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Abstract

   This document describes Mastic, a two-party VDAF for the following
   aggregation task: each client holds a string, and the collector
   wishes to count how many of these strings begin with a given prefix.
   Such a VDAF can be used to solve the private heavy hitters problem,
   where the goal is to compute the subset of the strings that occur
   most frequently without learning which client holds which string.
   This document also describes different modes of operation for Mastic
   that support additional use cases and admit various performance and
   security trade-offs.

About This Document

   This note is to be removed before publishing as an RFC.

   Status information for this document may be found at
   https://datatracker.ietf.org/doc/draft-mouris-cfrg-mastic/.

   Discussion of this document takes place on the Crypto Forum Research
   Group mailing list (mailto:cfrg@ietf.org), which is archived at
   https://mailarchive.ietf.org/arch/search/?email_list=cfrg.  Subscribe
   at https://www.ietf.org/mailman/listinfo/cfrg/.

   Source for this draft and an issue tracker can be found at
   https://github.com/jimouris/draft-mouris-cfrg-mastic.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.
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   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 5 September 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.
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1.  Introduction

      TO BE REMOVED BY RFC EDITOR: The source for this draft and the
      reference code can be found at https://github.com/jimouris/draft-
      mouris-cfrg-mastic.

   The "private heavy hitters" problem is to recover the most popular
   measurements generated by clients without learning the measurements
   themselves.  For example, a browser vendor might want to know which
   websites are visited most frequently without learning which clients
   visited which websites.

   For string measurements, this problem can be solved by combining a
   binary search with a subroutine solving the "private prefix
   histogram" subproblem.  The goal of this subproblem is to compute a
   histogram over the fixed-length prefixes of client measurement
   strings without revealing the prefixes.  The subproblem can be solved
   using a Verifiable Distributed Aggregation Function, or VDAF [VDAF].
   In particular, the Poplar1 VDAF described in Section 8 of [VDAF]
   describes how to distribute this computation amongst a small set of
   aggregation servers such that, as long as one server is honest, no
   individual measurement is observed in the clear.  At the same time,
   Poplar1 allows the servers to detect and remove any invalid
   measurements that would otherwise corrupt the computation of the
   histogram.

   This document describes Mastic [MPDST24], a VDAF that can be used as
   a drop-in replacement for Poplar1, while offering improved
   performance and communication cost.  Based on the PLASMA protocol
   [MST24], the scheme’s design also improves communication complexity,
   requiring just one round for report preparation compared to Poplar1’s
   two rounds.  Mastic is specified in Section 4.

   Mastic is also highly extensible.  Like Poplar1, Mastic’s core
   functionality is to compute prefix histograms.  Mastic allows this
   basic counter data type to be generalized to support a wide variety
   of secure aggregation tasks.  In particular, Mastic supports any data
   type that can be expressed as a type for the Prio3 VDAF Section 7 of
   [VDAF].  For example, the counter could be replaced with a bounded
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   weight (say, representing how much time was sepnt on a website) such
   that the heaviest "weight" measurements are recovered.  We describe
   this mode of operation in Section 5.1.

   This generalization also allows Mastic to support another important
   use case.  A desirable feature for a secure aggregation systems is
   the ability to "drill down" on the data by splitting up the aggregate
   based on specific properties of the clients.  For example, a browser
   vendor may wish to partition aggregates by version (different
   versions of the browser may have different performance profiles) or
   geographic location.  We will call these properties "attributes".
   [CP: See https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/489
   for the discussion that originally motivated this idea.]

   This requires representing the information in such a way that that
   measurements submitted by clients with the same attribute are
   aggregated together.  Prio3 can be adapted for this purpose, but the
   communication cost would be linear in the number of possible distinct
   attributes, which quickly becomes prohibitive if the number of
   attributes is large or subject to change over time.  For example,
   attributes might encode the client’s user agent (Section 10.1.5 of
   [RFC9110]), which has many possible values that tend to change over
   time.

   Mastic encodes the attribute and measurement such that, for an
   arbitrary sequence of attributes, the reports can be "queried" to
   reveal the aggregate for each attribute without learning the
   attribute or measurement of any client.  We describe this mode of
   operation in Section 5.2.

   Finally, we describe two modes of operation for Mastic that admit
   useful performance and security trade-offs.

