
Internet Engineering Task Force T. Hardjono
Internet-Draft MIT
Intended status: Informational M. Hargreaves
Expires: 8 July 2024 Quant Network
 N. Smith
 Intel
 V. Ramakrishna
 IBM
 5 January 2024

 Secure Asset Transfer (SAT) Interoperability Architecture
 draft-ietf-satp-architecture-02

Abstract

 This document proposes an interoperability architecture for the
 secure transfer of assets between two networks or systems based on
 the gateway model.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 8 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Hardjono, et al. Expires 8 July 2024 [Page 1]

Internet-Draft SAT Architecture January 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Assumptions and Principles 4
 3.1. Design Principles . 4
 3.2. Operational Assumptions 5
 3.3. Assumptions Regarding Gateway Operators 5
 4. Gateway Interoperability Modes 6
 5. Architecture . 7
 5.1. Goal of Architecture 7
 5.2. Overview of Asset Transfer 8
 5.3. Desirable Properties of Asset Transfer 8
 5.4. Event log-data, crash recovery and backup gateways . . . 10
 5.5. Overview of the Stages in Asset Transfer 10
 6. Transfer Initiation Claims negotiations (Stage-1) 12
 7. Asset Lock Assertion and Receipt (Stage 2) 15
 8. Commitment Preparation and Finalization (Stage 3) 16
 9. The Commitment sub-protocol 18
 10. Security Considerations 19
 11. Policy Considerations . 19
 12. Threat Model Considerations 20
 13. Compatibility Considerations 20
 14. References . 20
 14.1. Normative References 20
 14.2. Informative References 21
 Authors’ Addresses . 23

1. Introduction

 This document proposes an interoperability architecture based on
 gateways, which are points of interconnection between networks or
 systems.

 There are several services that may be offered by a gateway, one of
 which being the direct transfer of a digital asset from one network
 to another via pairs of gateways without a mediating third party.

Hardjono, et al. Expires 8 July 2024 [Page 2]

Internet-Draft SAT Architecture January 2024

 A given network or system may have one or more gateways to perform a
 unidirectional direct transfer of digital assets to another network
 possessing one or more compatible gateway.

 Both gateways must implement a secure asset transfer protocol that
 must satisfy certain security, privacy and atomicity requirements.

 The purpose of this architecture document is to provide technical
 framework within which to define the required properties of a gateway
 that supports the secure asset transfer protocol.

2. Terminology

 There following are some terminology used in the current document.
 We borrow terminology from NIST and ISO as much as possible,
 introducing new terms only when needed:

 * Asset network (system): The network or system where a digital
 asset is utilized.

 * Asset Transfer Protocol: The protocol used to transfer (move) a
 digital asset from one network to another using gateways.

 * Origin network: The current network where the digital asset is
 located.

 * Destination network: The network to which a digital asset is to be
 transferred.

 * Resource Domain: The collection of resources and entities
 participating within an asset network. The domain denotes a
 boundary for permissible or authorized actions on resources.

 * Interior Resources: The various interior protocols, data
 structures and cryptographic constructs that are a core part of an
 asset network or system.

 * Exterior Resources: The various protocols, data structures and
 cryptographic constructs that are outside of (external to) the
 network or system.

 * Gateway: The collection of services which connects to a minimum of
 one network or system, and which implements the secure asset
 transfer protocol.

 * Entity public-key pair: This the private-public key pairs of an
 entity, where the public-key is available and verifiable outside
 the network. Among others, it may be utilized for interactions

Hardjono, et al. Expires 8 July 2024 [Page 3]

Internet-Draft SAT Architecture January 2024

 other entities from outside the network. The term is used to
 distinguish this public-key from other key-pairs belonging to the
 same entity, but which is only available within the (private)
 network.

 * Originator: Person or organization in an origin network seeking
 the transfer of a digital asset to a beneficiary located in a
 remote network.

 * Beneficiary: Person or organization in an destination network
 seeking to receive the transfer of a digital asset to from an
 originator located in a remote network.

 * Gateway device identity: The identity of the device implementing
 the gateway functions. The term is used in the sense of IDevID
 (IEEE 802.1AR) or EK/AIK (in TPM1.2 and TPM2.0) [IDevID].

 * Gateway owner: The entity that owns and operates a gateway within
 a network.

 * Application Context-ID: The relevant identifier used by
 originator’s application and the beneficiary’s application to
 identify the context of the asset transfer at the gateway level.
 The context identifier may also be used to bind the application to
 selected gateway for the given transfer instance, identified by a
 Session-ID.

 * Gateway Session-ID: This the identifier used between the sender
 gateway and the recipient gateway to identify the specific
 transfer instance. The Session-ID must be included in all
 messages between the gateways.

