21 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Lichvar Expires 21 April 2024 [Page 1]

Internet-Draft Network Time Protocol Version 5 October 2023

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 2. Basic Concepts . 3
 3. Data Types . 4
 4. Message Format . 5
 5. Extension Fields . 9
 5.1. Draft Identification Extension Field 10
 5.2. Padding Extension Field 10
 5.3. MAC Extension Field 10
 5.4. Reference IDs Request and Response Extension Fields . . . 11
 5.5. Server Information Extension Field 13
 5.6. Correction Extension Field 13
 5.7. Reference Timestamp Extension Field 16
 5.8. Monotonic Receive Timestamp Extension Field 16
 5.9. Secondary Receive Timestamp Extension Field 17
 6. Measurement Modes . 18
 7. Client Operation . 21
 8. Server Operation . 23
 9. Network Time Security with NTPv5 25
 10. NTPv5 Negotiation in NTPv4 26
 11. Acknowledgements . 26
 12. IANA Considerations . 26
 13. Security Considerations 28
 14. References . 28
 14.1. Normative References 28
 14.2. Informative References 28
 Author’s Address . 29

1. Introduction

 Network Time Protocol (NTP) is a protocol which enables computers to
 synchronize their clocks over network. Time is distributed from
 primary time servers to clients, which can be servers for other
 clients, and so on. Clients can use multiple servers simultaneously.

 NTPv5 is similar to NTPv4 [RFC5905]. The main differences are:

 1. The protocol specification (this document) describes only the
 on-wire protocol. Filtering of measurements, security
 mechanisms, source selection, clock control, and other
 algorithms, are out of scope.

Lichvar Expires 21 April 2024 [Page 2]

Internet-Draft Network Time Protocol Version 5 October 2023

 2. For security reasons, NTPv5 drops support for the symmetric
 active, symmetric passive, broadcast, control, and private
 modes. The symmetric and broadcast modes are vulnerable to
 replay attacks. The control and private modes can be exploited
 for denial-of-service traffic amplification attacks. Only the
 client and server modes remain in NTPv5.

 3. Timestamps are clearly separated from values used as cookies.

 4. NTPv5 messages can be extended only with extension fields. The
 MAC field is wrapped in an extension field.

 5. Extension fields can be of any length, even indivisible by 4,
 but are padded to a multiple of 4 octets. Extension fields
 specified for NTPv4 are compatible with NTPv5.

 6. NTPv5 adds support for other timescales than UTC.

 7. The NTP era number is exchanged in the protocol, which extends
 the unambiguous interval of the client from 136 years to about
 35000 years.

 8. NTPv5 adds interleaved mode to provide clients with more
 accurate transmit timestamps.

 9. NTPv5 works with sets of reference IDs to prevent
 synchronization loops over multiple hosts.

 10. Resolution of the root delay and root dispersion fields is
 improved from about 15 microseconds to about 4 nanoseconds.

 11. Clients do not leak information about their clock (e.g.
 timestamps).

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Basic Concepts

 The distance to the reference time sources in the hierarchy of
 servers is called stratum. Primary time servers, which are
 synchronized to the reference clocks, are stratum 1, their clients
 are stratum 2, and so on.

Lichvar Expires 21 April 2024 [Page 3]

Internet-Draft Network Time Protocol Version 5 October 2023

 Root delay measures the total delay on the path to the reference time
 source used by the primary time server. Each client on the path adds
 to the root delay the NTP delay measured to the server it considers
 best for synchronization. The delay includes network delays and any
 delays between timestamping of NTP messages and their actual
 reception and transmission. Half of the root delay estimates the
 maximum error of the clock due to asymmetries in the delay.

 Root dispersion estimates the maximum error of the clock due to the
 instability of the clocks on the path and instability of NTP
 measurements. Each server on the path adds its own dispersion to the
 root dispersion. Different clock models can be used. In a simple
 model, the clock can have a constant dispersion rate, e.g. 15 ppm as
 used in NTPv4.

 The sum of the root dispersion and half of the root delay is called
 root distance. It is the estimated maximum error of the clock,
 taking into account asymmetry in delay and stability of clocks and
 measurements.

 Servers have randomly generated reference IDs to enable detection and
 prevention of synchronization loops.

3. Data Types

 NTPv5 uses few different data types. They are all in the network
 order. Beside signed and unsigned integers, it has also the
 following fixed-point types:

 time16
 A 16-bit signed fixed-point type containing values in seconds. It
 has 1 signed integer bit (i.e. it is just the sign) and 15
 fractional bits. The minimum value is the fraction -32767/32768
 (almost -1 second), the maximum value is 32767/32768 (almost 1
 second), and the resolution is about 30 microseconds. The type
 has a special value of 0x8000, which indicates an unknown value or
 value that is too large to be represented by this type.

 time32
 A 32-bit unsigned fixed-point type containing values in seconds.
 It has 4 bits describing the unsigned integral part and 28 bits
 describing the fractional part. The maximum value is 16 seconds
 and the resolution is about 3.7 nanoseconds. Note that this is
 different from the 32-bit time format in NTPv4.

 timestamp64
 A 64-bit unsigned fixed-point type containing a timestamp
 describes in seconds. It has 32 signed integer bits and 32

Lichvar Expires 21 April 2024 [Page 4]

Internet-Draft Network Time Protocol Version 5 October 2023

 fractional bits. It spans an interval of about 136 years and has
 a resolution of about 0.23 nanoseconds. It can be used in
 different timescales. In the UTC timescale it is the number of SI
 seconds since 1 Jan 1972 plus 2272060800 (number of seconds since
 1 Jan 1900 assuming 86400-second days), excluding leap seconds.
 Timestamps in the TAI timescale are the same except they include
 leap seconds and extra 10 seconds for the original difference
 between TAI and UTC in 1972, when leap seconds were introduced. A
 value of 0 indicates an unknown or invalid timestamp. One
 interval covered by the type is called an NTP era. The era
 starting at the epoch is era number 0, the following era is number
 1, and so on.

 Some fields use a logarithmic scale, where an 8-bit signed integer
 represents the rounded log2 value of seconds. For example, a log2
 value of 4 is 2^4 (2 to the power of 4, 16) seconds, or a log2 value
 of -2 is 2^-2 (0.25 seconds).

4. Message Format

 NTPv5 servers and clients exchange messages as UDP datagrams.
 Clients send requests to servers and servers send them back
 responses. The format of the UDP payload is shown in Figure 1.

Lichvar Expires 21 April 2024 [Page 5]

Internet-Draft Network Time Protocol Version 5 October 2023

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |LI | VN |Mode | Stratum | Poll | Precision |
 +-+
 | Timescale | Era | Flags |
 +-+
 | Root Delay |
 +-+
 | Root Dispersion |
 +-+
 | |
 + Server Cookie (64) +
 | |
 +-+
 | |
 + Client Cookie (64) +
 | |
 +-+
 | |
 + Receive Timestamp (64) +
 | |
 +-+
 | |
 + Transmit Timestamp (64) +
 | |
 +-+
 | |
 . .
 . Extension Field 1 (variable) .
 . .
 | |
 +-+
 . .
 . .
 . .
 +-+
 | |
 . .
 . Extension Field N (variable) .
 . .
 | |
 +-+

 Figure 1: Format of NTPv5 messages

 Each NTPv5 message has a header containing the following fields:

Lichvar Expires 21 April 2024 [Page 6]

Internet-Draft Network Time Protocol Version 5 October 2023

 Leap indicator (LI)
 A 2-bit field which can have the following values: 0 (normal), 1
 (leap second inserted at the end of the month), 2 (leap second
 deleted at the end of the month), 3 (not synchronized). The
 values 1 and 2 are set at most 14 days in advance before the leap
 second and only if not using a leap-smeared timescale. In
 requests it is always 0.

 Version Number (VN)
 A 3-bit field containing the value 5.

 Mode
 A 3-bit field containing the value 3 (request) or 4 (response).

 Stratum
 An 8-bit field containing the stratum of the server. Primary time
 servers have a stratum of 1, their clients have a stratum of 2,
 and so on. The value of 0 indicates an unknown or infinite
 stratum. In requests it is always 0. Servers advertising a
 stratum above 16 should not be synchronized to except when the
 client is explicitly configured to do so by the end-user.

 Poll
 An 8-bit signed integer containing the polling interval as a
 rounded log2 value in seconds. In requests it is the current
 polling interval. In responses it is the minimum allowed polling
 interval.

 Precision
 An 8-bit signed integer containing the precision of the timestamps
 included in the message as a rounded log2 value in seconds. In
 requests, which do not contain any timestamps, it is always 0.

 Timescale
 An 8-bit identifier of the timescale. In requests it is the
 requested timescale. In responses it is the timescale of the
 receive and transmit timestamps. Defined values are:

 0: UTC

 1: TAI

 2: UT1

 3: Leap-smeared UTC

Lichvar Expires 21 April 2024 [Page 7]

Internet-Draft Network Time Protocol Version 5 October 2023

 Era
 An 8-bit unsigned NTP era number corresponding to the receive
 timestamp. In requests it is always 0.

 Flags
 A 16-bit integer that can contain the following flags:

 0x1: Unknown leap
 In requests it is 0. In responses a value of 1 indicates the
 server does not have a time source which provides information
 about leap seconds and the client should interpret the Leap
 Indicator as having only two possible values: synchronized (0)
 and not synchronized (3).

 0x2: Interleaved mode
 In requests a value of 1 is a request for a response in the
 interleaved mode. In responses a value of 1 indicates the
 response is in the interleaved mode.

 Root Delay
 A field using the time32 type. In responses it is the server’s
 root delay. In requests it is always 0.

 Root Dispersion
 A field using the time32 type. In responses it is the server’s
 root dispersion. In requests it is always 0.

 Server Cookie
 A 64-bit field containing a number generated by the server which
 enables the interleaved mode. In requests it is 0, or a copy of
 the server cookie from the last response.

 Client Cookie
 A 64-bit field containing a random number generated by the client.
 Responses contain a copy of the field from the corresponding
 request, which allows the client to verify that the responses are
 related to the requests.

 Receive Timestamp
 A field using the timestamp64 type. In requests it is always 0.
 In responses it is the time when the request was received by the
 server. The timestamp corresponds to the end of the reception.

Lichvar Expires 21 April 2024 [Page 8]

Internet-Draft Network Time Protocol Version 5 October 2023

 Transmit Timestamp
 A field using the timestamp64 type. In requests it is always 0.
 In responses it is the server’s time denoting the beginning of the
 transmission of a response to the client. Which response it
 refers to depends on the selected mode (basic or interleaved).
 See Measurement Modes (Section 6) for detail.

 The header has 48 octets, which is the minimum length of a valid
 NTPv5 message. A message can contain optional extension fields (zero
 or more). The maximum length is not specified, but the length MUST
 be divisible by 4.

5. Extension Fields

 The format of NTPv5 extension fields is shown in Figure 2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 . .
 . Data (variable) .
 . .
 +-+

 Figure 2: Format of NTPv5 extension fields

 Each extension field has a header which contains a 16-bit type and
 16-bit length. The length is in octets and it includes the header.
 The minimum length is 4, i.e. an extension field does not have to
 contain any data. If the length is not divisible by 4, the extension
 field is padded with zeros to the smallest multiple of 4 octets.

 If a request contains an extension field, the server MUST include
 this extension field in the response unless the specification of the
 extension field states otherwise, or the server does not support the
 extension field. A client can interpret the absence of an expected
 extension field in a response as an indication that the server does
 not support the extension field.

 Extension fields specified for NTPv4 can be included in NTPv5
 messages as specified for NTPv4.

 The rest of this section describes extension fields specified for
 NTPv5. Clients are not required to use or support any of these
 extension fields, but servers are required to support at least the
 Padding Extension Field, Server Information Extension field, and if

Lichvar Expires 21 April 2024 [Page 9]

Internet-Draft Network Time Protocol Version 5 October 2023

 they can be synchronized to other servers, also the Reference IDs
 Request and Response extension fields to enable detection of
 synchronization loops.

5.1. Draft Identification Extension Field

 Note to the editors: this section must be removed before final
 publication.

 This field, with type 0xF5FF, is used to indicate which draft of the
 specification an implementation is based upon. It MUST be included
 in NTPv5 requests produced by an implementation based on a draft of
 this specification, and MUST NOT be included in NTPv5 requests
 produced by an implementation based on the final version of this
 specification. Server MUST use this field if and only if responding
 to a request containing this field and the server is a draft
 implementation.

 The contents of this field MUST be the full name, including version
 number, of the draft upon which the implementation is based, encoded
 as an ASCII string. If the server string is longer than the client
 string, the server MUST truncate it to the length of the client
 string.

 Note: the content of this field MUST NOT be null terminated

5.2. Padding Extension Field

 This field, with type [[TBD]] (draft: 0xF501), is used by servers to
 pad the response to the same length as the request if the response
 does not contain all requested extension fields, or some have a
 variable length. It can have any length. The data field of the
 extension field SHOULD contain zeros and it MUST be ignored by the
 receiver.

 This field MUST be supported on servers.

5.3. MAC Extension Field

 This field, with type [[TBD]] (draft: 0xF502), authenticates the
 NTPv5 message with a symmetric key. Implementations SHOULD use the
 MAC specified in RFC8573 [RFC8573]. The extension field MUST be the
 last extension field in the message unless an extension field is
 specifically allowed to be placed after a MAC or another
 authenticator field.

Lichvar Expires 21 April 2024 [Page 10]

Internet-Draft Network Time Protocol Version 5 October 2023

5.4. Reference IDs Request and Response Extension Fields

 Each NTPv5 server has a randomly generated 120-bit reference ID (it
 will be split into 10 12-bit values). The extension fields described
 in this section are used to exchange sets of reference IDs in order
 to detect synchronization loops, i.e. when a client is synchronizing
 (directly or indirectly) to one of its own clients.

 As each client can be synchronized to an unlimited number of servers
 (and there can be up to 15 strata of servers), the reference IDs are
 exchanged as a Bloom filter [Bloom] instead of a list to limit the
 amount of data that needs to be exchanged.

 The Bloom filter is an array of 4096 bits. When empty, all bits are
 zero. To add a reference ID to the filter, the 120-bit value of the
 reference ID is split into 10 12-bit values and the bits of the array
 at the 10 positions given by the 12-bit values are set to one.

 A server maintains a copy of the filter for each server it is using
 as an NTP client. The filter provided by the server to clients is
 the union of the filters (using the bitwise OR operation) of the
 server’s sources selected for synchronization and the server’s own
 reference ID.

 If the server uses a previous version of NTP for some of its sources,
 the reference IDs added to the filter are generated from their IP
 addresses as the first 120 bits of the MD5 [RFC1321] sum of the
 address.

 A client checking whether the server’s set of reference IDs contains
 the client’s own reference ID checks whether the bits at the 10
 positions corresponding to the 12-bit values from the reference ID
 are all set to one.

 When a client which serves time to other clients detects a
 synchronization loop with one of its servers, it SHOULD stop using
 the server for synchronization. When the client’s reference ID is no
 longer detected in the server’s filter, it SHOULD wait for a random
 number of polling intervals (e.g. between 0 and 4) before selecting
 the server again. The random delay helps with stabilization of the
 selection in longer loops.

Lichvar Expires 21 April 2024 [Page 11]

Internet-Draft Network Time Protocol Version 5 October 2023

 False positives are possible. The probability of a collision grows
 with the number of reference IDs in the filter. With 26 reference
 IDs it is about 1e-12. With 118 IDs it is about 1e-6. The client
 MAY avoid selecting a server which has too many bits set in the
 filter (e.g. more than half) to reduce the probability of the
 collision for its own clients. A client which detected a
 synchronization loop MAY change its own reference ID to limit the
 duration of the potential collision.

 The filter can be exchanged as a single 512-octet array, or it can be
 exchanged in smaller chunks over multiple NTP messages, making them
 shorter, but delaying the detection of the synchronization loop.

 The request extension field specifies the offset of the requested
 chunk in the filter as a number of octets. The requested length of
 the chunk is given by the length of the extension field. The
 response extension field MUST have the same length as the request
 extension field. If the request contains an invalid offset, the
 extension field MUST be ignored.

 The client SHOULD use requests of a constant length for the
 association to avoid adding a variation to the measured NTP delay.

 The format of the Reference IDs Request is shown in Figure 3.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = [[TBD]] (draft 0xF503) | Length |
 +-+
 | Offset | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 . .
 . Padding (variable) .
 . .
 +-+

 Figure 3: Format of Reference IDs Request Extension Field

 The format of the Reference IDs Response is shown in Figure 4.

Lichvar Expires 21 April 2024 [Page 12]

Internet-Draft Network Time Protocol Version 5 October 2023

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = [[TBD]] (draft 0xF504) | Length |
 +-+
 . .
 . Bloom filter chunk (variable) .
 . .
 +-+

 Figure 4: Format of Reference IDs Response Extension Field

 These fields MUST be supported on servers which can be synchronized
 to other NTP servers (i.e. they can be in a synchronization loop).

5.5. Server Information Extension Field

 This field provides clients with information about which NTP versions
 are supported by the server, i.e. whether it can respond to requests
 conforming to the specific version. It contains a 16-bit field with
 flags indicating support for NTP versions in the range of 1 to 16,
 where the least significant bit corresponds to the version 1. The
 extension field has a fixed length of 8 octets. In requests, all
 data fields of the extension are 0.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = [[TBD]] (draft 0xF505) | Length |
 +-+
 | Supported NTP versions | Reserved |
 +-+

 Figure 5: Format of Server Information Extension Field

 This field MUST be supported on servers.

5.6. Correction Extension Field

 Processing and queueing delays in network switches and routers may be
 a significant source of jitter and asymmetry in network delay, which
 has a negative impact on accuracy and stability of clocks
 synchronized by NTP. A solution to this problem is defined in the
 Precision Time Protocol (PTP) [IEEE1588], which is a different
 protocol for synchronization of clocks in networks. In PTP a special
 type of switch or router, called a Transparent Clock (TC), updates a
 correction field in PTP messages to account for the time messages
 spend in the TC. This is accomplished by timestamping the message at

Lichvar Expires 21 April 2024 [Page 13]

Internet-Draft Network Time Protocol Version 5 October 2023

 the ingress and egress ports, taking the difference to determine time
 in the TC and adding this to the Delay Correction. Clients can
 account for the accumulated Delay Correction to determine a more
 accurate clock offset.

 The NTPv5 Delay Correction has the same format as the PTP
 correctionField to make it easier for manufacturers of switches and
 routers to implement NTP corrections. The format of the Correction
 Extension Field is shown in Figure 6.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = [[TBD]] (draft 0xF506) | Length |
 +-+
 | |
 + Origin Correction +
 | |
 +-+
 | Origin Path ID | Reserved |
 +-+
 | |
 + Delay Correction +
 | |
 +-+
 | Delay Path ID | Checksum Complement |
 +-+

 Figure 6: Format of Correction Extension Field

 Field Type
 The type which identifies the Correction extension field (value
 TBD).

 Length
 The length of the extension field, which is 28 octets.

 Origin Correction
 A field which contains a copy of the accumulated delay correction
 from the request packet in the NTP exchange.

 Origin Path ID
 A field which contains a copy of the final path ID from the
 request packet in the NTP exchange.

 Reserved
 16 bit reserved for future specification by the IETF. Transmit
 with all zeros.

Lichvar Expires 21 April 2024 [Page 14]

Internet-Draft Network Time Protocol Version 5 October 2023

 Delay Correction
 A signed fixed-point number of nanoseconds with 48 integer bits
 and 16 binary fractional bits, which represents the current
 correction of the network delay that has accumulated for this
 packet on the path from the source to the destination. The format
 of this field is identical to the PTP correctionField.

 Path ID
 A 16-bit identification number of the path where the delay
 correction was updated.

 Checksum Complement
 A field which can be modified in order to keep the UDP checksum of
 the packet valid. This allows the UDP checksum to be transmitted
 before the Correction Field is received and modified. The same
 field is described in RFC 7821 [RFC7821].

 A correction capable client system SHALL transmit the request with
 the Origin Correction, Origin ID, Delay Correction and Path ID fields
 filled with all zeros.

 Network nodes, such as switches and routers, that are capable of NTP
 corrections SHALL add the difference between the beginning of an NTP
 message retransmission and the end of the message reception to the
 received Delay Correction value, and update this field. Note that
 this time difference might be negative, for example in a cut-through
 switch. If the packet is transmitted at the same speed as it was
 received and the length of the packet does not change (e.g. due to
 adding or removing a VLAN tag), the beginning and end of the interval
 may correspond to any point of the reception and transmission as long
 as it is consistent for all forwarded packets of the same length. If
 the transmission speed or length of the packet is different, the
 beginning and end of the interval SHOULD correspond to the end of the
 reception and beginning of the transmission respectively. Both
 timestamps MUST be based on the same clock. This clock does not need
 to be synchronized as long as the frequency is accurate enough such
 that resulting time difference estimation errors are acceptable to
 the precision required by the application. The correction field is
 updated before or during the transmission of the message. It is a
 one-step transparent clock in the PTP terminology.

 If a network node updates the delay correction, it SHOULD also add
 the identification numbers of the incoming and outgoing port to the
 path ID. Path ID values can be used by clients to determine if the
 ntp request and response messages are likely to have traversed the
 same network path.

Lichvar Expires 21 April 2024 [Page 15]

Internet-Draft Network Time Protocol Version 5 October 2023

 If a network node modified any field of the extension field, it MUST
 update the checksum complement field in order to keep the current UDP
 checksum valid, or update the UDP checksum itself.

 The server SHALL write the received Delay Correction value in the
 origin correction field of the response message, and the received
 path ID value in the origin ID field. The server SHALL set the Delay
 Correction field and Path ID fields to all zeros

5.7. Reference Timestamp Extension Field

 This field contains the time of the last update of the clock. It has
 a fixed length of 12 octets. In requests, that timestamp is always
 0.

 (Is this really needed? It was mostly unused in NTPv4.)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = [[TBD]] (draft 0xF507) | Length |
 +-+
 | |
 | Reference Timestamp (64) |
 | |
 +-+

 Figure 7: Format of Reference Timestamp Extension Field

5.8. Monotonic Receive Timestamp Extension Field

 When a clock is synchronized to a time source, there is a compromise
 between time (phase) accuracy and frequency accuracy, because the
 frequency of the clock has to be adjusted to correct time errors that
 accumulate due to the frequency error (e.g. caused by changes in the
 temperature of the crystal). Faster corrections of time can minimize
 the time error, but increase the frequency error, which transfers to
 clients using that clock as a time source and increases their
 frequency and time errors. This issue can be avoided by transferring
 time and frequency separately using different clocks.

 The Monotonic Receive Timestamp Extension Field contains an extra
 receive timestamp with a 32-bit epoch ID captured by a clock which
 does not have corrected phase and can better transfer frequency than
 the clock which captures the receive and transmit timestamps in the
 header. The extension field has a constant length of 16 octets. In
 requests, the counter and timestamp are always 0.

Lichvar Expires 21 April 2024 [Page 16]

Internet-Draft Network Time Protocol Version 5 October 2023

 The epoch ID is a random number which is changed when frequency
 transfer needs to be restarted, e.g. due to a step of the clock.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = [[TBD]] (draft 0xF508) | Length |
 +-+
 | Epoch ID |
 +-+
 | |
 | Monotonic Receive Timestamp (64) |
 | |
 +-+

 Figure 8: Format of Monotonic Receive Timestamp Extension Field

 The client can determine the frequency-transfer offset from the time-
 transfer offset and difference between the two receive timestamps in
 the response. It can use the frequency-transfer offset to better
 control the frequency of its clock, avoiding the frequency error in
 the server’s time-transfer clock.

5.9. Secondary Receive Timestamp Extension Field

 This extension field provides an additional receive timestamp of the
 client request in a selected timescale. It enables the client to get
 the same receive timestamp in different timescales in order to
 calculate the current offset between the timescales.

 In requests, the Timescale field selects the requested timescale.
 The other data fields in the extension field MUST be set to 0.

 The Timescale, Era, and Secondary Receive Timestamp fields in a
 response have the same meaning as the Timescale, Era, and Receive
 Timestamp fields in the header respectively.

 If the server does not support the requested timescale, it MUST
 ignore the extension field in the request. If the server supports
 the timescale, but does not have a reliable timestamp (e.g. due to
 being close to a leap second), it SHOULD set the timestamp field to
 0.

 The server MAY provide in this extension field timestamps in
 timescales which it does not provide in the header, e.g. it can
 provide UTC in addition to leap-smeared UTC to enable its clients to
 measure the current smearing offset.

Lichvar Expires 21 April 2024 [Page 17]

Internet-Draft Network Time Protocol Version 5 October 2023

 A request MAY contain multiple instances of this extension field, but
 each timescale MUST be requested at most once, not counting the
 timescale in the header. The server SHOULD include in its response
 timestamps in all timescales it supports.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = [[TBD]] (draft 0xF509) | Length |
 +-+
 | Timescale | Era | Reserved |
 +-+
 | |
 | Secondary Receive Timestamp (64) |
 | |
 +-+

 Figure 9: Format of Secondary Receive Timestamp Extension Field

6. Measurement Modes

 An NTPv5 client needs four timestamps to measure the offset and delay
 of its clock relative to the server’s clock:

 1. T1 - client’s transmit timestamp of a request

 2. T2 - server’s receive timestamp of the request

 3. T3 - server’s transmit timestamp of a response

 4. T4 - client’s receive timestamp of the response

 The offset, delay and dispersion are calculated as:

 * offset = ((T2 + T3) - (T4 + T1)) / 2

 * delay = |(T4 - T1) - (T3 - T2)|

 * dispersion = |T4 - T1| * DR

 where

 * T1, T2, T3, T4 are the receive and transmit timestamps of a
 request and response

 * DR is the client’s dispersion rate

Lichvar Expires 21 April 2024 [Page 18]

Internet-Draft Network Time Protocol Version 5 October 2023

 If the Correction Extension Field is used and the corrections are
 known for both the request and response, a corrected offset and delay
 is calculated:

 * offset_c = offset + (Cd - Co) / 2

 * delay_c = delay - (Cd + Co - Drx - Dtx) * (1 - FC)|

 where

 * Co is the Origin Correction from the response to the request
 corresponding to timestamps T1 and T2

 * Cd is the Delay Correction from the response corresponding to
 timestamps T3 and T4

 * FC is the maximum expected frequency error of devices providing
 the delay corrections (e.g. 100 ppm)

 * Drx is the time it took to receive the frame containing the
 response corresponding to T3 and T4

 * Dtx is the time it took to transmit the frame containing the
 request corresponding to T1 and T2. If unknown, it SHOULD be set
 to Drx.

 The corrected offset and delay MUST NOT be accepted if any of
 delay_c, Co and Cr is negative. The uncorrected delay MUST always be
 used for calculation of root delay.

 The client can make measurements in the basic mode, or interleaved
 mode if supported on the server. In the basic mode, the transmit
 timestamp in the server response corresponds to the message which
 contains the timestamp itself. In the interleaved mode it
 corresponds to a previous response identified by the server cookie.
 The interleaved mode enables the server to provide the client with a
 more accurate transmit timestamp which is available only after the
 response was formed or sent.

 An example of cookies and timestamps in an NTPv5 exchange using the
 basic mode is shown in Figure 10.

Lichvar Expires 21 April 2024 [Page 19]

Internet-Draft Network Time Protocol Version 5 October 2023

 Server t2 t3 t6 t7 t10 t11
 -----+----+----------------+----+----------------+----+-----
 / \ / \ / \
 Client / \ / \ / \
 --+----------+----------+----------+----------+----------+--
 t1 t4 t5 t8 t9 t12

 +----+ +----+ +----+ +----+ +----+ +----+
 SC | 0 | | s1 | | 0 | | s2 | | 0 | | s3 |
 CC | c1 | | c1 | | c2 | | c2 | | c3 | | c3 |
 Rx | 0 | | t2 | | 0 | | t6 | | 0 | |t10 |
 Tx | 0 | | t3 | | 0 | | t7 | | 0 | |t11 |
 +----+ +----+ +----+ +----+ +----+ +----+

 Figure 10: Cookies and timestamps in basic mode

 From the three exchanges in this example, the client would use the
 the following sets of timestamps:

 * (t1, t2, t3, t4)

 * (t5, t6, t7, t8)

 * (t9, t10, t11, t12)

 For NTPv4, the interleaved mode is described in NTP Interleaved Modes
 [I-D.ietf-ntp-interleaved-modes]. The difference between the NTPv5
 and NTPv4 interleaved modes is that in NTPv5 it is enabled with a
 flag and the previous transmit timestamp on the server is identified
 by the server cookie instead of the receive timestamp.

 An example of an NTPv5 exchange using the interleaved mode is shown
 in Figure 11. The messages in the basic and interleaved mode are
 indicated with B and I respectively. The timestamps t3’ and t11’
 correspond to the same transmissions as t3 and t11, but they may be
 less accurate (e.g. due to being captured in software before the
 transmission). The first exchange is in the basic mode followed by a
 second exchange in the interleaved mode. For the third exchange, the
 client request is in the interleaved mode, but the server response is
 in the basic mode, because the server no longer had the timestamp t7
 (e.g. it was dropped to save timestamps for other clients using the
 interleaved mode).

Lichvar Expires 21 April 2024 [Page 20]

Internet-Draft Network Time Protocol Version 5 October 2023

 Server t2 t3 t6 t7 t10 t11
 -----+----+----------------+----+----------------+----+-----
 / \ / \ / \
 Client / \ / \ / \
 --+----------+----------+----------+----------+----------+--
 t1 t4 t5 t8 t9 t12

 Mode: B B I I I B
 +----+ +----+ +----+ +----+ +----+ +----+
 SC | 0 | | s1 | | s1 | | s2 | | s2 | | s3 |
 CC | c1 | | c1 | | c2 | | c2 | | c3 | | c3 |
 Rx | 0 | | t2 | | 0 | | t6 | | 0 | |t10 |
 Tx | 0 | | t3’| | 0 | | t3 | | 0 | |t11’|
 +----+ +----+ +----+ +----+ +----+ +----+

 Figure 11: Cookies and timestamps in interleaved mode

 From the three exchanges in this example, the client would use the
 following sets of timestamps:

 * (t1, t2, t3’, t4)

 * (t1, t2, t3, t4) or (t5, t6, t3, t4)

 * (t9, t10, t11’, t12)

7. Client Operation

 An NTPv5 client can use one or multiple servers. It has a separate
 association with each server. It makes periodic measurements of its
 offset and delay to the server. It can filter the measurements and
 compare measurements from different servers to select and combine the
 best servers for synchronization. It can adjust its clock in order
 to minimize its offset and keep the clock synchronized. These
 algorithms are not specified in this document.

 The polling interval can be adjusted for the network conditions and
 stability of the clock. When polling a public server on Internet,
 the client SHOULD use a polling interval of at least 64 seconds,
 increasing in normal conditions up to at least 1024 seconds to avoid
 excessive load on the server in case the implementation is used on a
 very large number of systems.

 Each successful measurement provides the client with an offset, delay
 and dispersion. When combined with the server’s root delay and
 dispersion, it gives the client an estimate of the maximum error.

 On each poll, the client:

Lichvar Expires 21 April 2024 [Page 21]

Internet-Draft Network Time Protocol Version 5 October 2023

 1. Generates a new random cookie.

 2. Formats a request with necessary extension fields and the fields
 in the header all zero except:

 * Version is set to 5.

 * Mode is set to 3.

 * Scale is set to the timescale in which the client wants to
 operate.

 * Poll is set to the rounded log2 value of the current client’s
 polling interval in seconds.

 * Flags are set according to the requested mode. The
 interleaved mode flag requests the server to save the transmit
 timestamp of the response and provide the transmit timestamp
 of a previous response corresponding to the server cookie (if
 not zero).

 * Server cookie is set only in the interleaved mode. It is set
 to the server cookie from the last valid response, or zero if
 no such response was received yet or the transmit timestamp of
 that response would no longer be useful to the client (e.g.
 after missing too many responses).

 * Client cookie is set to the newly generated cookie.

 3. Sends the request to the server to the UDP port 123 and captures
 a transmit timestamp for the packet.

 4. Waits for a valid response from the server and captures a receive
 timestamp. A valid response has version 5, mode 4, client cookie
 equal to the cookie from the request, and passes authentication
 if enabled. The client MUST ignore all invalid responses and
 accept at most one valid response.

 5. Checks whether the response is usable for synchronization of the
 clock. Such a response has a leap indicator not equal to 3,
 stratum between 0 and 16, root delay and dispersion both smaller
 than a specific value, e.g. 16 seconds, and timescale equal to
 the requested timescale. If the response is in a different
 timescale, the client can switch to the provided timescale,
 convert the timestamps if the offset between the timescales is
 known from the Secondary Receive Timestamp Extension Field or
 other sources, or ignore the response.

Lichvar Expires 21 April 2024 [Page 22]

Internet-Draft Network Time Protocol Version 5 October 2023

 6. Saves the server’s receive and transmit timestamps. If the
 client internally counts seconds using a type wider than 32 bits,
 it SHOULD expand the timestamps with the provided NTP era.

 7. Calculates the offset, delay, and dispersion as specified in
 Measurement Modes (Section 6).

 A client which operates as a server for other clients MUST include
 the Reference IDs Request Extension Field in its requests in order to
 track reference IDs of its sources. If the server’s set of reference
 IDs contains the client’s own reference ID, it SHOULD not select the
 server for synchronization to avoid a synchronization loop. If the
 client is requesting the reference IDs in multiple chunks, it SHOULD
 NOT select the server for synchronization until it received the whole
 set.

 A client which uses multiple servers MUST be able to handle servers
 providing timestamps in different timescales. It can ignore servers
 not using the most common or preferred timescale, or convert them to
 a common timescale if it knows the offsets between them.

 If the client synchronizes its clock to a leap-smeared timescale, it
 MUST NOT apply leap seconds and it SHOULD provide the same timescale
 to its own clients if it is a server.

 The client SHOULD periodically (e.g. every two weeks) refresh IP
 addresses of all servers specified by hostname to limit the amount of
 traffic that migrated or decommissioned servers will receive from
 long-running clients.

8. Server Operation

 A server receives requests on the UDP port 123. The server MUST
 support measurements in the basic mode. It MAY support the
 interleaved mode.

 For the basic mode the server does not need to keep any client-
 specific state. For the interleaved mode it needs to save transmit
 timestamps and be able to identify them by a cookie.