   First, we describe an optimization for plain (i.e., non-weighted)
   heavy hitters that, in the best case, reduces the communication cost
   of preparation from linear in the number of reports to constant,
   leading to a dramatic improvement in performance compared to Poplar1.
   This best-case behavior is observed when all clients behave honestly:
   if a fraction of the clients submit invalid reports, then additional
   rounds of communication are required in order to isolate the invalid
   reports and remove them.  We describe this idea in detail in
   Section 5.3.

   Second, in Section 6 we describe an enhancement that allows Mastic to
   achieve robustness in the presence of a malicious Aggregator.  Rather
   than two aggregation servers as in the previous modes, this mode of
   operation involves three Aggregators, where every pair of Aggregators
   communicate over a different channel.  Using a third Aggregator, we
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   can lift the security of Mastic from the semi-honest setting to
   malicious security.  While more complex to implement than 2-party
   Mastic, this mode allows achieves "full security", where both privacy
   and robustness hold in the honest majority setting.

1.1.  Motivating Applications

   Mastic has two modes of operation, i.e., Weighted Heavy-Hitters
   Section 5.1 and Attribute-Based Metrics Section 5.2.  We describe one
   applications of interest for each mode.

1.1.1.  Network Error Logging

   Network Error Logging (NEL) is a mechanism used by web browsers to
   report errors that occur while attempting to establish a connection
   to a server [W3C23].  Some of these errors are visible to the server,
   but not all: failures in DNS, TCP, TLS, and HTTP can occur without
   the server having any visibility into the issue.  A small amount of
   connection errors is expected, even under normal operating
   conditions; but a sudden, substantial increase in errors may be an
   indication of an outage, or a configuration issue impacting millions
   of users.  Without a reporting mechanism like NEL, these events would
   only manifest in the server’s telemetry as a drop in overall traffic.

   NEL is particularly important for content delivery networks that
   handle HTTP traffic for a large number of websites (typically
   millions).  A content delivery network acts as a reverse proxy
   between clients and origin servers that provides a layer of caching
   and security services, such as DDoS protection.

   Reports are comprised of the URL the client attempted to navigate to
   (e.g., "https://example.com"), the type of error that occurred, and
   metadata related to the attempt, such as the time that elapsed
   between when the connection attempt began and the error was observed
   (e.g., Section 7 of [W3C23]).  Clients may also report successful
   connection attempts to give the server a sense of the error rate.
   The exact client behavior is determined by the reporting policy
   specified by the server (see Section 5.1 of [W3C23]).

   NEL data is privacy-sensitive for two reasons.  First, it exposes
   information that the server would not otherwise have access to, which
   can be abused to probe the client’s network configuration as
   described in Section 9 of [W3C23].  Second, for operational reasons,
   the reporting endpoint may be organizationally separated from the
   server (i.e., run on different cloud infrastructures), leading to an
   increased risk of the client’s browsing history being exposed (e.g.,
   in a data breach).
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   MPC helps mitigate these risks by revealing to the endpoint only the
   information it needs to fulfill its service level objectives.  This
   means, of course, we must be satisfied with limited functionality.
   Fortunately, Mastic allows us to preserve the most important
   functionality of NEL while minimizing privacy loss.

   Mastic can be applied to a simplified version of NEL where each
   client reports a tuple (dom, err) consisting of a domain name dom
   (e.g., "example.com") and a value err that represents an error (e.g.,
   "dns.unreachable") or an indication that no error occurred (e.g.,
   "ok").  Notably, this can be easily extended in Mastic to represent
   more elaborate metrics. e.g., where each weight includes the time it
   took each browser to report the error (and the aggregate is the
   average error reporting time), user agent (browser type and version),
   etc.  However, our main goal is to understand 1) the distribution of
   errors and 2) which domains are impacted.

   We expect there to be a large number of distinct domain names
   (millions in the case of content delivery networks) and only a small
   number of error variants (the NEL spec [W3C23] defines 30 variants).
   The following Mastic parameters are suitable for this application.

   Each input would encode the domain dom encoded with a number of bits
   sufficient to uniquely represent most of the domains; and each weight
   would represent the error variant dom.  To compute the distribution
   of errors, we would encode each error variant as a distinct bucket of
   a histogram so that [1, 0, 0, ...] represents "ok", [0, 1, 0, ...]
   represents "dns.unreachable", and so on.  (See ection 6 of [W3C23].),
   This is similar to Prio3Histogram (Section 7 of [VDAF].)