3. Assumptions and Principles

 The following assumptions and principles underlie the design of the
 current gateway architecture, and correspond to the design principles
 of the Internet architecture.

3.1. Design Principles

 * Opaque network resources: The interior resources of each network
 is assumed to be opaque to (hidden from) external entities. Any
 resources to be made accessible to an external entity must be made
 explicitly accessible by a gateway with proper authorization.

 * Externalization of value: The asset transfer protocol is agnostic
 (oblivious) to the economic or monetary value (if any) of the
 digital asset being transferred.

Hardjono, et al. Expires 8 July 2024 [Page 4]

Internet-Draft SAT Architecture January 2024

 The opaque resources principle permits the architecture to be applied
 in cases where one (or both) networks are private (closed
 membership). It is the analog of the autonomous systems principle in
 IP networking [Clar88], where interior routes in local subnets are
 not visible to other external networks.

 The value-externalization principle permits an asset transfer
 protocol to be designed for efficiency, security and reliability --
 independent of the changes in the perceived economic value of the
 digital asset. It is the analog of the end-to-end principle in the
 Internet architecture [SRC84], where contextual information is placed
 at the endpoints of the transfer.

3.2. Operational Assumptions

 The following conditions are assumed to have occurred, leading to the
 invocation of the asset transfer protocol between two gateways:

 * Application level context establishment: The transfer request from
 an Originator utilizing an application (App1) in the origin
 network is assumed to have occurred, and that some context-
 identifier has subsequently been derived by the respective
 applications (App1 and App2). Furthermore, this context-
 identifier is assumed to have been delivered by the each
 application to its corresponding gateway, permiting each gateway
 to internally bind the transfer session-identifier to that
 context-identifier.

 * Identification of asset to be transferred: The applications at the
 originator and the beneficiary are assumed to have identified the
 digital asset to be transferred.

 * Identification of originator and beneficiary: The originator and
 beneficiary are assumed to have been identified and that consent
 has been obtained from both parties regarding the asset transfer.

 * Identification of origin and destination asset networks: The
 origin and destination networks is assumed to have been
 identified.

 * Selection of gateway: The two corresponding gateways at the origin
 and destination networks is assumed to have been identified and
 selected.

3.3. Assumptions Regarding Gateway Operators

 The following conditions are assumed to have occurred, leading to the
 invocation of the asset transfer protocol between two gateways:

Hardjono, et al. Expires 8 July 2024 [Page 5]

Internet-Draft SAT Architecture January 2024

 * Identification of gateway-owners: The owners of the two
 corresponding gateways are assumed to have been identified and
 their ownership status verified.

 * Gateway liabilities: Gateways and gateway-operators are assumed to
 take on legal and financial liability for their transactions, and
 gateways are assumed to operate under a well-defined legal
 framework (e.g. contractual relationship). Furthermore, the legal
 framework is assumed to be supported by compatible legislation in
 the relevant jurisdictions where the gateways are operating.

 * Gateway message signatures: All messages between gateways are
 assumed to be signed and verified (e.g. X.509).

 * Transitory ownership of asset by gateway: Assets being transferred
 via SAT will be technically be owned by gateway in transit and
 gateways are liable for them while they have ownership.

 * Network data: Gateways are assumed to have mechanisms in place to
 trust data returned from their local networks. This will depend
 on the technical architecture and capabilities of each specific
 network.

 * Gateways are trusted: The gateways are assumed to be trusted to
 carry-out all the stages of the protocol described in this
 architecture.

4. Gateway Interoperability Modes

 The current interoperability architecture based on gateways
 recognizes several types of transfer flows:

 * Asset transfer: This refers to the transfer of a digital asset
 from the origin network to a destination network, where a
 successful asset transfer causes the asset to be extinguished in
 the origin network and be created (generated) at the destination
 network.

 * Data transfer: This refers to the transfer of data only under
 authorization, in such a way that the data can be verified by a
 third party. The data transfer mode addresses the use-cases where
 the state update in one network or system depends on the existence
 of state information recorded in a different network or system.

Hardjono, et al. Expires 8 July 2024 [Page 6]

Internet-Draft SAT Architecture January 2024

 * Asset exchange (swap): This refers to the case where two users are
 present in two networks, and they perform concurrent and atomic
 swaps of two assets in the two corresponding networks, without
 transferring the assets outside the networks. The gateways aid in
 coordinating the messages pertaining to the swap.

 The remainder of this architecture document will focus on the asset
 transfer flows.

5. Architecture

5.1. Goal of Architecture

 The goal of the interoperability architecture is to permit two (2)
 gateways belonging to distinct networks to conduct a transfer of
 digital assets transfer between them, in a secure, atomic and
 verifiable manner.

 The asset as understood by the two gateways is expressed in an
 standard digital format in a way meaningful to the gateway
 syntactically and semantically.

