
Crypto Forum H. Davis
Internet-Draft Seagate
Intended status: Informational D. Mouris
Expires: 5 September 2024 Nillion
 C. Patton
 Cloudflare
 P. Sarkar
 Supra Research
 N. G. Tsoutsos
 University of Delaware
 4 March 2024

 The Mastic VDAF
 draft-mouris-cfrg-mastic-02

Abstract

 This document describes Mastic, a two-party VDAF for the following
 aggregation task: each client holds a string, and the collector
 wishes to count how many of these strings begin with a given prefix.
 Such a VDAF can be used to solve the private heavy hitters problem,
 where the goal is to compute the subset of the strings that occur
 most frequently without learning which client holds which string.
 This document also describes different modes of operation for Mastic
 that support additional use cases and admit various performance and
 security trade-offs.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-mouris-cfrg-mastic/.

 Discussion of this document takes place on the Crypto Forum Research
 Group mailing list (mailto:cfrg@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/search/?email_list=cfrg. Subscribe
 at https://www.ietf.org/mailman/listinfo/cfrg/.

 Source for this draft and an issue tracker can be found at
 https://github.com/jimouris/draft-mouris-cfrg-mastic.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Davis, et al. Expires 5 September 2024 [Page 1]

Internet-Draft Mastic March 2024

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 5 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Table of Contents

 1. Introduction . 3
 1.1. Motivating Applications 5
 1.1.1. Network Error Logging 5
 1.1.2. Attribute-Based Browser Telemetry 6
 2. Conventions and Definitions 7
 3. Preliminaries . 8
 3.1. Finite fields . 8
 3.2. XOF . 8
 3.3. FLP . 9
 3.4. Ordering function order 9
 3.5. Verifiable IDPF (VIDPF) 9
 4. Definition of Mastic . 12
 4.1. Sharding . 13
 4.2. Preparation . 13
 4.3. Validity of Aggregation Parameters 13
 4.4. Aggregation . 14
 4.5. Unsharding . 14
 5. Modes of Operation for Mastic 14
 5.1. Weighted Heavy-Hitters 14
 5.1.1. Different Thresholds 14
 5.2. Attribute-based Metrics 15
 5.3. Plain Heavy-Hitters with VIDPF-Proof Aggregation 16
 6. Robustness Against a Malicious Aggregator 18

Davis, et al. Expires 5 September 2024 [Page 2]

Internet-Draft Mastic March 2024

 7. Definition of Vidpf . 19
 8. Security Considerations 19
 9. IANA Considerations . 19
 10. References . 19
 10.1. Normative References 19
 10.2. Informative References 20
 Acknowledgments . 21
 Authors’ Addresses . 21

1. Introduction

 TO BE REMOVED BY RFC EDITOR: The source for this draft and the
 reference code can be found at https://github.com/jimouris/draft-
 mouris-cfrg-mastic.

 The "private heavy hitters" problem is to recover the most popular
 measurements generated by clients without learning the measurements
 themselves. For example, a browser vendor might want to know which
 websites are visited most frequently without learning which clients
 visited which websites.

 For string measurements, this problem can be solved by combining a
 binary search with a subroutine solving the "private prefix
 histogram" subproblem. The goal of this subproblem is to compute a
 histogram over the fixed-length prefixes of client measurement
 strings without revealing the prefixes. The subproblem can be solved
 using a Verifiable Distributed Aggregation Function, or VDAF [VDAF].
 In particular, the Poplar1 VDAF described in Section 8 of [VDAF]
 describes how to distribute this computation amongst a small set of
 aggregation servers such that, as long as one server is honest, no
 individual measurement is observed in the clear. At the same time,
 Poplar1 allows the servers to detect and remove any invalid
 measurements that would otherwise corrupt the computation of the
 histogram.

 This document describes Mastic [MPDST24], a VDAF that can be used as
 a drop-in replacement for Poplar1, while offering improved
 performance and communication cost. Based on the PLASMA protocol
 [MST24], the scheme’s design also improves communication complexity,
 requiring just one round for report preparation compared to Poplar1’s
 two rounds. Mastic is specified in Section 4.

 Mastic is also highly extensible. Like Poplar1, Mastic’s core
 functionality is to compute prefix histograms. Mastic allows this
 basic counter data type to be generalized to support a wide variety
 of secure aggregation tasks. In particular, Mastic supports any data
 type that can be expressed as a type for the Prio3 VDAF Section 7 of
 [VDAF]. For example, the counter could be replaced with a bounded

Davis, et al. Expires 5 September 2024 [Page 3]

Internet-Draft Mastic March 2024

 weight (say, representing how much time was sepnt on a website) such
 that the heaviest "weight" measurements are recovered. We describe
 this mode of operation in Section 5.1.

 This generalization also allows Mastic to support another important
 use case. A desirable feature for a secure aggregation systems is
 the ability to "drill down" on the data by splitting up the aggregate
 based on specific properties of the clients. For example, a browser
 vendor may wish to partition aggregates by version (different
 versions of the browser may have different performance profiles) or
 geographic location. We will call these properties "attributes".
 [CP: See https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/489
 for the discussion that originally motivated this idea.]