1.1.2.  Attribute-Based Browser Telemetry

   Web browsers collect telemetry generated by users as they navigate
   the web to gain insights into trends that guide product decisions.
   In many cases, Prio3 (Section 7 of [VDAF]) can be used to privately
   aggregate this telemetry.  However, this comes at the cost of
   flexibility.

   For example, Prio3 can be used to collect page load metrics from
   Browser for a list of known popular sites (e.g., "example.com").  The
   purpose of these metrics is to detect if changes to these sites cause
   regressions that might be correlated with an increased average load
   time or error rate.  A subtle, but important requirement for this
   system is the ability to break down the metrics by client attributes.
   Suppose for example that we want to aggregate by 1) the software
   version, and 2) the information about the client’s location.
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   Mastic provides a simple solution to this problem.  For the sake of
   presentation, we consider a simplified use case (the same approach
   can be applied to any aggregation task for which Prio3 (Section 7 of
   [VDAF]) is suitable).  Each client reports a tuple (ver, loc, site,
   time) where: ver is a string representing the client’s software
   version (e.g., "Browser/122.0"); loc is a string encoding its country
   code (e.g., "GR", "US", "IN", etc.); site is one of a fixed set of
   sites (e.g., "example.com", "example.org", etc.); and time is the
   load time of the site in seconds.  The version and location are
   included in the Mastic input; the site and load time are encoded by
   the corresponding weight.  Notably, this is just one example of what
   Mastic can do; the same idea can be applied to other types of
   metrics.

   Compared to the private NEL application in Section 1.1.1, the number
   of possible inputs here is relatively small: there are less than 200
   country codes and a handful of browser versions in wide use at any
   given time.  This means the aggregators can enumerate a set of inputs
   of interest and evaluate them immediately.  Consider the following
   parameters for Mastic, in its attribute-based metrics mode of
   operation Section 5.2:

   *  Attributes: Two-letter country codes can easily be encoded in 2
      bytes.  Likewise, the number of distinct browser versions is
      easily less than 216, so 2 bytes are sufficient.  Therefore, each
      attribute can be encoded with just 32 bits.

   *  Values: Similar to private NEL, each weight is a 0-vector except
      for a single 1 representing a bucket in a histogram.  We represent
      (site, time) as a histogram bucket as follows.  First, we quantize
      time (in seconds) into one of four buckets: [0, 0.1), [0.1, 1),
      [1, 5), and [5, inf).  Let 0 < t <= 4 denote the time bucket for
      time.  Next, suppose we wish to track metrics for 25 sites.  Let 0
      < s <= 25 denote the index of site in this list.  Then the index
      of 1 is simply t * s.

2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.
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   This document uses the following terms as defined in [VDAF]:
   "Aggregator", "Client", "Collector", "aggregate result", "aggregate
   share", "aggregation parameter", "batch", "input share",
   "measurement", "order", "output share", "prep message", "prep share",
   and "report".

   In Mastic, a Client’s VDAF measurement comprises two components,
   which we denote alpha and beta.  The function that each component
   serves depends on the use case: for weighted (Section 5.1) and plain
   (Section 5.3) heavy-hitters, we shall refer to alpha as the "payload"
   and beta as the payload’s "weight"; for attribute-based-metrics
   (Section 5.2), we shall refer to alpha as the "attribute" and to beta
   as the "payload".  When doing so is unambiguous, we may also refer to
   the payload as the "measurement".

   The DPF tree always has as a root the "empty string", which in turn
   has strings "0" and "1" as the left and right children, respectively.

3.  Preliminaries

   Mastic makes use of three primitives described in the base VDAF
   specification [VDAF]: finite fields, eXtendable Output Functions
   (XOFs), and Fully Linear Proofs (FLPs).  It also makes use of a
   fourth primitive, which extends the security properties of
   Incremental Distributed Point Functions (IDPFs), also described in
   the base specification.  All four primitives are described below.

3.1.  Finite fields

   An implementation of the Field interface in Section 6.1 of [VDAF] is
   required.  This object implements arithmetic in a prime field with a
   modulus suitable for use with the Number Theoretic Transform (called
   "FFT-friendly" in [VDAF]).

3.2.  XOF

   An implementation of the Xof interface in Section 6.2 of [VDAF] is
   required.  This object implements an XOF that takes a short seed and
   some auxiliary data as input and outputs a string of any length
   required for the application.
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3.3.  FLP

   An implementation of the Flp interface in Section 7.1 of [VDAF] is
   required.  This object implements a zero-knowledge proof system used
   to verify that the measurement conforms to the data type required by
   the application: for weighted heavy hitters (Section 5.1), FLPs are
   used to check the weight; in attribute-based-metrics (Section 5.2),
   they are used to check the measurement itself.