 The architecture recognizes that there are different networks
 currently in operation and evolving, and that in many cases the
 interior technical constructs in these networks maybe incompatible
 with one another.

 The architecture therefore assumes that in addition to implementing
 the bilateral secure asset transfer protocol, a gateway has the role
 of making opaque (i.e. hiding) the constructs that are local and
 specific to its network.

 Overall this approach ensures a high degree of interoperability
 across these networks, where each network can operate as a true
 autonomous system. Additionally, this approach permits each network
 to evolve its interior technology implementations without affecting
 other (external) networks.

 The current architecture focuses on unidirectional asset transfers,
 although the building blocks in this architecture can be used to
 support protocols for bidirectional transfers.

 For simplicity the current architecture employs two (2) gateways per
 transfer as the basic building block, with one gateway in the origin
 and destination networks respectively. However, the architecture
 seeks to be extensible to address future cases involving multiple
 gateways at both sides.

Hardjono, et al. Expires 8 July 2024 [Page 7]

Internet-Draft SAT Architecture January 2024

5.2. Overview of Asset Transfer

 An asset transfer between two networks is performed using a secure
 asset transfer protocol implemented by the gateways in the respective
 networks. The two gateways implement the protocol in a direct
 interaction (unmediated).

 A successful transfer results in the asset being extinguished
 (burned) or marked on the origin network, and for the asset to be
 regenerated (minted) at the destination network.

 The secure asset transfer protocol provides a coordination between
 the two gateways through the various message flows in the protocol
 that is communicated over a secure channel.

 The protocol implements a commitment mechanism between the two
 gateways to ensure that the relevant properties atomicity,
 consistency, isolation, and durability (ACID) are achieved in the
 transfer.

 The mechanism to extinguish (burn) or regenerate (mint) an asset
 from/into a network by its gateway is dependent on the specific
 network and is outside the scope of the current architecture.

 As part of the commitment mechanism, the sender gateway in the origin
 network must deliver a signed assertion to the receiver gateway at
 the destination network which states that asset in question has been
 extinguished (burned) from the origin network.

 Similarly, the receiver gateway at the destination network must in
 return deliver a signed assertion to the sender gateway at the origin
 network which states that the asset has been regenerated (minted) in
 the destination network.

 These two tasks must be performed in a synchronized fashion between
 the two gateways, and the commitment mechanism must provide sufficent
 evidence of the asset transfer that is verifiable by an authorized
 third party.

5.3. Desirable Properties of Asset Transfer

 The desirable features of asset transfers between two gateway
 include, but not limited, to the following:

 * Atomicity: A transfer must either commit or entirely fail (failure
 means no change to asset state).

Hardjono, et al. Expires 8 July 2024 [Page 8]

Internet-Draft SAT Architecture January 2024

 * Consistency: A transfer (commit or fail) always leaves the
 networks in a consistent state (i.e. the asset is located in one
 network only at any time).

 * Isolation: While the transfer is occurring, the asset state cannot
 be modified in the origin network.

 * Durability: Once a transfer has been committed by both gateways,
 it must remain so regardless of subsequent gateway crashes.

 * Verifiable by authorized third parties: The proof that the asset
 has been extinguished in the origin network, and the proof that
 the asset has been generated in the destination network must be
 verifiable by an authorized third party.

 An implementation of the asset transfer protocol should satisfy these
 properties, independent of whether the implementation employs
 stateful messaging or stateless messaging between the two gateways.

 Effecting an asset transfer safely and securely is not simply a
 matter of communicating desire or intent between two systems
 represented by gateways, though such communication is a necessary
 part of asset transfer. The systems, or at least their gateway
 proxies, must be interoperable in order to transfer assets among
 themselves, but such interoperability imposes strictly more demands
 on systems managing digital assets, especially systems that are built
 on distributed ledgers, than conventional communication
 interoperability does.

 Communication interoperability, which is concerned with syntax and
 semantics of information geared towards producing a common
 understanding (or knowledge reconciliation) among systems, is
 insufficient to fulfill an asset transfer that requires systems to
 carry out state updates in concert with each other. But
 communication, or messaging standards, play a necessary and
 complementary role to asset transfer protocols. An exemplar of this
 is ISO 20022, which is a comprehensive global standard for financial
 messaging that specifies message syntax for common actions occurring
 in financial business processes, including payments, credit card
 transactions, securities settlements, funds, and trade [ISO20022].
 This standard provides the tools to model business processes from
 basic logical building blocks and schemas to construct messages using
 common formats like XML, JSON, and ASN.1.