 The server maintains its leap indicator, stratum, root delay, and
 root dispersion:

 * Leap indicator MUST be 3 if the clock is not synchronized or its
 maximum error cannot be estimated with the root delay and
 dispersion. Otherwise, it MUST be 0, 1, 2, depending on whether a
 leap second is pending in the next 14 days and, if it is, whether
 it will be inserted or deleted.

Lichvar Expires 21 April 2024 [Page 23]

Internet-Draft Network Time Protocol Version 5 October 2023

 * Stratum SHOULD be one larger than stratum of the best server it
 uses for its own synchronization.

 * Root delay SHOULD be the best server’s root delay in addition to
 the measured delay to the server.

 * Root dispersion SHOULD be the best server’s root dispersion in
 addition to an estimate of the maximum drift of its own clock
 since the last update of the clock.

 The server has a randomly generated 120-bit reference ID. It MUST
 track reference IDs of its servers in order to be able to respond
 with a Reference IDs Response Extension Field.

 For each received request, the server:

 1. Captures a receive timestamp.

 2. Checks the version in the request. If it is not equal to 5, it
 MUST either drop the request, or handle it according to the
 specification corresponding to the protocol version.

 3. Drops the request if the format is not valid, mode is not 3, or
 authentication fails with the MAC Extension Field or another
 authenticator which does not have a specified response for failed
 authentication. The server MUST ignore unknown extension fields.

 4. Server forms a response with requested extension fields and sets
 the fields in the header as follows:

 * Leap Indicator, Stratum, Root delay, and Root dispersion, are
 set to the current server’s values.

 * Version is set to 5.

 * Scale is set to the client’s requested timescale if it is
 supported by the server. If not, the server SHOULD respond in
 any timescale it supports.

 * The flags are set as follows:

 Unknown leap is set if the server does not know if a leap
 second is pending in the next 14 days, i.e. it has no
 source providing information about leap seconds.

 Interleaved mode is set if the interleaved mode is

Lichvar Expires 21 April 2024 [Page 24]

Internet-Draft Network Time Protocol Version 5 October 2023

 implemented, was requested, and a response in the
 interleaved mode is possible (i.e. a transmit timestamp is
 associated with the server cookie).

 * Era is set to the NTP era of the receive timestamp.

 * Server Cookie is set when the interleaved mode is requested
 and it is supported by the server, even if the response cannot
 be in the requested mode due to the request having an unknown
 or zero server cookie. The cookie identifies a more accurate
 transmit timestamp of the response, which can be retrieved by
 the client later with another request. The cookie generation
 is implementation-specific.

 * Client Cookie is set to the Client Cookie from the request.

 * Receive Timestamp is set to the server’s receive timestamp of
 the request.

 * Transmit Timestamp is set to a value which depends on the
 measurement mode. In the basic mode it is the server’s
 current time when the message is formed. In the interleaved
 mode it is the transmit timestamp of the previous response
 identified by the server cookie in the request, captured at
 some point after the message was formed.

 5. Adds the Padding Extension field if necessary to make the length
 of the response equal to the length of the request.

 6. Drops the response if it is longer than the request to prevent
 traffic amplification.

 7. Sends the response.

 8. Saves the transmit timestamp and server cookie, if the
 interleaved mode was requested and is supported by the server.

9. Network Time Security with NTPv5

 The Network Time Security [RFC8915] mechanism uses the NTS-KE
 protocol to establish keys and negotiate the next protocol. NTPv5 is
 added as a new protocol to the Network Time Security Next Protocols
 Registry, which can be negotiated by NTPv5 clients and servers
 supporting NTS.

 No new NTS-KE records are specified for NTPv5. The records that were
 specified for NTPv4 (i.e. NTPv4 New Cookie, NTPv4 Server
 Negotiation, and NTPv4 Port Negotiation) are reused for NTPv5.

Lichvar Expires 21 April 2024 [Page 25]

Internet-Draft Network Time Protocol Version 5 October 2023

 The NTS extension fields specified for NTPv4 are compatible with
 NTPv5. No new extension fields are specified.

10. NTPv5 Negotiation in NTPv4

 NTPv5 messages are not compatible with NTPv4, even if they do not
 contain any extension fields. Some widely used NTPv4 implementations
 are known to ignore the version and interpret all requests as NTPv4.
 Their responses to NTPv5 requests have a zero client cookie, which
 means they fail the client’s validation and are ignored.

 The implementations are also known to not respond to requests with an
 unknown extension field, which prevents an NTPv4 extension field to
 be specified for NTPv5 negotiation. Instead, the reference timestamp
 field in the NTPv4 header is reused for this purpose.

 An NTP server which supports both NTPv4 and NTPv5 SHOULD check the
 reference timestamp in all NTPv4 client requests. If the reference
 timestamp contains the value 0x4E5450354E545035 ("NTP5NTP5" in
 ASCII), it SHOULD respond with the same reference timestamp to
 indicate it supports NTPv5.

 An NTP client which supports both NTPv4 and NTPv5, does not use NTS,
 and is not configured to use a particular NTP version, SHOULD start
 with NTPv4 and set the reference timestamp to 0x4e5450354e545035. If
 the server responds with the same reference timestamp, the client
 SHOULD switch to NTPv5. If no valid response is received for a
 number of requests (e.g. 8), the client SHOULD switch back to NTPv4.

11. Acknowledgements

 Some ideas were taken from a different NTPv5 design proposed by
 Daniel Franke.

 The author would like to thank Doug Arnold and David Venhoek for
 their contributions and Dan Drown, Watson Ladd, Hal Murray, Kurt
 Roeckx, and Ulrich Windl for their suggestions and comments.

12. IANA Considerations

 IANA is requested to create a new registry for NTPv5 Extension Field
 Types with initial entries including all entries from the NTPv4
 Extension Field Types Registry [RFC5905] and the following
 NTPv5-specific entries:

Lichvar Expires 21 April 2024 [Page 26]

Internet-Draft Network Time Protocol Version 5 October 2023

 +============================+===================+===========+
 | Field Type | Meaning | Reference |
 +============================+===================+===========+
 | [[TBD]], selected by IANA | Padding | [[this |
 | from the IETF Review range | | memo]] |
 +----------------------------+-------------------+-----------+
 | [[TBD]], selected by IANA | MAC | [[this |
 | from the IETF Review range | | memo]] |
 +----------------------------+-------------------+-----------+
 | [[TBD]], selected by IANA | Reference IDs | [[this |
 | from the IETF Review range | Request | memo]] |
 +----------------------------+-------------------+-----------+
 | [[TBD]], selected by IANA | Reference IDs | [[this |
 | from the IETF Review range | Response | memo]] |
 +----------------------------+-------------------+-----------+
 | [[TBD]], selected by IANA | Server | [[this |
 | from the IETF Review range | Information | memo]] |
 +----------------------------+-------------------+-----------+
 | [[TBD]], selected by IANA | Correction | [[this |
 | from the IETF Review range | | memo]] |
 +----------------------------+-------------------+-----------+
 | [[TBD]], selected by IANA | Reference | [[this |
 | from the IETF Review range | Timestamp | memo]] |
 +----------------------------+-------------------+-----------+
 | [[TBD]], selected by IANA | Monotonic Receive | [[this |
 | from the IETF Review range | Timestamp | memo]] |
 +----------------------------+-------------------+-----------+
 | [[TBD]], selected by IANA | Secondary Receive | [[this |
 | from the IETF Review range | Timestamp | memo]] |
 +----------------------------+-------------------+-----------+

 Table 1

 IANA is requested to allocate the following protocol in the Network
 Time Security Next Protocols Registry [RFC8915]:

 +============================+=======================+===========+
 | Protocol ID | Protocol Name | Reference |
 +============================+=======================+===========+
 | [[TBD]], selected by IANA | Network Time Protocol | [[this |
 | from the IETF Review range | version 5 (NTPv5) | memo]] |
 +----------------------------+-----------------------+-----------+

 Table 2

Lichvar Expires 21 April 2024 [Page 27]

Internet-Draft Network Time Protocol Version 5 October 2023

13. Security Considerations

14. References

14.1. Normative References

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <https://www.rfc-editor.org/info/rfc1321>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8573] Malhotra, A. and S. Goldberg, "Message Authentication Code
 for the Network Time Protocol", RFC 8573,
 DOI 10.17487/RFC8573, June 2019,
 <https://www.rfc-editor.org/info/rfc8573>.

14.2. Informative References

 [Bloom] Bloom, B. H., "Space/Time Trade-Offs in Hash Coding with
 Allowable Errors", June 1970,
 <https://doi.org/10.1145/362686.362692>.

 [I-D.ietf-ntp-interleaved-modes]
 Lichvar, M. and A. Malhotra, "NTP Interleaved Modes", Work
 in Progress, Internet-Draft, draft-ietf-ntp-interleaved-
 modes-07, 18 October 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-ntp-
 interleaved-modes-07>.

 [IEEE1588] Institute of Electrical and Electronics Engineers, "IEEE
 std. 1588-2019, "IEEE Standard for a Precision Clock
 Synchronization for Networked Measurement and Control
 Systems."", November 2019, <https://www.ieee.org>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

Lichvar Expires 21 April 2024 [Page 28]

Internet-Draft Network Time Protocol Version 5 October 2023

 [RFC7821] Mizrahi, T., "UDP Checksum Complement in the Network Time
 Protocol (NTP)", RFC 7821, DOI 10.17487/RFC7821, March
 2016, <https://www.rfc-editor.org/info/rfc7821>.

 [RFC8915] Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", RFC 8915, DOI 10.17487/RFC8915, September 2020,
 <https://www.rfc-editor.org/info/rfc8915>.

Author’s Address

 Miroslav Lichvar
 Red Hat
 Purkynova 115
 612 00 Brno
 Czech Republic
 Email: mlichvar@redhat.com

Lichvar Expires 21 April 2024 [Page 29]

Network Time Protocol J. Gruessing

Internet-Draft Nederlandse Publieke Omroep

Intended status: Informational 25 January 2024

Expires: 28 July 2024

 NTPv5 Use Cases and Requirements

 draft-ietf-ntp-ntpv5-requirements-04

Abstract

 This document describes the use cases, requirements, and

 considerations that should be factored in the design of a successor

 protocol to supersede version 4 of the NTP protocol presently

 referred to as NTP version 5 ("NTPv5"). It aims to define what

 capabilities and requirements such a protocol possesses, informing

 the design of the protocol in addition to capturing any working group

 consensus made in development.

Note to Readers

 RFC Editor: please remove this section before publication

 Source code and issues for this draft can be found at

 https://github.com/fiestajetsam/draft-gruessing-ntp-

 ntpv5-requirements (https://github.com/fiestajetsam/draft-gruessing-

 ntp-ntpv5-requirements).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 28 July 2024.

Gruessing Expires 28 July 2024 [Page 1]

Internet-Draft NTPv5 Use Cases and Requirements January 2024

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Notational Conventions 3

 2. Use Cases and Existing Deployments of NTP 3

 3. Threat Analysis and Modeling 4

 3.1. Denial of Service and Amplification 4

 3.2. Accuracy Degradation 4

 3.3. False Time . 5

 4. Requirements . 5

 4.1. Resource Management 5

 4.2. Data Minimisation . 6

 4.3. Algorithms . 6

 4.4. Timescales . 7

 4.5. Leap seconds . 7

 4.6. Backwards Compatibility with NTS and NTPv4 7

 4.6.1. Dependent Specifications 8

 4.7. Extensibility . 8

 4.8. Security . 8

 5. Non-requirements . 9

 5.1. Server Malfeasance Detection 9

 5.2. Additional Time Information and Metadata 9

 5.3. Remote Monitoring Support 9

 6. IANA Considerations . 9

 7. Security Considerations 9

 8. References . 9

 8.1. Normative References 9

 8.2. Informative References 10

 Appendix A. Acknowledgements 11

 Author’s Address . 11

Gruessing Expires 28 July 2024 [Page 2]

Internet-Draft NTPv5 Use Cases and Requirements January 2024

1. Introduction

 NTP version 4 [RFC5905] has seen active use for over a decade, and

 within this time period the protocol has not only been extended to

 support new requirements but has also fallen victim to

 vulnerabilities that have been used for distributed denial of service

 (DDoS) amplification attacks. In order to advance the protocol and

 address these known issues alongside add capabilities for future

 usage this document defines the current known and applicable use

 cases in existing NTPv4 deployments and defines requirements for the

 future.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 Use of time specific terminology used in this document may further be

 specified in [RFC7384] or NTP specific terminology and concepts

 within [RFC5905].

2. Use Cases and Existing Deployments of NTP

 As a protocol, NTP is used synchronise large amounts of computers via

 both private networks and the open internet, and there are several

 common scenarios for existing NTPv4 deployments: publicly accessible

 NTP services such as the NTP Pool [ntppool] are used to offer clock

 synchronisation for end users and embedded devices, ISP-provided

 servers are used to synchronise devices such as customer-premises

 equipment. Depending on the network and path these deployments may

 be affected by variable latency as well as throttling or blocking by

 providers.

 Data centres and cloud computing providers have also deployed and

 offer NTP services both for internal use and for customers,

 particularly where the network is unable to offer or does not require

 the capabilities other protocols can provide, and where there may

 already be familiarity with NTP. As these deployments are less

 likely to be constrained by network latency or power, the potential

 for higher levels of accuracy and precision within the bounds of the

 protocol are possible, particularly through the use of modifications

 such as the use of bespoke algorithms.

Gruessing Expires 28 July 2024 [Page 3]

Internet-Draft NTPv5 Use Cases and Requirements January 2024

3. Threat Analysis and Modeling

 A considerable motivation towards a new version of the protocol is

 the inclusion of security primitives such as authentication and

 encryption to bring the protocol in-line with current best practices

 for protocol design.

 There are numerous potential threats to a deployment or network

 handling traffic time synchronisation protocols that [RFC7384]

 section 3 describes, which can be summarised into three basic groups:

 Denial of Service (DoS), degradation of accuracy, and false time, all

 of which in various forms apply to NTP. However, not all threats

 apply specifically to NTP directly, most notable attacks on time

 sources (section 3.2.10) and L2/L3 DoS Attacks (section 3.2.7) as

 both are outside the scope of the protocol, and the protocol itself

 cannot provide much in the way of mitigations.

3.1. Denial of Service and Amplification

 NTPv4 has previously suffered from DDoS amplification attacks using a

 combination of IP address spoofing and private mode commands used in

 some NTP implementations, leading to an attacker being able to direct

 very large volumes of traffic to a victim IP address. Current

 mitigations are disabling private mode commands susceptible to

 attacks and encouraging network operators to implement BCP 38

 [RFC2827] as well as source address validation where possible.

 The NTPv5 protocol specification should be designed with current best

 practices for UDP based protocols in mind [RFC8085]. It should

 reduce the potential amplification factors in request/response

 payload sizes [drdos-amplification] through the use of padding of

 payload data, in addition to restricting command and diagnostic modes

 which could be exploited.

3.2. Accuracy Degradation

 The risk that an on-path attacker can systemically delay packets

 between a client and server exists in all time protocols operating on

 insecure networks and its mitigations within the protocol are limited

 for a clock which is not yet synchronised. Increased path diversity

 and protocol support for synchronisation across multiple

 heterogeneous sources are likely the most effective mitigations.

Gruessing Expires 28 July 2024 [Page 4]

Internet-Draft NTPv5 Use Cases and Requirements January 2024

3.3. False Time

 Conversely, on-path attackers who can manipulate timestamps could

 also speed up a client’s clock resulting in drift-related

 malfunctions and errors such as premature expiration of certificates

 on affected hosts. An attacker may also manipulate other data in

 flight to disrupt service and cause de-synchronisation. Additionally

 attacks via replaying previously transmitted packets can also delay

 or confuse receiving clocks, impacting ongoing synchronisation.

 Message authentication with regular key rotation should mitigate all

 of these cases; however deployments should consider finding an

 appropriate compromise between the frequency of rotation to balance

 the window of attack and the rate of re-keying.

4. Requirements

 At a high level, NTPv5 should be a protocol that is capable of

 operating in local networks and over public internet connections

 where packet loss, delay, and filtering may occur. It should provide

 both basic time information and synchronisation.

4.1. Resource Management

 Historically there have been many documented instances of NTP servers

 receiving ongoing large volumes of unauthorised traffic [ntp-misuse]

 and the design of NTPv5 must ensure the risk of these can be

 minimised through the use of signalling unwanted traffic (e.g Kiss of

 Death) or easily identifiable packet formats which make rate-

 limiting, filtering, or blocking by firewalls possible.

 The protocol’s loop avoidance mechanisms SHOULD be able to use

 identifiers that change over time. Identifiers MUST NOT relate to

 network topology, in particular such mechanism should not rely on any

 FQDN, IP address or identifier tied to a public certificate used or

 owned by the server. Servers SHOULD be able to migrate and change

 any identifier used as stratum topologies or network configuration

 changes occur.

 An additional identifier mechanism MAY be considered for the purposes

 of client allow/deny lists, logging and monitoring. Such a mechanism

 when included, SHOULD be independent of any loop avoidance mechanism,

 and authenticity requirements SHOULD be considered.

Gruessing Expires 28 July 2024 [Page 5]

Internet-Draft NTPv5 Use Cases and Requirements January 2024

 The protocol MUST have the capability for servers to notify clients

 that the service is unavailable and clients MUST have clearly defined

 behaviours for honouring this signalling. In addition servers SHOULD

 be able to communicate to clients that they should reduce their query

 rate when the server is under high load or has reduced capacity.

 Clients SHOULD periodically re-establish connections with servers to

 prevent maintaining prolonged connectivity to unavailable hosts and

 give operators the ability to move traffic away from hosts in a

 timely manner.

 The protocol SHOULD have provisions for deployments where Network

 Address Translation occurs and define behaviours when NAT rebinding

 occurs. This should also not compromise any DDoS mitigation(s) that

 the protocol may define.

 Client and server protocol modes MUST be supported. Other modes such

 as symmetric and broadcast MAY be supported by the protocol but

 SHOULD NOT be required by implementers to implement. Considerations

 should be made in these modes to avoid implementation vulnerabilities

 and to protect deployments from attacks.

4.2. Data Minimisation

 To minimise ongoing use of deprecated fields and exposing identifying

 information of implementations and deployments, payload formats

 SHOULD use the least amount of fields and information where possible,

 realising that data minimisation and resource management can be at

 odds with one another. The use of extensions should be preferred

 when transmitting optional data.

4.3. Algorithms

 The use of algorithms describing functions such as clock filtering,

 selection, and clustering SHOULD have agility, allowing for

 implementations to develop and deploy new algorithms independently.

 Signalling of algorithm use or preference SHOULD NOT be transmitted

 by servers, however essential properties of the algorithm (e.g.

 precision) SHOULD be obvious.

 The working group should consider creating a separate informational

 document to describe an algorithm to assist with implementation, and

 consider adopting future documents which describe new algorithms as

 they are developed. Specifying client algorithms separately from the

 protocol will allow NTPv5 to meet the needs of applications with a

 variety of network properties and performance requirements.

Gruessing Expires 28 July 2024 [Page 6]

Internet-Draft NTPv5 Use Cases and Requirements January 2024

4.4. Timescales

 The protocol should adopt a linear, monotonic timescale as the basis

 for communicating time. The format should provide sufficient scale,

 precision, and resolution to meet or exceed NTPv4’s capabilities, and

 have a roll-over date sufficiently far into the future that the

 protocol’s complete obsolescence is likely to occur first. Ideally

 it should be similar or identical to the existing epoch and data

 model that NTPv4 defines to allow for implementations to better

 support both versions of the protocol, simplifying implementation.

 The timescale, in addition to any other time-sensitive information,

 MUST be sufficient to calculate representations of both UTC and TAI

 [TF.460-6], noting that UTC itself as the current timescale used in

 NTPv4 is neither linear nor monotonic unlike TAI. Through extensions

 the protocol SHOULD support additional timescale representations

 outside of the main specification, and all transmissions of time data

 MUST indicate the timescale in use.

4.5. Leap seconds

 Transmission of UTC leap second information MUST be included in the

 protocol in order for clients to generate a UTC representation, but

 must be transmitted as separate information to the timescale. The

 specification MUST require that servers transmit upcoming leap

 seconds greater than 24 hours in linear timescale in advance if that

 information is known by the server. If the server learns of a leap

 second less than 24 hours before an upcoming leap second event, it

 MUST start transmitting the information immediately.

 Smearing [google-smear] of leap seconds SHOULD be supported in the

 protocol, and the protocol MUST support servers transmitting

 information if they are configured to smear leap seconds and if they

 are actively doing so. Behaviours for both client and server in

 handling leap seconds MUST be part of the specification; in

 particular how clients handle multiple servers where some may use

 leap seconds and others smearing, that servers should not apply both

 leap seconds and smearing, as well as details around smearing

 timescales. Supported smearing algorithms MUST be defined or

 referenced.

4.6. Backwards Compatibility with NTS and NTPv4

 The desire for compatibility with older protocols should not prevent

 addressing deployment issues or cause ossification of the protocol

 caused by middleboxes [RFC9065].

Gruessing Expires 28 July 2024 [Page 7]

Internet-Draft NTPv5 Use Cases and Requirements January 2024

 Servers that support multiple versions of NTP MUST send a response in

 the same version as the request as the model of backwards

 compatibility. This does not preclude servers from acting as a

 client in one version of NTP and a server in another.

 Protocol ossification MUST be addressed to prevent existing NTPv4

 deployments which respond incorrectly to clients posing as NTPv5 from

 causing issues. Forward prevention of ossification (for a potential

 NTPv6 protocol in the future) should also be taken into

 consideration.

4.6.1. Dependent Specifications

 Many other documents make use of NTP’s data formats ([RFC5905]

 Section 6) for representing time, notably for media and packet

 timestamp measurements, such as SDP [RFC4566] and STAMP [RFC8762].

 Any changes to the data formats should consider the potential

 implementation complexity that may be incurred.

4.7. Extensibility

 The protocol MUST have the capability to be extended; implementations

 MUST ignore unknown extensions. Unknown extensions received from a

 lower stratum server SHALL NOT be re-transmitted towards higher

 stratum servers.

4.8. Security

 Data authentication and integrity MUST be supported by the protocol,

 with optional support for data confidentiality. Downgrade attacks by

 an in-path attacker must be mitigated. The protocol MUST define at

 least one common mechanism to ensure interoperability, but should

 also include support for different mechanisms to support different

 deployment use cases. Extensions and additional modes SHOULD also

 incorporate authentication and integrity on data which could be

 manipulated by an attacker, on-path or off-path.

 Upgrading cryptographic algorithms must be supported, allowing for

 more secure cryptographic primitives to be incorporated as they are

 developed and as attacks and vulnerabilities with incumbent

 primitives are discovered.

 Intermediate devices such as networking equipment capable of

 modifying NTP packets, for example to adjust timestamps MUST be able

 to do so without compromising authentication or confidentiality.

 Extension fields with separate authentication may be used to

 facilitate this.

Gruessing Expires 28 July 2024 [Page 8]

Internet-Draft NTPv5 Use Cases and Requirements January 2024

 Consideration must be given to how this will be incorporated into any

 applicable trust model. Downgrading attacks that could lead to an

 adversary disabling or removing encryption or authentication MUST NOT

 be possible in the design of the protocol.

5. Non-requirements

 This section covers topics that are explicitly out of scope.

5.1. Server Malfeasance Detection

 Detection and reporting of server malfeasance should remain out of

 scope as [I-D.ietf-ntp-roughtime] already provides this capability as

 a core functionality of the protocol.

5.2. Additional Time Information and Metadata

 Previous versions of NTP do not transmit additional time information

 such as time zone data or historical leap seconds, and NTPv5 should

 not explicitly add support for it by default as existing protocols

 (e.g. TZDIST [RFC7808]) already provide mechanisms to do so. This

 does not prevent however, further extensions enabling this.

5.3. Remote Monitoring Support

 Largely due to previous DDoS amplification attacks, mode 6 messages

 which have historically provided the ability for monitoring of

 servers SHOULD NOT be supported in the core of the protocol.

 However, it may be provided as a separate extension specification.

 It is likely that even with a new version of the protocol middleboxes

 may continue to block this mode in default configurations into the

 future.

6. IANA Considerations

 This document makes no requests of IANA.

7. Security Considerations

 As this document is intended to create discussion and consensus, it

 introduces no security considerations of its own.

8. References

8.1. Normative References

Gruessing Expires 28 July 2024 [Page 9]

Internet-Draft NTPv5 Use Cases and Requirements January 2024

 [I-D.ietf-ntp-roughtime]

 Malhotra, A., Langley, A., Ladd, W., and M. Dansarie,

 "Roughtime", Work in Progress, Internet-Draft, draft-ietf-

 ntp-roughtime-08, 18 October 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-ntp-

 roughtime-08>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:

 Defeating Denial of Service Attacks which employ IP Source

 Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827,

 May 2000, <https://www.rfc-editor.org/rfc/rfc2827>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

 "Network Time Protocol Version 4: Protocol and Algorithms

 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,

 <https://www.rfc-editor.org/rfc/rfc5905>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in

 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,

 October 2014, <https://www.rfc-editor.org/rfc/rfc7384>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,

 March 2017, <https://www.rfc-editor.org/rfc/rfc8085>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

8.2. Informative References

 [drdos-amplification]

 "Amplification and DRDoS Attack Defense -- A Survey and

 New Perspectives", n.d.,

 <https://arxiv.org/abs/1505.07892>.

 [google-smear]

 "Google Leap Smear", n.d.,

 <https://developers.google.com/time/smear>.

Gruessing Expires 28 July 2024 [Page 10]

Internet-Draft NTPv5 Use Cases and Requirements January 2024

 [ntp-misuse]

 "NTP server misuse and abuse", n.d.,

 <https://en.wikipedia.org/wiki/

 NTP_server_misuse_and_abuse>.

 [ntppool] "pool.ntp.org: the internet cluster of ntp servers", n.d.,

 <https://www.ntppool.org>.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session

 Description Protocol", RFC 4566, DOI 10.17487/RFC4566,

 July 2006, <https://www.rfc-editor.org/rfc/rfc4566>.

 [RFC7808] Douglass, M. and C. Daboo, "Time Zone Data Distribution

 Service", RFC 7808, DOI 10.17487/RFC7808, March 2016,

 <https://www.rfc-editor.org/rfc/rfc7808>.

 [RFC8762] Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple

 Two-Way Active Measurement Protocol", RFC 8762,

 DOI 10.17487/RFC8762, March 2020,

 <https://www.rfc-editor.org/rfc/rfc8762>.

 [RFC9065] Fairhurst, G. and C. Perkins, "Considerations around

 Transport Header Confidentiality, Network Operations, and

 the Evolution of Internet Transport Protocols", RFC 9065,

 DOI 10.17487/RFC9065, July 2021,

 <https://www.rfc-editor.org/rfc/rfc9065>.

 [TF.460-6] "Standard-frequency and time-signal emissions", n.d.,

 <https://www.itu.int/rec/R-REC-TF.460-6-200202-I/en>.

Appendix A. Acknowledgements

 The author would like to thank Doug Arnold, Hal Murray, Paul Gear,

 and David Venhoek for contributions to this document, and would like

 to acknowledge Daniel Franke, Watson Ladd, Miroslav Lichvar for their

 existing documents and ideas. The author would also like to thank

 Angelo Moriondo, Franz Karl Achard, and Malcom McLean for providing

 the author with motivation.

Author’s Address

 James Gruessing

 Nederlandse Publieke Omroep

 Netherlands

 Email: james.ietf@gmail.com

Gruessing Expires 28 July 2024 [Page 11]

Internet Engineering Task Force M. Lichvar
Internet-Draft Red Hat
Intended status: Standards Track 18 January 2024
Expires: 21 July 2024

 NTP Over PTP
 draft-ietf-ntp-over-ptp-02

Abstract

 This document specifies a transport for the Network Time Protocol
 (NTP) client-server and symmetric modes using the Precision Time
 Protocol (PTP) to enable hardware timestamping on network interface
 controllers which can timestamp only PTP messages and enable
 corrections in PTP transparent clocks.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 21 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Lichvar Expires 21 July 2024 [Page 1]

Internet-Draft NTP Over PTP January 2024

Table of Contents

 1. Introduction . 2
 1.1. Comparison with PTP 3
 1.2. Requirements Language 4
 2. PTP transport for NTP . 4
 3. Network Correction Extension Field 6
 4. Acknowledgements . 9
 5. IANA Considerations . 9
 6. Implementation Status - RFC EDITOR: REMOVE BEFORE
 PUBLICATION . 10
 6.1. chrony . 10
 7. Security Considerations 11
 8. References . 11
 8.1. Normative References 11
 8.2. Informative References 11
 Author’s Address . 12

1. Introduction

 The Precision Time Protocol (PTP) [IEEE1588] was designed for highly
 accurate synchronization of clocks in local networks. It relies on
 hardware timestamping supported in all network devices involved in
 the synchronization (e.g. network interface controllers, switches,
 and routers) to eliminate the impact of software, processing and
 queueing delays on accuracy of offset and delay measurements.

 PTP was originally designed for multicast communication. Later was
 added support for unicast messaging, which is useful in larger
 networks with partial on-path PTP support (e.g. telecom profiles
 G.8265.1 and G.8275.2).

 The Network Time Protocol [RFC5905] does not rely on hardware
 timestamping support, but implementations can use it if it is
 available to avoid the impact of software, processing and queueing
 delays, similarly to PTP. When comparing PTP with the timing modes
 of NTP, PTP is functionally closest to the NTP broadcast mode.

 An issue for NTP is hardware that can specifically timestamp only PTP
 packets. This limitation comes from a hardware design which can
 provide receive timestamps only at a limited rate instead of the
 maximum rate possible at the network link speed. To avoid missing
 receive timestamps when the interface is receiving other traffic at a
 high rate, a filter is implemented in the hardware to inspect each
 received packet and capture a timestamp only for packets that need
 it.

Lichvar Expires 21 July 2024 [Page 2]

Internet-Draft NTP Over PTP January 2024

 The hardware filter can be usually configured for specific PTP
 transport (e.g. UDP over IPv4, UDP over IPv6, 802.3) and sometimes
 even the PTP message type (e.g. sync message or delay request) to
 further reduce the timestamping rate on the server or client side in
 the case of multicast messaging, but it typically cannot be
 configured to timestamp NTP messages sent to the UDP port 123.

 Another issue for NTP is missing hardware support in network switches
 and routers. With PTP the devices operate either as boundary clocks
 or transparent clocks. Boundary clocks are analogous to NTP clients
 that work also as servers for other clients. Transparent clocks are
 much simpler. They only measure the delay in forwarding of PTP
 packets and write this delay to the correction field of either the
 packet itself (one-step mode) or a later packet in the PTP exchange
 (two-step mode). Transparent clocks are specific to the PTP delay
 mechanism used in the network, either end-to-end (E2E) or peer-to-
 peer (P2P).

 This document specifies a new transport for NTP to enable hardware
 timestamping on NICs which can timestamp only PTP messages and also
 take advantage of one-step E2E PTP unicast transparent clocks. It
 adds a new type-length-value (TLV) for PTP to contain NTP messages
 and adds a new extension field for NTP to provide clients and peers
 with the correction of their NTP requests from transparent clocks.
 The NTP broadcast mode is not supported.

 NTP over PTP does not require any PTP clocks to be present in the
 network. It does not disrupt their operation if they are present.
 If the network uses one-step E2E transparent clocks, NTP clients and
 peers can reach the same or better accuracy as PTP clocks. Hosts in
 the network can operate as PTP clocks and NTP servers, clients, or
 peers using NTP over PTP at the same time.

1.1. Comparison with PTP

 The client-server mode of NTP, even with the PTP transport, has
 multiple advantages over PTP using multicast or unicast messaging:

 * NTP is more secure. Existing security mechanisms specified for
 NTP like Network Time Security [RFC8915] are not impacted by the
 PTP transport. It is more difficult to secure PTP against delay
 attacks due to the sync message not being an immediate response to
 a client request. The PTP unicast mode allows an almost-infinite
 traffic amplification, which can be exploited for denial-of-
 service attacks and can only be limited by security mechanisms
 requiring client authentication.

Lichvar Expires 21 July 2024 [Page 3]

Internet-Draft NTP Over PTP January 2024

 * NTP is more resilient to failures. Each client can use multiple
 servers and detect failed sources in its source selection. In PTP
 a single hardware or software failure can disrupt the whole PTP
 domain. Multiple independent domains have to be used to handle
 any failure.

 * NTP is better suited for synchronization in networks which do not
 have full on-path PTP support, or where timestamping errors do not
 have a symmetric distribution (e.g. due to sensitivity to network
 load). NTP does not assume network delay is constant and the rate
 of measurements in opposite directions is symmetric. It can
 filter the measurements more effectively and is not sensitive to
 asymmetrically distributed network delays and timestamping errors.
 PTP has to measure the offset and delay separately to enable
 multicast messaging, which is needed to reduce the transmit
 timestamping rate.

 * NTP needs fewer messages to get the same number of timestamps. It
 uses less network bandwidth than PTP using unicast messaging.

 * NTP provides clients with an estimate of the maximum error of the
 clock (root distance).

 The disadvantage of NTP is transmit timestamping rate growing with
 the number of clients. A server which is limited by the hardware
 timestamping rate cannot provide a highly accurate time service to
 the same number of clients as with PTP using multicast messaging.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. PTP transport for NTP

 A new TLV is defined for PTP to contain NTP messages in the client
 (3), server (4), and symmetric modes (1 and 2). Using other NTP
 modes in the TLV is not specified. Any transport specified for PTP
 that supports unicast messaging can be used for NTP over PTP, e.g.
 UDP over IPv4 and IPv6.

 The NTP TLV is an organization-specific TLV having the following
 fields:

 * type is 0x8000 (ORGANIZATION_EXTENSION_DO_NOT_PROPAGATE)

 * lengthField is 8 + length of the NTP message

Lichvar Expires 21 July 2024 [Page 4]

Internet-Draft NTP Over PTP January 2024

 * organizationId is 00-00-5E (IANA OUI)

 * organizationSubType is [[TBD]]

 * dataField contains two zero octets for 32-bit alignment followed
 by the NTP message, which would normally be the UDP payload

 If the UDP transport is used for PTP, the UDP source and destination
 port numbers MUST be the PTP event port (319). If the client
 implemented port randomization [RFC9109], requests and/or responses
 would not get a hardware receive timestamp due to the filter matching
 only the PTP port.