   The Client generates a proof and sends secret shares of this proof to
   each Aggregator.  Verification is split into two phases.  In the
   first phase, each Aggregator "queries" its share of the value and
   proof to obtain its "verifier share".  In the second phase, the
   Aggregators sum up the verifier shares and use the sum to decide if
   the input is valid.

3.4.  Ordering function order

   The function order(list[Vidpf.Field]) -> Integer defines a total
   ordering of sums of weights.  For plain heavy hitters, order is the
   identity function.

3.5.  Verifiable IDPF (VIDPF)

   Function secret sharing [GI14] allows secret sharing of the output of
   a function f() into additive shares, where each function share is
   represented by a separate key.  These keys enable the Aggregators to
   efficiently generate an additive share of the functions output f(x)
   for a given input x.  Distributed Point Functions (DPF) are a
   particular case of function secret sharing where f() is a "point
   function" for which f(x) = beta if x equals alpha and 0 otherwise for
   some alpha, beta.  The computation is distributed in such a way that
   no one party knows either the point or what it evaluates to.

   An IDPF (Section 8.1 of [VDAF]) generalizes DPF by secret-sharing an
   "incremental point function", i.e., the "point" in DPF is now a path
   on a full binary tree from the root to one of the leaves.  Here we
   take alpha to be a bit string of fixed length, and we have that f(x)
   = beta if x is a prefix of alpha and 0 otherwise.

   An IDPF has two main operations.  The first is the key-generation
   algorithm, which is run by the Client.  It takes as input alpha and
   beta and returns two values: a list of "key shares", one for each
   Aggregator; and the "public share", to be distributed to both
   Aggregators.  The second is the key-evaluation algorithm, run by each
   Aggregator.  It takes as input a candidate prefix string x, the
   public share, and the Aggregator’s key share and returns the
   Aggregator’s share of f(x).
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   Shares of the IDPF outputs can be aggregated together across multiple
   reports.  This is used in Poplar1 (Section 8 of [VDAF]) to solve the
   private prefix histogram problem.  IDPFs are private in the sense
   that each Aggregator learns nothing about the underlying inputs
   beyond the value of this sum.  However, IDPFs on their own do not
   provide robustness.  For example, it is possible for a malicious
   Client to fool the Aggregators into accepting malformed counter
   (i.e., a value other than 0 or 1).  It is also possible for a Client
   to "vote twice" by constructing key shares for which f(x) = f(x’) =
   beta, where x and x’ are distinct, equal-length candidate prefixes.

   To mitigate these issues, IDPF must be composed with some interactive
   mechanism for ensuring the IDPF outputs are well-formed.  Mastic uses
   the VIDPF of [MST24] for this purpose, which endows IDPF with the
   following properties:

   1.  One-hot Verifiability: There is at most one prefix of each length
       whose value under f is non-zero.  In particular, the output
       shares at each level are additive shares of a one-hot vector.

   2.  Path Verifiability: The One-hot Verifiability property alone is
       not sufficient to guarantee that the keys are well-formed.  The
       Aggregators still need to verify that: a) the non-zero output
       values are across a single path in the tree, and b) the value of
       the root node is consistently propagated down the VIDPF tree.
       For example, if the root value is beta, then there is only a
       single path from root to the leaves with non-zero values, and all
       such values equal beta.

   Below we describe the syntax of VIDPF; in Section 7 we specify the
   concrete construction of [MST24].

   A concrete Vidpf defines the types and constants enumerated in
   Table 1.  In addition, it implements the following methods:

   *  Vidpf.gen(alpha: Unsigned, beta: list[Vidpf.Field], binder: bytes,
      rand: bytes) -> tuple[PublicShare, list[bytes]] is the randomized
      key generation algorithm. (rand denotes the random bytes consumed
      by the algorithm.)  Its inputs are the VIDPF index alpha (defined
      the same way as "IDPF index" in Section 8 of [VDAF]), the output
      value beta, and a binder string.  The value of alpha MUST be in
      range [0, 2^Vidpf.BITS); and len(rand) MUST be Vidpf.RAND_SIZE.
      The outputs are the public share and the list of key shares, one
      for each Aggregator.  The length of each key share MUST be
      Vidpf.KEY_SIZE.
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   *  Vidpf.eval(agg_id: Unsigned, public_share: Vidpf.PublicShare,
      key_share: bytes, level: Unsigned, prefixes: tuple[Unsigned, ...],
      binder: bytes) -> tuple[list[Vidpf.Field], bytes] is the
      deterministic key evaluation algorithm.  It takes as input the
      Aggregator ID (which MUST be in range [0, Vidpf.SHARES), the
      public share, the Aggregator’s key share, the VIDPF level (defined
      the same way as "IDPF level" in Section 8 of [VDAF]), the list of
      prefixes to evaluate, and a binder string.  Its outputs are the
      VIDPF output share and the VIDPF proof.