 This requires representing the information in such a way that that
 measurements submitted by clients with the same attribute are
 aggregated together. Prio3 can be adapted for this purpose, but the
 communication cost would be linear in the number of possible distinct
 attributes, which quickly becomes prohibitive if the number of
 attributes is large or subject to change over time. For example,
 attributes might encode the client’s user agent (Section 10.1.5 of
 [RFC9110]), which has many possible values that tend to change over
 time.

 Mastic encodes the attribute and measurement such that, for an
 arbitrary sequence of attributes, the reports can be "queried" to
 reveal the aggregate for each attribute without learning the
 attribute or measurement of any client. We describe this mode of
 operation in Section 5.2.

 Finally, we describe two modes of operation for Mastic that admit
 useful performance and security trade-offs.

 First, we describe an optimization for plain (i.e., non-weighted)
 heavy hitters that, in the best case, reduces the communication cost
 of preparation from linear in the number of reports to constant,
 leading to a dramatic improvement in performance compared to Poplar1.
 This best-case behavior is observed when all clients behave honestly:
 if a fraction of the clients submit invalid reports, then additional
 rounds of communication are required in order to isolate the invalid
 reports and remove them. We describe this idea in detail in
 Section 5.3.

 Second, in Section 6 we describe an enhancement that allows Mastic to
 achieve robustness in the presence of a malicious Aggregator. Rather
 than two aggregation servers as in the previous modes, this mode of
 operation involves three Aggregators, where every pair of Aggregators
 communicate over a different channel. Using a third Aggregator, we

Davis, et al. Expires 5 September 2024 [Page 4]

Internet-Draft Mastic March 2024

 can lift the security of Mastic from the semi-honest setting to
 malicious security. While more complex to implement than 2-party
 Mastic, this mode allows achieves "full security", where both privacy
 and robustness hold in the honest majority setting.

1.1. Motivating Applications

 Mastic has two modes of operation, i.e., Weighted Heavy-Hitters
 Section 5.1 and Attribute-Based Metrics Section 5.2. We describe one
 applications of interest for each mode.

1.1.1. Network Error Logging

 Network Error Logging (NEL) is a mechanism used by web browsers to
 report errors that occur while attempting to establish a connection
 to a server [W3C23]. Some of these errors are visible to the server,
 but not all: failures in DNS, TCP, TLS, and HTTP can occur without
 the server having any visibility into the issue. A small amount of
 connection errors is expected, even under normal operating
 conditions; but a sudden, substantial increase in errors may be an
 indication of an outage, or a configuration issue impacting millions
 of users. Without a reporting mechanism like NEL, these events would
 only manifest in the server’s telemetry as a drop in overall traffic.

 NEL is particularly important for content delivery networks that
 handle HTTP traffic for a large number of websites (typically
 millions). A content delivery network acts as a reverse proxy
 between clients and origin servers that provides a layer of caching
 and security services, such as DDoS protection.

 Reports are comprised of the URL the client attempted to navigate to
 (e.g., "https://example.com"), the type of error that occurred, and
 metadata related to the attempt, such as the time that elapsed
 between when the connection attempt began and the error was observed
 (e.g., Section 7 of [W3C23]). Clients may also report successful
 connection attempts to give the server a sense of the error rate.
 The exact client behavior is determined by the reporting policy
 specified by the server (see Section 5.1 of [W3C23]).

 NEL data is privacy-sensitive for two reasons. First, it exposes
 information that the server would not otherwise have access to, which
 can be abused to probe the client’s network configuration as
 described in Section 9 of [W3C23]. Second, for operational reasons,
 the reporting endpoint may be organizationally separated from the
 server (i.e., run on different cloud infrastructures), leading to an
 increased risk of the client’s browsing history being exposed (e.g.,
 in a data breach).

Davis, et al. Expires 5 September 2024 [Page 5]

Internet-Draft Mastic March 2024

 MPC helps mitigate these risks by revealing to the endpoint only the
 information it needs to fulfill its service level objectives. This
 means, of course, we must be satisfied with limited functionality.
 Fortunately, Mastic allows us to preserve the most important
 functionality of NEL while minimizing privacy loss.

 Mastic can be applied to a simplified version of NEL where each
 client reports a tuple (dom, err) consisting of a domain name dom
 (e.g., "example.com") and a value err that represents an error (e.g.,
 "dns.unreachable") or an indication that no error occurred (e.g.,
 "ok"). Notably, this can be easily extended in Mastic to represent
 more elaborate metrics. e.g., where each weight includes the time it
 took each browser to report the error (and the aggregate is the
 average error reporting time), user agent (browser type and version),
 etc. However, our main goal is to understand 1) the distribution of
 errors and 2) which domains are impacted.

 We expect there to be a large number of distinct domain names
 (millions in the case of content delivery networks) and only a small
 number of error variants (the NEL spec [W3C23] defines 30 variants).
 The following Mastic parameters are suitable for this application.