 As we will see later in this document, such messaging standards are
 useful to communicate information about the states of processes and
 digital assets across systems, to make requests, and to convey
 intent. They therefore play a necessary and complementary role in

Hardjono, et al. Expires 8 July 2024 [Page 9]

Internet-Draft SAT Architecture January 2024

 asset transfer protocols. However they are by themselves
 insufficient to ensure the ACID and verifiability properties
 described earlier. Another way to think about the relationship
 between messaging standards like ISO 20022 and asset transfer
 protocols is that the former is concerned with the "what" of cross-
 system interoperability whereas the latter is concerned with the
 "how". Both kinds of protocols treat systems as black boxes, but
 asset transfer protocols must place some responsibility, and depend,
 on systems to drive a protocol instance to successful conclusion.

5.4. Event log-data, crash recovery and backup gateways

 Implementations of a gateway should maintain event logs and
 checkpoints for the purpose of gateway crash recovery. The log-data
 generated by a gateway should be considered as an interior resource
 accessible to other authorized gateways within the same network.

 The mechanism used to provide gateway crash-recovery is dependent on
 the specific network. For interoperability purposes the information
 contained in the log and the format of the log-data should be
 standardized.

 The resumption of an interrupted transfer session (e.g. due to
 gateway crash, network failure, etc.) should take into consideration
 the aspects of secure channel establishment and the aspects of the
 transfer protocol resumption. In some cases, a new secure channel
 (e.g. TLS session) may need to be established between the two
 gateways, before a resumption of the transfer can begin.

 The log-data collected by a gateway acts also as a checkpoint
 mechanism to assist the recovered (or backup) gateway in continuing
 the transfer. The point at which to re-start the transfer protocol
 flow is dependent on the implementation of the gateway recovery
 strategy.

5.5. Overview of the Stages in Asset Transfer

 The interaction between two gateways in the secure asset transfer
 protocol is summarized in Figure 1, where the origin network is NW1
 and the destination network is NW2. T he gateways are denoted as G1
 and G2 respectively.

Hardjono, et al. Expires 8 July 2024 [Page 10]

Internet-Draft SAT Architecture January 2024

 Originator Beneficiary
 | |
 +-------------+ +-------------+
 | Client | | Client |
 | Application | | Application |
 | (App1) | | (App2) |
 +-------------+ +-------------+
 | |
 | (Stages) |
 V V
 +-------------+ |<-----(1)----->| +-------------+
 | Network | +----+ +----+ | Network | | | | |
 | NW1 | |Gate| |Gate| | NW2 |
 | |--|way |<-----(2)----->|way |--| |
 | +---------+ | | G1 | | G2 | | +---------+ |
 | | State | | +----+ +----+ | | State | |
 | | Data DB1| | +----+ +----+ | | Data DB2| |
 | +---------+ | |<-----(3)----->| | +---------+ |
 +-------------+ +-------------+

 Figure 1

 The stages are summarized as follows.

 * Stage 0: Pre-transfer Verification and Context Establishment. The
 two applications utilized by the originator and beneficiary is
 assumed to interact as part of the asset transfer. In this stage,
 the applications App1 and App2 may establish some shared transfer
 context information (e.g. Context-ID) at the application level
 that will be made available to their respective gateways G1 and
 G2. The legal verification of the identities of the Originator
 and Beneficiary may occur in this stages [FATF]. This stage is
 outside the scope of the current architecture.

 * Stage 1: Transfer Initiation Claims negotiations. In this stage
 gateways G1 and G2 must exchange information (claims) regarding
 the asset to be transferred, the identity information of the
 Originator and Beneficiary and other information regarding
 relevant actors (e.g. gateway owner/operator).

 * Additionally, the gateways must exchange information regarding the
 gateway and network characteristics that are unique to G1, G2, NW1
 and NW2 for this particular transfer instance.

Hardjono, et al. Expires 8 July 2024 [Page 11]

Internet-Draft SAT Architecture January 2024

 * Stage 2: Lock Assertion and Receipt. In this stage, gateway G1
 must provide gateway G2 with a signed assertion that the asset in
 NW1 has been immobilized and under the control on G1. A signed
 assertion is needed because NW1 may be a private or closed
 network, and therefore the state-database (ledger) in NW1 is no
 readable by external entities including by G2. Gateway G1 must
 therefore make this signed assertion explicitly. Note that the
 owner/operator of G1 takes on liability in signing this assertion.

 * Stage 3: Commitment Preparation and Finalization. In this stage
 gateways G1 and G2 commit to the unidirectional asset transfer
 using a 3PC (3-phase commit) subprotocol.

 These transfer stages will be further discussed below.

6. Transfer Initiation Claims negotiations (Stage-1)

 The purpose of this stage is for the sender gateway (G1) and the
 receiver gateway (G2) to agree on the asset instance to be
 transferred from the origin network NW1 to the destination network
 NW2. In addition, the gateways must exchange validated information
 or artifacts regarding the originator and beneficiary of the asset
 transfer, and exchange gateway-specific and network-specific
 parameters.