   The verifiability properties are guaranteed as long as each
   Aggregator computes the same VIDPF proof.  Note that One-hot
   Verifiability and Path Verifiability are not sufficient to ensure
   robustness of Mastic; we will also need to ensure that the beta
   chosen by the Client is "in range".  We will rely on FLPs
   (Section 3.3) for this purpose.  ([MST24] describe a simple range(2)
   check, but we would like more sophisticated range checks for Mastic.)

   Note that Vidpf is less general than Idpf as defined Section 8 of
   [VDAF] in that beta value is the same for each level of the tree.
   This constraint is necessary for Path Verifiability.

   +=============+=====================================================+
   | Parameter   | Description                                         |
   +=============+=====================================================+
   | SHARES      | Number of VIDPF keys output by                      |
   |             | VIDPF-key generator                                 |
   +-------------+-----------------------------------------------------+
   | BITS        | Length in bits of each input                        |
   |             | string                                              |
   +-------------+-----------------------------------------------------+
   | VALUE_LEN   | Number of field elements of each                    |
   |             | output value                                        |
   +-------------+-----------------------------------------------------+
   | RAND_SIZE   | Size of the random string consumed                  |
   |             | by the VIDPF-key generator.  Equal                  |
   |             | to twice the XOF’s seed size.                       |
   +-------------+-----------------------------------------------------+
   | KEY_SIZE    | Size in bytes of each VIDPF key                     |
   +-------------+-----------------------------------------------------+
   | Field       | Implementation of Field                             |
   |             | (Section 3.1) used for each value                   |
   +-------------+-----------------------------------------------------+
   | PublicShare | Type of the VIDPF public share                      |
   +-------------+-----------------------------------------------------+

         Table 1: Constants and types defined by a concrete VIDPF.
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4.  Definition of Mastic

      NOTE We are pretty confident about the overall structure of the
      VDAF, but there are some details to work out and security analysis
      to do.  In the meantime, check out the current reference
      implementation at https://github.com/jimouris/draft-mouris-cfrg-
      mastic/tree/main/poc.

   This section describes Mastic, a VDAF suitable for a plethora of
   aggregation functions including sum, mean, histograms, heavy hitters,
   weighted heavy-hitters (see Section 5.1), attribute-based metrics
   (see Section 5.2), linear regression and more.  Mastic allows
   computing functions _à la_ Prio3 VDAF Section 7 of [VDAF].

   The core component of Mastic is a VIDPF as defined in Section 3.5.
   VIDPFs inherently have the "one-hot verifiability" property, meaning
   that in each level of the tree there exists at most one non-zero
   value.  To guarantee that the Client’s input is well-formed, Mastic
   first verifies that the Client measurement is valid at the root level
   using an FLP, and then, it ensures that this valid measurement is
   propagated correctly down the tree using the one-hot verifiability
   and the path verifiability properties.  Note that Mastic allows the
   measurement to be of any type that can be verified by an arithmetic
   circuit, not just a counter.  For instance, the measurement can be a
   tuple of values, a string, a secret number within a public range,
   etc.

   As described in Section 2, each Client input consists of two
   components, which we denote alpha and beta.  At a high level, the
   Client generates VIDPF keys that encodes alpha and beta and an FLP
   for the validity of beta.  Then the Client sends one VIDPF key to
   each Aggregator and also publishes the VIDPF public share.  FLPs for
   certain validity functions, including most range proofs, rely on the
   establishment of shared random coins (joint randomness) between the
   Client and all Aggregators.  When it is necessary for the Client to
   generate joint randomness, it includes generator seeds in its shares
   for each Aggregator, and the Aggregators confirm that they have
   derived the same joint randomness during the FLP verification
   process.

   The Aggregators agree on an initial set of level-bit strings, where
   level < BITS.  We refer to these strings as "candidate prefixes".
   They evaluate their VIDPF key shares at each prefix in this set, to
   obtain an additive share of the VIDPF output.