 Each input would encode the domain dom encoded with a number of bits
 sufficient to uniquely represent most of the domains; and each weight
 would represent the error variant dom. To compute the distribution
 of errors, we would encode each error variant as a distinct bucket of
 a histogram so that [1, 0, 0, ...] represents "ok", [0, 1, 0, ...]
 represents "dns.unreachable", and so on. (See ection 6 of [W3C23].),
 This is similar to Prio3Histogram (Section 7 of [VDAF].)

1.1.2. Attribute-Based Browser Telemetry

 Web browsers collect telemetry generated by users as they navigate
 the web to gain insights into trends that guide product decisions.
 In many cases, Prio3 (Section 7 of [VDAF]) can be used to privately
 aggregate this telemetry. However, this comes at the cost of
 flexibility.

 For example, Prio3 can be used to collect page load metrics from
 Browser for a list of known popular sites (e.g., "example.com"). The
 purpose of these metrics is to detect if changes to these sites cause
 regressions that might be correlated with an increased average load
 time or error rate. A subtle, but important requirement for this
 system is the ability to break down the metrics by client attributes.
 Suppose for example that we want to aggregate by 1) the software
 version, and 2) the information about the client’s location.

Davis, et al. Expires 5 September 2024 [Page 6]

Internet-Draft Mastic March 2024

 Mastic provides a simple solution to this problem. For the sake of
 presentation, we consider a simplified use case (the same approach
 can be applied to any aggregation task for which Prio3 (Section 7 of
 [VDAF]) is suitable). Each client reports a tuple (ver, loc, site,
 time) where: ver is a string representing the client’s software
 version (e.g., "Browser/122.0"); loc is a string encoding its country
 code (e.g., "GR", "US", "IN", etc.); site is one of a fixed set of
 sites (e.g., "example.com", "example.org", etc.); and time is the
 load time of the site in seconds. The version and location are
 included in the Mastic input; the site and load time are encoded by
 the corresponding weight. Notably, this is just one example of what
 Mastic can do; the same idea can be applied to other types of
 metrics.

 Compared to the private NEL application in Section 1.1.1, the number
 of possible inputs here is relatively small: there are less than 200
 country codes and a handful of browser versions in wide use at any
 given time. This means the aggregators can enumerate a set of inputs
 of interest and evaluate them immediately. Consider the following
 parameters for Mastic, in its attribute-based metrics mode of
 operation Section 5.2:

 * Attributes: Two-letter country codes can easily be encoded in 2
 bytes. Likewise, the number of distinct browser versions is
 easily less than 216, so 2 bytes are sufficient. Therefore, each
 attribute can be encoded with just 32 bits.

 * Values: Similar to private NEL, each weight is a 0-vector except
 for a single 1 representing a bucket in a histogram. We represent
 (site, time) as a histogram bucket as follows. First, we quantize
 time (in seconds) into one of four buckets: [0, 0.1), [0.1, 1),
 [1, 5), and [5, inf). Let 0 < t <= 4 denote the time bucket for
 time. Next, suppose we wish to track metrics for 25 sites. Let 0
 < s <= 25 denote the index of site in this list. Then the index
 of 1 is simply t * s.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Davis, et al. Expires 5 September 2024 [Page 7]

Internet-Draft Mastic March 2024

 This document uses the following terms as defined in [VDAF]:
 "Aggregator", "Client", "Collector", "aggregate result", "aggregate
 share", "aggregation parameter", "batch", "input share",
 "measurement", "order", "output share", "prep message", "prep share",
 and "report".

 In Mastic, a Client’s VDAF measurement comprises two components,
 which we denote alpha and beta. The function that each component
 serves depends on the use case: for weighted (Section 5.1) and plain
 (Section 5.3) heavy-hitters, we shall refer to alpha as the "payload"
 and beta as the payload’s "weight"; for attribute-based-metrics
 (Section 5.2), we shall refer to alpha as the "attribute" and to beta
 as the "payload". When doing so is unambiguous, we may also refer to
 the payload as the "measurement".

 The DPF tree always has as a root the "empty string", which in turn
 has strings "0" and "1" as the left and right children, respectively.

3. Preliminaries

 Mastic makes use of three primitives described in the base VDAF
 specification [VDAF]: finite fields, eXtendable Output Functions
 (XOFs), and Fully Linear Proofs (FLPs). It also makes use of a
 fourth primitive, which extends the security properties of
 Incremental Distributed Point Functions (IDPFs), also described in
 the base specification. All four primitives are described below.

3.1. Finite fields

 An implementation of the Field interface in Section 6.1 of [VDAF] is
 required. This object implements arithmetic in a prime field with a
 modulus suitable for use with the Number Theoretic Transform (called
 "FFT-friendly" in [VDAF]).

3.2. XOF

 An implementation of the Xof interface in Section 6.2 of [VDAF] is
 required. This object implements an XOF that takes a short seed and
 some auxiliary data as input and outputs a string of any length
 required for the application.

Davis, et al. Expires 5 September 2024 [Page 8]

Internet-Draft Mastic March 2024

3.3. FLP

 An implementation of the Flp interface in Section 7.1 of [VDAF] is
 required. This object implements a zero-knowledge proof system used
 to verify that the measurement conforms to the data type required by
 the application: for weighted heavy hitters (Section 5.1), FLPs are
 used to check the weight; in attribute-based-metrics (Section 5.2),
 they are used to check the measurement itself.