 These artifacts are contained in the Transfer Initiation Claims set
 that is sent from gateway G1 to G2. The set of claims may be
 negotiated between GH1 and G2 in multi-round set of messages.

Hardjono, et al. Expires 8 July 2024 [Page 12]

Internet-Draft SAT Architecture January 2024

 App1 DB1 G1 G2 DB2 App2
 | | | | | |
 | | | | | |
 |<------------ (transfer context establishment) ------------>|
 | | | | | |
 |---request------->| |<------request----|
 | | | | | |
 ..|.....|............|......................|............|.....|..
 | | | Stage 1 | | |
 | | | | | |
 | | (1.1)|<---Proposal Claims-->| | |
 | | | | | |
 | | | | | |
 | | (1.2)|<--Proposal Receipt-->| | |
 | | | | | |
 | | | | | |
 | | (1.3)|<--Transf. Commence-->| | |
 | | | | | |
 | | | | | |
 | | (1.4)|<--- ACK Commence --->| | |
 | | | | | |
 ..|.....|............|......................|............|.....|..
 | | | | | |

 Figure 2

 This stage starts with the assumption that in network NW1 the gateway
 who processes the asset transfer has been selected (namely gateway
 G1). It also assumes that the destination network NW2 has been
 identified where the beneficiary is located, and that gateway G2 in
 network NW2 has been identified.

 The first message (Transfer Proposal Claims) maybe multi-round in the
 sense there is a negotiation of the claims between G1 and G2. Once
 G2 accepts the agreed claims, G2 must send a signed receipt carrying
 the hash of the claims agreed.

 There are several steps that may occur in Stage 1:

 * Secure channel establishment between G1 and G2: This includes the
 mutual verification of the gateway device identities and the
 exchange of the relevant parameters for secure channel
 establishment. In cases where device attestation [RATS] is
 required, the mutual attestation protocol must occur between G1
 and G2 prior to proceeding to the next stage.

Hardjono, et al. Expires 8 July 2024 [Page 13]

Internet-Draft SAT Architecture January 2024

 * Mutual device attestations: In cases where device attestation
 [RATS] is required, each gateway must yield attestation evidence
 to the other regarding its configuration. A gateway may take on
 the role as a attestation verifier, or it may rely on an external
 verifier to appraise the received evidence.

 * Validation of the gateway ownership: There must be a means for
 gateway G1 and G2 to verify their respective ownerships (i.e.
 entities owning G1 and G2 respectively). Examples of ownership
 verification mechanism include X.509 certificates, directories of
 gateways and owners, and others.

 * Validation of owner status: In some jurisdictions, limitations may
 be placed for regulated asset service providers to transact only
 with other similarly regulated service providers. Examples of
 mechanisms used to validate legal status of service providers
 include directories, Extended Validation (EV) X.509 certificates,
 and others.

 * Identification and validation of type/asset profile: Both gateways
 must agree on the type of asset being transferred based on the
 published profile of the asset. Gateway G1 must communicate the
 asset-profile identification to gateway G2, who in turn must
 validate both the legal status of the asset as well as the
 technical capability of its network to accept the type of asset.
 The policies governing network NW2 with regards to permissible
 incoming assets must be enforced by G2.

 * Exchange of Travel Rule information and validation: In
 jurisdictions where the Travel Rule policies regarding originator
 and beneficiary information is enforced [FATF], the owners of
 gateways G1 and G2 must comply to the Travel Rule. Mechanisms
 must be used to permit gateways G1 and G2 to make available
 originator/beneficiary information to one another in such a away
 that the Travel Rule information can be logged as part of the
 asset transfer history.

 * Negotiation of asset transfer protocol parameters: Gateway G1 and
 G2 must agree on the parameters to be employed within the asset
 transfer protocol. Examples include endpoints definitions for
 resources, type of commitment flows (e.g. 2PC or 3PC), lock-time
 durations, and others [SAT].

Hardjono, et al. Expires 8 July 2024 [Page 14]

Internet-Draft SAT Architecture January 2024

 We do not need to invent new standards for several of these steps.
 Instead, we can rely on existing messaging standards like ISO 20022
 [ISO20022] or ITIN [ITIN] for gateway ownership validation, owner
 status validation, asset profile identification, and communication of
 travel rule and transfer context information. For identification of
 digital assets maintained by distributed ledgers or blockchain
 systems, we can also rely on standards like ITIN [ITIN].

 Once gateways G1 and G2 agree on the claims related to the asset
 transfer, the two gateways can proceed by G1 sending the Transfer
 Commence message, which must be explicitly acknowledged by gateway
 G2.