   Mastic uses a combination of techniques to certify the validity of
   this output.
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   1.  First, the Aggregators exchange VIDPF proofs.  If they are equal,
       then this implies One-hot Verifiability and Path Verifiability as
       described in Section 3.5.  One-hotness ensures that the VIDPF
       output contains beta at most once (and every other output is 0).
       Path Verifiability implies that, if the previous level contained
       a non-zero value, then it is the same value as the current level.

   2.  Second, the Aggregators interactively verify the FLP
       (Section 3.3) to assert that beta is valid.  We instantiate the
       FLP with FlpGeneric from Section 7.3 of [VDAF], which defines
       validity via an arithmetic circuit (Section 7.3.2 of [VDAF])
       evaluated over (shares of) beta: if the output of the circuit is
       0, then the value is said to be "valid"; otherwise it is
       "invalid".

       If none of the candidate prefixes are a prefix of alpha, then the
       VIDPF output shares will not contain any shares of beta.
       Moreover, VIDPF as specified in Section 7 does not as specified
       permit evaluation at the root of the VIDPF tree.  Instead, each
       Aggregator computes a share of beta by evaluating the VIDPF tree
       at prefixes 0 and 1 and level == 0 and adding them up.  One-hot
       Verifiability and Path Verifiability imply that the sum is equal
       to the Aggregator’s share of beta.

          CP: An alternative way to spell this is to say that VIDPF
          evaluation outputs a share of beta, which is what our current
          API does in the reference code.

   The aggregate result is obtained by summing up the encoded
   measurement shares for each prefix and computing some function of the
   sum.  The aggregation parameter contains the level and the set of
   candidate prefixes.

   The Aggregators send their aggregate shares to the Collector, who
   unshards them to recover the results for each candidate prefix.

4.1.  Sharding

      NOTE to be specified in full detail.

4.2.  Preparation

      NOTE to be specified in full detail.

4.3.  Validity of Aggregation Parameters

      NOTE to be specified in full detail.
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4.4.  Aggregation

      NOTE to be specified in full detail.

4.5.  Unsharding

      NOTE to be specified in full detail.

5.  Modes of Operation for Mastic

5.1.  Weighted Heavy-Hitters

      See Section 1.1.1 for a motivating application and
      example_weighted_heavy_hitters_mode() in the reference
      implementation for an end-to-end example.

   The primary use case for Mastic is a variant of the heavy-hitters
   problem, in which the prefix counts are replaced with a notion of
   weight that is specific to some application.  For example, when
   measuring the performance of an ad campaign, it is useful to learn
   not only which ads led to purchases, but how much money was spent.

   To support this use case, we view the Client’s alpha value as its
   measurement and the beta value as the measurement’s "weight".  The
   range of valid values for beta are therefore determined by the FLP
   with which Mastic is instantiated.  Concretely, validity of beta is
   expressed by a validity circuit (Section 7.3.2 of [VDAF]).

   To compute the weighted heavy-hitters, the Collector and Aggregators
   proceed as described in Section 8 of [VDAF], except that the
   threshold represents a minimum weight rather than a minimum count.
   In addition:

   1.  The Aggregators MUST perform the range check (i.e., verify the
       FLP) at the first round of aggregation and remove any invalid
       reports before proceeding.

   2.  The level at which the reports are Aggregated MUST be strictly
       increasing.

5.1.1.  Different Thresholds

      For an end-to-end example, see
      example_weighted_heavy_hitters_mode_with_different_thresholds() in
      the reference implementation.
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   So far, we have assumed that there is a single threshold for
   determining which prefixes are "heavy".  However, we can easily
   extend this to have different thresholds for different prefixes.
   There exist use-cases where prefixes starting with "000" may be
   significantly more popular than prefixes starting with "111".
   Setting a low threshold may result in an overwhelmingly big set of
   heavy hitters starting with "000", while setting a high threshold
   might prune anything starting with "111".  Consider the following
   examples:

   1.  Popular URLs: a.example.com receives a massive amount of traffic
       whereas b.example.com may have lower traffic.  To identify heavy-
       hitting search queries on a.example.com, the Aggregators should
       set a high threshold, while queries with different domain
       prefixes may require lower thresholds to be considered popular.