 The NTP TLV MUST be included in a PTP delay request message. The
 originTimestamp field and all fields of the PTP header SHOULD be
 zero, except:

 * messageType is 1 (delay request)

 * versionPTP is 2 (minorVersionPTP is 0 for better compatibility)

 * messageLength is the length of the PTP message including the NTP
 TLV

 * domainNumber is 123

 * flagField has the unicastFlag (0x4) bit set

 * sequenceId is increased by one with each transmitted PTP message

 An NTP client or peer using the PTP transport sends NTP requests
 contained in PTP delay requests as the NTP TLV.

 An NTP server or peer receiving NTP requests over the PTP transport
 MUST check for the domainNumber of 123 and the NTP TLV. Its
 responses to these requests MUST be contained in PTP delay requests
 as the NTP TLV. It MUST NOT respond with PTP delay responses, or any
 other PTP messages.

 If a PTP clock receives an NTP-over-PTP request, it will not
 recognize the domain number and ignore the message. If it responded
 to messages in the domain (e.g. due to misconfiguration), it would
 send a delay response (to port 320 if using the UDP transport), which
 would be ignored by the client.

 Any authenticator fields included in the NTP messages MUST be
 calculated only over the NTP message following the header of the NTP
 TLV. Other data in the PTP message (outside of the NTP TLV) are not

Lichvar Expires 21 July 2024 [Page 5]

Internet-Draft NTP Over PTP January 2024

 protected. With the exception of the PTP correction field requiring
 special handling as described in the following section, the other PTP
 fields are used only for the transport of the NTP message and have no
 impact on security of NTP, similarly to the IP and UDP headers.

 Receive and transmit timestamps contained in the NTP messages SHOULD
 NOT be adjusted for the beginning of the NTP data in the PTP message.
 They SHOULD still correspond to the ending of the reception and
 beginning of the transmission of the whole frame (e.g. start frame
 delimiter in an Ethernet frame).

3. Network Correction Extension Field

 One-step E2E PTP transparent clocks modify the correction field in
 the header of the PTP delay requests containing NTP messages. To be
 able to verify and apply the corrections to an NTP measurement, the
 client or peer needs to know the correction of both the request and
 response. The correction of the response is in the PTP header of the
 message itself. The correction of the request is provided by the
 server or other peer in a new NTP extension field included in the
 response.

 The format of the Network Correction Extension Field is shown in
 Figure 1.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = [[TBD]] | Length |
 +-+
 | |
 + Network Correction (64 bits) +
 | |
 +-+
 . .
 . Padding .
 . .
 +-+

 Figure 1: Format of Network Correction Extension Field

 The length of the padding is the minimum required to make a valid
 extension field in the used version of NTP. In NTPv4 that is 16
 octets to get a 28-octet extension field following RFC 7822
 [RFC7822].

Lichvar Expires 21 July 2024 [Page 6]

Internet-Draft NTP Over PTP January 2024

 The Network Correction field in the extension field uses the 64-bit
 NTP timestamp format (resolution of about 1/4th of a nanosecond).
 The correction field in PTP header has a different format (64-bit
 nanoseconds + 16-bit fraction).

 The value of the NTP network correction is the sum of PTP corrections
 provided by transparent clocks and the time it takes to receive the
 packet (i.e. packet length including the frame check sequence divided
 by the link speed).

 The reason for not using the PTP correction alone is to avoid an
 asymmetric correction when the server and client, or peers, are
 connected to the network with different link speeds. The receive
 duration included in the NTP correction cancels out the transposition
 of PTP receive timestamp corresponding to the beginning of the
 reception to NTP receive timestamp corresponding to the end of the
 reception.

 The Figure 2 shows the NTP timestamps, transmit/receive durations,
 and processing and queuing delays included in PTP corrections for an
 NTP exchange made over two PTP transparent clocks. The link speed is
 increasing on the network path from the client to the server. The
 propagation delays in cables are not shown.

 NTP server T2 T3
 --------------------|==|----|==|--------------------
 PTP TC #2 |˜| |˜|
 |====| |====|
 PTP TC #1 |˜| |˜|
 --|========|----------------------------|========|--
 NTP client T1 T4

 PTP correction |========|˜|====|˜| |==|˜|====|˜|
 NTP correction |========|˜|====|˜|==| |==|˜|====|˜|========|

 Figure 2: PTP vs NTP Correction

 When an NTP server which supports the PTP transport receives an NTP
 request containing the Network Correction Extension Field, it SHOULD
 respond with the extension field providing the network correction of
 the client’s request. The server MUST ignore the value of the
 network correction in the request.

 An NTP client or peer which supports the PTP transport and is
 configured to use the network correction for the association SHOULD
 include the extension field in its NTP requests. In the case of a
 client, the correction value in the extension field SHOULD be always
 zero.

Lichvar Expires 21 July 2024 [Page 7]

Internet-Draft NTP Over PTP January 2024

 When the client or peer has the network correction of both the
 request and response, it can correct the measured NTP peer delay and
 offset:

 * delta_c = delta - (nc_rs + nc_rq - dur_rs - dur_rq) * (1 -
 freq_tc)

 * theta_c = theta + (nc_rs - nc_rq) / 2

 where

 * delta is the NTP peer delay from RFC 5905

 * theta is the NTP offset from RFC 5905

 * nc_rq is the network correction of the request

 * nc_rs is the network correction of the response

 * dur_rq is the transmit duration of the request

 * dur_rs is the receive duration of the response

 * freq_tc is the maximum assumed frequency error of transparent
 clocks

 The corrected delay (delta_c) and offset (theta_c) MUST NOT be
 accepted for synchronization if any of delta_c, nc_rs, and nc_rq is
 negative. This requirement limits the error caused by faulty
 transparent clocks and man-in-the-middle attacks.

 Root delay (DELTA) MUST NOT be corrected to not make the maximum
 assumed error (root distance) dependent on accurate network
 corrections.

 The scaling by the freq_tc constant (e.g. 100 ppm) is needed to make
 room for errors in corrections made by transparent clocks running
 faster than true time and avoid samples with larger corrections from
 getting a shorter delay than samples with smaller corrections, which
 would negatively impact their filtering and weighting.

Lichvar Expires 21 July 2024 [Page 8]

Internet-Draft NTP Over PTP January 2024

 The dur_rq and dur_rs values make the corrected peer delay correspond
 to a direct connection to the server. If they were not used, a
 perfectly corrected delay on a short network path would be too close
 to zero and frequently negative due to frequency offset between the
 client and server. Note that NTP peers and PTP clocks using the E2E
 delay mechanism are more sensitive to frequency offsets due to longer
 measurement intervals. If dur_rq is unknown, it MAY be assumed to be
 equal to dur_rs.

4. Acknowledgements

 The author would like to thank Martin Langer for his useful comments.

5. IANA Considerations

 IANA is requested to allocate the following field in the NTP
 Extension Field Types Registry [RFC5905]:

 +============+====================+===============+
 | Field Type | Meaning | Reference |
 +============+====================+===============+
 | [[TBD]] | Network correction | [[this memo]] |
 +------------+--------------------+---------------+

 Table 1

 IANA is requested to create a new registry "IANA PTP TLV Subtypes
 Registry" for entries having the following fields:

 Subtype (REQUIRED) - integer in the range 0-0xFFFFFF

 Description (REQUIRED)- short text description

 Reference (REQUIRED) - reference to the document describing the
 IANA PTP TLV

 Subtypes in the range 0x800000-0xFFFFFF are reserved for experimental
 and private use. They cannot be assigned by IANA.

 The initial content of the registry is the following entry:

 +=========+===============================+===============+
 | Subtype | Description | Reference |
 +=========+===============================+===============+
 | [[TBD]] | Network Time Protocol Message | [[this memo]] |
 +---------+-------------------------------+---------------+

 Table 2

Lichvar Expires 21 July 2024 [Page 9]

Internet-Draft NTP Over PTP January 2024

6. Implementation Status - RFC EDITOR: REMOVE BEFORE PUBLICATION

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in RFC 7942.
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to RFC 7942, "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

6.1. chrony

 chrony (https://chrony-project.org) added experimental support for
 NTP over PTP in version 4.2. As the type of the NTP TLV, it uses
 0x2023 from the experimental "do not propagate" range.

 It was tested on Linux with the following network controllers, which
 have hardware timestamping limited to PTP packets:

 Intel XL710 (i40e driver) - works

 Intel X540-AT2 (ixgbe driver) - works

 Intel 82576 (igb driver) - works

 Broadcom BCM5720 (tg3 driver) - works

 Broadcom BCM57810 (bnx2x driver) - does not timestamp unicast PTP
 packets

 Solarflare SFC9250 (sfc driver) - works

 The network correction was tested with the following switches which
 support operation as a one-step E2E PTP unicast transparent clock:

 FS.COM IES3110-8TF-R - works

Lichvar Expires 21 July 2024 [Page 10]

Internet-Draft NTP Over PTP January 2024

 Juniper QFX5200-32C-32Q - works

7. Security Considerations

 The PTP transport prevents NTP clients from randomizing their source
 port.

 The corrections provided by PTP transparent clocks cannot be
 authenticated. Man-in-the-middle attackers can modify the correction
 field, but only corrections smaller than the measured delay are
 accepted by clients. The impact is comparable to the impact of
 delaying unmodified NTP messages.

8. References

8.1. Normative References

 [IEEE1588] Institute of Electrical and Electronics Engineers, "IEEE
 std. 1588-2019, "IEEE Standard for a Precision Clock
 Synchronization for Networked Measurement and Control
 Systems."", November 2019, <https://www.ieee.org>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC7822] Mizrahi, T. and D. Mayer, "Network Time Protocol Version 4
 (NTPv4) Extension Fields", RFC 7822, DOI 10.17487/RFC7822,
 March 2016, <https://www.rfc-editor.org/info/rfc7822>.

8.2. Informative References

 [RFC8915] Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", RFC 8915, DOI 10.17487/RFC8915, September 2020,
 <https://www.rfc-editor.org/info/rfc8915>.

 [RFC9109] Gont, F., Gont, G., and M. Lichvar, "Network Time Protocol
 Version 4: Port Randomization", RFC 9109,
 DOI 10.17487/RFC9109, August 2021,
 <https://www.rfc-editor.org/info/rfc9109>.

Lichvar Expires 21 July 2024 [Page 11]

Internet-Draft NTP Over PTP January 2024

Author’s Address

 Miroslav Lichvar
 Red Hat
 Purkynova 115
 612 00 Brno
 Czech Republic
 Email: mlichvar@redhat.com

Lichvar Expires 21 July 2024 [Page 12]

Network Time Protocols W. Ladd
Internet-Draft Akamai Technologies
Intended status: Informational M. Dansarie
Expires: 5 September 2024 4 March 2024

 Roughtime
 draft-ietf-ntp-roughtime-09

Abstract

 This document specifies Roughtime - a protocol that aims to achieve
 rough time synchronization even for clients without any idea of what
 time it is.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-ietf-ntp-roughtime/.

 Source for this draft and an issue tracker can be found at
 https://github.com/wbl/roughtime-draft.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 5 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Ladd & Dansarie Expires 5 September 2024 [Page 1]

Internet-Draft Roughtime March 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions and Definitions 3
 3. Protocol Overview . 3
 4. The Guarantee . 4
 5. Message Format . 4
 5.1. Data types . 5
 5.1.1. int32 . 5
 5.1.2. uint32 . 5
 5.1.3. uint64 . 5
 5.1.4. Tag . 6
 5.1.5. Timestamp . 6
 5.2. Header . 6
 6. Protocol Details . 6
 6.1. Requests . 7
 6.1.1. VER . 8
 6.1.2. NONC . 8
 6.2. Responses . 8
 6.2.1. SIG . 8
 6.2.2. VER . 8
 6.2.3. NONC . 8
 6.2.4. PATH . 8
 6.2.5. SERP . 9
 6.2.6. CERT . 9
 6.2.7. INDX . 9
 6.3. The Merkel Tree (#tree) 9
 6.3.1. Root Value Validity Check Algorithm 10
 6.4. Validity of Response 10
 7. Integration into NTP . 11
 8. Grease . 11
 9. Roughtime Clients . 11
 9.1. Necessary configuration 11
 9.2. Measurement sequence 11
 9.3. Malfeasence reporting 12
 10. Security Considerations 12
 11. IANA Considerations . 12
 11.1. Service Name and Transport Protocol Port Number
 Registry . 12

Ladd & Dansarie Expires 5 September 2024 [Page 2]

Internet-Draft Roughtime March 2024

 11.2. Roughtime Version Registry 13
 11.3. Roughtime Tag Registry 14
 12. Privacy Considerations 15
 13. References . 15
 13.1. Normative References 15
 13.2. Informative References 16
 Acknowledgments . 17
 Authors’ Addresses . 17

1. Introduction

 Time synchronization is essential to Internet security as many
 security protocols and other applications require synchronization
 [RFC738]. Unfortunately widely deployed protocols such as the
 Network Time Protocol (NTP) [RFC5905] lack essential security
 features, and even newer protocols like Network Time Security (NTS)
 [RFC8915] lack mechanisms to ensure that the servers behave
 correctly. Furthermore clients may lack even a basic idea of the
 time, creating bootstrapping problems. Roughtime uses a list of keys
 and servers to resolve this issue.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Protocol Overview

 Roughtime is a protocol for rough time synchronization that enables
 clients to provide cryptographic proof of server malfeasance. It
 does so by having responses from servers include a signature over a
 value derived from a nonce in the client request. This provides
 cryptographic proof that the timestamp was issued after the server
 received the client’s request. The derived value included in the
 server’s response is the root of a Merkle tree which includes the
 hash of the client’s nonce as the value of one of its leaf nodes.
 This enables the server to amortize the relatively costly signing
 operation over a number of client requests. Single server mode: At
 its most basic level, Roughtime is a one round protocol in which a
 completely fresh client requests the current time and the server
 sends a signed response. The response includes a timestamp and a
 radius used to indicate the server’s certainty about the reported
 time. For example, a radius of 1,000,000 microseconds means the
 server is absolutely confident that the true time is within one
 second of the reported time. The server proves freshness of its

Ladd & Dansarie Expires 5 September 2024 [Page 3]

Internet-Draft Roughtime March 2024

 response as follows. The client’s request contains a nonce which the
 server incorporates into its signed response. The client can verify
 the server’s signatures and - provided that the nonce has sufficient
 entropy - this proves that the signed response could only have been
 generated after the nonce.

4. The Guarantee

 A Roughtime server guarantees that a response to a query sent at t1,
 received at t2, and with timestamp t3 has been created between the
 transmission of the query and its reception. If t3 is not within
 that interval, a server inconsistency may be detected and used to
 impeach the server. The propagation of such a guarantee and its use
 of type synchronization is discussed in Section 7. No delay attacker
 may affect this: they may only expand the interval between t1 and t2,
 or of course stop the measurement in the first place.

5. Message Format

 Roughtime messages are maps consisting of one or more (tag, value)
 pairs. They start with a header, which contains the number of pairs,
 the tags, and value offsets. The header is followed by a message
 values section which contains the values associated with the tags in
 the header. Messages MUST be formatted according to Figure 1 as
 described in the following sections.

 Messages MAY be recursive, i.e. the value of a tag can itself be a
 Roughtime message.

Ladd & Dansarie Expires 5 September 2024 [Page 4]

Internet-Draft Roughtime March 2024

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Number of pairs (uint32) |
 +-+
 | |
 . .
 . N-1 offsets (uint32) .
 . .
 | |
 +-+
 | |
 . .
 . N tags (uint32) .
 . .
 | |
 +-+
 | |
 . .
 . Values .
 . .
 | |
 +-+

 Figure 1: Roughtime Message

5.1. Data types

5.1.1. int32

 An int32 is a 32 bit signed integer. It is serialized least
 significant byte first in sign-magnitude representation with the sign
 bit in the most significant bit. The negative zero value
 (0x80000000) MUST NOT be used and any message with it is
 syntactically invalid and MUST be ignored.

5.1.2. uint32

 A uint32 is a 32 bit unsigned integer. It is serialized with the
 least significant byte first.

5.1.3. uint64

 A uint64 is a 64 bit unsigned integer. It is serialized with the
 least significant byte first.

Ladd & Dansarie Expires 5 September 2024 [Page 5]

Internet-Draft Roughtime March 2024

5.1.4. Tag

 Tags are used to identify values in Roughtime messages. A tag is a
 uint32 but may also be listed in this document as a sequence of up to
 four ASCII characters [RFC20]. ASCII strings shorter than four
 characters can be unambiguously converted to tags by padding them
 with zero bytes. For example, the ASCII string "NONC" would
 correspond to the tag 0x434e4f4e and "PAD" would correspond to
 0x00444150. Note that when encoded into a message the ASCII values
 will be in the natural bytewise order.

5.1.5. Timestamp

 A timestamp is a uint64 count of seconds since the Unix epoch in UTC.

5.2. Header

 All Roughtime messages start with a header. The first four bytes of
 the header is the uint32 number of tags N, and hence of (tag, value)
 pairs. The following 4*(N-1) bytes are offsets, each a uint32. The
 last 4*N bytes in the header are tags. Offsets refer to the
 positions of the values in the message values section. All offsets
 MUST be multiples of four and placed in increasing order. The first
 post-header byte is at offset 0. The offset array is considered to
 have a not explicitly encoded value of 0 as its zeroth entry. The
 value associated with the ith tag begins at offset[i] and ends at
 offset[i+1]-1, with the exception of the last value which ends at the
 end of the message. Values may have zero length. Tags MUST be
 listed in the same order as the offsets of their values and MUST also
 be sorted in ascending order by numeric value. A tag MUST NOT appear
 more than once in a header.

6. Protocol Details

 As described in Section 3, clients initiate time synchronization by
 sending requests containing a nonce to servers who send signed time
 responses in return. Roughtime packets can be sent between clients
 and servers either as UDP datagrams or via TCP streams. Servers
 SHOULD support the UDP transport mode, while TCP transport is
 OPTIONAL. A Roughtime packet MUST be formatted according to Figure 2
 and as described here. The first field is a uint64 with the value
 0x4d49544847554f52 ("ROUGHTIM" in ASCII). The second field is a
 uint32 and contains the length of the third field. The third and
 last field contains a Roughtime message as specified in Section 5.

Ladd & Dansarie Expires 5 September 2024 [Page 6]

Internet-Draft Roughtime March 2024

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x4d49544847554f52 (uint64) |
 | ("ROUGHTIM") |
 +-+
 | Message length (uint32) |
 +-+
 | |
 . .
 . Roughtime message .
 . .
 | |
 +-+

 Figure 2: Roughtime packet

 Roughtime request and response packets MUST be transmitted in a
 single datagram when the UDP transport mode is used. Setting the
 packet’s don’t fragment bit [RFC791] is OPTIONAL in IPv4 networks.
 Multiple requests and responses can be exchanged over an established
 TCP connection. Clients MAY send multiple requests at once and
 servers MAY send responses out of order. The connection SHOULD be
 closed by the client when it has no more requests to send and has
 received all expected responses. Either side SHOULD close the
 connection in response to synchronization, format, implementation-
 defined timeouts, or other errors. All requests and responses MUST
 contain the VER tag. It contains a list of one or more uint32
 version numbers. The version of Roughtime specified by this memo has
 version number 1. NOTE TO RFC EDITOR: remove this paragraph before
 publication. For testing drafts of this memo, a version number of
 0x80000000 plus the draft number is used.

6.1. Requests

 A request MUST contain the tags VER and NONC. Tags other than NONC
 and VER SHOULD be ignored by the server. A future version of this
 protocol may mandate additional tags in the message and asign them
 semantic meaning. The size of the request message SHOULD be at least
 1024 bytes when the UDP transport mode is used. To attain this size
 the ZZZZ tag SHOULD be added to the message. Its value SHOULD be all
 zeros. Responding to requests shorter than 1024 bytes is OPTIONAL
 and servers MUST NOT send responses larger than the requests they are
 replying to.

Ladd & Dansarie Expires 5 September 2024 [Page 7]

Internet-Draft Roughtime March 2024

6.1.1. VER

 In a request, the VER tag contains a list of versions. The VER tag
 MUST include at least one Roughtime version supported by the client.
 The client MUST ensure that the version numbers and tags included in
 the request are not incompatible with each other or the packet
 contents.

6.1.2. NONC

 The value of the NONC tag is a 32 byte nonce. It SHOULD be generated
 in a manner indistinguishable from random. BCP 106 contains specific
 guidelines regarding this [RFC4086].

6.2. Responses

 A response MUST contain the tags SIG, VER, NONC, PATH, SREP, CERT,
 and INDX.

6.2.1. SIG

 In general, a SIG tag value is a 64 byte Ed25519 signature [RFC8032]
 over a concatenation of a signature context ASCII string and the
 entire value of a tag. All context strings MUST include a
 terminating zero byte. The SIG tag in the root of a response MUST be
 a signature over the SREP value using the public key contained in
 CERT. The context string MUST be "RoughTime v1 response signature".

6.2.2. VER

 In a response, the VER tag MUST contain a single version number. It
 SHOULD be one of the version numbers supplied by the client in its
 request. The server MUST ensure that the version number corresponds
 with the rest of the packet contents.

6.2.3. NONC

 The NONC tag MUST contain the nonce of the message being responded
 to.

6.2.4. PATH

 The PATH tag value MUST be a multiple of 32 bytes long and represent
 a path of 32 byte hash values in the Merkle tree used to generate the
 ROOT value as described in a later section In the case where a
 response is prepared for a single request and the Merkle tree
 contains only the root node, the size of PATH MUST be zero.

Ladd & Dansarie Expires 5 September 2024 [Page 8]

Internet-Draft Roughtime March 2024

6.2.5. SERP

 The SREP tag contains a time response. Its value MUST be a Roughtime
 message with the tags ROOT, MIDP, and RADI. The server MAY include
 any of the tags DUT1, DTAI, and LEAP in the contents of the SREP tag.
 The ROOT tag MUST contain a 32 byte value of a Merkle tree root as
 described in Section 6.3. The MIDP tag value MUST be timestamp of
 the moment of processing. The RADI tag value MUST be a uint32
 representing the server’s estimate of the accuracy of MIDP in
 seconds. Servers MUST ensure that the true time is within (MIDP-
 RADI, MIDP+RADI) at the time they transmit the response message.

6.2.6. CERT

 The CERT tag contains a public-key certificate signed with the
 server’s long-term key. Its value is a Roughtime message with the
 tags DELE and SIG, where SIG is a signature over the DELE value. The
 context string used to generate SIG MUST be "RoughTime v1 delegation
 signature--". The DELE tag contains a delegated public-key
 certificate used by the server to sign the SREP tag. Its value is a
 Roughtime message with the tags MINT, MAXT, and PUBK. The purpose of
 the DELE tag is to enable separation of a long-term public key from
 keys on devices exposed to the public Internet. The MINT tag is the
 minimum timestamp for which the key in PUBK is trusted to sign
 responses. MIDP MUST be more than or equal to MINT for a response to
 be considered valid. The MAXT tag is the maximum timestamp for which
 the key in PUBK is trusted to sign responses. MIDP MUST be less than
 or equal to MAXT for a response to be considered valid. The PUBK tag
 contains a temporary 32 byte Ed25519 public key which is used to sign
 the SREP tag.

6.2.7. INDX

 The INDX tag value is a uint32 determining the position of NONC in
 the Merkle tree used to generate the ROOT value as described in later
 section TODO.

6.3. The Merkel Tree (#tree)

 A Merkle tree is a binary tree where the value of each non-leaf node
 is a hash value derived from its two children. The root of the tree
 is thus dependent on all leaf nodes. In Roughtime, each leaf node in
 the Merkle tree represents the nonce in one request. Leaf nodes are
 indexed left to right, beginning with zero. The values of all nodes
 are calculated from the leaf nodes and up towards the root node using
 the first 32 bytes of the output of the SHA-512 hash algorithm
 [RFC6234]. For leaf nodes, the byte 0x00 is prepended to the nonce
 before applying the hash function. For all other nodes, the byte

Ladd & Dansarie Expires 5 September 2024 [Page 9]

Internet-Draft Roughtime March 2024

 0x01 is concatenated with first the left and then the right child
 node value before applying the hash function. The value of the
 Merkle tree’s root node is included in the ROOT tag of the response.
 The index of a request’s nonce node is included in the INDX tag of
 the response. The values of all sibling nodes in the path between a
 request’s nonce node and the root node is stored in the PATH tag so
 that the client can reconstruct and validate the value in the ROOT
 tag using its nonce. These values are each 32 bytes and are stored
 one after the other with no additional padding or structure. The
 order in which they are stored is described in the next section.

6.3.1. Root Value Validity Check Algorithm

 We describe how to compute the root hash of the Merkel tree from the
 values in the tags PATH, INDX, and NONC. Our algorithm maintains a
 current hash value. The bits of INDX are ordered from least to most
 significant in this algorithm. At initialization hash is set to
 H(0x00 || nonce). If no more entries remain in PATH the current hash
 is the hash of the Merkel tree. All remaining bits of INDX must be
 zero. Otherwise let node be the next 32 bytes in PATH. If the
 current bit in INDX is 0 then hash = H(0x01 || node || hash), else
 hash = H(0x01 || hash || node).

6.4. Validity of Response

 A client MUST check the following properties when it receives a
 response. We assume the long-term server public key is known to the
 client through other means.

 The signature in CERT was made with the long-term key of the server.

 The DELE timestamps and the MIDP value are consistent.

 The INDX and PATH values prove NONC was included in the Merkle tree
 with value ROOT using the algorithm in Section 6.3.1.

 The signature of SREP in SIG validates with the public key in DELE.

 A response that passes these checks is said to be valid. Validity of
 a response does not prove the time is correct, but merely that the
 server signed it, and thus promises that it began to compute the
 signature at a time in the interval (MIDP-RADI, MIDP+RADI).

Ladd & Dansarie Expires 5 September 2024 [Page 10]

Internet-Draft Roughtime March 2024

7. Integration into NTP

 We assume that there is a bound PHI on the frequency error in the
 clock on the machine. Given a measurement taken at a local time t,
 we know the true time is in (t-delta-sigma, t-delta+sigma). After d
 seconds have elapsed we know the true time is within (t-delta-sigma-
 d_PHI, t-delta+sigma+d_PHI). A simple and effective way to mix with
 NTP or PTP discipline of the clock is to trim the observed intervals
 in NTP to fit entirely within this window or reject measurements that
 fall to far outside. This assumes time has not been stepped. If the
 NTP process decides to step the time, it MUST use Roughtime to ensure
 the new truetime estimate that will be stepped to is consistent with
 the true time. Should this window become too large, another
 Roughtime measurement is called for. The definition of "too large"
 is implementation defined. Implementations MAY use other, more
 sophisticated means of adjusting the clock respecting Roughtime
 information. Other applications such as X.509 verification may wish
 to apply different rules.

8. Grease

 Servers MAY send back a fraction of responses that are syntactically
 invalid or contain invalid signatures as well as incorrect times.
 Clients MUST properly reject such responses. Servers MUST NOT send
 back responses with incorrect times and valid signatures. Either
 signature MAY be invalid for this application.

9. Roughtime Clients

9.1. Necessary configuration

 To carry out a roughtime measurement a client must be equiped with a
 list of servers, a minimum of three of which are operational, not run
 by the same parties. It must also have a means of reporting to the
 provider of such a list, such as an OS vendor or software vendor, a
 failure report as described below.

9.2. Measurement sequence

 The client randomly permutes three servers from the list, and
 sequentially queries them. The first probe uses a NONC that is
 randomly generated. The second query uses H(resp||rand) where rand
 is a random 32 byte value and resp is the entire response to the
 first probe. The third query uses H(resp||rand) for a different 32
 byte value. If the times reported are consistent with the causal
 ordering, and the delay is within a system provided parameter, the
 measurement succeeds. If they are not consistent, there has been
 malfeasance and the client SHOULD store a report for evaluation,

Ladd & Dansarie Expires 5 September 2024 [Page 11]

Internet-Draft Roughtime March 2024

 alert the operator, and make another measurement.

9.3. Malfeasence reporting

 A malfeasance report is a JSON object with keys "nonces" containing
 an array of the rand values as base64 encoded strings and "responses"
 containing the responses as base64 encoded strings. This report is
 cryptographic proof that at least one server generated an incorrect
 response. Malfeasence reports MAY be transported by any means to the
 relevant vendor or server operator for discussion. A malfeasance
 report is cryptographic proof that the responses arrived in that
 order, and can be used to demonstrate that a server sent the wrong
 time. The venues for sharing such reports and what to do about them
 are outside the scope of this document.

10. Security Considerations

 Since the only supported signature scheme, Ed25519, is not quantum
 resistant, the Roughtime version described in this memo will not
 survive the advent of quantum computers. Maintaining a list of
 trusted servers and adjudicating violations of the rules by servers
 is not discussed in this document and is essential for security.
 Roughtime clients MUST regularly update their view of which servers
 are trustworthy in order to benefit from the detection of
 misbehavior. Validating timestamps made on different dates requires
 knowledge of leap seconds in order to calculate time intervals
 correctly. Servers carry out a significant amount of computation in
 response to clients, and thus may experience vulnerability to denial
 of service attacks. This protocol does not provide any
 confidentiality. Given the nature of timestamps such impact is
 minor. The compromise of a PUBK’s private key, even past MAXT, is a
 problem as the private key can be used to sign invalid times that are
 in the range MINT to MAXT, and thus violate the good behavior
 guarantee of the server. Servers MUST NOT send response packets
 larger than the request packets sent by clients, in order to prevent
 amplification attacks.

11. IANA Considerations

11.1. Service Name and Transport Protocol Port Number Registry

 IANA is requested to allocate the following entry in the Service Name
 and Transport Protocol Port Number Registry:

Ladd & Dansarie Expires 5 September 2024 [Page 12]

Internet-Draft Roughtime March 2024

 Service Name: Roughtime

 Transport Protocol: tcp,udp

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: Roughtime time synchronization

 Reference: [[this memo]]

 Port Number: [[TBD1]], selected by IANA from the User Port range

11.2. Roughtime Version Registry

 IANA is requested to create a new registry entitled "Roughtime
 Version Registry". Entries shall have the following fields:

 Version ID (REQUIRED): a 32-bit unsigned integer

 Version name (REQUIRED): A short text string naming the version
 being identified.

 Reference (REQUIRED): A reference to a relevant specification
 document.

 The policy for allocation of new entries SHOULD be: IETF Review.

 The initial contents of this registry shall be as follows:

 +=======================+======================+===============+
 | Version ID | Version name | Reference |
 +=======================+======================+===============+
 | 0x0 | Reserved | [[this memo]] |
 +-----------------------+----------------------+---------------+
 | 0x1 | Roughtime version 1 | [[this memo]] |
 +-----------------------+----------------------+---------------+
 | 0x2-0x7fffffff | Unassigned | |
 +-----------------------+----------------------+---------------+
 | 0x80000000-0xffffffff | Reserved for Private | [[this memo]] |
 +-----------------------+----------------------+---------------+
 | | or Experimental use | |
 +-----------------------+----------------------+---------------+

 Table 1

Ladd & Dansarie Expires 5 September 2024 [Page 13]

Internet-Draft Roughtime March 2024

11.3. Roughtime Tag Registry

 IANA is requested to create a new registry entitled "Roughtime Tag
 Registry". Entries SHALL have the following fields:

 Tag (REQUIRED): A 32-bit unsigned integer in hexadecimal format.

 ASCII Representation (OPTIONAL): The ASCII representation of the
 tag in accordance with Section 5.1.4 of this memo, if applicable.

 Reference (REQUIRED): A reference to a relevant specification
 document.

 The policy for allocation of new entries in this registry SHOULD be:
 Specification Required.

 The initial contents of this registry SHALL be as follows:

Ladd & Dansarie Expires 5 September 2024 [Page 14]

Internet-Draft Roughtime March 2024

 +============+======================+===============+
 | Tag | ASCII Representation | Reference |
 +============+======================+===============+
 | 0x7a7a7a7a | ZZZZ | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x00474953 | SIG | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x00524556 | VER | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x434e4f4e | NONC | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x454c4544 | DELE | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x48544150 | PATH | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x49444152 | RADI | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x4b425550 | PUBK | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x5044494d | MIDP | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x50455253 | SREP | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x544e494d | MINT | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x544f4f52 | ROOT | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x54524543 | CERT | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x5458414d | MAXT | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x58444e49 | INDX | [[this memo]] |
 +------------+----------------------+---------------+

 Table 2

12. Privacy Considerations

 This protocol is designed to obscure all client identifiers. Servers
 necessarily have persistent long-term identities essential to
 enforcing correct behavior. Generating nonces in a nonrandom manner
 can cause leaks of private data or enable tracking of clients as they
 move between networks.

13. References

13.1. Normative References

Ladd & Dansarie Expires 5 September 2024 [Page 15]

Internet-Draft Roughtime March 2024

 [RFC20] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20, DOI 10.17487/RFC0020, October 1969,
 <https://www.rfc-editor.org/rfc/rfc20>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/rfc/rfc4086>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/rfc/rfc6234>.

 [RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/rfc/rfc791>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/rfc/rfc8032>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

13.2. Informative References

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/rfc/rfc5905>.

 [RFC738] Harrenstien, K., "Time server", RFC 738,
 DOI 10.17487/RFC0738, October 1977,
 <https://www.rfc-editor.org/rfc/rfc738>.

 [RFC8915] Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", RFC 8915, DOI 10.17487/RFC8915, September 2020,
 <https://www.rfc-editor.org/rfc/rfc8915>.

Ladd & Dansarie Expires 5 September 2024 [Page 16]

Internet-Draft Roughtime March 2024

Acknowledgments

 Thomas Peterson corrected multiple nits. Peter Löthberg, Tal
 Mizrahi, Ragnar Sundblad, Kristof Teichel, and the other members of
 the NTP working group contributed comments and suggestions.