 The Client generates a proof and sends secret shares of this proof to
 each Aggregator. Verification is split into two phases. In the
 first phase, each Aggregator "queries" its share of the value and
 proof to obtain its "verifier share". In the second phase, the
 Aggregators sum up the verifier shares and use the sum to decide if
 the input is valid.

3.4. Ordering function order

 The function order(list[Vidpf.Field]) -> Integer defines a total
 ordering of sums of weights. For plain heavy hitters, order is the
 identity function.

3.5. Verifiable IDPF (VIDPF)

 Function secret sharing [GI14] allows secret sharing of the output of
 a function f() into additive shares, where each function share is
 represented by a separate key. These keys enable the Aggregators to
 efficiently generate an additive share of the functions output f(x)
 for a given input x. Distributed Point Functions (DPF) are a
 particular case of function secret sharing where f() is a "point
 function" for which f(x) = beta if x equals alpha and 0 otherwise for
 some alpha, beta. The computation is distributed in such a way that
 no one party knows either the point or what it evaluates to.

 An IDPF (Section 8.1 of [VDAF]) generalizes DPF by secret-sharing an
 "incremental point function", i.e., the "point" in DPF is now a path
 on a full binary tree from the root to one of the leaves. Here we
 take alpha to be a bit string of fixed length, and we have that f(x)
 = beta if x is a prefix of alpha and 0 otherwise.

 An IDPF has two main operations. The first is the key-generation
 algorithm, which is run by the Client. It takes as input alpha and
 beta and returns two values: a list of "key shares", one for each
 Aggregator; and the "public share", to be distributed to both
 Aggregators. The second is the key-evaluation algorithm, run by each
 Aggregator. It takes as input a candidate prefix string x, the
 public share, and the Aggregator’s key share and returns the
 Aggregator’s share of f(x).

Davis, et al. Expires 5 September 2024 [Page 9]

Internet-Draft Mastic March 2024

 Shares of the IDPF outputs can be aggregated together across multiple
 reports. This is used in Poplar1 (Section 8 of [VDAF]) to solve the
 private prefix histogram problem. IDPFs are private in the sense
 that each Aggregator learns nothing about the underlying inputs
 beyond the value of this sum. However, IDPFs on their own do not
 provide robustness. For example, it is possible for a malicious
 Client to fool the Aggregators into accepting malformed counter
 (i.e., a value other than 0 or 1). It is also possible for a Client
 to "vote twice" by constructing key shares for which f(x) = f(x’) =
 beta, where x and x’ are distinct, equal-length candidate prefixes.

 To mitigate these issues, IDPF must be composed with some interactive
 mechanism for ensuring the IDPF outputs are well-formed. Mastic uses
 the VIDPF of [MST24] for this purpose, which endows IDPF with the
 following properties:

 1. One-hot Verifiability: There is at most one prefix of each length
 whose value under f is non-zero. In particular, the output
 shares at each level are additive shares of a one-hot vector.

 2. Path Verifiability: The One-hot Verifiability property alone is
 not sufficient to guarantee that the keys are well-formed. The
 Aggregators still need to verify that: a) the non-zero output
 values are across a single path in the tree, and b) the value of
 the root node is consistently propagated down the VIDPF tree.
 For example, if the root value is beta, then there is only a
 single path from root to the leaves with non-zero values, and all
 such values equal beta.

 Below we describe the syntax of VIDPF; in Section 7 we specify the
 concrete construction of [MST24].

 A concrete Vidpf defines the types and constants enumerated in
 Table 1. In addition, it implements the following methods:

 * Vidpf.gen(alpha: Unsigned, beta: list[Vidpf.Field], binder: bytes,
 rand: bytes) -> tuple[PublicShare, list[bytes]] is the randomized
 key generation algorithm. (rand denotes the random bytes consumed
 by the algorithm.) Its inputs are the VIDPF index alpha (defined
 the same way as "IDPF index" in Section 8 of [VDAF]), the output
 value beta, and a binder string. The value of alpha MUST be in
 range [0, 2^Vidpf.BITS); and len(rand) MUST be Vidpf.RAND_SIZE.
 The outputs are the public share and the list of key shares, one
 for each Aggregator. The length of each key share MUST be
 Vidpf.KEY_SIZE.

Davis, et al. Expires 5 September 2024 [Page 10]

Internet-Draft Mastic March 2024

 * Vidpf.eval(agg_id: Unsigned, public_share: Vidpf.PublicShare,
 key_share: bytes, level: Unsigned, prefixes: tuple[Unsigned, ...],
 binder: bytes) -> tuple[list[Vidpf.Field], bytes] is the
 deterministic key evaluation algorithm. It takes as input the
 Aggregator ID (which MUST be in range [0, Vidpf.SHARES), the
 public share, the Aggregator’s key share, the VIDPF level (defined
 the same way as "IDPF level" in Section 8 of [VDAF]), the list of
 prefixes to evaluate, and a binder string. Its outputs are the
 VIDPF output share and the VIDPF proof.