7. Asset Lock Assertion and Receipt (Stage 2)

 In this stage, gateway G1 must issue a signed assertion that the
 asset in origin network NW1 has been immobilized and under the
 control of G1.

 The steps of Stage 2 are summarized in Figure 4, and broadly consists
 of the following:

 * G1 lock/escrow asset (2.1): Gateway G1 proceeds to establish a
 lock or escrow the asset belonging to the originator. This
 prevents other local transactions in NW1 from changing the state
 of the asset until such time the lock by G1 is finalized or
 released. A time-lock or escrow may also be employed.

 * Lock Assertion (2.2): Gateway G1 sends a digitally signed
 assertion regarding the locked (escrowed or immobilized) state on
 the asset in network NW1. The signature by G1 is performed using
 its entity public-key pair. This signature signifies that G1
 (i.e. its owner/operator) is legally standing behind its statement
 regarding the locked/escrowed state on the asset. The mechanism
 to lock or immobilize the asset is outside the scope of SATP.

 * G2 Logs and Broadcasts lock-assertion information (2.3): Gateway
 G2 logs a copy of the signed lock-assertion message received in
 Step 2.4 to its local state data DB2. G2 may also broadcast the
 fasts of the lock-assertion to all members of network NW2. The
 mechanism to log and to broadcast is out of scope for SATP.

Hardjono, et al. Expires 8 July 2024 [Page 15]

Internet-Draft SAT Architecture January 2024

 * Lock-Assertion Receipt (2.4): If gateway G2 accepts the signed
 assertion from G1, then G2 responds with a digitally signed
 receipt message which includes a hash of the previous lock-
 assertion message. The signature by G2 is performed using its
 entity public-key pair. Otherwise, if G2 declines accepting the
 assertion then G2 can simply ignore the transfer and let the
 session time-out (i.e. transfer attempt has failed).

 Orig DB1 G1 G2 DB2 Benef
 | | | (Stage 1) | | |
 | | | | | |
 ..|.....|............|....................|..............|.....|..
 | | | Stage 2 | | |
 | | | | | |
 | |<---Lock----|(2.1) | | |
 | | | | | |
 | | (2.2)|--Lock-Assertion--->| | |
 | | | | | |
 | | | (2.3)|--Broadcast-->| |
 | | | | | |
 | | | | | |
 | | |<-----Receipt-------|(2.4) | |
 | | | | | |
 ..|.....|............|....................|..............|.....|..
 | | | | | |

 Figure 3

 The purpose of the signed lock-assertion is for dispute resolution
 between G1 and G2 (i.e. the entities who own and operate G1 and G2
 respectively) in the case that asset state inconsistencies in NW1 and
 NW2 are discovered later.

 The gateway G2 must return a digitally signed receipt to G1 regarding
 the earlier signed lock-assertion in order to cover G1 (exculpatory
 proof) in the case of later denial by G2.

8. Commitment Preparation and Finalization (Stage 3)

 In Stage 3 the gateways G1 and G2 finalizes to the asset transfer by
 performing a commitment protocol (e.g. 2PC or 3PC) as a process (sub-
 protocol) embedded within the overall SATP asset transfer protocol.

Hardjono, et al. Expires 8 July 2024 [Page 16]

Internet-Draft SAT Architecture January 2024

 Upon receiving the signed receipt message from G2 in the previous
 stage, G1 begins the commitment (see Figure 5):

 * Commit-prepare (3.1): Gateway G1 indicates to G2 to prepare for
 the commitment of the transfer. This message must include a hash
 of the previous messages (message 2.5 and 2.6).

 * Temporary asset mint (3.2): Gateway G2 creates (mints) an
 equivalent asset in NW2 assigned to itself as the owner. This
 step can be reversed (i.e. asset destroyed) in the case of the
 failure in the commitment steps because G2 is still the owner of
 the asset in NW2.

 * Commit-ready (3.3): Gateway G2 sends a commit-ready message to G1
 indicating that it is ready to carry-out the last steps of the
 commitment subprotocol. Note that that the entire asset transfer
 session can be aborted before this step without affecting the
 asset state in the respective networks.

 * Asset burn (3.4): Gateway G1 extinguishes (burns) the asset in
 network NW1 which it has locked since Step 2.3.

 * Commit-final assertion (3.5): Gateway G1 indicates to G2 that G1
 has performed the extinguishment of the asset in NW1. This
 message must be digitally signed by G1.

 * Asset-assignment (3.6): Gateway G2 assigns the minted asset (which
 it has been self-holding since Step 3.2) to the Beneficiary.

 * ACK-final receipt (3.7): Gateway G2 sends a signed assertion that
 it has assigned the asset to the intended Beneficiary.