Authors’ Addresses

 Watson Ladd
 Akamai Technologies
 Email: watsonbladd@gmail.com

 Marcus Dansarie
 Email: marcus@dansarie.se

Ladd & Dansarie Expires 5 September 2024 [Page 17]

Internet Engineering Task Force W. Ladd
Internet-Draft Cloudflare
Intended status: Informational M. Dansarie
Expires: 18 March 2022 September 2021

 Roughtime Ecosystem
 draft-ietf-ntp-roughtime-ecosystem-01

Abstract

 This document specifies the roles of Roughtime validators, clients,
 and servers in providing a ecosystem for secure time.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 5 March 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Ladd & Dansarie Expires 18 March 2022 [Page 1]

Internet-Draft Roughtime Ecosystem September 2021

Table of Contents

 1. Introduction . 2
 2. Chaining in roughtime . 2
 3. Impeachement . 2
 4. Serialization of chains 3
 5. Submission API . 3
 6. Viewing Reports . 3
 7. Trust Anchors and Policies 3
 8. Normative References . 3
 Authors’ Addresses . 3

1. Introduction

 The Roughtime protocol enables servers to provide cryptographic proof
 of the times requests were made. This enables clients to expose
 cheating by servers. This document describes how these proofs are
 seralized and verified, as well as APIs to access and submit reports
 of malfeasnce in an automated manner.

2. Chaining in roughtime

 Two responses are chained if the NONC field of the second is SHA-
 512(blinder || first) where blinder is a 64 byte value. Blinder MUST
 be generated uniformly at random to prevent tracking. The first
 response is serialized as a roughtime message. The first response is
 chained to the second.

 A chain is a sequence of messages where each message is chained to
 the one before. Every contiguous subsequence of a chain is a chain.

3. Impeachement

 For each index i, let m_i denote the timestamp of the response, r_i
 the radius around it. Then we have m_i-r_i the earliest actual time
 at which the response could have been generated, and m_i+r_i the
 latest actual time at which the response could have been generated.

 If all requests are generated honestly m_i+r_i < m_{i+j}-r_{i+j}
 holds for all indices i and positive numbers j. A failure of this
 relation to hold demonstrates that at least one of the responses was
 generated incorrectly.

 The more distinct servers and responses that are mutually consistent
 except for the questionable response, the more likey a failure of the
 generator of the errneous response is.

Ladd & Dansarie Expires 18 March 2022 [Page 2]

Internet-Draft Roughtime Ecosystem September 2021

4. Serialization of chains

 TODO

5. Submission API

6. Viewing Reports

7. Trust Anchors and Policies

 A trust anchor is any distributor of a list of trusted servers. It
 is RECOMMENDED that trust anchors subscribe to a common public forum
 where evidence of malfeasance may be shared and discussed. Trust
 anchors SHOULD subscribe to a zero-tolerance policy: any generation
 of incorrect timestamps will result in removal. To enable this trust
 anchors SHOULD list a wide variety of servers so the removal of a
 server does not result in operational issues for clients. Clients
 SHOULD attempt to detect malfeasance and report it as discussed in
 this document.

 Because only a single Roughtime server is required for successful
 synchronization, Roughtime does not have the incentive problems that
 have prevented effective enforcement of discipline on the web PKI.

8. Normative References

 [I-D.ietf-ntp-roughtime]
 Malhotra, A., Langley, A., Ladd, W., and M. Dansarie,
 "Roughtime", Work in Progress, Internet-Draft, draft-ietf-
 ntp-roughtime-05, 24 May 2021,
 <https://www.ietf.org/archive/id/draft-ietf-ntp-roughtime-
 05.txt>.

Authors’ Addresses

 Watson Ladd
 Cloudflare
 101 Townsend St
 San Francisco,
 United States of America

 Email: watsonbladd@gmail.com

 Marcus Dansarie
 Sweden

 Email: marcus@dansarie.se

Ladd & Dansarie Expires 18 March 2022 [Page 3]

Internet-Draft Roughtime Ecosystem September 2021

 URI: https://orcid.org/0000-0001-9246-0263

Ladd & Dansarie Expires 18 March 2022 [Page 4]

ntp R. Salz
Internet-Draft Akamai Technologies
Updates: 5905, 5906, 8573, 7822, 7821 (if 14 December 2023
 approved)
Intended status: Standards Track
Expires: 16 June 2024

 Updating the NTP Registries
 draft-ietf-ntp-update-registries-13

Abstract

 The Network Time Protocol (NTP) and Network Time Security (NTS)
 documents define a number of assigned number registries, collectively
 called the NTP registries.

 Some registries have wrong values, some registries do not follow
 current common practice, and some are just right. For the sake of
 completeness, this document reviews all NTP and NTS registries, and
 makes updates where necessary.

 This document updates RFC 5905, RFC 5906, RFC 8573, RFC 7822, and RFC
 7821.

Notes

 This note is to be removed before publishing as an RFC.

 This document is a product of the NTP Working Group
 (https://dt.ietf.org/wg/ntp). Source for this draft and an issue
 tracker can be found at https://github.com/richsalz/draft-rsalz-
 update-registries.

 RFC Editor: Please update ’this RFC’ to refer to this document, once
 its RFC number is known, through the document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Salz Expires 16 June 2024 [Page 1]

Internet-Draft Updating the NTP Registries December 2023

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 16 June 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Existing Registries . 3
 2.1. Reference ID, Kiss-o’-Death 3
 2.2. Extension Field Types 3
 2.3. Network Time Security Registries 4
 3. Updated Registries . 4
 3.1. Guidance to Designated Experts 5
 4. IANA Considerations . 5
 4.1. NTP Reference Identifier Codes 5
 4.2. NTP Kiss-o’-Death Codes 6
 4.3. NTP Extension Field Types 6
 5. Acknowledgements . 10
 6. Normative References . 10
 Author’s Address . 11

1. Introduction

 The Network Time Protocol (NTP) and Network Time Security (NTS)
 documents define a number of assigned number registries, collectively
 called the NTP registries. The NTP registries can all be found at
 https://www.iana.org/assignments/ntp-parameters/ntp-parameters.xhtml
 (https://www.iana.org/assignments/ntp-parameters/ntp-
 parameters.xhtml) and the NTS registries can all be found at
 https://www.iana.org/assignments/nts/nts.xhtml
 (https://www.iana.org/assignments/nts/nts.xhtml).

Salz Expires 16 June 2024 [Page 2]

Internet-Draft Updating the NTP Registries December 2023

 Some registries have wrong values, some registries do not follow
 current common practice, and some are just right. For the sake of
 completeness, this document reviews all NTP and NTS registries, and
 makes updates where necessary.

 The bulk of this document can be divided into two parts:

 * First, each registry, its defining document, and a summary of its
 syntax is defined.

 * Second, the revised format and entries for each registry that is
 being modified is specified.

2. Existing Registries

 This section describes the registries and the rules for them. It is
 intended to be a short summary of the syntax and registration
 requirements for each registry. The semantics and protocol
 processing rules for each registry -- that is, how an implementation
 acts when sending or receiving any of the fields -- are not described
 here.

2.1. Reference ID, Kiss-o’-Death

 [RFC5905] defined two registries; the Reference ID in Section 7.3,
 and the Kiss-o’-Death in Section 7.4. Both of these are allowed to
 be four ASCII characters; padded on the right with all-bits-zero if
 necessary. Entries that start with 0x58, the ASCII letter uppercase
 X, are reserved for Private or Experimental Use. Both registries are
 first-come first-served. The formal request to define the registries
 is in Section 16.

2.2. Extension Field Types

 [RFC5905], Section 7.5 defined the on-the-wire format of extension
 fields but did not create a registry for them.

 [RFC5906], Section 13 mentioned the Extension Field Types registry,
 and defined it indirectly by defining 30 extensions (10 each for
 request, response, and error response). It did not provide a formal
 definition of the columns in the registry. [RFC5906], Section 10
 splits the Field Type into four subfields, only for use within the
 Autokey extensions.

 [RFC7821] added a new entry, Checksum Complement, to the Extension
 Field Types registry.

Salz Expires 16 June 2024 [Page 3]

Internet-Draft Updating the NTP Registries December 2023

 [RFC7822] clarified the processing rules for Extension Field Types,
 particularly around the interaction with the Message Authentication
 Code (MAC) field. NTPv4 packets may contain a MAC, but it appears
 where one would expect an extension with an extension ID of zero and
 a length of zero. This document adds a registration for the ID,
 below.

 [RFC8573] changed the cryptography used in the MAC field.

 [RFC8915] added four new entries to the Extension Field Types
 registry.

 The following problems exists with the current registry:

 * Many of the entries in the Extension Field Types registry have
 swapped some of the nibbles; 0x1234 is listed as 0x1432 for
 example. This was due to documentation errors with the original
 implementation of Autokey. This document marks the erroneous
 values as reserved, in case there is an implementation that used
 the registered values instead of what the original implementation
 used.

 * Some values were mistakenly re-used.

2.3. Network Time Security Registries

 [RFC8915] defines the NTS protocol. Its registries are listed here
 for completeness, but no changes to them are specified in this
 document.

 Sections 7.1 through 7.5 (inclusive) added entries to existing
 registries.

 Section 7.6 created a new registry, NTS Key Establishment Record
 Types, that partitions the assigned numbers into three different
 registration policies: IETF Review, Specification Required, and
 Private or Experimental Use.

 Section 7.7 created a new registry, NTS Next Protocols, that
 similarly partitions the assigned numbers.

 Section 7.8 created two new registries, NTS Error Codes and NTS
 Warning Codes. Both registries are also partitioned the same way.

3. Updated Registries

 The following general guidelines apply to all registries updated
 here:

Salz Expires 16 June 2024 [Page 4]

Internet-Draft Updating the NTP Registries December 2023

 * Every registry reserves a partition for Private or Experimental
 Use.

 * Entries with ASCII fields are now limited to uppercase letters or
 digits; fields starting with 0x58, the uppercase letter "X", are
 reserved for Private or Experimental Use.

 * The policy for every registry is now Specification Required, as
 defined in [RFC8126], Section 4.6.

 The IESG is requested to choose three designated experts, with two
 being required to approve a registry change. Guidance for such
 experts is given below.

 Each entry described in the sub-sections below is intended to
 completely replace the existing entry with the same name.

3.1. Guidance to Designated Experts

 The designated experts (DE) should be familiar with [RFC8126],
 particularly Section 5. As that reference suggests, the DE should
 ascertain the existence of a suitable specification, and verify that
 it is publicly available. The DE is also expected to check the
 clarity of purpose and use of the requested code points.

 In addition, the DE is expected to be familiar with this document,
 specifically the history documented here.

4. IANA Considerations

4.1. NTP Reference Identifier Codes

 The registration procedure is changed to Specification Required.

 The Note is changed to read as follows:

 * Codes beginning with the character "X" are reserved for
 experimentation and development. IANA cannot assign them.

 The columns are defined as follows:

 * ID (required): a four-byte value padded on the right with all-
 bits-zero. Each byte other than padding must be an ASCII
 uppercase letter or digits.

 * Clock source (required): A brief text description of the ID.

 * Reference (required): the publication defining the ID.

Salz Expires 16 June 2024 [Page 5]

Internet-Draft Updating the NTP Registries December 2023

 The existing entries are left unchanged.

4.2. NTP Kiss-o’-Death Codes

 The registration procedure is changed to Specification Required.

 The Note is changed to read as follows:

 * Codes beginning with the character "X" are reserved for
 experimentation and development. IANA cannot assign them.

 The columns are defined as follows:

 * ID (required): a four-byte value padded on the right with all-
 bits-zero. Each byte other than padding must be an ASCII
 uppercase letter or digits.

 * Meaning source (required): A brief text description of the ID.

 * Reference (required): the publication defining the ID.

 The existing entries are left unchanged.

4.3. NTP Extension Field Types

 The registration procedure is changed to Specification Required.

 The reference [RFC5906] should be added, if possible.

 The following two Notes are added:

 * Field Types in the range 0xF000 through 0xFFFF, inclusive, are
 reserved for experimentation and development. IANA cannot assign
 them. Both NTS Cookie and Autokey Message Request have the same
 Field Type; in practice this is not a problem as the field
 semantics will be determined by other parts of the message.

 * The "Reserved for historic reasons" is for differences between the
 original documentation and implementation of Autokey and marks the
 erroneous values as reserved, in case there is an implementation
 that used the registered values instead of what the original
 implementation used.

 The columns are defined as follows:

 * Field Type (required): A two-byte value in hexadecimal.

 * Meaning (required): A brief text description of the field type.

Salz Expires 16 June 2024 [Page 6]

Internet-Draft Updating the NTP Registries December 2023

 * Reference (required): the publication defining the field type.

 The table is replaced with the following entries. IANA is requested
 to replace "This RFC" with the actual RFC number once assigned.

 +============+===============================+====================+
 | Field Type | Meaning | Reference |
 +============+===============================+====================+
 | 0x0000 | Cryptographic MAC | RFC 5905, This RFC |
 +------------+-------------------------------+--------------------+
 | 0x0002 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x0102 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x0104 | Unique Identifier | RFC 8915, |
 | | | Section 5.3 |
 +------------+-------------------------------+--------------------+
 | 0x0200 | No-Operation Request | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x0201 | Association Message Request | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x0202 | Certificate Message Request | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x0203 | Cookie Message Request | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x0204 | Autokey Message Request | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x0204 | NTS Cookie | RFC 8915, |
 | | | Section 5.4 |
 +------------+-------------------------------+--------------------+
 | 0x0205 | Leapseconds Message Request | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x0206 | Sign Message Request | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x0207 | IFF Identity Message Request | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x0208 | GQ Identity Message Request | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x0209 | MV Identity Message Request | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x0302 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x0304 | NTS Cookie Placeholder | RFC 8915, |
 | | | Section 5.5 |
 +------------+-------------------------------+--------------------+
 | 0x0402 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x0404 | NTS Authenticator and | RFC 8915, |

Salz Expires 16 June 2024 [Page 7]

Internet-Draft Updating the NTP Registries December 2023

 | | Encrypted Extension Fields | Section 5.6 |
 +------------+-------------------------------+--------------------+
 | 0x0502 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x0602 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x0702 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x0902 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x2005 | UDP Checksum Complement | RFC 7821 |
 +------------+-------------------------------+--------------------+
 | 0x8002 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x8102 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x8200 | No-Operation Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x8201 | Association Message Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x8202 | Certificate Message Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x8203 | Cookie Message Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x8204 | Autokey Message Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x8205 | Leapseconds Message Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x8206 | Sign Message Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x8207 | IFF Identity Message Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x8208 | GQ Identity Message Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x8209 | MV Identity Message Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0x8302 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x8402 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x8502 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x8602 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x8702 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0x8802 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+

Salz Expires 16 June 2024 [Page 8]

Internet-Draft Updating the NTP Registries December 2023

 | 0x8902 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0xC002 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0xC102 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0xC200 | No-Operation Error Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0xC201 | Association Message Error | RFC 5906 |
 | | Response | |
 +------------+-------------------------------+--------------------+
 | 0xC202 | Certificate Message Error | RFC 5906 |
 | | Response | |
 +------------+-------------------------------+--------------------+
 | 0xC203 | Cookie Message Error Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0xC204 | Autokey Message Error | RFC 5906 |
 | | Response | |
 +------------+-------------------------------+--------------------+
 | 0xC205 | Leapseconds Message Error | RFC 5906 |
 | | Response | |
 +------------+-------------------------------+--------------------+
 | 0xC206 | Sign Message Error Response | RFC 5906 |
 +------------+-------------------------------+--------------------+
 | 0xC207 | IFF Identity Message Error | RFC 5906 |
 | | Response | |
 +------------+-------------------------------+--------------------+
 | 0xC208 | GQ Identity Message Error | RFC 5906 |
 | | Response | |
 +------------+-------------------------------+--------------------+
 | 0xC209 | MV Identity Message Error | RFC 5906 |
 | | Response | |
 +------------+-------------------------------+--------------------+
 | 0xC302 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0xC402 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0xC502 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0xC602 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0xC702 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0xC802 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+
 | 0xC902 | Reserved for historic reasons | This RFC |
 +------------+-------------------------------+--------------------+

Salz Expires 16 June 2024 [Page 9]

Internet-Draft Updating the NTP Registries December 2023

 Table 1

5. Acknowledgements

 The members of the NTP Working Group helped a great deal. Notable
 contributors include:

 * Miroslav Lichvar, Red Hat

 * Daniel Franke, formerly at Akamai Technologies

 * Danny Mayer, Network Time Foundation

 * Michelle Cotton, formerly at IANA

 * Tamme Dittrich, Tweede Golf

6. Normative References

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/rfc/rfc5905>.

 [RFC5906] Haberman, B., Ed. and D. Mills, "Network Time Protocol
 Version 4: Autokey Specification", RFC 5906,
 DOI 10.17487/RFC5906, June 2010,
 <https://www.rfc-editor.org/rfc/rfc5906>.

 [RFC7821] Mizrahi, T., "UDP Checksum Complement in the Network Time
 Protocol (NTP)", RFC 7821, DOI 10.17487/RFC7821, March
 2016, <https://www.rfc-editor.org/rfc/rfc7821>.

 [RFC7822] Mizrahi, T. and D. Mayer, "Network Time Protocol Version 4
 (NTPv4) Extension Fields", RFC 7822, DOI 10.17487/RFC7822,
 March 2016, <https://www.rfc-editor.org/rfc/rfc7822>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/rfc/rfc8126>.

 [RFC8573] Malhotra, A. and S. Goldberg, "Message Authentication Code
 for the Network Time Protocol", RFC 8573,
 DOI 10.17487/RFC8573, June 2019,
 <https://www.rfc-editor.org/rfc/rfc8573>.

Salz Expires 16 June 2024 [Page 10]

Internet-Draft Updating the NTP Registries December 2023

 [RFC8915] Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", RFC 8915, DOI 10.17487/RFC8915, September 2020,
 <https://www.rfc-editor.org/rfc/rfc8915>.

Author’s Address

 Rich Salz
 Akamai Technologies
 Email: rsalz@akamai.com

Salz Expires 16 June 2024 [Page 11]

TICTOC Working Group D.A. Arnold

Internet-Draft Meinberg-USA

Intended status: Standards Track H.G. Gerstung

Expires: 26 May 2024 Meinberg

 23 November 2023

Enterprise Profile for the Precision Time Protocol With Mixed Multicast

 and Unicast messages

 draft-ietf-tictoc-ptp-enterprise-profile-24

Abstract

 This document describes a PTP Profile for the use of the Precision

 Time Protocol in an IPv4 or IPv6 Enterprise information system

 environment. The PTP Profile uses the End-to-End delay measurement

 mechanism, allows both multicast and unicast Delay Request and Delay

 Response messages.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 26 May 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Arnold & Gerstung Expires 26 May 2024 [Page 1]

Internet-Draft Enterprise Profile for PTP November 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 2. Requirements Language . 4

 3. Technical Terms . 4

 4. Problem Statement . 6

 5. Network Technology . 7

 6. Time Transfer and Delay Measurement 8

 7. Default Message Rates . 9

 8. Requirements for TimeTransmitter Clocks 9

 9. Requirements for TimeReceiver Clocks 10

 10. Requirements for Transparent Clocks 10

 11. Requirements for Boundary Clocks 10

 12. Management and Signaling Messages 11

 13. Forbidden PTP Options . 11

 14. Interoperation with IEEE 1588 Default Profile 11

 15. Profile Identification 11

 16. Acknowledgements . 12

 17. IANA Considerations . 12

 18. Security Considerations 12

 19. References . 12

 19.1. Normative References 12

 19.2. Informative References 13

 Authors’ Addresses . 14

1. Introduction

 The Precision Time Protocol ("PTP"), standardized in IEEE 1588, has

 been designed in its first version (IEEE 1588-2002) with the goal to

 minimize configuration on the participating nodes. Network

 communication was based solely on multicast messages, which unlike

 NTP did not require that a receiving node in IEEE 1588-2019

 [IEEE1588] need to know the identity of the time sources in the

 network. This document describes clock roles and PTP Port states

 using the optional alternative terms timeTransmitter, in stead of

 master, and timeReceiver, in stead of slave, as defined in the IEEE

 1588g [IEEE1588g] amendment to IEEE 1588-2019 [IEEE1588] .

Arnold & Gerstung Expires 26 May 2024 [Page 2]

Internet-Draft Enterprise Profile for PTP November 2023

 The "Best TimeTransmitter Clock Algorithm" (IEEE 1588-2019 [IEEE1588]

 Subclause 9.3), a mechanism that all participating PTP nodes must

 follow, set up strict rules for all members of a PTP domain to

 determine which node shall be the active reference time source

 (Grandmaster). Although the multicast communication model has

 advantages in smaller networks, it complicated the application of PTP

 in larger networks, for example in environments like IP based

 telecommunication networks or financial data centers. It is

 considered inefficient that, even if the content of a message applies

 only to one receiver, it is forwarded by the underlying network (IP)

 to all nodes, requiring them to spend network bandwidth and other

 resources, such as CPU cycles, to drop the message.

 The third edition of the standard (IEEE 1588-2019) defines PTPv2.1

 and includes the possibility to use unicast communication between the

 PTP nodes in order to overcome the limitation of using multicast

 messages for the bi-directional information exchange between PTP

 nodes. The unicast approach avoided that. In PTP domains with a lot

 of nodes, devices had to throw away more than 99% of the received

 multicast messages because they carried information for some other

 node.

 PTPv2.1 also includes PTP Profiles (IEEE 1588-2019 [IEEE1588]

 subclause 20.3). This construct allows organizations to specify

 selections of attribute values and optional features, simplifying the

 configuration of PTP nodes for a specific application. Instead of

 having to go through all possible parameters and configuration

 options and individually set them up, selecting a PTP Profile on a

 PTP node will set all the parameters that are specified in the PTP

 Profile to a defined value. If a PTP Profile definition allows

 multiple values for a parameter, selection of the PTP Profile will

 set the profile-specific default value for this parameter.

 Parameters not allowing multiple values are set to the value defined

 in the PTP Profile. Many PTP features and functions are optional,

 and a PTP Profile should also define which optional features of PTP

 are required, permitted, and prohibited. It is possible to extend

 the PTP standard with a PTP Profile by using the TLV mechanism of PTP

 (see IEEE 1588-2019 [IEEE1588] subclause 13.4), defining an optional

 Best TimeTransmitter Clock Algorithm and a few other ways. PTP has

 its own management protocol (defined in IEEE 1588-2019 [IEEE1588]

 subclause 15.2) but allows a PTP Profile to specify an alternative

 management mechanism, for example NETCONF.

 In this document the term PTP Port refers to a logical access point

 of a PTP instantiation for PTP communincation in a network.

Arnold & Gerstung Expires 26 May 2024 [Page 3]

Internet-Draft Enterprise Profile for PTP November 2023

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 RFC 2119 [RFC2119] RFC 8174 [RFC8174] when, and only when, they

 appear in all capitals, as shown here.

3. Technical Terms

 * Acceptable TimeTransmitter Table: A PTP timeReceiver Clock may

 maintain a list of timeTransmitters which it is willing to

 synchronize to.

 * Alternate timeTransmitter: A PTP timeTransmitter Clock, which is

 not the Best timeTransmitter, may act as a timeTransmitter with

 the Alternate timeTransmitter flag set on the messages it sends.

 * Announce message: Contains the timeTransmitter Clock properties of

 a timeTransmitter Clock. Used to determine the Best

 TimeTransmitter.

 * Best timeTransmitter: A clock with a PTP Port in the

 timeTransmitter state, operating consistently with the Best

 TimeTransmitter Clock Algorithm.

 * Best TimeTransmitter Clock Algorithm: A method for determining

 which state a PTP Port of a PTP clock should be in. The algorithm

 works by identifying which of several PTP timeTransmitter capable

 Clocks is the best timeTransmitter. Clocks have priority to

 become the acting Grandmaster, based on the properties each

 timeTransmitter Clock sends in its Announce message.

 * Boundary Clock: A device with more than one PTP Port. Generally

 Boundary Clocks will have one PTP Port in timeReceiver state to

 receive timing and other PTP Ports in timeTransmitter state to re-

 distribute the timing.

 * Clock Identity: In IEEE 1588-2019 this is a 64-bit number assigned

 to each PTP clock which must be globally unique. Often it is

 derived from the Ethernet MAC address.

 * Domain: Every PTP message contains a domain number. Domains are

 treated as separate PTP systems in the network. Clocks, however,

 can combine the timing information derived from multiple domains.

Arnold & Gerstung Expires 26 May 2024 [Page 4]

Internet-Draft Enterprise Profile for PTP November 2023

 * End-to-End delay measurement mechanism: A network delay

 measurement mechanism in PTP facilitated by an exchange of

 messages between a timeTransmitter Clock and a timeReceiver Clock.

 * Grandmaster: the primary timeTransmitter Clock within a domain of

 a PTP system

 * IEEE 1588: The timing and synchronization standard which defines

 PTP, and describes the node, system, and communication properties

 necessary to support PTP.

 * TimeTransmitter Clock: a clock with at least one PTP Port in the

 timeTransmitter state.

 * NTP: Network Time Protocol, defined by RFC 5905, see RFC 5905

 [RFC5905]

 * Ordinary Clock: A clock that has a single Precision Time Protocol

 PTP Port in a domain and maintains the timescale used in the

 domain. It may serve as a timeTransmitter Clock, or be a

 timeReceiver Clock.

 * Peer-to-Peer delay measurement mechanism: A network delay

 measurement mechanism in PTP facilitated by an exchange of

 messages between adjacent devices in a network.

 * Preferred timeTransmitter: A device intended to act primarily as

 the Grandmaster of a PTP system, or as a back up to a Grandmaster.

 * PTP: The Precision Time Protocol: The timing and synchronization

 protocol defined by IEEE 1588.

 * PTP Port: An interface of a PTP clock with the network. Note that

 there may be multiple PTP Ports running on one physical interface,

 for example, mulitple unicast timeReceivers which talk to several

 Grandmaster Clocks in different PTP Domains.

 * PTPv2.1: Refers specifically to the version of PTP defined by IEEE

 1588-2019.

 * Rogue timeTransmitter: A clock with a PTP Port in the

 timeTransmitter state, even though it should not be in the

 timeTransmitter state according to the Best TimeTransmitter Clock

 Algorithm, and does not set the Alternate timeTransmitter flag.

 * TimeReceiver Clock: a clock with at least one PTP Port in the

 timeReceiver state, and no PTP Ports in the timeTransmitter state.

Arnold & Gerstung Expires 26 May 2024 [Page 5]

Internet-Draft Enterprise Profile for PTP November 2023

 * TimeReceiver Only clock: An Ordinary Clock which cannot become a

 timeTransmitter Clock.

 * TLV: Type Length Value, a mechanism for extending messages in

 networked communications.

 * Transparent Clock. A device that measures the time taken for a

 PTP event message to transit the device and then updates the

 message with a correction for this transit time.

 * Unicast Discovery: A mechanism for PTP timeReceivers to establish

 a unicast communication with PTP timeTransmitters using a

 configured table of timeTransmitter IP addresses and Unicast

 Message Negotiation.

 * Unicast Negotiation: A mechanism in PTP for timeReceiver Clocks to

 negotiate unicast Sync, Announce and Delay Request message

 transmission rates from timeTransmitters.

4. Problem Statement

 This document describes a version of PTP intended to work in large

 enterprise networks. Such networks are deployed, for example, in

 financial corporations. It is becoming increasingly common in such

 networks to perform distributed time tagged measurements, such as

 one-way packet latencies and cumulative delays on software systems

 spread across multiple computers. Furthermore, there is often a

 desire to check the age of information time tagged by a different

 machine. To perform these measurements, it is necessary to deliver a

 common precise time to multiple devices on a network. Accuracy

 currently required in the Financial Industry range from 100

 microseconds to 1 nanoseconds to the Grandmaster. This PTP Profile

 does not specify timing performance requirements, but such

 requirements explain why the needs cannot always be met by NTP, as

 commonly implemented. Such accuracy cannot usually be achieved with

 a traditional time transfer such as NTP, without adding non-standard

 customizations such as hardware time stamping, and on path support.

 These features are currently part of PTP, or are allowed by it.

 Because PTP has a complex range of features and options it is

 necessary to create a PTP Profile for enterprise networks to achieve

 interoperability between equipment manufactured by different vendors.

Arnold & Gerstung Expires 26 May 2024 [Page 6]

Internet-Draft Enterprise Profile for PTP November 2023

 Although enterprise networks can be large, it is becoming

 increasingly common to deploy multicast protocols, even across

 multiple subnets. For this reason, it is desired to make use of

 multicast whenever the information going to many destinations is the

 same. It is also advantageous to send information which is unique to

 one device as a unicast message. The latter can be essential as the

 number of PTP timeReceivers becomes hundreds or thousands.

 PTP devices operating in these networks need to be robust. This

 includes the ability to ignore PTP messages which can be identified

 as improper, and to have redundant sources of time.

 Interoperability among independent implementations of this PTP

 Profile has been demonstrated at the ISPCS Plugfest ISPCS [ISPCS].

5. Network Technology

 This PTP Profile SHALL operate only in networks characterized by UDP

 RFC 768 [RFC0768] over either IPv4 RFC 791 [RFC0791] or IPv6 RFC 8200

 [RFC8200], as described by Annexes C and D in IEEE 1588 [IEEE1588]

 respectively. If a network contains both IPv4 and IPv6, then they

 SHALL be treated as separate communication paths. Clocks which

 communicate using IPv4 can interact with clocks using IPv6 if there

 is an intermediary device which simultaneously communicates with both

 IP versions. A Boundary Clock might perform this function, for

 example. A PTP domain SHALL use either IPv4 or IPv6 over a

 communication path, but not both. The PTP system MAY include

 switches and routers. These devices MAY be Transparent Clocks,

 Boundary Clocks, or neither, in any combination. PTP Clocks MAY be

 Preferred timeTransmitters, Ordinary Clocks, or Boundary Clocks. The

 Ordinary Clocks may be TimeReceiver Only Clocks, or be

 timeTransmitter capable.

 Note that clocks SHOULD always be identified by their Clock ID and

 not the IP or Layer 2 address. This is important in IPv6 networks

 since Transparent Clocks are required to change the source address of

 any packet which they alter. In IPv4 networks some clocks might be

 hidden behind a NAT, which hides their IP addresses from the rest of

 the network. Note also that the use of NATs may place limitations on

 the topology of PTP networks, depending on the port forwarding scheme

 employed. Details of implementing PTP with NATs are out of scope of

 this document.

 PTP, similar to NTP, assumes that the one-way network delay for Sync

 messages and Delay Response messages are the same. When this is not

 true it can cause errors in the transfer of time from the

 timeTransmitter to the timeReceiver. It is up to the system

 integrator to design the network so that such effects do not prevent

Arnold & Gerstung Expires 26 May 2024 [Page 7]

Internet-Draft Enterprise Profile for PTP November 2023

 the PTP system from meeting the timing requirements. The details of

 network asymmetry are outside the scope of this document. See for

 example, ITU-T G.8271 [G8271].

6. Time Transfer and Delay Measurement

 TimeTransmitter Clocks, Transparent Clocks and Boundary Clocks MAY be

 either one-step clocks or two-step clocks. TimeReceiver Clocks MUST

 support both behaviors. The End-to-End Delay measurement method MUST

 be used.

 Note that, in IP networks, Sync messages and Delay Request messages

 exchanged between a timeTransmitter and timeReceiver do not

 necessarily traverse the same physical path. Thus, wherever

 possible, the network SHOULD be engineered so that the forward and

 reverse routes traverse the same physical path. Traffic engineering

 techniques for path consistency are out of scope of this document.

 Sync messages MUST be sent as PTP event multicast messages (UDP port

 319) to the PTP primary IP address. Two step clocks SHALL send

 Follow-up messages as PTP general multicast messages (UDP port 320).

 Announce messages MUST be sent as multicast messages (UDP port 320)

 to the PTP primary address. The PTP primary IP address is

 224.0.1.129 for IPv4 and FF0X:0:0:0:0:0:0:181 for IPv6, where X can

 be a value between 0x0 and 0xF, see IEEE 1588 [IEEE1588] Annex D,

 Section D.3.

 Delay Request messages MAY be sent as either multicast or unicast PTP

 event messages. TimeTransmitter Clocks SHALL respond to multicast

 Delay Request messages with multicast Delay Response PTP general

 messages. TimeTransmitter Clocks SHALL respond to unicast Delay

 Request PTP event messages with unicast Delay Response PTP general

 messages. This allows for the use of Ordinary Clocks which do not

 support the Enterprise Profile, if they are timeReceiver Only Clocks.

 Clocks SHOULD include support for multiple domains. The purpose is

 to support multiple simultaneous timeTransmitters for redundancy.

 Leaf devices (non-forwarding devices) can use timing information from

 multiple timeTransmitters by combining information from multiple

 instantiations of a PTP stack, each operating in a different PTP

 Domain. Redundant sources of timing can be ensembled, and/or

 compared to check for faulty timeTransmitter Clocks. The use of

 multiple simultaneous timeTransmitters will help mitigate faulty

 timeTransmitters reporting as healthy, network delay asymmetry, and

 security problems. Security problems include on-path attacks such as

 delay attacks, packet interception / manipulation attacks. Assuming

 the path to each timeTransmitter is different, failures malicious or

 otherwise would have to happen at more than one path simultaneously.

Arnold & Gerstung Expires 26 May 2024 [Page 8]

Internet-Draft Enterprise Profile for PTP November 2023

 Whenever feasible, the underlying network transport technology SHOULD

 be configured so that timing messages in different domains traverse

 different network paths.

7. Default Message Rates

 The Sync, Announce, and Delay Request default message rates SHALL

 each be once per second. The Sync and Delay Request message rates

 MAY be set to other values, but not less than once every 128 seconds,

 and not more than 128 messages per second. The Announce message rate

 SHALL NOT be changed from the default value. The Announce Receipt

 Timeout Interval SHALL be three Announce Intervals for Preferred

 TimeTransmitters, and four Announce Intervals for all other

 timeTransmitters.

 The logMessageInterval carried in the unicast Delay Response message

 MAY be set to correspond to the timeTransmitter ports preferred

 message period, rather than 7F, which indicates message periods are

 to be negotiated. Note that negotiated message periods are not

 allowed, see forbidden PTP options (Section 13).

8. Requirements for TimeTransmitter Clocks

 TimeTransmitter Clocks SHALL obey the standard Best TimeTransmitter

 Clock Algorithm from IEEE 1588 [IEEE1588]. PTP systems using this

 PTP Profile MAY support multiple simultaneous Grandmasters if each

 active Grandmaster is operating in a different PTP domain.

 A PTP Port of a clock SHALL NOT be in the timeTransmitter state

 unless the clock has a current value for the number of UTC leap

 seconds.

 If a unicast negotiation signaling message is received it SHALL be

 ignored.