 The verifiability properties are guaranteed as long as each
 Aggregator computes the same VIDPF proof. Note that One-hot
 Verifiability and Path Verifiability are not sufficient to ensure
 robustness of Mastic; we will also need to ensure that the beta
 chosen by the Client is "in range". We will rely on FLPs
 (Section 3.3) for this purpose. ([MST24] describe a simple range(2)
 check, but we would like more sophisticated range checks for Mastic.)

 Note that Vidpf is less general than Idpf as defined Section 8 of
 [VDAF] in that beta value is the same for each level of the tree.
 This constraint is necessary for Path Verifiability.

 +=============+===+
 | Parameter | Description |
 +=============+===+
 | SHARES | Number of VIDPF keys output by |
 | | VIDPF-key generator |
 +-------------+---+
 | BITS | Length in bits of each input |
 | | string |
 +-------------+---+
 | VALUE_LEN | Number of field elements of each |
 | | output value |
 +-------------+---+
RAND_SIZE	Size of the random string consumed
	by the VIDPF-key generator. Equal
	to twice the XOF’s seed size.
+-------------+---+	
KEY_SIZE	Size in bytes of each VIDPF key
+-------------+---+	
Field	Implementation of Field
	(Section 3.1) used for each value
+-------------+---+	
PublicShare	Type of the VIDPF public share
 +-------------+---+

 Table 1: Constants and types defined by a concrete VIDPF.

Davis, et al. Expires 5 September 2024 [Page 11]

Internet-Draft Mastic March 2024

4. Definition of Mastic

 NOTE We are pretty confident about the overall structure of the
 VDAF, but there are some details to work out and security analysis
 to do. In the meantime, check out the current reference
 implementation at https://github.com/jimouris/draft-mouris-cfrg-
 mastic/tree/main/poc.

 This section describes Mastic, a VDAF suitable for a plethora of
 aggregation functions including sum, mean, histograms, heavy hitters,
 weighted heavy-hitters (see Section 5.1), attribute-based metrics
 (see Section 5.2), linear regression and more. Mastic allows
 computing functions _à la_ Prio3 VDAF Section 7 of [VDAF].

 The core component of Mastic is a VIDPF as defined in Section 3.5.
 VIDPFs inherently have the "one-hot verifiability" property, meaning
 that in each level of the tree there exists at most one non-zero
 value. To guarantee that the Client’s input is well-formed, Mastic
 first verifies that the Client measurement is valid at the root level
 using an FLP, and then, it ensures that this valid measurement is
 propagated correctly down the tree using the one-hot verifiability
 and the path verifiability properties. Note that Mastic allows the
 measurement to be of any type that can be verified by an arithmetic
 circuit, not just a counter. For instance, the measurement can be a
 tuple of values, a string, a secret number within a public range,
 etc.

 As described in Section 2, each Client input consists of two
 components, which we denote alpha and beta. At a high level, the
 Client generates VIDPF keys that encodes alpha and beta and an FLP
 for the validity of beta. Then the Client sends one VIDPF key to
 each Aggregator and also publishes the VIDPF public share. FLPs for
 certain validity functions, including most range proofs, rely on the
 establishment of shared random coins (joint randomness) between the
 Client and all Aggregators. When it is necessary for the Client to
 generate joint randomness, it includes generator seeds in its shares
 for each Aggregator, and the Aggregators confirm that they have
 derived the same joint randomness during the FLP verification
 process.

 The Aggregators agree on an initial set of level-bit strings, where
 level < BITS. We refer to these strings as "candidate prefixes".
 They evaluate their VIDPF key shares at each prefix in this set, to
 obtain an additive share of the VIDPF output.

 Mastic uses a combination of techniques to certify the validity of
 this output.

Davis, et al. Expires 5 September 2024 [Page 12]

Internet-Draft Mastic March 2024

 1. First, the Aggregators exchange VIDPF proofs. If they are equal,
 then this implies One-hot Verifiability and Path Verifiability as
 described in Section 3.5. One-hotness ensures that the VIDPF
 output contains beta at most once (and every other output is 0).
 Path Verifiability implies that, if the previous level contained
 a non-zero value, then it is the same value as the current level.

 2. Second, the Aggregators interactively verify the FLP
 (Section 3.3) to assert that beta is valid. We instantiate the
 FLP with FlpGeneric from Section 7.3 of [VDAF], which defines
 validity via an arithmetic circuit (Section 7.3.2 of [VDAF])
 evaluated over (shares of) beta: if the output of the circuit is
 0, then the value is said to be "valid"; otherwise it is
 "invalid".

 If none of the candidate prefixes are a prefix of alpha, then the
 VIDPF output shares will not contain any shares of beta.
 Moreover, VIDPF as specified in Section 7 does not as specified
 permit evaluation at the root of the VIDPF tree. Instead, each
 Aggregator computes a share of beta by evaluating the VIDPF tree
 at prefixes 0 and 1 and level == 0 and adding them up. One-hot
 Verifiability and Path Verifiability imply that the sum is equal
 to the Aggregator’s share of beta.