 * Receipt broadcast (3.8) Gateway G1 logs a copy of the signed
 receipt message to its local state data DB2. G1 may also
 broadcast the fasts of the signed receipt to all members of
 network NW1. The mechanism to log and to broadcast is out of
 scope for SATP.

 * Transfer complete (3.9): Gateway G1 must explicitly close the
 asset transfer session with gateway G2. This allows both sides to
 close down the secure channel established earlier in Stage 1.

Hardjono, et al. Expires 8 July 2024 [Page 17]

Internet-Draft SAT Architecture January 2024

 Orig DB1 G1 G2 DB2 Benef
 | | | (Stage 2) | | |
 | | | | | |
 ..|.....|.............|....................|............|.....|..
 | | | Stage 3 | | |
 | | | | | |
 | | (3.1)|--Commit Prepare--->| | |
 | | | | | |
 | | | (3.2)|----Mint--->| |
 | | | | | |
 | | |<--Commit Ready ----|(3.3) | |
 | | | | | |
 | | | | | |
 | |<---Burn-----|(3.4) | | |
 | | | | | |
 | | (3.5)|-Commit Final Asrt->| | |
 | | | | | |
 | | | | | |
 | | | (3.6)|---Assign-->| |
 | | | | | |
 | | |<-----ACK Final-----|(3.7) | |
 | | | | | |
 | | | | | |
 | |<-Broadcast--|(3.8) | | |
 | | | | | |
 | | (3.9)|-----Completed----->| | |
 | | | | | |
 ..|.....|.............|....................|............|.....|..
 | | | | | |

 Figure 4

9. The Commitment sub-protocol

 Within Stage 3, the gateways must implement one (or more)
 transactional commitment sub-protocols that permit the coordination
 between two gateways, and the final commitment of the asset transfer.

 In the case that there are multiple commitment subprotocols supported
 by the gateways, the choice of the sub-protocol (type/version) and
 the corresponding commitment evidence must be negotiated between the
 gateways during Stage 1.

 For example, in Stage 2 and Stage 3 discussed above the gateways G1
 and G2 may implement the classic 2-Phase or 3-Phase Commit (2PC or
 3PC) sub-protocol [Gray81] as a means to ensure efficient and non-
 disputable commitments to the asset transfer.

Hardjono, et al. Expires 8 July 2024 [Page 18]

Internet-Draft SAT Architecture January 2024

 Historically, transactional commitment protocols employ locking
 mechanisms to prevent update conflicts on the data item in question.
 When used within the context of digital asset transfers across
 networks, the fact that an asset has been locked in NW1 must be
 communicated via an assertion to G2 (as the 3PC participant) in an
 indisputable manner.

 Similarly, G2 must return a signed assertion to G1 that the asset has
 been regenerated (minted) in NW2.

 These signed assertions must be verifiable by an authorized third
 party, in the case that disputes occur (post event) or where legal
 audit is required on the asset transfer.

 The precise form of these assertions must be standardized (for the
 given transactional commitment protocol) to eliminate any ambiguity.

10. Security Considerations

 As an asset network holds an increasing number of digital assets, it
 may become attractive to attackers seeking to compromise the
 cryptographic keys of the entities, services and its end-users.

 Gateways are of particular interest to attackers because they enable
 the transferal of digital assets to external networks, which may or
 may not be regulated. As such, hardening technologies and tamper-
 resistant crypto-processors (e.g. TPM, SGX) should be used for
 implementations of gateways [HS19].

11. Policy Considerations

 Digital asset transfers must be policy-driven in the sense that it
 must observe and enforce the policies defined for the network.
 Resources that make-up a network are owned and operated by entities
 (e.g. legal persons or organizations), and these entities typically
 operate within regulatory jurisdictions [FATF]. It is the
 responsibility of these entities to translate regulatory policies
 into functions on networks that comply to the relevant regulatory
 policies.

 At the application layer, asset transfers must take into
 consideration the legal status of assets and incorporate relevant
 asset-related policies into their business logic. These policies
 must permeate down to the gateways that implement the functions of
 asset transaction processing.

Hardjono, et al. Expires 8 July 2024 [Page 19]

Internet-Draft SAT Architecture January 2024

12. Threat Model Considerations

 Prior to commencing the transfer over the secure channel (TLS),
 gateways and the operators are assumed to have verified the actor
 identities, asset artifacts and gateway device-level identification.
 Relevant assertions are signed by gateways, thereby placing legal and
 financial liabilities on the operator.

 However, while adhering to the protocol steps, gateways may purposely
 take actions that are legitimate from the protocol design
 perspective, but which may either delay a transfer or cause multiple
 aborts of a transfer. Delays and aborts in the protocol flow that
 are late (i.e., stage 3) cause time and resource loss (e.g., network
 fees).