 In PTP Networks that contain Transparent Clocks, timeTransmitters

 might receive Delay Request messages that no longer contains the IP

 Addresses of the timeReceivers. This is becuase Transparent Clocks

 might replace the IP address of Delay Requests with their own IP

 address after updating the Correction Fields. For this deployment

 scenario timeTransmitters will need to have configured tables of

 timeReceivers’ IP addresses and associated Clock Identities in order

 to send Delay Responses to the correct PTP Nodes.

Arnold & Gerstung Expires 26 May 2024 [Page 9]

Internet-Draft Enterprise Profile for PTP November 2023

9. Requirements for TimeReceiver Clocks

 TimeReceiver Clocks MUST be able to operate properly in a network

 which contains multiple timeTransmitters in multiple domains.

 TimeReceivers SHOULD make use of information from all the

 timeTransmitters in their clock control subsystems. TimeReceiver

 Clocks MUST be able to operate properly in the presence of a rogue

 timeTransmitter. TimeReceivers SHOULD NOT Synchronize to a

 timeTransmitter which is not the Best TimeTransmitter in its domain.

 TimeReceivers will continue to recognize a Best TimeTransmitter for

 the duration of the Announce Time Out Interval. TimeReceivers MAY

 use an Acceptable TimeTransmitter Table. If a timeTransmitter is not

 an Acceptable timeTransmitter, then the timeReceiver MUST NOT

 synchronize to it. Note that IEEE 1588-2019 requires timeReceiver

 Clocks to support both two-step or one-step timeTransmitter Clocks.

 See IEEE 1588 [IEEE1588], subClause 11.2.

 Since Announce messages are sent as multicast messages timeReceivers

 can obtain the IP addresses of a timeTransmitter from the Announce

 messages. Note that the IP source addresses of Sync and Follow-up

 messages may have been replaced by the source addresses of a

 Transparent Clock, so, timeReceivers MUST send Delay Request messages

 to the IP address in the Announce message. Sync and Follow-up

 messages can be correlated with the Announce message using the Clock

 ID, which is never altered by Transparent Clocks in this PTP Profile.

10. Requirements for Transparent Clocks

 Transparent Clocks SHALL NOT change the transmission mode of an

 Enterprise Profile PTP message. For example, a Transparent Clock

 SHALL NOT change a unicast message to a multicast message.

 Transparent Clocks SHOULD support multiple domains. Transparent

 Clocks which syntonize to the timeTransmitter Clock will need to

 maintain separate clock rate offsets for each of the supported

 domains.

11. Requirements for Boundary Clocks

 Boundary Clocks SHOULD support multiple simultaneous PTP domains.

 This will require them to maintain servo loops for each of the

 domains supported, at least in software. Boundary Clocks MUST NOT

 combine timing information from different domains.

Arnold & Gerstung Expires 26 May 2024 [Page 10]

Internet-Draft Enterprise Profile for PTP November 2023

12. Management and Signaling Messages

 PTP Management messages MAY be used. Management messages intended

 for a specific clock, i.e. the IEEE 1588 [IEEE1588] defined attribute

 targetPortIdentity.clockIdentity is not set to All 1s, MUST be sent

 as a unicast message. Similarly, if any signaling messages are used

 they MUST also be sent as unicast messages whenever the message is

 intended for a specific PTP Node.

13. Forbidden PTP Options

 Clocks operating in the Enterprise Profile SHALL NOT use Peer-to-Peer

 timing for delay measurement. Grandmaster Clusters are NOT ALLOWED.

 The Alternate TimeTransmitter option is also NOT ALLOWED. Clocks

 operating in the Enterprise Profile SHALL NOT use Alternate

 Timescales. Unicast discovery and unicast negotiation SHALL NOT be

 used. Clocks operating in the Enterprise Profile SHALL NOT use any

 optional feature that requires Announce messages to be altered by

 Transparent Clocks, as this would require the Transparent Clock to

 change the source address and prevent the timeReceiver nodes from

 discovering the protocol address of the timeTransmitter.

14. Interoperation with IEEE 1588 Default Profile

 Clocks operating in the Enterprise Profile will interoperate with

 clocks operating in the Default Profile described in IEEE 1588

 [IEEE1588] Annex I.3. This variant of the Default Profile uses the

 End-to-End delay measurement mechanism. In addition, the Default

 Profile would have to operate over IPv4 or IPv6 networks, and use

 management messages in unicast when those messages are directed at a

 specific clock. If either of these requirements are not met than

 Enterprise Profile clocks will not interoperate with Annex I.3

 Default Profile Clocks. The Enterprise Profile will not interoperate

 with the Annex I.4 variant of the Default Profile which requires use

 of the Peer-to-Peer delay measurement mechanism.

 Enterprise Profile Clocks will interoperate with clocks operating in

 other PTP Profiles if the clocks in the other PTP Profiles obey the

 rules of the Enterprise Profile. These rules MUST NOT be changed to

 achieve interoperability with other PTP Profiles.

15. Profile Identification

 The IEEE 1588 standard requires that all PTP Profiles provide the

 following identifying information.

Arnold & Gerstung Expires 26 May 2024 [Page 11]

Internet-Draft Enterprise Profile for PTP November 2023

 PTP Profile:

 Enterprise Profile

 Version: 1.0

 Profile identifier: 00-00-5E-00-01-00

 This PTP Profile was specified by the IETF

 A copy may be obtained at

 https://datatracker.ietf.org/wg/tictoc/documents

16. Acknowledgements

 The authors would like to thank members of IETF for reviewing and

 providing feedback on this draft.

 This document was initially prepared using 2-Word-v2.0.template.dot

 and has later been converted manually into xml format using an

 xml2rfc template.

17. IANA Considerations

 There are no IANA requirements in this specification.

18. Security Considerations

 Protocols used to transfer time, such as PTP and NTP can be important

 to security mechanisms which use time windows for keys and

 authorization. Passing time through the networks poses a security

 risk since time can potentially be manipulated. The use of multiple

 simultaneous timeTransmitters, using multiple PTP domains can

 mitigate problems from rogue timeTransmitters and on-path attacks.

 Note that Transparent Clocks alter PTP content on-path, but in a

 manner specified in IEEE 1588-2019 [IEEE1588] that helps with time

 transfer accuracy. See sections 9 and 10. Additional security

 mechanisms are outside the scope of this document.

 PTP native management messages SHOULD NOT be used, due to the lack of

 a security mechanism for this option. Secure management can be

 obtained using standard management mechanisms which include security,

 for example NETCONF NETCONF [RFC6241].

 General security considerations of time protocols are discussed in

 RFC 7384 [RFC7384].

19. References

19.1. Normative References

Arnold & Gerstung Expires 26 May 2024 [Page 12]

Internet-Draft Enterprise Profile for PTP November 2023

 [IEEE1588] Institute of Electrical and Electronics Engineers, "IEEE

 std. 1588-2019, "IEEE Standard for a Precision Clock

 Synchronization for Networked Measurement and Control

 Systems."", November 2019, <https://www.ieee.org>.

 [IEEE1588g]

 Institute of Electrical and Electronics Engineers, "IEEE

 std. 1588g-2022, "IEEE Standard for a Precision Clock

 Synchronization Protocol for Networked Measurement and

 Control Systems Amendment 2: Master-Slave Optional

 Alternative Terminology"", December 2022,

 <https://www.ieee.org>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,

 DOI 10.17487/RFC0768, August 1980,

 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,

 DOI 10.17487/RFC0791, September 1981,

 <https://www.rfc-editor.org/info/rfc791>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 2119, DOI 10.17487/RFC2119,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6

 (IPv6) Specification", STD 86, RFC 8200,

 DOI 10.17487/RFC8200, July 2017,

 <https://www.rfc-editor.org/info/rfc8200>.

19.2. Informative References

 [G8271] International Telecommunication Union, "ITU-T G.8271/

 Y.1366, "Time and Phase Synchronization Aspects of Packet

 Networks"", March 2020, <https://www.itu.int>.

 [ISPCS] Arnold, D., "Plugfest Report", October 2017,

 <https://www.ispcs.org>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

 "Network Time Protocol Version 4: Protocol and Algorithms

 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,

 <https://www.rfc-editor.org/info/rfc5905>.

Arnold & Gerstung Expires 26 May 2024 [Page 13]

Internet-Draft Enterprise Profile for PTP November 2023

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in

 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,

 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

Authors’ Addresses

 Doug Arnold

 Meinberg-USA

 3 Concord Rd

 Shrewsbury, Massachusetts 01545

 United States of America

 Email: doug.arnold@meinberg-usa.com

 Heiko Gerstung

 Meinberg

 Lange Wand 9

 31812 Bad Pyrmont

 Germany

 Email: heiko.gerstung@meinberg.de

Arnold & Gerstung Expires 26 May 2024 [Page 14]

Network Time Protocol M. Langer
Internet-Draft R. Bermbach
Intended status: Standards Track Ostfalia University
Expires: 24 August 2023 20 February 2023

NTS4PTP - Key Management System for the Precision Time Protocol Based on
 the Network Time Security Protocol
 draft-langer-ntp-nts-for-ptp-05

Abstract

 This document defines a key management service for automatic key
 management for the integrated security mechanism (prong A) of IEEE
 Std 1588-2019 (PTPv2.1) described there in Annex P. It implements a
 key management for the immediate security processing approach and
 offers a security solution for all relevant PTP modes. The key
 management service for PTP is based on and extends the NTS Key
 Establishment protocol defined in IETF RFC 8915 for securing NTP, but
 works completely independent from NTP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 24 August 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components

Langer & Bermbach Expires 24 August 2023 [Page 1]

Internet-Draft NTS4PTP February 2023

 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Notational Conventions 3
 2. Key Management Using Network Time Security 3
 2.1. Principle Key Distribution Mechanism 5
 2.1.1. NTS Message Exchange for Group-based Approach 8
 2.1.2. NTS Message Exchange for the Ticket-based Approach . 10
 2.2. General Topics . 14
 2.2.1. Key Update Process 14
 2.2.2. Key Generation 19
 2.2.3. Time Information of the NTS-KE server 19
 2.2.4. Certificates . 19
 2.2.5. Upfront Configuration 20
 2.2.5.1. Security Parameters 20
 2.2.5.2. Key Lifetimes 21
 2.2.5.3. Certificates 21
 2.2.5.4. Authorization 21
 2.2.5.5. Transparent Clocks 22
 2.2.5.6. Start-up considerations 23
 2.3. Overview of NTS Messages and their Structure for Use with
 PTP . 23
 2.3.1. PTP Key Request Message 25
 2.3.2. PTP Key Response Message 26
 2.3.3. PTP Registration Request Message 27
 2.3.4. PTP Registration Response Message 28
 2.3.5. PTP Registration Revoke Message 30
 2.3.6. Heartbeat Message 31
 3. NTS Messages for PTP . 32
 3.1. NTS Message Types . 34
 3.2. NTS Records . 38
 3.2.1. AEAD Algorithm Negotiation 38
 3.2.2. Association Mode 40
 3.2.3. Current Parameters 43
 3.2.4. End of Message 45
 3.2.5. Error . 45
 3.2.6. Heartbeat Timeout 46
 3.2.7. Next Parameters 47
 3.2.8. NTS Next Protocol Negotiation 48
 3.2.9. NTS Message Type 49
 3.2.10. PTP Time Server 50
 3.2.11. Security Association 51
 3.2.12. Source PortIdentity 53
 3.2.13. Status . 54
 3.2.14. Supported MAC Algorithms 56

Langer & Bermbach Expires 24 August 2023 [Page 2]

Internet-Draft NTS4PTP February 2023

 3.2.15. Ticket . 58
 3.2.16. Ticket Key . 60
 3.2.17. Ticket Key ID . 60
 3.2.18. Validity Period 61
 4. Additional Mechanisms . 63
 4.1. AEAD Operation . 63
 4.2. SA/SP Management . 65
 5. New TICKET TLV for PTP Messages 67
 6. AUTHENTICATION TLV Parameters 69
 7. IANA Considerations . 70
 8. Security Considerations 70
 9. Acknowledgements . 70
 10. References . 70
 10.1. Normative References 70
 10.2. Informative References 71
 Authors’ Addresses . 72

1. Notational Conventions

 The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT,
 SHOULD, SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and
 OPTIONAL in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Key Management Using Network Time Security

 In its annex P the IEEE Std 1588-2019 ([IEEE1588-2019], Precision
 Time Protocol version 2.1, PTPv2.1) defines a comprehensive PTP
 security concept based on four prongs (A to D). Prong A incorporates
 an immediate security processing approach and specifies in section
 16.14 an extension to secure PTP messages by means of an
 AUTHENTICATION TLV (AuthTLV) containing an Integrity Check Value
 (ICV). For PTP instances to use the securing mechanism, a respective
 key needs to be securely distributed among them. Annex P gives
 requirements for such a key management system and mentions potential
 candidates without further specification, but allows other solutions
 as long as they fulfill those requirements.

 This document defines such a key management service for automatic key
 management for the immediate security processing in prong A. The
 solution [Langer_et_al._2022] [Langer_et_al._2020] is based on and
 expands the NTS Key Establishment protocol defined in IETF RFC 8915
 [RFC8915] for securing NTP, but works completely independent from
 NTP.

Langer & Bermbach Expires 24 August 2023 [Page 3]

Internet-Draft NTS4PTP February 2023

 Many networks include both, PTP and NTP at the same time.
 Furthermore, many time server appliances that are capable of acting
 as the Grandmaster of a PTP network are also capable of acting as an
 NTP server. For these reasons, it is likely to be easier both, for
 the time server manufacturer and the network operator, if PTP and NTP
 use a key management system based on the same technology. The
 Network Time Security (NTS) protocol was specified by the Internet
 Engineering Task Force (IETF) to protect the integrity of NTP
 messages [RFC8915]. Its NTS Key Establishment sub-protocol is
 secured by the Transport Layer Security (TLS 1.3, IETF RFC 8446
 [RFC8446]) mechanism. TLS is used to protect numerous popular
 network protocols, so it is present in many networks. For example,
 HTTPS, the predominant secure web protocol uses TLS for security.
 Since many PTP capable network appliances have management interfaces
 based on HTTPS, the manufacturers are already implementing TLS.

 Though the key management for PTP is based on the NTS Key
 Establishment (NTS-KE) protocol for NTP, it works completely
 independent of NTP. The key management system uses the procedures
 described in IETF RFC 8915 for the NTS-KE and expands it with new NTS
 messages for PTP. It may be applied in a Key Establishment server
 (NTS-KE server) that already manages NTP but can also be operated
 only handling KE for PTP. Even when the PTP network is isolated from
 the Internet, a Key Establishment server can be installed in that
 network providing the PTP instances with necessary key and security
 parameters.

 The NTS-KE server may often be implemented as a separate unit. It
 also may be collocated with a PTP instance, e.g., the Grandmaster.
 In the latter case communication between the NTS-KE server program
 and the PTP instance program needs to be implemented in a secure way
 if TLS communication (e.g., via local host) is not or cannot be used.

 Using the expanded NTS Key Establishment protocol for the NTS key
 management for PTP, NTS4PTP provides two principle approaches
 specified in this document.

 1. Group-based approach (GrBA, multicast)

 * definition of one or more security groups in the PTP network,
 * very suitable for PTP multicast mode and mixed multicast/unicast
 mode,
 * suitable for unicast mode in small subgroups of very few
 participants (Group-of-2, Go2) but poor scaling and more
 administration work,

 2. Ticket-based approach (TiBA, unicast)

Langer & Bermbach Expires 24 August 2023 [Page 4]

Internet-Draft NTS4PTP February 2023

 * secured (end-to-end) PTP unicast communication between a PTP
 requester and grantor,
 * no group binding necessary,
 * very suitable for native PTP unicast mode, because of good
 scaling,
 * a bit more complex NTS message handling.

 For these modes, the NTS key management for PTP defines six new NTS
 messages which will be introduced in the sections to come:

 * PTP Key Request message (see Section 2.3.1)
 * PTP Key Response message (see Section 2.3.2)
 * PTP Registration Request message (see Section 2.3.3)
 * PTP Registration Response message (see Section 2.3.4)
 * PTP Registration Revoke message (see Section 2.3.5)
 * Heartbeat message (see Section 2.3.6)

 This document describes the structure and usage of the two approaches
 GrBA and TiBA in their application as a key management system for the
 integrated security mechanism (prong A) of IEEE Std 1588-2019.
 Section 2.1 starts with a description of the principle key
 distribution mechanism, continues with details of the various group-
 based options (Section 2.1.1) and the ticket-based unicast mode
 (Section 2.1.2) before it ends with more general topics in
 Section 2.2 for example the key update process and finally an
 overview of the newly defined NTS messages in Section 2.3. Section 3
 gives all the details necessary to construct all records forming the
 particular NTS messages. Section 5 depicts details of a TICKET TLV
 needed to transport encrypted security information in PTP unicast
 requests. The following Section 6 mentions specific parameters used
 in the PTP AUTHENTICATION TLV when working with the NTS4PTP key
 management system. Section 7 and Section 8 discuss IANA respectively
 security considerations.

2.1. Principle Key Distribution Mechanism

 A PTP instance requests a key from the server referred to as the Key
 Establishment server, or NTS-KE server using the NTS-KE protocol
 defined in [RFC8915], see Section 1.3. Figure 1 describes the
 principle sequence which can be used for PTP multicast as well as PTP
 unicast operation.

Langer & Bermbach Expires 24 August 2023 [Page 5]

Internet-Draft NTS4PTP February 2023

 PTP Instance NTS-KE Server

 | |
 |<======== Open TLS Channel ========>|
 | |
 | |
 |========= PTP Key Request =========>|) NTS messages
 | |) for PTP
 |<======== PTP Key Response =========|) key exchange
 | |
 | |
 |<======== Close TLS Channel =======>|
 | |
 | o
 |
 | PTP Instance 2/
 | PTP Network
 |
 | |
 |<---- Secured PTP Communication --->|
 | using shared key |
 | |
 V V

 Figure 1: NTS key distribution sequence

 The PTP instance client connects to the NTS-KE server on the NTS TCP
 port (port number 4460). Then both parties perform a TLS handshake
 to establish a TLS 1.3 communication channel. No earlier TLS
 versions are allowed. The details of the TLS handshake are specified
 in IETF RFC 8446 [RFC8446].

 Implementations must conform to the rules stated in Section 3 TLS
 Profile for Network Time Security of IETF RFC 8915 [RFC8915]:

 _"Network Time Security makes use of TLS for NTS key
 establishment._
 _Since the NTS protocol is new as of this publication, no
 backward-compatibility concerns exist to justify using obsolete,
 insecure, or otherwise broken TLS features or versions._
 Implementations MUST conform with RFC 7525 [RFC7525]_or with a
 later revision of BCP 195._
 _Implementations MUST NOT negotiate TLS versions earlier than
 1.3_[RFC8446]_and MAY refuse to negotiate any TLS version that has
 been superseded by a later supported version._

Langer & Bermbach Expires 24 August 2023 [Page 6]

Internet-Draft NTS4PTP February 2023

 _Use of the Application-Layer Protocol Negotiation
 Extension_[RFC7301]_is integral to NTS, and support for it is
 REQUIRED for interoperability ... "_

 The client starts the TLS handshake with a Client Hello message
 that must contain two TLS extensions. The first extension is the
 Application Layer Protocol Negotiation [RFC7301] (ALPN with
 "ntske/1", which refers to the NTS Key Establishment as the
 subsequent protocol.) The second extension is the Post-Handshake
 Client Authentication, which the client uses to signal the TLS server
 that the client certificate can be requested after the TLS handshake.
 Afterwards, the client authenticates the NTS-KE server using the root
 CA certificate or by means of the Online Certificate Status Protocol
 (OCSP, IETF RFC 6960). Both, client and server agree on the cipher
 suite and then establish a secured channel that ensures authenticity,
 integrity and confidentiality for subsequent messages. In the
 process, the NTS-KE server acknowledges the ALPN and expects a
 message from the NTS-KE protocol.

 Thus, the TLS handshake accomplishes the following:

 * Negotiation of TLS version (only TLS 1.3 allowed), and
 * negotiation of the cipher suite for the TLS session, and
 * authentication of the TLS server (equivalent to the NTS-KE server)
 using a digital X.509 certificate,
 * and the encryption of the subsequent information exchange between
 the TLS communication partners.

 TLS is a layer five protocol that runs on TCP over IP. Therefore,
 PTP implementations that support NTS-based key management need to
 support TCP and IP (at least on a separate management port).

 Once the TLS session is established, the PTP instance will ask for a
 PTP key as well as the associated security parameters using the new
 NTS message PTP Key Request (see Section 2.3.1). Then the server
 requests the client’s X.509 certificate (via TLS Certificate Request)
 and verifies it upon receipt. In NTS for NTP this was unnecessary,
 in NTS4PTP the clients MUST be authenticated, too. The NTS
 application of the NTS-KE server will respond with a PTP Key Response
 message (see Section 2.3.2). If no delivery of security data is
 possible for whatever reason, the PTP Key Response message contains a
 respective error code. All messages are constructed from specific
 records as described in Section 3.2.

 When the PTP Key Request message was responded with a PTP Key
 Response, the TLS session will be closed with a ’close notify’ TLS
 alert from both parties, the PTP instance and the key server.

Langer & Bermbach Expires 24 August 2023 [Page 7]

Internet-Draft NTS4PTP February 2023

 With the key and other information received, the PTP instance can
 take part in the secured PTP communication in the different modes of
 operation.

 After the reception of the first set of security parameters the PTP
 instance may resume the TLS session according to IETF RFC 8446
 [RFC8446], Section 4.6.1, allowing the PTP instance to skip the TLS
 version and algorithm negotiations. If TLS Session Resumption
 ([RFC8446], Section 2.2) is used and supported by the NTS-KE server,
 a suitable lifetime (max. 24 hrs) for the TLS session key must be
 defined to not open the TLS connection for security threats. If the
 NTS-KE server does not support TLS resumption, a full TLS handshake
 must be performed.

 As the TLS session provides authentication, but not authorization
 additional means have to be used for the latter (see
 Section 2.2.5.4).

 As mentioned above, the NTS key management for PTP supports two
 principle methods, the group-based approach (GrBA) and the ticket-
 based approach (TiBA) which are described in the following sections
 below.

2.1.1. NTS Message Exchange for Group-based Approach

 As described in Section 2.1, a PTP instance wanting to join a secured
 PTP communication in the group-based modes contacts the NTS-KE server
 starting the establishment of a secured TLS connection using the NTS-
 KE protocol (ALPN: ntske/1). Then, the client continues with a PTP
 Key Request message, asking for a specific group (see Section 2.3.1)
 as shown in Figure 2. After receiving the message, the NTS-KE server
 requests the client’s certificate and performs an authorization
 check. The NTS-KE server then replies with a PTP Key Response
 message (see Section 2.3.2) with all the necessary data to join the
 group communication. Else, it contains a respective error code if
 the PTP instance is not allowed to join the group. This procedure is
 necessary for all parties, which are or will be members of that PTP
 group including the Grandmaster and other special participants, e.g.,
 Transparent Clocks. As mentioned above, this not only applies to
 multicast mode but also to mixed multicast/unicast mode (former
 hybrid mode) where the explicit unicast communication uses the
 multicast group key received from the NTS-KE server. The group
 number for both modes is primarily generated by a concatenation of
 the PTP domain number and the PTP profile identifier (sdoId), as
 described in Section 3.2.2.

Langer & Bermbach Expires 24 August 2023 [Page 8]

Internet-Draft NTS4PTP February 2023

 Additionally, besides multicast and mixed multicast/unicast mode, a
 group of two (or few more) PTP instances can be configured,
 practically implementing a special group-based unicast communication
 mode, the group-of-2 (Go2) mode.

 Secured
 PTP Network PTP Instance NTS-KE Server

 | | TLS: |
 | TLS |== PTP Key Request =>| Response contains:
 | secured | | GroupID, security
 | communication | TLS: | parameters, group
 | |<= PTP Key Response =| key, validity
 | | | period etc.
 | Secured PTP: | |
 |--- Announce -------->|) |
 | |) |
 | Secured PTP: |) |
 |-- Sync & Follow_Up ->|) |
 | |) Secured |
 | |) PTP messages |
 | Secured PTP: |) using |
 |<-- Delay_Req --------|) group key |
 | |) |
 | Secured PTP: |) |
 |--- Delay_Resp ------>|) |
 | |) |
 V V V

 Legend: TLS: Authenticated & encrypted
 =============> TLS communication

 Secured PTP: Group key-authenticated
 -------------> PTP communication

 Figure 2: Message exchange for the group-based approach

 This Go2 mode requires additional administration in advance defining
 groups-of-2 and supplying them with an additional attribute in
 addition to the group number mentioned for the other group-based
 modes the subGroup attribute in the Association Mode record (see
 Section 3.2.2) of the PTP Key Request message. So, addressing for
 Go2 is achieved by use of the group number derived from domain
 number, sdoId and the additional attribute subGroup. Communication
 in that mode is performed using multicast addresses. If the latter

Langer & Bermbach Expires 24 August 2023 [Page 9]

Internet-Draft NTS4PTP February 2023

 is undesirable, unicast addresses can be used but the particular IP
 or MAC addresses of the communication partners need to be configured
 upfront, too.

 In spite of its specific name, Go2 allows more than two participants,
 for example additional Transparent Clocks. All participants in that
 subgroup need to be configured respectively. (To enable the NTS-KE
 server to supply the subgroup members with the particular security
 data the respective certificates may reflect permission to take part
 in the subgroup. Else another authorization method is to be used.)

 Having predefined the Go2s the key management for this mode of
 operation follows the same procedure (see Figure 2) and uses the same
 NTS messages as the other group-based modes. Both participants, the
 Group-of-2 requester and the respective grantor need to have received
 their security parameters including key etc. before secure PTP
 communication can take place.

 After the NTS key establishment messages for these group-based modes
 have been exchanged, the secured PTP communication can take place
 using the security association(s) communicated. The participants of
 the PTP network are now able to use the group key to verify secured
 PTP messages of the corresponding group or to generate secured PTP
 messages itself. In order to do this, the PTP node applies the group
 key together with the MAC algorithm to the PTP packet to generate the
 ICV transported in the AUTHENTICATION TLV of the PTP message.

 The key management for these modes works relatively simple and needs
 only the above mentioned two NTS messages: PTP Key Request and PTP
 Key Response.

2.1.2. NTS Message Exchange for the Ticket-based Approach

 The scaling problems of the group-based approach are solved by the
 ticket-based approach (TiBA) for unicast connections. TiBA ensures
 end-to-end security between the two PTP communication partners,
 requester and grantor, and is therefore only suitable for PTP unicast
 where no group binding exists. Therefore, this model scales
 excellently with the number of connections. TiBA also allows free
 MAC algorithm and server negotiation, eliminating the need for the
 administrator to manually prepare the table of acceptable unicast
 masters at each individual PTP node. In addition, this allows
 optional load control by the NTS-KE server.

 In (native) PTP unicast mode using unicast message negotiation
 ([IEEE1588-2019], Section 16.1) any potential instance (the grantor)
 which can be contacted by other PTP instances (the requesters) needs
 to register upfront with the NTS-KE server as depicted in Figure 3.

Langer & Bermbach Expires 24 August 2023 [Page 10]

Internet-Draft NTS4PTP February 2023

 PTP Requester NTS-KE Server PTP Grantor

 | | TLS: |Grantor
 | KE generates |<= PTP Registration =|registers
 | ticket key | Request |upfront
 | | |
 | | TLS: |gets
 | KE sends |== PTP Registration >|ticket
 | ticket key | Response |key to
 | | |decrypt
 | | |tickets
 : : :
 PTP instance| TLS: | |
 wants unicast|== PTP Key =====>| KE generates |
 communication| Request | and sends |
 | | unicast key |
 | TLS: | & encrypted |
 |<= PTP Key ======| ticket |
 | Response | |
 | | |decrypts
 Unicast| | |ticket,
 request| Secured PTP: | |extracts
 contains|-- Unicast -------------------------->|containing
 ticket| Request | |unicast key
 | | |
 | Secured PTP: | |Grantor uses
 |<- Grant ------------------------------|unicast key
 | | |
 V V V

 Legend: TLS: Authenticated & encrypted
 =============> TLS communication

 Secured PTP: Unicast key-authenticated
 -------------> PTP communication

 Figure 3: Message exchange for ticket-based unicast mode

Langer & Bermbach Expires 24 August 2023 [Page 11]

Internet-Draft NTS4PTP February 2023

 (Note: As any PTP instance may request unicast messages from any
 other instance the terms requester and grantor as used in the
 standard suit better than talking about slave respectively master.
 In unicast PTP, the grantor is typically a PTP Port in the MASTER
 state, and the requester is typically a PTP Port in the SLAVE state.
 However all PTP Ports are allowed to grant and request unicast PTP
 message contracts regardless of which state they are in. A PTP port
 in MASTER state may be requester, a port in SLAVE state may be a
 grantor.)

 Since the registration of unicast grantors is not provided for in the
 NTS-KE protocol, a new sub-protocol is needed, the NTS Time Server
 Registration (NTS-TSR) protocol. NTS-TSR does not conflict with NTS
 for NTP, and the original procedure for NTS-secured NTP remains
 unchanged. All NTS requests still arrive at the NTS-KE server on
 port 4460/TCP, whether a simple client or a time server connects.
 The authentication of the NTS-KE server by the querying partner
 already takes place when the TLS connection is established. In doing
 so, it chooses the NTS protocol to be used by selecting the ALPN
 [RFC7301]. If the ALPN contains the string "ntske/1", the NTS Key
 Establishment protocol is executed after the TLS handshake (see
 group-based approach). If it contains "ntstsr/1" instead, the NTS
 Time Server Registration protocol is executed. (Unlike the NTS-KE
 protocol, requesting grantors are already authenticated during the
 TLS handshake.)

 The registration of a PTP grantor is performed via a PTP Registration
 Request message (see Section 2.3.3). The NTS-KE server answers with
 a PTP Registration Response message (see Section 2.3.4). If no
 delivery of security data is possible for whatever reason, the PTP
 Registration Response message contains a respective error code.

 With the reception of the PTP Registration Response message, the
 grantor holds a ticket key known only to the NTS-KE server and the
 registered grantor. With this ticket key it can decrypt
 cryptographic information contained in a so-called ticket which
 enables secure unicast communication.

 After the end of the registration process (phase 1), phase 2 begins
 with the key request of the client (now called requester). Similar
 to the group-based approach, a PTP instance (the requester) wanting
 to start a secured PTP unicast communication with a specific grantor
 contacts the NTS-KE server sending a PTP Key Request message (see
 Section 2.3.1) as shown in Figure 7, again using the TLS-secured NTS
 Key Establishment protocol. The NTS-KE server performs the
 authentication check of the client and then answers with a PTP Key
 Response message (see Section 2.3.2) with all the necessary data to
 begin the unicast communication with the desired partner or with a

Langer & Bermbach Expires 24 August 2023 [Page 12]

Internet-Draft NTS4PTP February 2023

 respective error code if unicast communication with that instance is
 unavailable. Though the message types are the same as in GrBA the
 content differs.

 The PTP Key Response message includes a unicast key to secure the PTP
 message exchange with the desired grantor. In addition, it contains
 the above mentioned (partially) encrypted ticket which the requester
 later (phase 3) transmits in a special Ticket TLV (see Section 5)
 with the secured PTP message to the grantor.

 After the NTS key establishment messages for the PTP unicast mode
 have been exchanged, finally, the secured PTP communication (phase 3)
 can take place using the security association(s) communicated. A
 requester may send a (unicast key) secured PTP signaling message
 containing the received encrypted ticket, asking for a grant of a so-
 called unicast contract which contains a request for a specific PTP
 message type, as well as the desired frame rate.

 The grantor receiving the PTP message decrypts the received ticket
 with its ticket key and extracts the containing security parameters,
 for example the unicast key used by the requester to secure the PTP
 message and the requesters identity. In that way the grantor can
 check the received message, identify the requester and can use the
 unicast key for further secure PTP communication with the requester
 until the unicast key expires.

 A grantor that supports unicast and provides sufficient capacity will
 acknowledge the request for a unicast contract with a PTP unicast
 grant.

 If a grantor is no longer at disposal for unicast mode during the
 lifetime of registration and ticket key, it sends a TLS-secured PTP
 Registration Revoke message (see Section 2.3.5, not shown in
 Figure 3) to the NTS-KE server, so requesters no longer receive PTP
 Key Response messages for this grantor.

 The Heartbeat message (see Section 2.3.6, not shown in Figure 3)
 allows grantors to send messages to the NTS-KE server at regular
 intervals during the validity of the current security data and signal
 their own functionality. Optionally, these messages can contain
 status reports, for example, to enable load balancing between the
 registered time servers or to provide additional monitoring.

Langer & Bermbach Expires 24 August 2023 [Page 13]

Internet-Draft NTS4PTP February 2023

 With its use of two protocols, the NTS-KE and the NTS-TSR protocol,
 this unicast mode is a bit more complex than the Group-of-2 approach
 and eventually uses all six new NTS messages. However, no subgroups
 have to be defined upfront. Addressing a grantor, the requesting
 instance simply may use the grantor’s IP, MAC address or PortIdentity
 attribute.

2.2. General Topics

 This section describes more general topics like key update and key
 generation as well as discussion of the time information on the NTS-
 KE server, the use of certificates and topics concerning upfront
 configuration.

2.2.1. Key Update Process

 The security parameters update process is an important part of
 NTS4PTP. It keeps the keys up to date, allows for both, runtime
 security policy changes and easy group control. The rotation
 operation allows uninterrupted PTP operation in multicast as well as
 unicast mode.

 The update mechanism is based on the Validity Period record in the
 NTS response messages, which includes the three values lifetime,
 update period (UP) and grace period (GP), see Figure 4. The lifetime
 parameter specifies the validity period of the security parameters
 (e.g., security association (SA) and ticket) in seconds, which is
 counted down. This value can range from a few minutes to a few days.
 (Due to the design of the replay protection, a maximum lifetime of up
 to 388 days is possible, but should not be exploited). After the
 validity period has expired, the security parameters may no longer be
 used to secure PTP messages and must be deleted soon after.

 New security parameters are available on the NTS-KE server during the
 update period, a time span before the expiry of the lifetime. The
 length of the update period is therefore always shorter than the full
 lifetime and is typically in the range of a few minutes. To ensure
 uninterrupted rotation for unicast connections, it is also necessary
 to ensure that the update period is greater than the minimum unicast
 contract time.