   2.  E-commerce: Grocery items are essential and have a high volume of
       sales.  In contrast, electronics, though popular, usually come
       with a higher price compared to groceries.  Meanwhile, luxury
       items command significantly higher prices but generally
       experience lower sales volumes.  To identify heavy-hitting
       grocery items on an e-commerce website, Aggregators could use
       different threshold for each of these categories.  These
       thresholds are set to ensure that only the top-selling grocery
       items qualify as heavy hitters while electronics and luxury items
       are also considered heavy hitters on their own categories.

   To tackle this, Mastic can allow different prefixes having different
   thresholds.  When a specific prefix does not have an associated
   threshold, we first search if any of its prefixes has a specified
   threshold, otherwise we use a default threshold.  For example, if the
   Aggregators have set the thresholds to be {"000": 10, "111": 2,
   "default": 5} and the search for prefix "01", then threshold 5 should
   be used.  However, if the Aggregators search for prefix "11101", then
   threshold 2 should be used.

5.2.  Attribute-based Metrics

      See Section 1.1.2 for a motivating application and
      example_attribute_based_metrics_mode() in the reference
      implementation for an end-to-end example.
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   In this mode of operation, we take the beta value to be the Client’s
   measurement and alpha to be an arbitrary "attribute".  For a given
   sequence of attributes, the goal of the Collector is to aggregate the
   measurements that share the same attribute.  This provides
   functionality similar to Prio3 [VDAF], except that the aggregate is
   partitioned by Clients who share some property.  For example, the
   attribute might encode the Client’s user agent [RFC9110].

   Mastic requires each alpha to have the same length (Vidpf.BITS).
   Thus, it is necessary for each application to choose a scheme for
   encoding attributes as fixed-length strings.  The following scheme is
   RECOMMENDED.  Choose a cryptographically secure hash function, such
   as SHA256 [SHS], compute the hash of the Client’s input string, and
   interpret each bit of the hash as a bit of the VIDPF index.  [CP: Are
   we comfortable recommending truncating the hash?  Collisions aren’t
   so bad since the Client can just lie about alpha anyway.  The main
   thing is to pick a value for BITS that is large enough to avoid
   accidental collisions.]

   The Aggregators MAY aggregate a report any number times, but:

   1.  They MUST perform the range check (i.e., verify the FLP) the
       first time the reports are aggregated and remove any invalid
       reports before aggregating again.

   2.  The aggregation parameter MUST specify the last level of the
       VIDPF tree (i.e., level MUST be Vidpf.BITS-1).

      OPEN ISSUE Figure out if these requirements are strict enough.  We
      may need to tighten aggregation parameter validity if we find out
      that aggregating at the same level more than once is not safe.

5.3.  Plain Heavy-Hitters with VIDPF-Proof Aggregation

      NOTE to be specified in full detail.  Proof aggregation is not yet
      implemented by the reference code.

   The total communication cost of using Mastic (or Poplar1 [VDAF]) for
   heavy hitters is O(num_measurements * Vidpf.BITS) bits exchanged
   between the Aggregators, where num_measurements is the number of
   reports being aggregated.  For plain heavy-hitters, this can be
   reduced to O(Vidpf.BITS) in the best case.

Davis, et al.           Expires 5 September 2024               [Page 16]



Internet-Draft                   Mastic                       March 2024

   The idea is to take advantage of the feature of VIDPF evaluation
   whereby the Aggregators compute identical VIDPF proofs if and only if
   the report is valid.  This allows the proofs themselves to be
   aggregated: if each report in a batch of reports is valid, then the
   hash of their proofs will be equal as well; on the other hand, if one
   report is invalid, then the hash of the proofs will not be equal.

   To facilitate isolation of the invalid report(s), the proof strings
   are arranged into a Merkle tree.  During aggregation, the Aggregators
   interactively traverse the tree to detect the subtree(s) containing
   invalid reports and remove them from the batch.

      OPEN ISSUE Decide if we should spell this out in greater detail.
      This feature is not compatible with [DAP]; if we wanted to extend
      DAP to support this, then we’d need to specify the wire format of
      the messages exchanged between the Aggregators.

   In the worst case, isolating invalid reports requires
   O(num_measurements * Vidpf.BITS) bits of communication and many
   Vidpf.BITS rounds of communication between the Aggregators.  However,
   this behavior would only be observed under attack conditions in which
   the vast majority of Clients are malicious.