 CP: An alternative way to spell this is to say that VIDPF
 evaluation outputs a share of beta, which is what our current
 API does in the reference code.

 The aggregate result is obtained by summing up the encoded
 measurement shares for each prefix and computing some function of the
 sum. The aggregation parameter contains the level and the set of
 candidate prefixes.

 The Aggregators send their aggregate shares to the Collector, who
 unshards them to recover the results for each candidate prefix.

4.1. Sharding

 NOTE to be specified in full detail.

4.2. Preparation

 NOTE to be specified in full detail.

4.3. Validity of Aggregation Parameters

 NOTE to be specified in full detail.

Davis, et al. Expires 5 September 2024 [Page 13]

Internet-Draft Mastic March 2024

4.4. Aggregation

 NOTE to be specified in full detail.

4.5. Unsharding

 NOTE to be specified in full detail.

5. Modes of Operation for Mastic

5.1. Weighted Heavy-Hitters

 See Section 1.1.1 for a motivating application and
 example_weighted_heavy_hitters_mode() in the reference
 implementation for an end-to-end example.

 The primary use case for Mastic is a variant of the heavy-hitters
 problem, in which the prefix counts are replaced with a notion of
 weight that is specific to some application. For example, when
 measuring the performance of an ad campaign, it is useful to learn
 not only which ads led to purchases, but how much money was spent.

 To support this use case, we view the Client’s alpha value as its
 measurement and the beta value as the measurement’s "weight". The
 range of valid values for beta are therefore determined by the FLP
 with which Mastic is instantiated. Concretely, validity of beta is
 expressed by a validity circuit (Section 7.3.2 of [VDAF]).

 To compute the weighted heavy-hitters, the Collector and Aggregators
 proceed as described in Section 8 of [VDAF], except that the
 threshold represents a minimum weight rather than a minimum count.
 In addition:

 1. The Aggregators MUST perform the range check (i.e., verify the
 FLP) at the first round of aggregation and remove any invalid
 reports before proceeding.

 2. The level at which the reports are Aggregated MUST be strictly
 increasing.

5.1.1. Different Thresholds

 For an end-to-end example, see
 example_weighted_heavy_hitters_mode_with_different_thresholds() in
 the reference implementation.

Davis, et al. Expires 5 September 2024 [Page 14]

Internet-Draft Mastic March 2024

 So far, we have assumed that there is a single threshold for
 determining which prefixes are "heavy". However, we can easily
 extend this to have different thresholds for different prefixes.
 There exist use-cases where prefixes starting with "000" may be
 significantly more popular than prefixes starting with "111".
 Setting a low threshold may result in an overwhelmingly big set of
 heavy hitters starting with "000", while setting a high threshold
 might prune anything starting with "111". Consider the following
 examples:

 1. Popular URLs: a.example.com receives a massive amount of traffic
 whereas b.example.com may have lower traffic. To identify heavy-
 hitting search queries on a.example.com, the Aggregators should
 set a high threshold, while queries with different domain
 prefixes may require lower thresholds to be considered popular.

 2. E-commerce: Grocery items are essential and have a high volume of
 sales. In contrast, electronics, though popular, usually come
 with a higher price compared to groceries. Meanwhile, luxury
 items command significantly higher prices but generally
 experience lower sales volumes. To identify heavy-hitting
 grocery items on an e-commerce website, Aggregators could use
 different threshold for each of these categories. These
 thresholds are set to ensure that only the top-selling grocery
 items qualify as heavy hitters while electronics and luxury items
 are also considered heavy hitters on their own categories.

 To tackle this, Mastic can allow different prefixes having different
 thresholds. When a specific prefix does not have an associated
 threshold, we first search if any of its prefixes has a specified
 threshold, otherwise we use a default threshold. For example, if the
 Aggregators have set the thresholds to be {"000": 10, "111": 2,
 "default": 5} and the search for prefix "01", then threshold 5 should
 be used. However, if the Aggregators search for prefix "11101", then
 threshold 2 should be used.

5.2. Attribute-based Metrics

 See Section 1.1.2 for a motivating application and
 example_attribute_based_metrics_mode() in the reference
 implementation for an end-to-end example.

Davis, et al. Expires 5 September 2024 [Page 15]

Internet-Draft Mastic March 2024

 In this mode of operation, we take the beta value to be the Client’s
 measurement and alpha to be an arbitrary "attribute". For a given
 sequence of attributes, the goal of the Collector is to aggregate the
 measurements that share the same attribute. This provides
 functionality similar to Prio3 [VDAF], except that the aggregate is
 partitioned by Clients who share some property. For example, the
 attribute might encode the Client’s user agent [RFC9110].

 Mastic requires each alpha to have the same length (Vidpf.BITS).
 Thus, it is necessary for each application to choose a scheme for
 encoding attributes as fixed-length strings. The following scheme is
 RECOMMENDED. Choose a cryptographically secure hash function, such
 as SHA256 [SHS], compute the hash of the Client’s input string, and
 interpret each bit of the hash as a bit of the VIDPF index. [CP: Are
 we comfortable recommending truncating the hash? Collisions aren’t
 so bad since the Client can just lie about alpha anyway. The main
 thing is to pick a value for BITS that is large enough to avoid
 accidental collisions.]