Langer & Bermbach Expires 24 August 2023 [Page 14]

Internet-Draft NTS4PTP February 2023

 The grace period also helps to ensure uninterrupted key rotation.
 This value defines a period of time after the lifetime expiry during
 which the expired security parameters continue to be accepted. The
 grace period covers a few seconds at most and is only intended to
 compensate for runtime delays in the network during the update
 process. The respective values of the three parameters are defined
 by the administrator and can also be specified by a corresponding PTP
 profile.

 |12,389s (@time of key request) 0s|14,400s 0s|
 +----------------------------------+------------------...-------+
 | Lifetime (current parameters) | Lifetime (next parameters)|
 +-------------------------+--------+------------------...-------+
 | 300s | 10s |
 |<------>|<---->|
 | update |grace |
 | period |period|
 |________|______|
 | |
 V V
 Request and receive new parameters Still accepting
 at a random point in time old parameters

 Example:

 lifetime (full): 14,400s = 4h
 update period: 300s = 5 min
 grace period 10s

 Figure 4: Example of the parameter rotation using lifetime,
 update period and grace period in group-based mode

 As the value for lifetime is specified in seconds which denote the
 remaining time and is decremented down to zero, hard adjustments of
 the clock used have to be avoided. Therefore, the use of a monotonic
 clock is recommended. Requests during the currently running validity
 period will receive respectively adapted count values.

Langer & Bermbach Expires 24 August 2023 [Page 15]

Internet-Draft NTS4PTP February 2023

 The Validity Period record (see Section 3.2.18) with its parameters
 lifetime, update time and grace period is contained in a so-called
 Current Parameters container record. Together with other security
 parameters this container record is always present in a PTP Key
 respectively Registration Response message. During the update period
 the response message additionally comprises the Next Parameters
 container record, which holds the new lifetime etc. starting at the
 end of the current lifetime as well as the other security parameters
 of the upcoming lifetime cycle.

 Any PTP client sending a PTP Key Request to the NTS-KE server, be it
 in GrBA to receive the group SA or be it in TiBA asking for the
 unicast SA (unicast key etc. and encrypted ticket), will receive the
 Current Parameters container record where lifetime includes the
 remaining time to run rather than the full. Requesting during the
 update period the response includes also the new lifetime value in
 the Next Parameters container record. The new lifetime is the full
 value of the validity starting at the end of the current lifetime and
 update period. After the old lifetime has expired, only the new
 parameters (including lifetime, update period and grace period) have
 to be used. Merely during the grace period, the old SA will be
 accepted to cope with smaller delays in the PTP communication.

 All PTP clients are obliged to connect to the NTS-KE server during
 the update period to allow for uninterrupted secured PTP operation.
 To avoid peak load on the NTS-KE server all clients SHOULD choose a
 random starting time during the update period.

 In TiBA the unicast grantors execute the NTS-TSR protocol to register
 with the NTS-KE server. The rotation sequence (see Figure 5) and the
 behavior of the PTP Registration Response message is almost identical
 to the NTS-KE protocol. The main difference here is that the update
 period has to start earlier so that a grantor has re-registered
 before requesters ask for new security parameters at the NTS-KE
 server.

 As the difference between the start of the requesters update period
 and the beginning of the update period of the grantor is not
 communicated, the grantor should contact the NTS-KE server directly
 after the start of its update period. However, since the rotation
 periods occur at different times for multiple grantors, no load peaks
 occur here either.

 If a grantor does not re-register in time, requesters asking for a
 key etc. may not receive a Next Parameters container record, as no
 new SA is available at that point. So, requesters need to try again
 later in their update period.

Langer & Bermbach Expires 24 August 2023 [Page 16]

Internet-Draft NTS4PTP February 2023

 As unicast contracts in TiBA run independently of the update cycle, a
 special situation may occur. If the remaining lifetime is short, it
 may be necessary to select a shorter time for the unicast contract
 validity period because the unicast contract cannot run longer than
 the lifetime. If a unicast contract is to be extended within the
 update period and the requester already owns the new ticket, it can
 already apply the upcoming security parameters here. This
 corresponds to some kind of negative grace period (pre-validity use
 of upcoming security parameters) and allows the requester to
 negotiate the full time for the unicast contract with the grantor.

 If a grantor has revoked his registration with a PTP Registration
 Revoke message, requesters will receive a PTP Key Response message
 with an error code when trying to update for a new unicast key. No
 immediate key revoke mechanism exists. The grantor SHOULD not grant
 respective unicast requests during the remaining lifetime of the
 revoked key.

Langer & Bermbach Expires 24 August 2023 [Page 17]

Internet-Draft NTS4PTP February 2023

 Update process grantor:

 (@time of registration response)
 |
 |14,400s 0s |14,400s 0s|
 +---...---------+
 |Lifetime (current ticket key) |Lifetime (next ticket key)|
 +----------------------+------+------+--------------...---------+
 | 180s | :
 |<---->| :
 |update| :
 |period| :
 |______| :
 | : :
 V : :
 Re-registration : :
 : :
 : :
 Update process requester: : :
 ------------------------- : :
 : :
 |12,389s (@time of key request)0s|14,400s 0s|
 +--------------------------------+----------------...-------+
 | Lifetime (current parameters) |Lifetime (next parameters)|
 +-------------------------+------+------+---------...-------+
 | 300s | 10s |
 |<---->|<---->|
 |update|grace |
 |period|period|
 |______|______|
 | |
 V V
 Request and receive new parameters Still accepting
 at a random point in time old parameters

 Example:

 lifetime (full): 14,400s = 4h
 update period grantor: 180s = 3 min
 update period requester: 300s = 5 min
 grace period: 10s

 Figure 5: Example of the parameter rotation using lifetime and
 update period in ticket-based mode

Langer & Bermbach Expires 24 August 2023 [Page 18]

Internet-Draft NTS4PTP February 2023

2.2.2. Key Generation

 In all cases keys obtained by a secure random number generator SHALL
 be used. The length of the keys depends on the MAC algorithm (see
 also last subsection in Section 4.2) respectively the AEAD algorithm
 utilized.

2.2.3. Time Information of the NTS-KE server

 As the NTS-KE server embeds time duration information in the
 respective messages, its local time should be accurate to within a
 few seconds compared to the controlled PTP network(s). To avoid any
 dependencies, it should synchronize to a secure external time source,
 for example an NTS-secured NTP server. The time information is also
 necessary to check the lifetime of certificates used.

2.2.4. Certificates

 The authentication of the TLS communication parties is based on
 certificates issued by a trusted Certificate Authority (CA) that are
 utilized during the TLS handshake. In classical TLS applications
 only servers are required to have them. For the key management
 system described here, the PTP nodes also need certificates to allow
 only authorized and trusted devices to get the group key and join a
 secure PTP network. (As TLS only authenticates the communication
 partners, authorization has to be managed by external means, see the
 topic Authorization in Section 2.2.5.4.) The verification of a
 certificate always requires a loose time synchronicity, because they
 have a validity period. This, however, reveals the well-known start-
 up problem, since secure time transfer itself requires valid
 certificates. (See the discussion and proposals on this topic in
 IETF RFC 8915 [RFC8915], Section 8.5 Initial Verification of Server
 certificates which applies to client and server certificates in the
 PTP key management system, too.)

 Furthermore, some kind of Public Key Infrastructure (PKI) is
 necessary, which may be conceivable via the Online Certificate Status
 Protocol (OCSP, IETF RFC 6960) as well as offline via root CA
 certificates.

 The TLS communication parties must be equipped with a private key and
 a certificate in advance. The certificate contains a digital
 signature of the CA as well as the public key of the sender. The key
 pair is required to establish an authenticated and encrypted channel
 for the initial TLS phase. Distribution and update of the
 certificates can be done manually or automatically. However, it is
 important that they are issued by a trusted CA instance, which can be
 either local (private CA) or external (public CA).

Langer & Bermbach Expires 24 August 2023 [Page 19]

Internet-Draft NTS4PTP February 2023

 For the certificates the standard for X.509 [ITU-T_X.509]
 certificates MUST be used. Additional data in the certificates like
 domain, sdoId and/or subgroup attributes may help in authorizing. In
 that case it should be noted that using the PTP device in another
 network then implies to have a new certificate, too. Working with
 certificates without authorization information would not have that
 disadvantage, but more configuring at the NTS-KE server would be
 necessary: which domain, sdoId and/or subgroup attributes belong to
 which certificate.

 As TLS is used to secure both sub protocols, the NTS KE and the NTS-
 TSR protocol, a comment on the security of TLS seems reasonable. A
 TLS 1.3 connection is considered secure today. However, note that a
 DoS (Denial of Service) attack on the key server can prevent new
 connections or parameter updates for secure PTP communication. A
 hijacked key management system is also critical, because it can
 completely disable the protection mechanism. A redundant
 implementation of the key server is therefore essential for a robust
 system. A further mitigation can be the limitation of the number of
 TLS requests of single PTP nodes to prevent flooding. But such
 measures are out of the scope of this document.

2.2.5. Upfront Configuration

 All PTP instances as well as the NTS-KE server need to be configured
 by the network administrator. This applies to several fields of
 parameters.

2.2.5.1. Security Parameters

 The cryptographic algorithm and associated parameters (the so-called
 security association(s) SA) used for PTP keys are configured by
 network operators at the NTS-KE server. PTP instances that do not
 support the configured algorithms cannot operate with the security.
 Since most PTP networks are managed by a single organization,
 configuring the cryptographic algorithm (MAC) for ICV calculation is
 practical. This prevents the need for the NTS-KE server and PTP
 instances to implement an NTS algorithm negotiation protocol.

 For the ticket-based approach the AEAD algorithms need to be
 specified which the PTP grantors and the NTS-KE server support and
 negotiate during the registration process. Optionally, the MAC
 algorithm may be negotiated during a unicast PTP Key Request to allow
 faster or stronger algorithms, but a standard protocol supported by
 every instance should be defined. Eventually, suitable algorithms
 may be defined in a respective PTP profile.

Langer & Bermbach Expires 24 August 2023 [Page 20]

Internet-Draft NTS4PTP February 2023

2.2.5.2. Key Lifetimes

 Supplementary to the above mentioned SAs the desired key rotation
 periods, i.e., the lifetimes of keys respectively all security
 parameters need to be configured at the NTS-KE server. This applies
 to the lifetime of a group key in the group-based approach as well as
 the lifetime of ticket key and unicast key in the ticket-based
 unicast approach (typically for every unicast pair in general or
 eventually specific for each requestor-grantor pair). In addition,
 the corresponding update periods and grace periods need to be
 defined. Any particular lifetime, update period and grace period is
 configured as time spans specified in seconds.

2.2.5.3. Certificates

 The network administrator has to supply each PTP instance and the
 NTS-KE server with their X.509 certificates. The TLS communication
 parties must be equipped with a private key and a certificate
 containing the public key in advance (see Section 2.2.4).

2.2.5.4. Authorization

 The certificates provide authentication of the communication
 partners. Normally, they do not contain authorization information.
 Authorization decides, which PTP instances are allowed to join a
 group (in any of the group-based modes) or may enter a unicast
 communication in the ticket-based approach and request the respective
 SA(s) and key.

 As mentioned, members of a group (multicast mode, mixed multicast/
 unicast mode) are identified by their domain and their sdoId. PTP
 domain and sdoId may be attributes in the certificates of the
 potential group members supplying additional authorization. If not
 contained in the certificates extra authorization means are
 necessary. (See also the discussion on advantages and disadvantages
 on certificates containing additional authorization data in
 Section 2.2.4.)

 If the special Group-of-2 mode is used, the optional subGroup
 parameter (i.e., the subgroup number) needs to be specified at all
 members of respective Go2s, upfront. To enable the NTS-KE server to
 supply the subgroup members with the particular security data their
 respective certificates may reflect permission to take part in the
 subgroup. Else another authorization method is to be used.

 In native unicast mode, any authenticated grantor that is member of
 the group used for multicast may request a registration for unicast
 communication at the NTS-KE server. If it is intended for unicast,

Langer & Bermbach Expires 24 August 2023 [Page 21]

Internet-Draft NTS4PTP February 2023

 this must be configured locally. If no group authorization is
 available (e.g., pure unicast operation) another authentication
 scheme is necessary.

 In the same way, any requester (if configured for it locally) may
 request security data for a unicast connection with a specific
 grantor. Only authentication at the NTS-KE server using its
 certificate and membership in the group used for multicast is needed.
 If a unicast communication is not desired by the grantor, it should
 not grant a specific unicast request. Again, if no group
 authorization is available (e.g., pure unicast operation) another
 authentication scheme is necessary.

 Authorization can be executed at least in some manual configuration.
 Probably the application of a standard access control system like
 Diameter, RADIUS or similar would be more appropriate. Also role-
 based access control (RBAC), attribute-based access control (ABAC) or
 more flexible tools like Open Policy Agent (OPA) could help
 administering larger systems. But details of the authorization of
 PTP instances lie out of scope of this document.

2.2.5.5. Transparent Clocks

 Transparent Clocks (TC) need to be supplied with respective
 certificates, too. For group-based modes they must be configured for
 the particular PTP domain and sdoId and eventually for the specific
 subgroup(s) when using Group-of-2. They need to request for the
 relevant group key(s) at the NTS-KE server to allow secure use of the
 correctionfield in a PTP message and generation of a corrected ICV.
 If TCs are used in ticket-based unicast mode, they need to be
 authorized for the particular unicast path.

 Authorization of TCs for the respective groups, subgroups and unicast
 connections is paramount. Otherwise the security can easily be
 broken with attackers pretending to be TCs in the path.
 Authorization of TCs is necessary too in unicast communication, even
 if the normal unicast partners need not be especially authorized.

 Transparent clocks may notice that the communication runs secured.
 In the group-based approaches multicast mode and mixed multicast/
 unicast mode they construct the GroupID from domain and sdoId and
 request a group key from the NTS-KE server. Similarly, they can use
 the additional subgroup attribute in Go2 mode for a (group) key
 request. Afterwards they can check the ICV of incoming messages,
 fill in the correction field and generate a new ICV for outgoing
 messages. In ticket-based unicast mode a TC may notice a secured
 unicast request from a requester to the grantor and can request the
 unicast key from the NTS-KE server to make use of the correction

Langer & Bermbach Expires 24 August 2023 [Page 22]

Internet-Draft NTS4PTP February 2023

 field afterwards. As mentioned above upfront authentication and
 authorization of the particular TCs is paramount not to open the
 secured communication to attackers.

2.2.5.6. Start-up considerations

 At start-up of a single PTP instance or the complete PTP network some
 issues have to be considered.

 At least loose time synchronization is necessary to allow for
 authentication using the certificates. See the discussion and
 proposals on this topic in IETF RFC 8915 [RFC8915], Section 8.5
 Initial Verification of Server certificates which applies to client
 and server certificates in the PTP key management system, too.

 Similarly, to a key re-request during an update period, key requests
 SHOULD be started at a random point in time after start-up to avoid
 peak load on the NTS-KE server. Every grantor must register with the
 NTS-KE server before requesters can request a unicast key (and
 ticket).

2.3. Overview of NTS Messages and their Structure for Use with PTP

 Section 2.1 described the principle communication sequences for PTP
 Key Request, PTP Registration Request and corresponding response
 messages. All messages follow the NTS Key Establishment Process
 stated in the first part (until the description of Figure 3 starts)
 of Section 4 of IETF RFC 8915 [RFC8915]:

 _"The NTS key establishment protocol is conducted via TCP port
 4460. The two endpoints carry out a TLS handshake in conformance
 with Section 3, with the client offering (via an ALPN
 extension_[RFC7301])_, and the server accepting, an application-
 layer protocol of "ntske/1". Immediately following a successful
 handshake, the client SHALL send a single request as Application
 Data encapsulated in the TLS-protected channel. Then, the server
 SHALL send a single response. After sending their respective
 request and response, the client and server SHALL send TLS
 "close_notify" alerts in accordance with Section 6.1 of RFC
 8446_[RFC8446].
 _The client’s request and the server’s response each SHALL consist
 of a sequence of records formatted according to_ Figure 6_. The
 request and a non-error response each SHALL include exactly one
 NTS Next Protocol Negotiation record. The sequence SHALL be
 terminated by a "End of Message" record. The requirement that all
 NTS-KE messages be terminated by an End of Message record makes
 them self-delimiting._

Langer & Bermbach Expires 24 August 2023 [Page 23]

Internet-Draft NTS4PTP February 2023

 _Clients and servers MAY enforce length limits on requests and
 responses, however, servers MUST accept requests of at least 1024
 octets and clients SHOULD accept responses of at least 65536
 octets._
 The fields of an NTS-KE record are defined as follows:
 - _C (Critical Bit): Determines the disposition of unrecognized
 Record Types. Implementations which receive a record with an
 unrecognized Record Type MUST ignore the record if the Critical
 Bit is 0 and MUST treat it as an error if the Critical Bit is 1
 (see Section 4.1.3)._
 - _Record Type Number: A 15-bit integer in network byte order.
 The semantics of record types 0-7 are specified in this memo.
 Additional type numbers SHALL be tracked through the IANA
 Network Time Security Key Establishment Record Types registry._
 - _Body Length: The length of the Record Body field, in octets,
 as a 16-bit integer in network byte order. Record bodies MAY
 have any representable length and need not be aligned to a word
 boundary._
 - _Record Body: The syntax and semantics of this field SHALL be
 determined by the Record Type._
 _For clarity regarding bit-endianness: the Critical Bit is the
 most-significant bit of the first octet. In the C programming
 language, given a network buffer ‘unsigned char b[]‘ containing an
 NTS-KE record, the critical bit is ‘b[0] >> 7‘ while the record
 type is ‘((b[0] & 0x7f) << 8) + b[1]‘."_

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |C| Record Type | Body Length |
 +-+
 | |
 : :
 : Record Body :
 | |
 +-+

 Figure 6: NTS-KE record format

 Thus, all NTS messages consist of a sequence of records, each
 containing a Critical Bit C, the Record Type, the Body Length and the
 Record Body, see Figure 6. More details on record structure as well
 as the specific records used here are given in Section 3 and
 respective subsections there. So-called container records (short:
 container) themselves comprise a set of records in the record body
 that serve a specific purpose, e.g., the Current Parameters container
 record.

Langer & Bermbach Expires 24 August 2023 [Page 24]

Internet-Draft NTS4PTP February 2023

 The records contained in a message may follow in arbitrary sequence
 (though nothing speaks against using the sequence given in the record
 descriptions), only the End of Message record has to be the last one
 in the sequence indicating the end of the current message. Container
 records do not include an End of Message record.

 The NTS key management for PTP is based on six new NTS messages:

 * PTP Key Request message (see Section 2.3.1)
 * PTP Key Response message (see Section 2.3.2)
 * PTP Registration Request message (see Section 2.3.3)
 * PTP Registration Response message (see Section 2.3.4)
 * PTP Registration Revoke message (see Section 2.3.5)
 * Heartbeat message (see Section 2.3.6)

 The following sections describe the principle structure of those new
 NTS messages for the PTP key management. More details especially on
 the records the messages are built of and their types, sizes,
 requirements and restrictions are given in Section 3.2.

2.3.1. PTP Key Request Message

 PTP Key Request (NTS-KE protocol)
 +===================================+==========================+
 | Record | Exemplary body contents |
 +===================================+==========================+
 | NTS Next Protocol Negotiation | PTPv2.1 |
 +-----------------------------------+--------------------------+
 | Association Mode | {Assoc.Type||Assoc.Val.} |
 +-----------------------------------+--------------------------+
 | Supported MAC Algorithms (opt.) | CMAC |
 +-----------------------------------+--------------------------+
 | Source PortIdentity (unicast only)| {binary data} |
 +-----------------------------------+--------------------------+
 | End of Message | |
 +===================================+==========================+

 Figure 7: Structure of a PTP Key Request message

 Figure 7 shows the record structure of a PTP Key Request message. In
 the right column typical values are shown as examples. Detailed
 information on types, sizes etc. is given in Section 3.2. The
 message starts with the NTS Next Protocol Negotiation record which in
 this application always holds PTPv2.1. The following Association
 Mode record describes the mode how the PTP instance wants to
 communicate: In the group-based approach the desired group number

Langer & Bermbach Expires 24 August 2023 [Page 25]

Internet-Draft NTS4PTP February 2023

 (plus eventually the subgroup attribute) is given. For ticket-based
 unicast communication the Association Mode contains the
 identification of the desired grantor, for example IPv4 and its IP
 address.

 Only in TiBA, an optional record may follow. It offers the
 possibility to choose from additional MAC algorithms and presents the
 supported algorithms from which the NTS-KE server may choose. Again,
 only in ticket-based unicast mode, the Source PortIdentity record
 gives the data of the identification of the applying requester, for
 example IPv4 and its IP address. The messages always end with an End
 of Message record.

2.3.2. PTP Key Response Message

 Figure 8 shows the record structure of a PTP Key Response message
 from the NTS-KE server (NTS-KE protocol). In the right column
 typical values are shown as examples. Detailed information on types,
 sizes etc. is given in Section 3.2. The message starts with the NTS
 Next Protocol Negotiation record which in this application always
 holds PTPv2.1.

 PTP Key Response (NTS-KE protocol)
 +==================================+===========================+
 | Record | Exemplary body contents |
 +==================================+===========================+
 | NTS Next Protocol Negotiation | PTPv2.1 |
 +----------------------------------+---------------------------+
 | Current Parameters | set of Records {...} |
 +----------------------------------+---------------------------+
 | Next Parameters | set of Records {...} |
 +----------------------------------+---------------------------+
 | End of Message | |
 +==================================+===========================+

 PTP Key Response (NTS-KE protocol) - in case of an error
 +==================================+===========================+
 | Record | Exemplary body contents |
 +==================================+===========================+
 | NTS Next Protocol Negotiation | PTPv2.1 |
 +----------------------------------+---------------------------+
 | Error | Not authorized |
 +----------------------------------+---------------------------+
 | End of Message | |
 +==================================+===========================+

Langer & Bermbach Expires 24 August 2023 [Page 26]

Internet-Draft NTS4PTP February 2023

 Figure 8: Structure of a PTP Key Response message.

 The following Current Parameters record is a container record
 containing in separate records all the security data needed to join
 and communicate in the secured PTP communication during the current
 validity period. Figure 9 gives an example of data contained in that
 record. For more details on the records contained in the Current
 Parameters container record see Section 3.2.3.

 Current Parameters container record (PTP Key Response)
 +================================+==============================+
 | Record | Exemplary body contents |
 +================================+========+=====================+
 | Security Association | data set {...} |
 +--------------------------------+------------------------------+
 | Validity Period | {1560s || 300s || 10s} |
 +--------------------------------+------------------------------+
 | PTP Time Server (unicast only) | data set {...} |
 +--------------------------------+------------------------------+
 | Ticket (unicast only) | data set {...} |
 +================================+==============================+

 Figure 9: Exemplary contents of a Current Parameters container
 record of a PTP Key Response message

 If the request lies inside the update period, a Next Parameters
 container record is additionally appended in the PTP Key Response
 message giving all the security data needed in the upcoming validity
 period. Its structure follows the same composition as the Current
 Parameters container record. In case of an error, both parameters
 container records are removed and a single error record is inserted
 (see the lower part of Figure 8). The messages always end with an
 End of Message record.

2.3.3. PTP Registration Request Message

Langer & Bermbach Expires 24 August 2023 [Page 27]

Internet-Draft NTS4PTP February 2023

 PTP Registration Request (NTS-TSR protocol)
 +============================+=================================+
 | Record | Exemplary body contents |
 +============================+=================================+
 | NTS Message Type | PTP Registration Request || v1.0|
 +----------------------------+---------------------------------+
 | PTP Time Server | data set {...} |
 +----------------------------+---------------------------------+
 | AEAD Algorithm Negotiation | {AEAD_512 || AEAD_256} |
 +----------------------------+---------------------------------+
 | Supported MAC Algorithms | {CMAC || HMAC} |
 +----------------------------+---------------------------------+
 | End of Message | |
 +============================+=================================+

 Figure 10: Structure of a PTP Registration Request message

 The PTP Registration Request message (NTS-TSR protocol) starts with
 the NTS Message Type record containing the message type as well as
 the message version number, here always 1.0, see Figure 10. (As the
 message belongs to the NTS-TSR protocol, no NTS Next Protocol
 Negotiation record is necessary.)

 The PTP Time Server record presents all known network addresses of
 this grantor that are supported for a unicast connection. The
 following AEAD Algorithm Negotiation record indicates which
 algorithms for encryption of the ticket the grantor supports.

 Then the next record (not optional as in PTP Key Request) follows,
 presenting all the grantor’s supported MAC algorithms. The Supported
 MAC Algorithms record contains a list and comprises the MAC
 algorithms supported by the grantor that are feasible for calculating
 the ICV when securing the PTP messages in TiBA. The message always
 ends with an End of Message record.

2.3.4. PTP Registration Response Message

Langer & Bermbach Expires 24 August 2023 [Page 28]

Internet-Draft NTS4PTP February 2023

 PTP Registration Response (NTS-TSR protocol)
 +=========================+====================================+
 | Record | Exemplary body contents |
 +=========================+====================================+
 | NTS Message Type | PTP Registration Response || v1.0 |
 +-------------------------+------------------------------------+
 | Current Parameters | set of Records {...} |
 +-------------------------+------------------------------------+
 | Next Parameters | set of Records {...} |
 +-------------------------+------------------------------------+
 | Heartbeat Timeout (opt.)| 900s |
 +-------------------------+------------------------------------+
 | End of Message | |
 +=========================+====================================+

 PTP Registration Response (NTS-TSR protocol)- in case of an error
 +=========================+====================================+
 | Record | Exemplary body contents |
 +=========================+====================================+
 | NTS Message Type | PTP Registration Response || v1.0 |
 +-------------------------+------------------------------------+
 | Error | Not authorized |
 +-------------------------+------------------------------------+
 | End of Message | |
 +=========================+====================================+

 Figure 11: Structure of a PTP Registration Response message

 The PTP Registration Response message (NTS-TSR protocol) from the
 NTS-KE server starts with the NTS Message Type record containing the
 message type as well as the message version number, here always 1.0,
 see Figure 11. (As the message belongs to the NTS-TSR protocol, no
 NTS Next Protocol Negotiation record is necessary.)

 As in the NTS-KE protocol, the following Current Parameters record is
 a container record containing in separate records all the necessary
 parameters for the current validity period. Figure 12 gives an
 example of data contained in that record. For more details on the
 records contained in the Current Parameters container record see
 Section 3.2.3.

Langer & Bermbach Expires 24 August 2023 [Page 29]

Internet-Draft NTS4PTP February 2023

 Current Parameters container record (PTP Registration Response)
 +===============================+==============================+
 | Record | Exemplary body contents |
 +===============================+==============================+
 | AEAD Algorithm Negotiation | AEAD_AES_SIV_CMAC_512 |
 +-------------------------------+------------------------------+
 | Validity Period | {2460s || 400s || 10s} |
 +-------------------------------+------------------------------+
 | Ticket Key ID | 278 |
 +-------------------------------+------------------------------+
 | Ticket Key | {binary data} |
 +===============================+==============================+

 Figure 12: Exemplary contents of a Current Parameters container
 record of a PTP Registration Response message in the NTS-TSR
 protocol

 If the registration request lies inside the update period a Next
 Parameters container record is additionally appended giving all the
 security data needed in the upcoming validity period. Its structure
 follows the same composition as the Current Parameters container
 record. In case of an error, both parameters container records are
 removed and a single error record is inserted (see the lower part of
 Figure 11).The messages always end with an End of Message record.

2.3.5. PTP Registration Revoke Message

 PTP Registration Revoke (NTS-TSR protocol)
 +================================+=============================+
 | Record | Exemplary body contents |
 +================================+=============================+
 | NTS Message Type | PTP Registr. Revoke || v1.0 |
 +--------------------------------+-----------------------------+
 | Source PortIdentity | {binary data} |
 +--------------------------------+-----------------------------+
 | End of Message | |
 +================================+=============================+

 Figure 13: Structure of a PTP Registration Revoke message

 The PTP Registration Revoke message (NTS-TSR protocol) from the
 grantor starts with the NTS Message Type record containing the
 message type as well as the message version number, here always 1.0,
 see Figure 13. (As the message belongs to the NTS-TSR protocol, no
 NTS Next Protocol Negotiation record is necessary.)

Langer & Bermbach Expires 24 August 2023 [Page 30]

Internet-Draft NTS4PTP February 2023

 The second record contains the Source PortIdentity which identifies
 the grantor wanting to stop its unicast support. This allows the
 NTS-KE server to uniquely identify the grantor if the PTP device
 communicates with the NTS-KE server via a management port running
 multiple grantors. The message always ends with an End of Message
 record.

2.3.6. Heartbeat Message

 Heartbeat (NTS-TSR protocol)
 +================================+=============================+
 | Record | Exemplary body contents |
 +================================+=============================+
 | NTS Message Type | Heartbeat || v1.0 |
 +--------------------------------+-----------------------------+
 | Status (optional) | server load: low |
 +--------------------------------+-----------------------------+
 | End of Message | |
 +================================+=============================+

 Figure 14: Structure of a Heartbeat message in the NTS-TSR protocol

 The Heartbeat message (NTS-TSR protocol) from the grantor to the NTS-
 KE server starts with the NTS Message Type record containing the
 message type as well as the message version number, here always 1.0,
 see Figure 14. (As the message belongs to the NTS-TSR protocol, no
 NTS Next Protocol Negotiation record is necessary.)

 The second record contains the optional Status record which allows
 the grantor to present various status updates to the NTS-KE server.
 The message always ends with an End of Message record.

Langer & Bermbach Expires 24 August 2023 [Page 31]

Internet-Draft NTS4PTP February 2023

 Heartbeat messages provide grantors with the ability to send messages
 to the NTS-KE server at regular intervals to signal their own
 functionality. These messages can optionally also contain one or
 multiple status records (see Figure 14), for example to improve load
 balancing between the registered time servers or to provide
 additional monitoring. The NTS-KE server MUST accept Heartbeat
 messages from a grantor if they have been previously requested by the
 NTS-KE server in the Registration Response message. However, the
 NTS-KE server MAY discard heartbeat messages if they arrive more
 frequently than specified by the heartbeat timeout (see
 Section 2.3.6). If the NTS-KE server receives heartbeat messages
 from a grantor even though this is not requested, the NTS-KE server
 SHOULD discard these messages and not process them further.
 Processing of the status information is optional and the status
 records MAY be ignored by the NTS-KE server. If the Grantor sends
 heartbeat messages to the NTS-KE server, the frames SHOULD NOT exceed
 the maximum transmission unit (MTU, 1500 octets for Ethernet).

3. NTS Messages for PTP

 This section covers the structure of the NTS messages and the details
 of the respective payload. The individual parameters are transmitted
 by NTS records, which are described in more detail in Section 3.2.
 In addition to the NTS records defined for NTP in IETF RFC8915,
 further records are required, which are listed in Table 1 below and
 begin with Record Type 1024 (compare IETF RFC 8915 [RFC8915],
 Section 7.6. Network Time Security Key Establishment Record Types
 Registry).

 +========+==================+==========+=========================+
 | NTS | Description | Record | Reference |
 | Record | | Used in | |
 | Types | | Protocol | |
 +========+==================+==========+=========================+
 | 0 | End of Message | NTS-KE/ | [RFC8915], |
 | | | NTS-TSR | Section 4.1.1; this |
 | | | | document, Section 3.2.4 |
 +--------+------------------+----------+-------------------------+
 | 1 | NTS Next | NTS-KE | [RFC8915], |
 | | Protocol | | Section 4.1.2; this |
 | | Negotiation | | document, Section 3.2.8 |
 +--------+------------------+----------+-------------------------+
 | 2 | Error | NTS-KE/ | [RFC8915], |
 | | | NTS-TSR | Section 4.1.3; this |
 | | | | document, Section 3.2.5 |
 +--------+------------------+----------+-------------------------+
 | 3 | Warning | NTS-KE | [RFC8915], |
 | | | | Section 4.1.4; not used |

Langer & Bermbach Expires 24 August 2023 [Page 32]

Internet-Draft NTS4PTP February 2023

 | | | | for PTP |
 +--------+------------------+----------+-------------------------+
 | 4 | AEAD Algorithm | NTS-TSR | [RFC8915], |
 | | Negotiation | | Section 4.1.5; this |
 | | | | document, Section 3.2.1 |
 +--------+------------------+----------+-------------------------+
 | 5 | New Cookie for | NTS-KE | [RFC8915], |
 | | NTPv4 | | Section 4.1.6; not used |
 | | | | for PTP |
 +--------+------------------+----------+-------------------------+
 | 6 | NTPv4 Server | NTS-KE | [RFC8915], |
 | | Negotiation | | Section 4.1.7; not used |
 | | | | for PTP |
 +--------+------------------+----------+-------------------------+
 | 7 | NTPv4 Port | NTS-KE | [RFC8915], |
 | | Negotiation | | Section 4.1.8; not used |
 | | | | for PTP |
 +--------+------------------+----------+-------------------------+
 | 8 - | Reserved for NTP | | |
 | 1023 | | | |
 +--------+------------------+----------+-------------------------+
 +--------+------------------+----------+-------------------------+
 | 1024 | Association Mode | NTS-KE | This document, |
 | | | | Section 3.2.2 |
 +--------+------------------+----------+-------------------------+
 | 1025 | Current | NTS-KE/ | This document, |
 | | Parameters | NTS-TSR | Section 3.2.3 |
 +--------+------------------+----------+-------------------------+
 | 1026 | Heartbeat | NTS-TSR | This document, |
 | | Timeout | | Section 3.2.6 |
 +--------+------------------+----------+-------------------------+
 | 1027 | Next Parameters | NTS-KE/ | This document, |
 | | Container | NTS-TSR | Section 3.2.7 |
 +--------+------------------+----------+-------------------------+
 | 1028 | NTS Message Type | NTS-TSR | This document, |
 | | | | Section 3.2.9 |
 +--------+------------------+----------+-------------------------+
 | 1029 | PTP Time Server | NTS-KE/ | This document, |
 | | | NTS-TSR | Section 3.2.10 |
 +--------+------------------+----------+-------------------------+
 | 1030 | Security | NTS-KE | This document, |
 | | Association | | Section 3.2.11 |
 +--------+------------------+----------+-------------------------+
 | 1031 | Source | NTS-KE/ | This document, |
 | | PortIdentity | NTS-TSR | Section 3.2.12 |
 +--------+------------------+----------+-------------------------+
 | 1032 | Status | NTS-TSR | This document, |
 | | | | Section 3.2.13 |

Langer & Bermbach Expires 24 August 2023 [Page 33]

Internet-Draft NTS4PTP February 2023

 +--------+------------------+----------+-------------------------+
 | 1033 | Supported MAC | NTS-KE/ | This document, |
 | | Algorithms | NTS-TSR | Section 3.2.14 |
 +--------+------------------+----------+-------------------------+
 | 1034 | Ticket | NTS-TSR | This document, |
 | | | | Section 3.2.15 |
 +--------+------------------+----------+-------------------------+
 | 1035 | Ticket Key | NTS-TSR | This document, |
 | | | | Section 3.2.16 |
 +--------+------------------+----------+-------------------------+
 | 1036 | Ticket Key ID | NTS-TSR | This document, |
 | | | | Section 3.2.17 |
 +--------+------------------+----------+-------------------------+
 | 1037 | Validity Period | NTS-KE/ | This document, |
 | | | NTS-TSR | Section 3.2.18 |
 +--------+------------------+----------+-------------------------+
 | 1038 - | Unassigned | | |
 | 16383 | | | |
 +--------+------------------+----------+-------------------------+
 +--------+------------------+----------+-------------------------+
 | 16384 | Reserved for | | [RFC8915] |
 | - | Private or | | |
 | 32767 | Experimental Use | | |
 +--------+------------------+----------+-------------------------+

 Table 1: NTS Key Establishment and Time Server Registration
 record types registry

3.1. NTS Message Types

 This section repeats the composition of the specific NTS messages for
 the PTP key management in overview form. The specification of the
 respective records from which the messages are constructed follows in
 Section 3.2. The reference column in the tables refer to the
 specific subsections.