   In the simple case where the beta value is a constant (e.g., 1) we
   can replace the FLP check with a simpler check.  FLPs are not
   compatible with proof aggregation the way VIDPFs are.  In order to
   perform the range check without FLPs, we use an extension of VIDPF
   described by [MST24].  The high-level idea here is that the
   Aggregators can evaluate the empty string and verify that they have
   shares of the constant beta.  Next, as described in Section 4, we use
   the "one-hot verifiability" and "path verifiability" checks to verify
   that each level is non-zero at only a single point and that the same
   constant beta is propagated down the tree correctly.  Note that this
   trick is not suitable for weighted heavy-hitters, since it expects
   that each beta value is constant (e.g., 1).

      OPEN ISSUE Proof aggregation could work with plain Mastic, but we
      would need to check the FLPs at the first round of aggregation,
      leading to best-case communication cost would be
      O(num_measurements + Vidpf.BITS).  This would be OK, but we would
      still want to support a mode for plain heavy-hitters that is as
      good as we can get.

      One idea is to always do the PLASMA 0/1 check alongside the FLP.
      This would be useful for another reason: Usually FLP decoding
      requires num_measurements as a parameter.  We currently don’t
      support this because we currently don’t have a pure counter as
      part of the VIDPF output.
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6.  Robustness Against a Malicious Aggregator

   Next, we describe an enhancement that allows Mastic to achieve
   robustness in the presence of a malicious Aggregator.  The two-party
   Mastic (as well as Poplar1) is susceptible to additive attacks by a
   malicious Aggregator.  In more detail, if one of the Aggregators
   starts acting maliciously, they can arbitrarily add to the
   aggregation result (simply by adding to their own aggregation shares)
   without the honest Aggregator noticing.

   We can solve this problem in Mastic by using a technique from [MST24]
   that lifts the two-party semi-honest secure PLASMA to the three-party
   maliciously secure setting.  Rather than having two Aggregators as in
   the previous setting, this flavor involves three Aggregators, where
   every pair of Aggregators communicate over a different channel.  In
   essence, each pair of Aggregators will run one session of the VDAF
   with unique randomness but on the same Client measurement.  The
   following changes are necessary:

   1.  The Client needs to generate three pairs of VIDPF keys all
       corresponding to the same alpha and beta values.  We represent
       the keys based on the session as follows:

       1.  Session 0 (between Aggregators 0 and 1): key_01, key_10

       2.  Session 1 (between Aggregators 1 and 2): key_12, key_21

       3.  Session 2 (between Aggregators 2 and 0): key_20, key_02

       Each pair of Aggregators cannot check that the Client input is
       consistent across two sessions without the involvement of the
       third Aggregator.  To address this, we let two Aggregators (i.e.,
       Aggregators 0 and 1) to run all three sessions so that they can
       check that the Client input is consistent across three sessions.
       The third Aggregator (i.e., Aggregator 2) is involved as an
       attestator in two of the sessions.  The check involves field
       addition and subtraction and then hash comparisons.

   2.  The Client sends the following keys to the Aggregators:

       1.  Aggregator 0 receives: key_01, key_02, and key_21

       2.  Aggregator 1 receives: key_10, key_12, and key_20

       3.  Aggregator 2 receives: key_21 and key_20
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   3.  The Aggregators need to verify that the Client’s input is
       consistent across the different sessions (i.e., that all the keys
       correspond to the same alpha and beta values).  Aggregators 0 and
       1 check that:

       1.  Their output shares of Session 0 minus their output shares of
           Session 1 are shares of zero

       2.  Their output shares of Session 1 minus their output shares of
           Session 2 are shares of zero.

       The subtraction is a local operation and verifying that two
       Aggregators possess a sharing of zero requires exchanging one
       hash.

   Using a third Aggregator, we can lift the security of Mastic from the
   semi-honest setting to malicious security.  While more complex to
   implement than 2-party Mastic, this mode allows achieves both privacy
   and robustness against a malicious Aggregator.

      NOTE to be specified in full detail.

7.  Definition of Vidpf

   The construction of [MST24] builds on techniques from [CP22] to lift
   an IDPF to a VIDPF with the properties described in Section 3.5.
   Instead of a 2-round "secure sketch" MPC like that of Poplar1, the
   scheme relies on hashing.

   TODO(jimouris) Add an overview.

      NOTE To be specified.  The design is based on VIDPF from [MST24].
      https://github.com/jimouris/draft-mouris-cfrg-mastic/tree/main/poc
      for the reference implementation.

8.  Security Considerations

   A security analysis of Mastic is provided in [MPDST24].

9.  IANA Considerations

      NOTE to be specified.
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