 The Aggregators MAY aggregate a report any number times, but:

 1. They MUST perform the range check (i.e., verify the FLP) the
 first time the reports are aggregated and remove any invalid
 reports before aggregating again.

 2. The aggregation parameter MUST specify the last level of the
 VIDPF tree (i.e., level MUST be Vidpf.BITS-1).

 OPEN ISSUE Figure out if these requirements are strict enough. We
 may need to tighten aggregation parameter validity if we find out
 that aggregating at the same level more than once is not safe.

5.3. Plain Heavy-Hitters with VIDPF-Proof Aggregation

 NOTE to be specified in full detail. Proof aggregation is not yet
 implemented by the reference code.

 The total communication cost of using Mastic (or Poplar1 [VDAF]) for
 heavy hitters is O(num_measurements * Vidpf.BITS) bits exchanged
 between the Aggregators, where num_measurements is the number of
 reports being aggregated. For plain heavy-hitters, this can be
 reduced to O(Vidpf.BITS) in the best case.

Davis, et al. Expires 5 September 2024 [Page 16]

Internet-Draft Mastic March 2024

 The idea is to take advantage of the feature of VIDPF evaluation
 whereby the Aggregators compute identical VIDPF proofs if and only if
 the report is valid. This allows the proofs themselves to be
 aggregated: if each report in a batch of reports is valid, then the
 hash of their proofs will be equal as well; on the other hand, if one
 report is invalid, then the hash of the proofs will not be equal.

 To facilitate isolation of the invalid report(s), the proof strings
 are arranged into a Merkle tree. During aggregation, the Aggregators
 interactively traverse the tree to detect the subtree(s) containing
 invalid reports and remove them from the batch.

 OPEN ISSUE Decide if we should spell this out in greater detail.
 This feature is not compatible with [DAP]; if we wanted to extend
 DAP to support this, then we’d need to specify the wire format of
 the messages exchanged between the Aggregators.

 In the worst case, isolating invalid reports requires
 O(num_measurements * Vidpf.BITS) bits of communication and many
 Vidpf.BITS rounds of communication between the Aggregators. However,
 this behavior would only be observed under attack conditions in which
 the vast majority of Clients are malicious.

 In the simple case where the beta value is a constant (e.g., 1) we
 can replace the FLP check with a simpler check. FLPs are not
 compatible with proof aggregation the way VIDPFs are. In order to
 perform the range check without FLPs, we use an extension of VIDPF
 described by [MST24]. The high-level idea here is that the
 Aggregators can evaluate the empty string and verify that they have
 shares of the constant beta. Next, as described in Section 4, we use
 the "one-hot verifiability" and "path verifiability" checks to verify
 that each level is non-zero at only a single point and that the same
 constant beta is propagated down the tree correctly. Note that this
 trick is not suitable for weighted heavy-hitters, since it expects
 that each beta value is constant (e.g., 1).

 OPEN ISSUE Proof aggregation could work with plain Mastic, but we
 would need to check the FLPs at the first round of aggregation,
 leading to best-case communication cost would be
 O(num_measurements + Vidpf.BITS). This would be OK, but we would
 still want to support a mode for plain heavy-hitters that is as
 good as we can get.

 One idea is to always do the PLASMA 0/1 check alongside the FLP.
 This would be useful for another reason: Usually FLP decoding
 requires num_measurements as a parameter. We currently don’t
 support this because we currently don’t have a pure counter as
 part of the VIDPF output.

Davis, et al. Expires 5 September 2024 [Page 17]

Internet-Draft Mastic March 2024

6. Robustness Against a Malicious Aggregator

 Next, we describe an enhancement that allows Mastic to achieve
 robustness in the presence of a malicious Aggregator. The two-party
 Mastic (as well as Poplar1) is susceptible to additive attacks by a
 malicious Aggregator. In more detail, if one of the Aggregators
 starts acting maliciously, they can arbitrarily add to the
 aggregation result (simply by adding to their own aggregation shares)
 without the honest Aggregator noticing.

 We can solve this problem in Mastic by using a technique from [MST24]
 that lifts the two-party semi-honest secure PLASMA to the three-party
 maliciously secure setting. Rather than having two Aggregators as in
 the previous setting, this flavor involves three Aggregators, where
 every pair of Aggregators communicate over a different channel. In
 essence, each pair of Aggregators will run one session of the VDAF
 with unique randomness but on the same Client measurement. The
 following changes are necessary:

 1. The Client needs to generate three pairs of VIDPF keys all
 corresponding to the same alpha and beta values. We represent
 the keys based on the session as follows:

 1. Session 0 (between Aggregators 0 and 1): key_01, key_10

 2. Session 1 (between Aggregators 1 and 2): key_12, key_21

 3. Session 2 (between Aggregators 2 and 0): key_20, key_02

 Each pair of Aggregators cannot check that the Client input is
 consistent across two sessions without the involvement of the
 third Aggregator. To address this, we let two Aggregators (i.e.,
 Aggregators 0 and 1) to run all three sessions so that they can
 check that the Client input is consistent across three sessions.
 The third Aggregator (i.e., Aggregator 2) is involved as an
 attestator in two of the sessions. The check involves field
 addition and subtraction and then hash comparisons.