 The NTS messages MUST contain the records given for the particular
 message though not necessarily in the same sequence indicated. Only
 the End of Message record MUST be the final record.

 PTP Key Request (NTS-KE protocol)

 +===================+========+===========+================+
 | NTS Record Name | Mode* | Use | Reference |
 +===================+========+===========+================+
 | NTS Next Protocol | GrBA / | mandatory | This document, |
 | Negotiation | TiBA | | Section 3.2.8 |
 +-------------------+--------+-----------+----------------+

Langer & Bermbach Expires 24 August 2023 [Page 34]

Internet-Draft NTS4PTP February 2023

 | Association Mode | GrBA / | mandatory | This document, |
 | | TiBA | | Section 3.2.2 |
 +-------------------+--------+-----------+----------------+
 | Supported MAC | TiBA | optional | This document, |
 | Algorithms | | | Section 3.2.14 |
 +-------------------+--------+-----------+----------------+
 | Source | TiBA | mandatory | This document, |
 | PortIdentity | | | Section 3.2.12 |
 +-------------------+--------+-----------+----------------+
 | End of Message | GrBA / | mandatory | This document, |
 | | TiBA | | Section 3.2.4 |
 +-------------------+--------+-----------+----------------+

 Table 2: Record structure of the PTP Key Request message

 * The Mode column refers to the intended use of the particular record
 for the respective PTP communication mode.

 PTP Key Response (NTS-KE protocol)

 +===================+========+================+================+
 | NTS Record Name | Mode | Use | Reference |
 +===================+========+================+================+
 | NTS Next Protocol | GrBA / | mandatory | This document, |
 | Negotiation | TiBA | | Section 3.2.8 |
 +-------------------+--------+----------------+----------------+
 | Current | GrBA / | mandatory | This document, |
 | Parameters | TiBA | | Section 3.2.3 |
 +-------------------+--------+----------------+----------------+
 | Next Parameters | GrBA / | mandatory | This document, |
 | Container | TiBA | (only during | Section 3.2.7 |
 | | | update period) | |
 +-------------------+--------+----------------+----------------+
 | End of Message | GrBA / | mandatory | This document, |
 | | TiBA | | Section 3.2.4 |
 +-------------------+--------+----------------+----------------+

 Table 3: Record structure of the PTP Key Response message.
 In case of an error, both parameters container records are
 removed and a single error record is inserted.

 The structure of the respective container records (Current Parameters
 and Next Parameters) used in the PTP Key Response message is given
 below:

 *Current/Next Parameters container - PTP Key Response (NTS-KE
 protocol)*

Langer & Bermbach Expires 24 August 2023 [Page 35]

Internet-Draft NTS4PTP February 2023

 +======================+=============+===========+================+
 | NTS Record Name | Mode | Use | Reference |
 +======================+=============+===========+================+
 | Security Association | GrBA / TiBA | mandatory | This document, |
 | | | | Section 3.2.11 |
 +----------------------+-------------+-----------+----------------+
 | Validity Period | GrBA / TiBA | mandatory | This document, |
 | | | | Section 3.2.18 |
 +----------------------+-------------+-----------+----------------+
 | PTP Time Server | TiBA | mandatory | This document, |
 | | | | Section 3.2.10 |
 +----------------------+-------------+-----------+----------------+
 | Ticket | TiBA | mandatory | This document, |
 | | | | Section 3.2.15 |
 +----------------------+-------------+-----------+----------------+

 Table 4: Record structure of the container records

 PTP Registration Request (NTS-TSR protocol)

 +==================+======+===========+================+
 | NTS Record Name | Mode | Use | Reference |
 +==================+======+===========+================+
 | NTS Message Type | TiBA | mandatory | This document, |
 | | | | Section 3.2.9 |
 +------------------+------+-----------+----------------+
 | PTP Time Server | TiBA | mandatory | This document, |
 | | | | Section 3.2.10 |
 +------------------+------+-----------+----------------+
 | AEAD Algorithm | TiBA | mandatory | This document, |
 | Negotiation | | | Section 3.2.1 |
 +------------------+------+-----------+----------------+
 | Supported MAC | TiBA | mandatory | This document, |
 | Algorithms | | | Section 3.2.14 |
 +------------------+------+-----------+----------------+
 | End of Message | TiBA | mandatory | This document, |
 | | | | Section 3.2.4 |
 +------------------+------+-----------+----------------+

 Table 5: Record structure of the PTP Registration
 Request message

 PTP Registration Response (NTS-TSR protocol)

 +==================+======+=======================+================+
 | NTS Record Name | Mode | Use | Reference |
 +==================+======+=======================+================+
 | NTS Message Type | TiBA | mandatory | This document, |

Langer & Bermbach Expires 24 August 2023 [Page 36]

Internet-Draft NTS4PTP February 2023

 | | | | Section 3.2.9 |
 +------------------+------+-----------------------+----------------+
 | Current | TiBA | mandatory | This document, |
 | Parameters | | | Section 3.2.3 |
 +------------------+------+-----------------------+----------------+
 | Next Parameters | TiBA | mandatory (only | This document, |
 | | | during update period) | Section 3.2.7 |
 +------------------+------+-----------------------+----------------+
 | Heartbeat | TiBA | optional | This document, |
 | Timeout | | | Section 3.2.6 |
 +------------------+------+-----------------------+----------------+
 | End of Message | TiBA | mandatory | This document, |
 | | | | Section 3.2.4 |
 +------------------+------+-----------------------+----------------+

 Table 6: Record structure of the PTP Registration Response
 message. In case of an error, both parameters container records
 are removed and a single error record is inserted.

 The structure of the respective container records (Current Parameters
 and Next Parameters) used in the PTP Registration Response message
 is given below:

 *Current/Next Parameters container - PTP Registration Response (NTS-
 TSR protocol)*

 +============================+======+===========+================+
 | NTS Record Name | Mode | Use | Reference |
 +============================+======+===========+================+
 | AEAD Algorithm Negotiation | TiBA | mandatory | This document, |
 | | | | Section 3.2.1 |
 +----------------------------+------+-----------+----------------+
 | Validity Period | TiBA | mandatory | This document, |
 | | | | Section 3.2.18 |
 +----------------------------+------+-----------+----------------+
 | Ticket Key ID | TiBA | mandatory | This document, |
 | | | | Section 3.2.17 |
 +----------------------------+------+-----------+----------------+
 | Ticket Key | TiBA | mandatory | This document, |
 | | | | Section 3.2.16 |
 +----------------------------+------+-----------+----------------+

 Table 7: Record structure of the container records in the PTP
 Registration Response message

 PTP Registration Revoke (NTS-TSR protocol)

 +==================+======+===========+================+

Langer & Bermbach Expires 24 August 2023 [Page 37]

Internet-Draft NTS4PTP February 2023

 | NTS Record Name | Mode | Use | Reference |
 +==================+======+===========+================+
 | NTS Message Type | TiBA | mandatory | This document, |
 | | | | Section 3.2.9 |
 +------------------+------+-----------+----------------+
 | Source | TiBA | mandatory | This document, |
 | PortIdentity | | | Section 3.2.12 |
 +------------------+------+-----------+----------------+
 | End of Message | TiBA | mandatory | This document, |
 | | | | Section 3.2.4 |
 +------------------+------+-----------+----------------+

 Table 8: Record structure of the PTP Registration
 Revoke message

 Heartbeat Message (NTS-TSR protocol)

 +==================+======+===========+================+
 | NTS Record Name | Mode | Use | Reference |
 +==================+======+===========+================+
 | NTS Message Type | TiBA | mandatory | This document, |
 | | | | Section 3.2.9 |
 +------------------+------+-----------+----------------+
 | Status | TiBA | optional | This document, |
 | | | | Section 3.2.13 |
 +------------------+------+-----------+----------------+
 | End of Message | TiBA | mandatory | This document, |
 | | | | Section 3.2.4 |
 +------------------+------+-----------+----------------+

 Table 9: Record structure of the Heartbeat message
 in the NTS-TSR protocol

3.2. NTS Records

 The following subsections describe the specific NTS records used to
 construct the NTS messages for the PTP key management system in
 detail. They appear in alphabetic sequence of their individual
 names. See Section 3.1 for the application of the records in the
 respective messages.

 Note: For easier editing of the content, most of the descriptions in
 the following subsections are written as bullet points.

3.2.1. AEAD Algorithm Negotiation

 Used in NTS-TSR protocol

Langer & Bermbach Expires 24 August 2023 [Page 38]

Internet-Draft NTS4PTP February 2023

 This record is required in unicast mode and enables the negotiation
 of the AEAD algorithm needed to encrypt and decrypt the ticket. The
 negotiation takes place between the PTP grantor and the NTS-KE server
 by using the NTS registration messages. The structure and properties
 follow the record defined in IETF RFC 8915 [RFC8915], Section 4.1.5.

 Content and conditions:

 * The record has a Record Type number of 4 and the Critical Bit MAY
 be set.
 * The Record Body contains a sequence of 16-bit unsigned integers in
 network byte order:
 Supported AEAD Algorithms = {AEAD 1 || AEAD 2 || ...}

 * Each integer represents a numeric identifier of an AEAD algorithm
 registered by the IANA. (https://www.iana.org/assignments/aead-
 parameters/aead-parameters.xhtml)
 * Duplicate identifiers SHOULD NOT be included.
 * Grantor and NTS-KE server MUST support at least the
 AEAD_AES_SIV_CMAC_256 algorithm.
 * A list of recommended AEAD algorithms is shown in the following
 Table 10.
 * Other AEAD algorithms MAY also be used.

 +=========+=======================+=======+============+===========+
 | Numeric | AEAD Algorithm | Use | Key Length | Reference |
 | ID | | | (Octets) | |
 +=========+=======================+=======+============+===========+
 | 15 | AEAD_AES_SIV_CMAC_256 | mand. | 32 | [RFC5297] |
 +---------+-----------------------+-------+------------+-----------+
 | 16 | AEAD_AES_SIV_CMAC_384 | opt. | 48 | [RFC5297] |
 +---------+-----------------------+-------+------------+-----------+
 | 17 | AEAD_AES_SIV_CMAC_512 | opt. | 64 | [RFC5297] |
 +---------+-----------------------+-------+------------+-----------+
 | 32 - | Unassigned | | | |
 | 32767 | | | | |
 +---------+-----------------------+-------+------------+-----------+
 | 32768 - | Reserved for Private | | | [RFC5116] |
 | 65535 | or Experimental Use | | | |
 +---------+-----------------------+-------+------------+-----------+

 Table 10: AEAD algorithms

 * In a PTP Registration Request message, this record MUST be
 contained exactly once.
 * In that message at least the AEAD_AES_SIV_CMAC_256 algorithm MUST
 be included.

Langer & Bermbach Expires 24 August 2023 [Page 39]

Internet-Draft NTS4PTP February 2023

 * If multiple AEAD algorithms are supported, the grantor SHOULD put
 the algorithm identifiers in descending priority in the Record
 Body.
 * Strong algorithms with higher bit lengths SHOULD have higher
 priority.
 * In a PTP Registration Response message, this record MUST be
 contained exactly once in the Current Parameters container record
 and exactly once in the Next Parameters container record.
 * The Next Parameters container record MUST be present only during
 the update period.
 * The NTS-KE server SHOULD choose the highest priority AEAD
 algorithm from the request message that grantor and NTS-KE server
 support.
 * The NTS-KE server MAY ignore the priority and choose a different
 algorithm that grantor and NTS-KE server support.
 * In a PTP Registration Response message, this record MUST contain
 exactly one AEAD algorithm.
 * The selected algorithm MAY differ in the corresponding Current
 Parameters container record and Next Parameters container record.

3.2.2. Association Mode

 Used in NTS-KE protocol

 This record enables the NTS-KE server to distinguish between a group
 based request (multicast, mixed multicast/unicast, Group-of-2) or a
 unicast request. A multicast request carries a group number, while a
 unicast request contains an identification attribute of the grantor
 (e.g., IP address or PortIdentity).

 Content and conditions:

 * In a PTP Key Request message, this record MUST be contained
 exactly once.
 * The record has a Record Type number of 1024 and the Critical Bit
 MAY be set.
 * The Record Body SHALL consist of two data fields:

 +===================+========+========+
 | field | Octets | Offset |
 +===================+========+========+
 | Association Type | 2 | 0 |
 +-------------------+--------+--------+
 | Association Value | A | 2 |
 +-------------------+--------+--------+

 Table 11: Association

Langer & Bermbach Expires 24 August 2023 [Page 40]

Internet-Draft NTS4PTP February 2023

 * The Association Type is a 16-bit unsigned integer.
 * The length of Association Value depends on the value of
 Association Type.
 * All data in the fields are stored in network byte order.
 * The type numbers of Association Type as well as the length and
 content of Association Value are shown in the following table and
 more details are given below.

 +==============+=============+=============+===============+========+
Description	Assoc.	Association	Association	Assoc.
	Type	Mode	Value Content	Value
	Number			Octets
+==============+=============+=============+===============+========+				
Group	0	Multicast /	Group Number	5
		Unicast*		
+--------------+-------------+-------------+---------------+--------+				
IPv4	1	Unicast	IPv4 address	4
			of the target	
			port	
+--------------+-------------+-------------+---------------+--------+				
IPv6	2	Unicast	IPv6 address	16
			of the target	
			port	
+--------------+-------------+-------------+---------------+--------+				
802.3	3	Unicast	MAC address	6
			of the target	
			port	
+--------------+-------------+-------------+---------------+--------+				
PortIdentity	4	Unicast	PortIdentity	10
			of the target	
			PTP entity	
 +--------------+-------------+-------------+---------------+--------+

 Table 12: Association Types

 Unicast*: predefined groups of two (Group-of-2, Go2, see Group entry
 below)

 Group:

 * This association type allows a PTP instance to join a PTP
 multicast group.
 * A group is identified by the PTP domain, the PTP profile (sdoId)
 and a sub-group attribute (see table below).
 * The PTP domainNumber is an 8-bit unsigned integer in the closed
 range 0 to 255.
 * The sdoId of a PTP domain is a 12-bit unsigned integer in the
 closed range 0 to 4095:

Langer & Bermbach Expires 24 August 2023 [Page 41]

Internet-Draft NTS4PTP February 2023

 - The most significant 4 bits are named the majorSdoId.
 - The least significant 8 bits are named the minorSdoId.
 - Reference: IEEE Std 1588-2019, Section 7.1.1
 sdoId = {majorSdoId || minorSdoId}

 * The subGroup is 16-bit unsigned integer, which allows the division
 of a PTP multicast network into separate groups, each with
 individual security parameters.
 * This also allows manually configured unicast connections (Group-
 of-2), which can include transparent clocks as well.
 * The subGroup number is defined manually by the administrator.
 * Access to the groups is controlled by authorization procedures of
 the PTP devices (see Section 2.2.5.4).
 * If no subgroups are required (= multicast mode), this attribute
 MUST contain the value zero.
 * The group number is eventually formed by concatenation of the
 following values:
 *group number = {domainNumber || 4 bit zero padding || sdoId ||
 subGroup}*

 This is equvalent to:

 +=====================+====================+========+========+
 | Bits 7 - 4 | Bits 3 - 0 | Octets | Offset |
 +=====================+====================+========+========+
 | domainNumber (high) | domainNumber (low) | 1 | 0 |
 +---------------------+--------------------+--------+--------+
 | zero padding | majorSdoId | 1 | 1 |
 +---------------------+--------------------+--------+--------+
 | minorSdoId (high) | minorSdoId (low) | 1 | 2 |
 +---------------------+--------------------+--------+--------+
 | subgroup (high) | subGroup (low) | 2 | 4 |
 +---------------------+--------------------+--------+--------+

 Table 13: Group Association

 IPv4:

 * This Association Type allows a requester to establish a PTP
 unicast connection to the desired grantor.
 * The Association Value contains the IPv4 address of the target PTP
 entity.
 * The total length is 4 octets.

 IPv6:

 * This Association Type allows a requester to establish a PTP
 unicast connection to the desired grantor.

Langer & Bermbach Expires 24 August 2023 [Page 42]

Internet-Draft NTS4PTP February 2023

 * The Association Value contains the IPv6 address of the target PTP
 entity.
 * The total length is 16 octets.

 802.3:

 * This Association Type allows a requester to establish a PTP
 unicast connection to the desired grantor.
 * The Association Value contains the MAC address of the Ethernet
 port of the target PTP entity.
 * The total length is 6 octets.
 * This method supports the 802.3 mode in PTP, where no UDP/IP stack
 is used.

 PortIdentity:

 * This Association Type allows a requester to establish a PTP
 unicast connection to the desired grantor.
 * The Association Value contains the PortIdentity of the target PTP
 entity.
 * The total length is 10 octets.
 * The PortIdentity consists of the attributes clockIdentity and
 portNumber:
 PortIdentity = {clockIdentity || portNumber}

 * The clockIdentity is an 8 octet array and the portNumber is a
 16-bit unsigned integer.
 * Source: IEEE Std 1588-2019, Sections 5.3.5 and 7.5

3.2.3. Current Parameters

 Used in NTS-KE and NTS-TSR protocol

 This record is a simple container that can carry an arbitrary number
 of NTS records. It holds all security parameters relevant for the
 current validity period. The content as well as further conditions
 are defined by the respective NTS messages. The order of the
 included records is arbitrary and the parsing rules are so far
 identical with the NTS message. One exception: An End of Message
 record SHOULD NOT be present and MUST be ignored. When the parser
 reaches the end of the Record Body quantified by the Body Length, all
 embedded records have been processed.

 Content and conditions:

 * The record has a Record Type number of 1025 and the Critical Bit
 MAY be set.

Langer & Bermbach Expires 24 August 2023 [Page 43]

Internet-Draft NTS4PTP February 2023

 * In a PTP Key Response message, this record MUST be contained
 exactly once.
 * The Record Body is defined as a set of records and MAY contain the
 following records:

 +=======================+==============+===========+================+
 | NTS Record | Comunication | Use | Reference |
 | Name | Type | | |
 +=======================+==============+===========+================+
Security	Multicast /	mandatory	This document,
Associations	Unicast		Section 3.2.11
(one or more)			
+-----------------------+--------------+-----------+----------------+			
Validity	Multicast /	mandatory	This document,
Period	Unicast		Section 3.2.18
+-----------------------+--------------+-----------+----------------+			
PTP Time	Unicast	mandatory	This document,
Server			Section 3.2.10
+-----------------------+--------------+-----------+----------------+			
Ticket	Unicast	mandatory	This document,
			Section 3.2.15
 +-----------------------+--------------+-----------+----------------+

 Table 14: Current Parameters container for PTP Key Response message

 * The records Security Association and Validity Period MUST be
 contained exactly once.
 * Additionally, the records PTP Time Server and Ticket MUST be
 included exactly once if the client wants a unicast connection and
 MUST NOT be included if the client wants to join a multicast
 group.
 * In a PTP Registration Response message, the Current Parameters
 container record MUST be contained exactly once.
 * The Record Body MUST contain the following records exactly:

 * In a PTP Registration Response message, the Current Parameters
 Container record MUST be contained exactly once.
 * The record body MAY contain the following records:

Langer & Bermbach Expires 24 August 2023 [Page 44]

Internet-Draft NTS4PTP February 2023

 +============================+===========+================+
 | NTS Record Name | Use | Reference |
 +============================+===========+================+
 | AEAD Algorithm Negotiation | mandatory | This document, |
 | | | Section 3.2.1 |
 +----------------------------+-----------+----------------+
 | Validity Period | mandatory | This document, |
 | | | Section 3.2.18 |
 +----------------------------+-----------+----------------+
 | Ticket Key ID | mandatory | This document, |
 | | | Section 3.2.17 |
 +----------------------------+-----------+----------------+
 | Ticket Key | mandatory | This document, |
 | | | Section 3.2.16 |
 +----------------------------+-----------+----------------+

 Table 15: Current Parameters container for PTP
 Registration Response Message

3.2.4. End of Message

 Used in NTS-KE and NTS-TSR protocol

 The End of Message record is defined in IETF RFC8915 [RFC8915],
 Section 4:

 _"The record sequence in an NTS message SHALL be terminated by an
 "End of Message" record. The requirement that all NTS-KE messages
 be terminated by an End of Message record makes them self-
 delimiting."_

 Content and conditions:

 * The record has a Record Type number of 0 and a zero-length body.
 * The Critical Bit MUST be set.
 * This record MUST occur exactly once as the final record of every
 NTS request and response, NTS registration revoke and heartbeat
 message.
 * This record SHOULD NOT be included in the container records and
 MUST be ignored if present.
 * See also: IETF RFC8915, Section 4.1.1

3.2.5. Error

 Used in NTS-KE and NTS-TSR protocol

Langer & Bermbach Expires 24 August 2023 [Page 45]

Internet-Draft NTS4PTP February 2023

 The Error record is defined in IETF RFC8915 [RFC8915], Section 4.1.3.
 In addition to the Error codes 0 to 2 specified there the following
 Error codes 3 to 4 are defined:

 +===============+==+
 | Error Code | Description |
 +===============+==+
 | 0 | Unrecognized Critical Record |
 +---------------+--+
 | 1 | Bad Request |
 +---------------+--+
 | 2 | Internal Server Error |
 +---------------+--+
 | 3 | Not Authorized |
 +---------------+--+
 | 4 | Grantor not Registered |
 +---------------+--+
 | 5 - 32767 | Unassigned |
 +---------------+--+
 | 32768 - 65535 | Reserved for Private or Experimental Use |
 +---------------+--+

 Table 16: Error Codes

 Content and conditions:

 * The record has a Record Type number of 2 and body length of two
 octets consisting of an unsigned 16-bit integer in network byte
 order, denoting an error code.
 * The Critical Bit MUST be set.
 * The Error code 3 "Not Authorized" is sent by the NTS-KE server if
 the requester is not authorized to join the desired multicast
 group or if a grantor is prohibited to register with the NTS-KE
 server.
 * The Error record MUST NOT be included in a PTP Registration
 Request message.
 * The Error code 4 "Grantor not Registered" is sent by the NTS-KE
 server when the requester wants to establish a unicast connection
 to a grantor that is not registered with the NTS-KE server.
 * The Error record MUST NOT be included in a PTP Key Request
 message.

3.2.6. Heartbeat Timeout

 Used in NTS-TSR protocol

Langer & Bermbach Expires 24 August 2023 [Page 46]

Internet-Draft NTS4PTP February 2023

 This record provides the NTS-KE server the capability to monitor the
 availability of the registered grantors. If this optional record is
 used, the registered grantors SHOULD send an NTS Heartbeat message to
 the NTS-KE server before the timeout expires.

 Content and conditions:

 * The record has a Record Type number of 1026 and the Critical Bit
 SHOULD NOT be set.
 * The Record Body consists of a 16-bit unsigned integer in network
 byte order and denotes the heartbeat timeout in seconds..
 * The timeout set by the NTS-KE server MUST NOT be less than 1s and
 MUST be less than the lifetime set in the Validity Period record.
 * The timeout starts at the NTS-KE server with the generation of the
 Registration Response message.
 * Grantors that receive an invalid value as a heartbeat timeout MUST
 ignore this record and MUST NOT send heartbeat messages.
 * Grantors that receive a valid value SHOULD send a heartbeat
 message to the NTS-KE server before the timeout has elapsed.
 * The grantors SHOULD keep the heartbeat intervals and MAY also send
 heartbeat messages more frequently.
 * After transmitting a heartbeat from the grantor to the NTS-KE
 server, both sides reset the timeout to the start value and let
 the time count down again.
 * If this timeout is exceeded without receiving a heartbeat message
 or several heartbeats are missing in a row, the NTS-KE server MAY
 delete the grantor from its registration list, so that a new
 registration of the grantor is necessary.
 * Grantors that are not (or no longer) registered with a NTS-KE
 server MUST NOT send heartbeat messages and NTS-KE servers MUST
 discard heartbeat messages from non-registered grantors.
 * NTS-KE servers MAY respond in such cases with a Registration
 Response message containing error code 4 "Grantor not Registered".

3.2.7. Next Parameters

 Used in NTS-KE and NTS-TSR protocol

 This record is a simple container that can carry an arbitrary number
 of NTS records. It holds all security parameters relevant for the
 upcoming validity period. The content as well as further conditions
 are defined by the respective NTS messages. The order of the
 included records is arbitrary and the parsing rules are so far
 identical with the NTS message. One exception: An End of Message
 record SHOULD NOT be present and MUST be ignored. When the parser
 reaches the end of the Record Body quantified by the Body Length, all
 embedded records have been processed.

Langer & Bermbach Expires 24 August 2023 [Page 47]

Internet-Draft NTS4PTP February 2023

 Content and conditions:

 * The record has a Record Type number of 1027 and the Critical Bit
 MAY be set.
 * The Record Body is defined as a set of records.
 * The structure of the record body and all conditions MUST be
 identical to the rules described in Section 3.2.3 of this
 document.
 * In both the PTP Key Response and PTP Registration Response
 message, this record MUST be contained exactly once during the
 update period.
 * Outside the update period, this record MUST NOT be included.
 * In GrBA mode, this record MAY also be missing if the requesting
 client is to be explicitly excluded from a multicast group after
 the security parameter rotation process by the NTS-KE server.
 * More details are described in Section 2.2.1.

3.2.8. NTS Next Protocol Negotiation

 Used in NTS-KE protocol

 The Next Protocol Negotiation record is defined in IETF RFC8915
 [RFC8915], Section 4.1.2:

 _"The Protocol IDs listed in the client’s NTS Next Protocol
 Negotiation record denote those protocols that the client wishes
 to speak using the key material established through this NTS-KE
 server session. Protocol IDs listed in the NTS-KE server’s
 response MUST comprise a subset of those listed in the request and
 denote those protocols that the NTP server is willing and able to
 speak using the key material established through this NTS-KE
 server session. The client MAY proceed with one or more of them.
 The request MUST list at least one protocol, but the response MAY
 be empty."_

 Content and conditions:

 * The record has a Record Type number of 1 and the Critical Bit MUST
 be set.
 * The Record Body consists of a sequence of 16-bit unsigned integers
 in network byte order.
 Record body = {Protocol ID 1 || Protocol ID 2 || ...}
 * Each integer represents a Protocol ID from the IANA "Network Time
 Security Next Protocols" registry as shown in the table below.
 * For NTS request messages for PTPv2.1 (NTS-KE protocol merely),
 only the Protocol ID for PTPv2.1 SHOULD be included.
 * This prevents the mixing of records for different time protocols.

Langer & Bermbach Expires 24 August 2023 [Page 48]

Internet-Draft NTS4PTP February 2023

 +=============+=========================+=============+
 | Protocol ID | Protocol Name | Reference |
 +=============+=========================+=============+
 | 0 | Network Time Protocol | [RFC8915], |
 | | version 4 (NTPv4) | Section 7.7 |
 +-------------+-------------------------+-------------+
 | 1 | Precision Time Protocol | This |
 | | version 2.1 (PTPv2.1) | document |
 +-------------+-------------------------+-------------+
 | 2 - 32767 | Unassigned | |
 +-------------+-------------------------+-------------+
 | 32768 - | Reserved for Private or | |
 | 65535 | Experimental Use | |
 +-------------+-------------------------+-------------+

 Table 17: NTS next protocol IDs

 Possible NTP/PTP conflict:

 * The support of multiple protocols in this record may lead to the
 problem that records in NTS messages can no longer be assigned to
 a specific time protocol.
 * For example, an NTS request could include records for both NTP and
 PTP.
 * However, NTS for NTP does not use NTS message types and the End of
 Message record is also not defined for the case of multiple NTS
 requests in one TLS message.
 * This leads to the mixing of the records in the NTS messages.
 * A countermeasure is the use of only a single time protocol in the
 NTS Next Protocol Negotiation record that explicitly assigns the
 NTS message to a specific time protocol.
 * When using NTS-secured NTP and NTS-secured PTP, two separate NTS
 requests i.e., two separate TLS sessions MUST be made.

3.2.9. NTS Message Type

 Used in NTS-TSR protocol

 This record enables the distinction between different NTS message
 types and message versions for the NTS-TSR protocol. It MUST be
 included exactly once in each NTS message in the NTS-TSR protocol.

 Content and conditions:

 * The record has a Record Type number of 1028 and the Critical Bit
 MUST be set.
 * The Record Body MUST consist of three data fields:

Langer & Bermbach Expires 24 August 2023 [Page 49]

Internet-Draft NTS4PTP February 2023

 +=========================+===============+========+========+
 | Field | | Octets | Offset |
 +=========================+===============+========+========+
 | Message Type | | 2 | 0 |
 +-------------------------+---------------+--------+--------+
 | Message Version | Major version | 1 | 2 |
 +-------------------------+---------------+--------+--------+
 | Message Version (cont.) | Minor version | 1 | 3 |
 +-------------------------+---------------+--------+--------+

 Table 18: Content of the NTS Message Type record

 * The Message Type field is a 16-bit unsigned integer in network
 byte order, denoting the type of the current NTS message.
 * The following values are defined for the Message Type:

 +======================+==+
 | Message Type (value) | NTS Message (NTS-TSR protocol) |
 +======================+==+
 | 0 | PTP Registration Request |
 +----------------------+--+
 | 1 | PTP Registration Response |
 +----------------------+--+
 | 2 | PTP Registration Revoke |
 +----------------------+--+
 | 3 | Heartbeat |
 +----------------------+--+
 | 4 - 32767 | Unassigned |
 +----------------------+--+
 | 32768 - 65535 | Reserved for Private or Experimental Use |
 +----------------------+--+

 Table 19: NTS Message Types for the NTS-TSR protocol

 * The Message Version consists of a tuple of two 8-bit unsigned
 integers in network byte order:
 NTS Message Version = {major version || minor version}
 * The representable version is therefore in the range 0.0 to 255.255
 (e.g., v1.4 = 0104h).
 * All NTS messages for PTPv2.1 described in this document are in
 version number 1.0.
 * Thus the Message Version MUST match 0100h.

3.2.10. PTP Time Server

 Used in NTS-KE and NTS-TSR protocol

Langer & Bermbach Expires 24 August 2023 [Page 50]

Internet-Draft NTS4PTP February 2023

 The PTP Time Server record is used exclusively in TiBA mode (PTP
 unicast connection) and signals to the client (PTP requester) for
 which grantor the security parameters are valid. This record is used
 both, in the NTS-KE protocol in the PTP Key Response, and in NTS-TSR
 protocol in the PTP Registration Request message.

 Content and conditions:

 * The record has a Record Type number of 1029 and the Critical Bit
 MAY be set.
 * The record body consists of a tuple of two 8-bit unsigned integers
 in network byte order.
 * The structure of the record body and all conditions MUST be
 identical to the rules described in Section 3.2.2 (Association
 Mode) of this document, with the following exceptions:
 * In a PTP Key Response message, this record MUST be contained
 exactly once within a container record (e.g., Current Parameters
 container record).
 * The PTP Time Server record contains a list of all available
 addresses of the grantor assigned by the NTS-KE server.
 * This can be an IPv4, IPv6, MAC address, as well as the
 PortIdentity of the grantor.
 * This allows the client to change the PTP transport mode (e.g.,
 from IPv4 to 802.3) without performing a new NTS request.
 * The list in the PTP Time Server record MUST NOT contain the
 Association Type number 0 (multicast group) and MUST contain at
 least one entry.
 * The NTS-KE server SHOULD provide the grantor addresses requested
 by the client in the PTP Key Request message, but MAY also assign
 a different grantor to the client.

 * In a PTP Registration Request message, this record MUST be
 included exactly once.
 * The grantor MUST enter all network addresses that are supported
 for a unicast connection.
 * This can be an IPv4, IPv6, MAC address, as well as the
 PortIdentity.
 * The list in the PTP Time Server record MUST NOT contain the
 Association Type number 0 (multicast group) and MUST contain at
 least the PortIdentity.
 * The PortIdentity is especially needed by the NTS-KE server to
 identify the correct PTP instance (the grantor) in case of a PTP
 Registration Revoke message.

3.2.11. Security Association

 Used in NTS-KEprotocol

Langer & Bermbach Expires 24 August 2023 [Page 51]

Internet-Draft NTS4PTP February 2023

 This record contains the information "how" specific PTP message types
 must be secured. It comprises all dynamic (negotiable) values
 necessary to construct the AUTHENTICATION TLV (IEEE Std 1588-2019,
 Section 16.14.3). Static values and flags, such as the
 secParamIndicator, are described in more detail in Section 6.