 2. The Client sends the following keys to the Aggregators:

 1. Aggregator 0 receives: key_01, key_02, and key_21

 2. Aggregator 1 receives: key_10, key_12, and key_20

 3. Aggregator 2 receives: key_21 and key_20

Davis, et al. Expires 5 September 2024 [Page 18]

Internet-Draft Mastic March 2024

 3. The Aggregators need to verify that the Client’s input is
 consistent across the different sessions (i.e., that all the keys
 correspond to the same alpha and beta values). Aggregators 0 and
 1 check that:

 1. Their output shares of Session 0 minus their output shares of
 Session 1 are shares of zero

 2. Their output shares of Session 1 minus their output shares of
 Session 2 are shares of zero.

 The subtraction is a local operation and verifying that two
 Aggregators possess a sharing of zero requires exchanging one
 hash.

 Using a third Aggregator, we can lift the security of Mastic from the
 semi-honest setting to malicious security. While more complex to
 implement than 2-party Mastic, this mode allows achieves both privacy
 and robustness against a malicious Aggregator.

 NOTE to be specified in full detail.

7. Definition of Vidpf

 The construction of [MST24] builds on techniques from [CP22] to lift
 an IDPF to a VIDPF with the properties described in Section 3.5.
 Instead of a 2-round "secure sketch" MPC like that of Poplar1, the
 scheme relies on hashing.

 TODO(jimouris) Add an overview.

 NOTE To be specified. The design is based on VIDPF from [MST24].
 https://github.com/jimouris/draft-mouris-cfrg-mastic/tree/main/poc
 for the reference implementation.

8. Security Considerations

 A security analysis of Mastic is provided in [MPDST24].

9. IANA Considerations

 NOTE to be specified.

10. References

10.1. Normative References

Davis, et al. Expires 5 September 2024 [Page 19]

Internet-Draft Mastic March 2024

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [VDAF] Barnes, R., Cook, D., Patton, C., and P. Schoppmann,
 "Verifiable Distributed Aggregation Functions", Work in
 Progress, Internet-Draft, draft-irtf-cfrg-vdaf-08, 20
 November 2023, <https://datatracker.ietf.org/doc/html/
 draft-irtf-cfrg-vdaf-08>.

10.2. Informative References

 [BBCGGI21] Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., and
 Y. Ishai, "Lightweight Techniques for Private Heavy
 Hitters", IEEE S&P 2021 , 2021, <https://ia.cr/2021/017>.

 [CP22] Leo de Castro and Antigoni Polychroniadou, "Lightweight,
 Maliciously Secure Verifiable Function Secret Sharing",
 EUROCRYPT 2022 , 2022,
 <https://iacr.org/cryptodb/data/paper.php?pubkey=31935>.

 [DAP] Geoghegan, T., Patton, C., Rescorla, E., and C. A. Wood,
 "Distributed Aggregation Protocol for Privacy Preserving
 Measurement", Work in Progress, Internet-Draft, draft-
 ietf-ppm-dap-07, 14 September 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-ppm-dap-
 07>.

 [GI14] Gilboa, N. and Y. Ishai, "Distributed Point Functions and
 Their Applications", EUROCRYPT 2014 , 2014,
 <https://link.springer.com/
 chapter/10.1007/978-3-642-55220-5_35>.

 [MPDST24] Dimitris Mouris, Christopher Patton, Hannah Davis, Pratik
 Sarkar, and Nektarios Georgios Tsoutsos, "Mastic: Private
 Weighted Heavy-Hitters and Attribute-Based Metrics", 2024,
 <https://ia.cr/2024/221>.

 [MST24] Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios
 Tsoutsos, "PLASMA: Private, Lightweight Aggregated
 Statistics against Malicious Adversaries", PETS 2024 ,
 2024, <https://ia.cr/2023/080>.

Davis, et al. Expires 5 September 2024 [Page 20]

Internet-Draft Mastic March 2024

 [RFC9110] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9110>.

 [SHS] Dang, Q., "Secure Hash Standard", National Institute of
 Standards and Technology, DOI 10.6028/nist.fips.180-4,
 July 2015, <https://doi.org/10.6028/nist.fips.180-4>.

 [W3C23] W3C Working Group, "Network Error Logging", 2023,
 <https://www.w3.org/TR/network-error-logging>.

Acknowledgments

 NOTE to be specified.

Authors’ Addresses

 Hannah Davis
 Seagate
 Email: hannah.e.davis@seagate.com

 Dimitris Mouris
 Nillion
 Email: dimitris@nillion.com

 Christopher Patton
 Cloudflare
 Email: chrispatton+ietf@gmail.com

 Pratik Sarkar
 Supra Research
 Email: pratik93@bu.edu

 Nektarios G. Tsoutsos
 University of Delaware
 Email: tsoutsos@udel.edu

Davis, et al. Expires 5 September 2024 [Page 21]

	draft-mouris-cfrg-mastic-02