 Content and conditions:

 * The record has a Record Type number of 1030 and the Critical Bit
 MAY be set.
 * The Record Body is a sequence of various parameters in network
 byte order and MUST be formatted according to the following table:

 +============================+========+========+
 | Field | Octets | Offset |
 +============================+========+========+
 | Security Parameter Pointer | 1 | 0 |
 +----------------------------+--------+--------+
 | Integrity Algorithm Type | 2 | 1 |
 +----------------------------+--------+--------+
 | Key ID | 4 | 3 |
 +----------------------------+--------+--------+
 | Key Length | 2 | 7 |
 +----------------------------+--------+--------+
 | Key | K | 9 |
 +----------------------------+--------+--------+

 Table 20: Security Association record

 * In a PTP Key Response message, the Security Association record
 MUST be included exactly once in the Current Parameters container
 record and the Next Parameters container record.
 * The Next Parameters container record MUST be present only during
 the update period.
 * In TiBA mode, the Security Association record MUST be included
 exactly once in the encrypted Ticket as well.

 Security Parameter Pointer

 * The Security Parameter Pointer (SPP) is an 8-bit unsigned integer
 in the closed range 0 to 255.
 * This value enables the mutual assignment of SA, SP and
 AUTHENTICATION TLVs.
 * The generation and management of the SPP is controlled by the NTS-
 KE server (see Section 4.2).

 Integrity Algorithm Type

Langer & Bermbach Expires 24 August 2023 [Page 52]

Internet-Draft NTS4PTP February 2023

 * This value is a 16-bit unsigned integer in network byte order.
 * The possible values are equivalent to the MAC algorithm types from
 the table in Section 3.2.14.
 * The value used depends on the negotiated or predefined MAC
 algorithm.

 Key ID

 * The key ID is a 32-bit unsigned integer in network byte order.
 * The field length is oriented towards the structure of the
 AUTHENTICATION TLV.
 * The generation and management of the key ID is controlled by the
 NTS-KE server.
 * The NTS-KE server MUST ensure that every key ID is unique.
 - The value can be either a random number or an enumeration.
 - Previous key IDs SHOULD NOT be reused for a certain number of
 rotation periods or a defined period of time (see Section 4.2).

 Key Length

 * This value is a 16-bit unsigned integer in network byte order,
 denoting the length of the key.

 Key

 * The value is a sequence of octets with a length of Key Length.
 * This symmetric key is needed together with the MAC algorithm to
 calculate the ICV.
 * It can be both a group key (GrBA mode) or a unicast key (TiBA
 mode).

3.2.12. Source PortIdentity

 Used in NTS-KE and NTS-TSR protocol

 This record contains a PTP PortIdentity and serves as an identifier.
 In a PTP Key Request message, it enables the unique assignment of the
 NTS request to the PTP instance of the sender, since the request may
 have been sent to the NTS-KE server via a management port.

Langer & Bermbach Expires 24 August 2023 [Page 53]

Internet-Draft NTS4PTP February 2023

 The PortIdentity is embedded in the PTP Key Response message within
 the ticket to bind it to the PTP requester. Grantors can verify that
 the ticket comes from the correct sender when it is received and
 before it is decrypted, to prevent possible crypto-performance
 attacks. In a PTP registration Revoke message this record enables
 the assignment of the grantor at the NTS-KE server to revoke an
 existing registration. This is necessary because requesting PTP
 devices may have multiple independent PTP ports and possibly multiple
 registrations with the KE.

 Content and conditions:

 * The record has a Record Type number of 1031 and the Critical Bit
 MAY be set.
 * The record contains the PTP PortIdentity of the sender in network
 byte order, with a total length of 10 octets.
 * In a PTP Key Request message, this record MUST be included exactly
 once if the client intends a unicast request in TiBA mode and MUST
 NOT be included if the client intends to join a multicast group/
 Go2 (= GrBA mode).
 * In a PTP Registration Revoke message, this record MUST be included
 exactly once.
 * The PortIdentity consists of the attributes clockIdentity and
 portNumber:
 PortIdentity = {clockIdentity || portNumber}
 * The clockIdentity is an 8-octet array and the portNumber is a
 16-bit unsigned integer (source: [IEEE1588-2019], Sections 5.3.5
 and 7.5)

3.2.13. Status

 Used in NTS-TSR protocol

 The Status record is an optional record that represents the current
 load of the sender. It allows the NTS-KE server to improve load
 balancing when assigning grantors to the requesting PTP clients in
 TiBA mode. The content of the record is designed in such a way that
 it can also transmit other information (e.g., manufacturer-related
 information).

 Content and conditions:

 * The record has a Record Type number of 1032 and the Critical Bit
 SHOULD NOT be set.
 * The Record Body MUST consist of two data fields:

Langer & Bermbach Expires 24 August 2023 [Page 54]

Internet-Draft NTS4PTP February 2023

 +=============+========+========+
 | Field | Octets | Offset |
 +=============+========+========+
 | Status Type | 2 | 0 |
 +-------------+--------+--------+
 | Status Data | D | 2 |
 +-------------+--------+--------+

 Table 21: Structure of the
 Status record

 * The Status Type is a 16-bit unsigned integer, denoting the content
 of the Status Data field.
 * The Status Data field is a sequence of octets in network byte
 order whose length, content and structure is determined by the
 Status Type field.
 * The following values are currently set:

 +===============+========================+==============+
 | Status Type | Status Data length | Description |
 +===============+========================+==============+
 | 0 | 1 octet (unsigned int) | grantor load |
 +---------------+------------------------+--------------+
 | 1 - 32767 | Unassigned | |
 +---------------+------------------------+--------------+
 | 32767 - 65535 | Reserved for Private | |
 | | or Experimental Use | |
 +---------------+------------------------+--------------+

 Table 22: Values for Status Data

 * The following values apply to Status Type 0:

Langer & Bermbach Expires 24 August 2023 [Page 55]

Internet-Draft NTS4PTP February 2023

 +=============+===================+===========================+
 | Status Type | Status Data value | Description |
 +=============+===================+===========================+
 | 0 | 0x01 | grantor load: 0% to 24% |
 +-------------+-------------------+---------------------------+
 | 0 | 0x02 | grantor load: 25% to 49% |
 +-------------+-------------------+---------------------------+
 | 0 | 0x03 | grantor load: 50% to 74% |
 +-------------+-------------------+---------------------------+
 | 0 | 0x04 | grantor load: 75% to 84% |
 +-------------+-------------------+---------------------------+
 | 0 | 0x05 | grantor load: 85% to 94% |
 +-------------+-------------------+---------------------------+
 | 0 | 0x06 | grantor load: 95% to 100% |
 +-------------+-------------------+---------------------------+

 Table 23: Values for Status Type 0

 * In a Heartbeat message this record MAY be contained once or
 several times.
 * If multiple status records are included, the status type MUST NOT
 occur twice.
 * The NTS-KE server MAY use the status record for optimizations and
 MAY also ignore them.

3.2.14. Supported MAC Algorithms

 Used in NTS-KE and NTS-TSR protocol

 This record allows free negotiation of the MAC algorithm needed to
 generate the ICV. Since multicast groups are restricted to a shared
 algorithm, this record is used mandatorily in a PTP Registration
 Request message and MAY be used (optionally) in a PTP Key Request
 message.

 Content and conditions:

 * The record has a Record Type number of 1033 and the Critical Bit
 MAY be set.
 * The Record Body contains a sequence of 16-bit unsigned integers in
 network byte order.
 Supported MAC Algorithms = {MAC 1 || MAC 2 || ...}
 * Each integer represents a MAC Algorithm Type defined in the table
 below.
 * Duplicate identifiers SHOULD NOT be included.
 * Each PTP node MUST support at least the HMAC-SHA256-128 algorithm.

Langer & Bermbach Expires 24 August 2023 [Page 56]

Internet-Draft NTS4PTP February 2023

 +===============+==================+============+===================+
MAC Algorithm	MAC Algorithm	ICV	Reference
Types		Length	
		(octets)	
+===============+==================+============+===================+			
0	HMAC-SHA256-128	16	[fiPS-PUB-198-1],
			[IEEE1588-2019]
+---------------+------------------+------------+-------------------+			
1	HMAC-SHA256	32	[fiPS-PUB-198-1]
+---------------+------------------+------------+-------------------+			
2	AES-CMAC	16	[RFC4493]
+---------------+------------------+------------+-------------------+			
3	AES-GMAC-128	16	[RFC4543]
+---------------+------------------+------------+-------------------+			
4	AES-GMAC-192	24	[RFC4543]
+---------------+------------------+------------+-------------------+			
5	AES-GMAC-256	32	[RFC4543]
+---------------+------------------+------------+-------------------+			
6 - 32767	Unassigned		
+---------------+------------------+------------+-------------------+			
32768 - 65535	Reserved for		
	Private or		
	Experimental Use		
 +---------------+------------------+------------+-------------------+

 Table 24: MAC Algorithms

 In GrBA mode:

 * This record is not necessary, since all PTP nodes in a multicast
 group MUST support the same MAC algorithm.
 * Therefore, this record SHOULD NOT be included in a PTP Key Request
 massage and the NTS-KE server MUST ignore this record if the
 Association Type in the Association Mode record is 0 (= multicast
 group).
 * Unless this is specified otherwise by a PTP profile, the HMAC-
 SHA256-128 algorithm SHALL be used by default.

 In TiBA mode:

 * In a PTP Key Request message, this record MAY be contained if the
 requester wants a unicast connection (TiBA mode, not Go2) to a
 specific grantor.
 * The requester MUST NOT send more than one record of this type.
 * If this record is present, at least the HMAC-SHA256-128 MAC
 algorithm MUST be included.

Langer & Bermbach Expires 24 August 2023 [Page 57]

Internet-Draft NTS4PTP February 2023

 * If multiple MAC algorithms are supported, the requester SHOULD put
 the desired algorithm identifiers in descending priority in the
 record body.
 * Strong algorithms with higher bit lengths SHOULD have higher
 priority.
 * In a PTP Registration Request message, this record MUST be present
 and the grantor MUST include all supported MAC algorithms in any
 order.
 * The NTS-KE server selects the algorithm after receiving a PTP Key
 Request message in unicast mode.
 * The NTS-KE server SHOULD choose the highest priority MAC algorithm
 from the request message that grantor and requester support.
 * The NTS-KE server MAY ignore the priority and choose a different
 algorithm that grantor and requester support.
 * If the MAC Algorithm Negotiation record is not within the PTP Key
 Request message, the NTS-KE server MUST choose the default
 algorithm HMAC-SHA256-128.

 Initialization Vector (IV)

 * If GMAC is to be supported as a MAC algorithm, then an
 Initialization Vector (IV) must be constructed according to IETF
 RFC 4543 [RFC4543], Section 3.1.
 * Therefore, the IV MUST be eight octets long and MUST NOT be
 repeated for a specific key.
 * This can be achieved, for example, by using a counter.

3.2.15. Ticket

 Used in NTS-KE protocol

 This record contains the parameters of the selected AEAD algorithm,
 as well as an encrypted security association. The record contains
 all the necessary security parameters that the grantor needs for a
 secured PTP unicast connection to the requester. The ticket is
 encrypted by the NTS-KE server with the symmetric ticket key which is
 also known to the grantor. The requester is not able to decrypt the
 encrypted security association within the ticket.

 Content and conditions:

 * The record has a Record Type number of 1034 and the Critical Bit
 MAY be set.
 * The Record Body consists of several data fields and MUST be
 formatted as follows.

Langer & Bermbach Expires 24 August 2023 [Page 58]

Internet-Draft NTS4PTP February 2023

 +================================+========+========+
 | Field | Octets | Offset |
 +================================+========+========+
 | Ticket Key ID | 4 | 0 |
 +--------------------------------+--------+--------+
 | Source PortIdentity | 10 | 4 |
 +--------------------------------+--------+--------+
 | Nonce Length | 2 | 14 |
 +--------------------------------+--------+--------+
 | Nonce | N | 16 |
 +--------------------------------+--------+--------+
 | Encrypted SA Length | 2 | N+16 |
 +--------------------------------+--------+--------+
 | Encrypted Security Association | E | N+18 |
 +--------------------------------+--------+--------+

 Table 25: Structure of a Ticket record

 * In a PTP Key Response message, this record MUST be included
 exactly once each in the Current Parameters container record and
 the Next Parameters container record if the requesting client
 wants a unicast communication to a specific grantor in TiBA mode.
 * The Next Parameters container record MUST be present only during
 the update period.

 Ticket Key ID

 * This is a 32-bit unsigned integer in network byte order, denoting
 the key ID of the ticket key.
 * The value is set by the NTS KE server and is valid for the
 respective validity period.
 * See also Section 3.2.17 for more details.

 Source PortIdentity

 * This 10-octet long field contains the identical Source
 PortIdentity of the PTP client from the PTP Key Request message.

 Nonce Length

 * This is a 16-bit unsigned integer in network byte order, denoting
 the length of the Nonce field.

 Nonce

 * This field contains the Nonce needed for the AEAD operation.
 * The length and conditions attached to the Nonce depend on the AEAD
 algorithm used.

Langer & Bermbach Expires 24 August 2023 [Page 59]

Internet-Draft NTS4PTP February 2023

 * More details and conditions are described in Section 4.1.

 Encrypted SA Length

 * This is a 16-bit unsigned integer in network byte order, denoting
 the length of the Encrypted Security Association field.

 Encrypted Security Association

 * This field contains the output of the AEAD operation
 ("Ciphertext") after the encryption process of the respective
 Record Body of the respective Security Association record.
 * The plaintext of this field is described in Section 3.2.11.
 * More details about the AEAD process and the required input data
 are described in Section 4.1.

3.2.16. Ticket Key

 Used in NTS-TSR protocol

 This record contains the ticket key, which together with an AEAD
 algorithm is used to encrypt and decrypt the ticket payload (content
 of the Encrypted Security Association field in the Ticket record).

 Content and conditions:

 * The record has a Record Type number of 1035 and the Critical Bit
 MAY be set.
 * The Record Body consists of a sequence of octets holding the
 symmetric key for the AEAD function.
 * The generation and length of the key MUST meet the requirements of
 the associated AEAD algorithm.
 * In a PTP Registration Response message, this record MUST be
 included exactly once each in the Current Parameters container
 record and the Next Parameters container record.
 * The Next Parameters container record MUST be present only during
 the update period.

3.2.17. Ticket Key ID

 Used in NTS-TSR protocol

Langer & Bermbach Expires 24 August 2023 [Page 60]

Internet-Draft NTS4PTP February 2023

 The Ticket Key ID record is a unique identifier that allows a grantor
 to identify the associated ticket key. The NTS-KE server is
 responsible for generating this key ID, which is also unique to the
 PTP network and incremented at each rotation period. The associated
 key is known only to the NTS-KE server and grantor, and is generated
 and exchanged during the registration phase of the grantor. All
 tickets generated by the NTS-KE server for the corresponding grantor
 in this validity period using the same ticket key ID.

 Content and conditions:

 * The record has a Record Type number of 1036 and the Critical Bit
 MAY be set.
 * The Record Body consists of a 32-bit unsigned integer in network
 byte order.
 * The generation and management of the ticket key ID is controlled
 by the NTS-KE server.
 * The NTS-KE server must ensure that every ticket key has a unique
 number.
 - The value is implementation dependent and MAY be either a
 random number, a hash value or an enumeration.
 - Previous IDs SHOULD NOT be reused for a certain number of
 rotation periods or a defined period of time.
 * In a PTP Key Response message, this record MUST be included
 exactly once each in the Current Parameters container record and
 the Next Parameters container record if a unicast connection in
 TiBA mode is to be established.
 * If the requester wishes to join a multicast group, the Ticket Key
 ID record MUST NOT be included in the container records.
 * In a PTP Registration Response message, this record MUST be
 included exactly once in the Current Parameters container record
 and once in the Next Parameters container record.
 * The Next Parameters container record MUST be present only during
 the update period.
 * The Ticket record MUST be present in TiBA mode and MUST NOT be
 present in GrBA mode.

3.2.18. Validity Period

 Used in NTS-KE and NTS-TSR protocol

 This record contains the validity information of the respective
 security parameters (see also Section 2.2.1).

 Content and conditions:

Langer & Bermbach Expires 24 August 2023 [Page 61]

Internet-Draft NTS4PTP February 2023

 * In a PTP Key Response as well as in the PTP Registration Response
 message, this record MUST be included exactly once each in the
 Current Parameters container record and the Next Parameters
 container record.
 * The record has a Record Type number of 1037 and the Critical Bit
 MAY be set.
 * The Record Body MUST consist of three data fields:

 +===============+========+========+
 | Field | Octets | Offset |
 +===============+========+========+
 | Lifetime | 4 | 0 |
 +---------------+--------+--------+
 | Update Period | 4 | 4 |
 +---------------+--------+--------+
 | Grace Period | 4 | 8 |
 +---------------+--------+--------+

 Table 26: Structure of a
 Validity Period record

 Lifetime

 * The Lifetime is a 32-bit unsigned integer in network byte order.
 * If this record is within a Current Parameters container record, it
 shows the remaining lifetime of the security parameters for the
 current validity period in seconds.
 * If this record is within a Next Parameters container record, it
 shows the total lifetime of the security parameters for the next
 validity period in seconds.
 * The counting down of the Next Parameters lifetime starts as soon
 as the remaining lifetime of the Current Parameters reaches 0s.
 * The maximum value is set by the NTS-KE administrator or the PTP
 profile.
 * In conjunction with a PTP unicast establishment in TiBA mode, the
 lifetime of the unicast key (within the Security Association
 record), the ticket key and registration lifetime of a grantor
 with the NTS-KE server MUST be identical.

 Update Period

 * The Update Period is a 32-bit unsigned integer in network byte
 order.
 * It specifies how many seconds before the lifetime expires the
 update period starts.
 * Unlike the lifetime, this is a fixed value that is not counted
 down.

Langer & Bermbach Expires 24 August 2023 [Page 62]

Internet-Draft NTS4PTP February 2023

 * The Update Period value MUST NOT be greater than the full
 Lifetime.
 * Recommended is an Update Period of 120s-300s if the full Lifetime
 is 900s or longer.
 * If the value of the Update Period in the Current Parameters
 container record is greater than the Lifetime, then the key update
 process has started.
 * The presence or absence of the Next Parameters container record is
 specified in Section 3.2.7.

 Grace Period

 * The Grace Period is a 32-bit unsigned integer in network byte
 order.
 * It defines how many seconds expired security parameters MUST still
 be accepted.
 * This allows the verification of incoming PTP messages that were
 still on the network and secured with the old parameters.
 * The Grace Period value MUST NOT be greater than the Update Period.
 * Recommended is a Grace Period of 5 to 10 seconds.

 Notes:

 * Requests during the currently running lifetime will receive
 respectively adapted count values.
 * The lifetime is a counter that is decremented and marks the
 expiration of defined parameters when the value reaches zero.
 * The realization is implementation-dependent and can be done for
 example by a secondly decrementing.
 * It MUST be ensured that jumps (e.g., by adjustment of the local
 clock) are avoided.
 * The use of a monotonic clock is suitable for this.
 * Furthermore, it is to be considered which consequences the
 drifting of the local clock can cause.
 * With sufficiently small values of the lifetime (<12 hours), this
 factor should be negligible.

4. Additional Mechanisms

 This section provides information about the use of the negotiated
 AEAD algorithm as well as the generation of the security policy
 pointers.

4.1. AEAD Operation

 General information about AEAD:

Langer & Bermbach Expires 24 August 2023 [Page 63]

Internet-Draft NTS4PTP February 2023

 * The AEAD operation enables the integrity protection and the
 optional encryption of the given data, depending on the input
 parameters.
 * While the structure of the AEAD output after the securing
 operation is determined by the negotiated AEAD algorithm, it
 usually contains an authentication tag in addition to the actual
 ciphertext.
 * The authentication tag provides the integrity protection, whereas
 the ciphertext represents the encrypted data.
 * The AEAD algorithms supported in this document (see Section 3.2.1)
 always return an authentication tag with a fixed length of 16
 octets.
 * The size of the following ciphertext is equal to the length of the
 plaintext.
 * The concatenation of authentication tag and ciphertext always form
 the unit Ciphertext:
 Ciphertext = {authentication tag || ciphertext}
 * Hint: The term "Ciphertext" is distinguished between upper and
 lower case letters.
 * The following text always describes "Ciphertext".
 * Separation of the information concatenated in Ciphertext is not
 necessary at any time.
 * Six parameters are relevant for the execution of an AEAD
 operation:
 - AEAD (...): is the AEAD algorithm itself
 - A: Associated Data
 - N: Nonce
 - K: Key
 - P: Plaintext
 - C: Ciphertext
 * The protection and encryption of the data is done as follows: C =
 AEAD (A, N, K, P)
 * Therefore, the output of the AEAD function is the Ciphertext.
 * The verification and decryption of the data is done this way: P =
 AEAD (A, N, K, C)
 * The output of the AEAD function is the Plaintext if the integrity
 verification is successful.

 AEAD algorithm and input/output values for the Ticket record:

 * AEAD ():
 - The AEAD algorithm that is negotiated between grantor and NTS-
 KE server during the registration phase.
 - A list of the AEAD algorithms considered in this document can
 be found in Section 3.2.1.
 * Associated Data:

Langer & Bermbach Expires 24 August 2023 [Page 64]

Internet-Draft NTS4PTP February 2023

 - The Associated Data is an optional AEAD parameter and can be of
 any length and content, as long as the AEAD algorithm does not
 give any further restrictions.
 - In addition to the Plaintext, this associated data is also
 included in the integrity protection.
 - When encrypting or decrypting the Security Association record,
 this parameter MUST remain empty.
 * Nonce:
 - Corresponds to the value from the Nonce field in the Ticket
 (Section 3.2.15).
 - The requirements and conditions depend on the selected AEAD
 algorithm.
 - For the AEAD algorithms defined in Section 3.2.1 (with numeric
 identifiers 15, 16, 17), a cryptographically secure random
 number MUST be used.
 - Due to the block length of the internal AES algorithm, the
 Nonce SHOULD have a length of 16 octets.
 * Key:
 - This is the symmetric key required by the AEAD algorithm.
 - The key length depends on the selected algorithm.
 - When encrypting or decrypting the Security Association record,
 the ticket key MUST be used.
 * Plaintext:
 - This parameter contains the data to be encrypted and secured.
 - For AEAD encryption, this corresponds to the Record Body of the
 Security Association record with all parameters inside.
 - This is also the output of the AEAD operation after the
 decryption process.
 * Ciphertext:
 - Corresponds to the value from the Encrypted Security
 Association field in the Ticket (Section 3.2.15).
 - The Ciphertext is the output of the AEAD operation after the
 encryption process.
 - This is also the input parameter for the AEAD decryption
 operation.

4.2. SA/SP Management

 This section describes the requirements and recommendations attached
 to SA/SP management, as well as details about the generation of
 identifiers.

 Requirements for the Security Association Database management:

 * The structure and management of the Security Association Database
 (SAD) are implementation-dependent both on the NTS-KE server and
 on the PTP devices.

Langer & Bermbach Expires 24 August 2023 [Page 65]

Internet-Draft NTS4PTP February 2023

 * An example of this, as well as other recommendations, are
 described in Annex P of IEEE Std 1588-2019 ([IEEE1588-2019].
 * A PTP device MUST contain exactly one SAD and Security Policy
 Database (SPD).
 * For multicast and Group-of-2 connections, SPPs MUST NOT occur more
 than once in the SAD of a PTP device.
 * For unicast connections, SPPs MAY occur more than once in the SAD
 of a PTP device.
 * The NTS-KE server MUST ensure that SPPs can be uniquely assigned
 to a multicast group or unicast connection.
 * This concerns both the NTS-KE server and all PTP devices assigned
 to the NTS-KE server.

 SPP generation:

 The generation of the SPP always takes place on the NTS-KE server
 and enables the identification of a corresponding SA. The value
 of the SPP can be either a random number or an enumeration. An
 SPP used in any multicast group MUST NOT occur in any other
 multicast group or unicast connection. If a multicast group or
 unicast connection is removed by the NTS-KE server, the released
 SPPs MAY be reused for new groups or unicast connections. Before
 reusing an SPP, the NTS-KE server MUST ensure that the SPP is no
 longer in use in the PTP network (e.g., within Next Parameters).
 In different PTP devices, an SPP used in a unicast connection MAY
 also occur in another unicast connection, as long as they are not
 used in multicast groups.

 Key/Key ID generation:

 The generation of the keys MUST be performed by using a
 Cryptographically Secure Pseudo Random Number Generator (CSPRNG)
 on the NTS-KE server (see also Section 2.2.2). The length of the
 keys depends on the MAC algorithm used. The generation and
 management of the key ID is also controlled by the NTS-KE server.
 The NTS-KE server MUST ensure that every key ID is unique at least
 within an SA with multiple parameter sets. The value of the key
 ID is implementation dependent and MAY be either a random number,
 a hash value or an enumeration. Key IDs of expired keys MAY be
 reused but SHOULD NOT be reused for a certain number of rotation
 periods or a defined period of time. Before reusing a key ID, the
 NTS-KE server MUST be ensured that the key ID is no longer in use
 in the PTP network (e.g., within Next Parameters).

Langer & Bermbach Expires 24 August 2023 [Page 66]

Internet-Draft NTS4PTP February 2023

5. New TICKET TLV for PTP Messages

 Once a PTP port is registered as a grantor for association in unicast
 mode another PTP port (requester) can associate with it by first
 requesting a key from the NTS-KE server with Association Type in the
 Association Mode record set to one of the values 1 to 4 (IPv4, IPv6,
 802.3 or PortIdentity), and Association Values to the related address
 of the desired grantor. After the reception of a PTP Key Response
 message during the NTS-KE protocol the requester obtains the unicast
 key and the Ticket record containing the Record Body of the Security
 Association record (see Section 2.1.2 and Section 3.2.15). The
 ticket includes the identification of the requester, the Encrypted SA
 along with the unicast key as well as the lifetime in the Validity
 record.

 To provide the grantor with the security data, the requester sends a
 secured unicast request to the grantor, e.g., an Announce request (=
 Signaling message with a REQUEST_UNICAST_TRANSMISSION TLV with
 Announce as messageType in the TLV), which is secured with the
 unicast key.

 To accomplish that, the requester sends a newly defined TICKET TLV
 with the Ticket embedded and the AUTHENTICATION TLV with the PTP
 unicast negotiation message. The TICKET TLV must be positioned
 before the AUTHENTICATION TLV to include the TICKET TLV in the
 securing by the ICV. The receiving grantor decrypts the Ticket
 (actually the encrypted security association) from the TICKET TLV
 getting access to the information therein. With the contained
 unicast key, the grantor checks the requester identity and the
 authenticity of the request message.

 Thereafter, all secured unicast messages between grantor and
 requester will use the unicast key for generating the ICV in the
 AUTHENTICATION TLV for authentication of the message until the
 unicast key expires.

 If the requesters identity does not match with the Source
 PortIdentity field in the Ticket or the ICV in the AUTHENTICATION TLV
 is not identical to the generated ICV by the grantor, then the
 unicast request message MUST be denied.

 The TICKET TLV structure is given in Table 27 below.

Langer & Bermbach Expires 24 August 2023 [Page 67]

Internet-Draft NTS4PTP February 2023

 +===============+========+========+
 | field | Octets | Offset |
 +===============+========+========+
 | tlvType | 2 | 0 |
 +---------------+--------+--------+
 | lengthfield | 2 | 2 |
 +---------------+--------+--------+
 | Ticket record | T | 4 |
 +---------------+--------+--------+

 Table 27: Structure of the
 TICKET TLV

 To comply with the TLV structure of IEEE Std 1588-2019
 ([IEEE1588-2019], Section 14.1) the TICKET TLV is structured as
 presented in Table 27 with a newly defined tlvType, a respective
 length field and the Ticket record (see Section 3.2.15) containing
 the encrypted security association. Eventually the Ticket TLV may be
 defined externally to IEEE 1588 SA, e.g., by the IETF. Then the
 structure should follow IEEE Std 1588-2019 ([IEEE1588-2019],
 Section 14.3) to define a new standard organization extension TLV as
 presented in Table 28 below.

 +=====================+========+========+
 | field | Octets | Offset |
 +=====================+========+========+
 | tlvType | 2 | 0 |
 +---------------------+--------+--------+
 | lengthfield | 2 | 2 |
 +---------------------+--------+--------+
 | organizationId | 3 | 4 |
 +---------------------+--------+--------+
 | organizationSubType | 3 | 7 |
 +---------------------+--------+--------+
 | Ticket record | T | 10 |
 +---------------------+--------+--------+

 Table 28: Structure of an
 organization extension TLV form for
 the TICKET TLV

 The TICKET TLV will be added to the PTP message preceding the
 AUTHENTICATION TLV as shown in figure 48 of IEEE Std 1588-2019
 ([IEEE1588-2019], Section 16.14.1.1).

Langer & Bermbach Expires 24 August 2023 [Page 68]

Internet-Draft NTS4PTP February 2023

6. AUTHENTICATION TLV Parameters

 The AUTHENTICATION TLV is the heart of the integrated security
 mechanism (prong A) for PTP. It provides all necessary data for the
 processing of the security means. The structure is shown in Table 29
 below (compare to figure 49 of [IEEE1588-2019]).

 +===================+===========+================================+
 | field | Use | Description |
 +===================+===========+================================+
 | tlvType | mandatory | TLV Type |
 +-------------------+-----------+--------------------------------+
 | lengthfield | mandatory | TLV Length Information |
 +-------------------+-----------+--------------------------------+
 | SPP | mandatory | Security Parameter Pointer |
 +-------------------+-----------+--------------------------------+
 | secParamIndicator | mandatory | Security Parameter Indicator |
 +-------------------+-----------+--------------------------------+
 | keyID | mandatory | Key Identifier or Current Key |
 | | | Disclosure Interval, depending |
 | | | on verification scheme |
 +-------------------+-----------+--------------------------------+
 | disclosedKey | optional | Disclosed key from previous |
 | | | interval |
 +-------------------+-----------+--------------------------------+
 | sequenceNo | optional | Sequence number |
 +-------------------+-----------+--------------------------------+
 | RES | optional | Reserved |
 +-------------------+-----------+--------------------------------+
 | ICV | mandatory | ICV based on algorithm OID |
 +-------------------+-----------+--------------------------------+

 Table 29: Structure of the AUTHENTICATION TLV

 The tlvType is AUTHENTICATION and lengthfield gives the length of the
 TLV. When using the AUTHENTICATION TLV with NTS key management, the
 SPP and keyID will be provided by the NTS-KE server in the PTP Key
 Response message

 The optional disclosedKey, sequenceNo, and RES fields are omitted.
 So all of the flags in the SecParamIndicator MUST be FALSE.

 ICV field contains the integrity check value of the particular PTP
 message calculated using the integrity algorithm defined by the key
 management.

Langer & Bermbach Expires 24 August 2023 [Page 69]

Internet-Draft NTS4PTP February 2023

7. IANA Considerations

 Considerations should be made ...

 ...

8. Security Considerations

 ...

9. Acknowledgements

 The authors would like to thank ...

10. References

10.1. Normative References

 [fiPS-PUB-198-1]
 National Institute of Standards and Technology (NIST),
 "The Keyed-Hash Message Authentication Code (HMAC)",
 NIST fiPS PUB 198-1, 2008.

 [IEEE1588-2019]
 Institute of Electrical and Electronics Engineers - IEEE
 Standards Association, "IEEE Standard for a Precision
 Clock Synchronization Protocol for Networked Measurement
 and Control Systems", IEEE Standard 1588-2019, 2019.

 [ITU-T_X.509]
 International Telecommunication Union (ITU), "Information
 technology Open systems interconnection The Directory:
 Public-key and attribute certificate frameworks", ITU-T
 Recommendation X.509 (2008), November 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
 2006, <https://www.rfc-editor.org/info/rfc4493>.

Langer & Bermbach Expires 24 August 2023 [Page 70]

Internet-Draft NTS4PTP February 2023

 [RFC4543] McGrew, D. and J. Viega, "The Use of Galois Message
 Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543,
 DOI 10.17487/RFC4543, May 2006,
 <https://www.rfc-editor.org/info/rfc4543>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5297] Harkins, D., "Synthetic Initialization Vector (SIV)
 Authenticated Encryption Using the Advanced Encryption
 Standard (AES)", RFC 5297, DOI 10.17487/RFC5297, October
 2008, <https://www.rfc-editor.org/info/rfc5297>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", RFC 7525, DOI 10.17487/RFC7525, May 2015,
 <https://www.rfc-editor.org/info/rfc7525>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8915] Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", RFC 8915, DOI 10.17487/RFC8915, September 2020,
 <https://www.rfc-editor.org/info/rfc8915>.

10.2. Informative References

 [Langer_et_al._2020]
 Langer, M., Heine, K., Sibold, D., and R. Bermbach, "A
 Network Time Security Based Automatic Key Management for
 PTPv2.1", 2020 IEEE 45th Conference on Local Computer
 Networks (LCN), Sydney, Australia,
 DOI 10.1109/LCN48667.2020.9314809, November 2020,
 <https://ieeexplore.ieee.org/document/9314809>.

Langer & Bermbach Expires 24 August 2023 [Page 71]

Internet-Draft NTS4PTP February 2023

 [Langer_et_al._2022]
 Langer, M. and R. Bermbach, "A comprehensive key
 management solution for PTP networks", Computer
 Networks, Volume 213 (2022), 109075,
 DOI 10.1016/j.comnet.2022.109075, June 2022,
 <https://www.sciencedirect.com/science/article/pii/
 S1389128622002158>.

Authors’ Addresses

 Martin Langer
 Ostfalia University of Applied Sciences
 Salzdahlumer Straße 46/48
 38302 Wolfenbüttel
 Germany
 Email: mart.langer@ostfalia.de

 Rainer Bermbach
 Ostfalia University of Applied Sciences
 Salzdahlumer Straße 46/48
 38302 Wolfenbüttel
 Germany
 Email: r.bermbach@ostfalia.de

Langer & Bermbach Expires 24 August 2023 [Page 72]

	draft-ietf-ntp-ntpv5-01
	draft-ietf-ntp-ntpv5-requirements-04
	draft-ietf-ntp-over-ptp-02
	draft-ietf-ntp-roughtime-09
	draft-ietf-ntp-roughtime-ecosystem-01
	draft-ietf-ntp-update-registries-13
	draft-ietf-tictoc-ptp-enterprise-profile-24
	draft-langer-ntp-nts-for-ptp-05