 For example, gateway G1 could intentionally delay a transfer by
 pausing (or simply not continuing) after it receives the commit-ready
 message (3.3) from G2. If gateway G2 reaches timeout, it may decide
 to abort the transfer altogether. This would entail G2 reversing the
 temporary asset in N2 that it established in step 3.2. This reversal
 could cause some financial loss if network N2 has high transaction
 fees.

 Similarly, one or both gateways may purposely fail to send the
 appropriate signed receipt, such as the commit-final assertion (3.5)
 from G1 or the ACK-final receipt (3.7) from G2. However, in this
 case both sides have sufficient evidence to dispute the validity of
 the transfer.

13. Compatibility Considerations

 As the asset transfer protocol must be completely agnostic to the
 anatomy of a digital asset and to the type of ledger technology
 underlying a system maintaining digital assets, it must be compatible
 with different asset identification standards like ISO 20022 and
 ITIN, and with standards for communicating information about business
 processes (like ISO 20022). Keeping the Stage-0 specification open
 and not tied to a specific messaging or identification standard
 allows the Secure Asset Transfer architecture to be flexible and
 inclusive, and thereby meet compatibility goals.

14. References

14.1. Normative References

 [FATF] FATF, "International Standards on Combating Money
 Laundering and the Financing of Terrorism and
 Proliferation - FATF Revision of Recommendation 15

Hardjono, et al. Expires 8 July 2024 [Page 20]

Internet-Draft SAT Architecture January 2024

 (Updated June 2021)", October 2018, <http://www.fatf-
 gafi.org/publications/fatfrecommendations/documents/fatf-
 recommendations.html>.

 [ISO] ISO, "Blockchain and distributed ledger technologies-
 Vocabulary (ISO:22739:2020)", July 2020,
 <https://www.iso.org>.

 [ISO20022] ISO, "Universal Financial Industry Message Scheme (ISO
 20022).", July 2023, <https://www.iso20022.org>.

 [ITIN] ITSA, "International Token Identification Number.", July
 2023, <https://my.itsa.global/what-we-do>.

 [NIST] Yaga, D., Mell, P., Roby, N., and K. Scarfone, "NIST
 Blockchain Technology Overview (NISTR-8202)", October
 2018, <https://doi.org/10.6028/NIST.IR.8202>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [SAT] Hargreaves, M., Hardjono, T., and R. Belchior, "IETF
 Secure Asset Transfer Protocol (SATP)", 9 July 2023,
 <https://datatracker.ietf.org/doc/draft-ietf-satp-
 core/>.>.

14.2. Informative References

 [ABCH20] Ankenbrand, T., Bieri, D., Cortivo, R., Hoehener, J., and
 T. Hardjono, "Proposal for a Comprehensive Crypto Asset
 Taxonomy", May 2020, <https://arxiv.org/abs/2007.11877>.

 [Abebe19] Abebe, E., Behl, D., Govindarajan, C., Hu, Y.,
 Karunamoorthy, D., Novotny, P., Pandit, V., Ramakrishna,
 V., and C. Vecchiola, "Enabling Enterprise Blockchain
 Interoperability with Trusted Data Transfer (Middleware
 2019, Industry Track)", December 2019,
 <https://arxiv.org/abs/1911.01064>.

 [Abebe21] Abebe, E., Hu, Y., Irvin, A., Karunamoorthy, D., Pandit,
 V., Ramakrishna, V., and J. Yu, "Verifiable Observation of
 Permissioned Ledgers (ICBC2021)", May 2021,
 <https://arxiv.org/abs/2012.07339>.

Hardjono, et al. Expires 8 July 2024 [Page 21]

Internet-Draft SAT Architecture January 2024

 [BCH21] Belchior, R., Correia, M., and T. Hardjono, "DLT Gateway
 Crash Recovery Mechanism, IETF, draft-belchior-gateway-
 recovery-01.", March 2021,
 <https://datatracker.ietf.org/doc/draft-belchior-gateway-
 recovery/>.

 [BVGC20] Belchior, R., Vasconcelos, A., Guerreiro, S., and M.
 Correia, "A Survey on Blockchain Interoperability: Past,
 Present, and Future Trends", May 2020,
 <https://arxiv.org/abs/2005.14282v2>.

 [Clar88] Clark, D., "The Design Philosophy of the DARPA Internet
 Protocols, ACM Computer Communication Review, Proc SIGCOMM
 88, vol. 18, no. 4, pp. 106-114", August 1988.

 [DLVIEW] Ramakrishna, V., Pandit, V., Nishad, S., Narayanam, K.,
 and D. Vinayagamurthy, "Views and View Addresses for
 Blockchain/DLT Interoperability, IETF Draft", November
 2021.

 [Gray81] Gray, J., "The Transaction Concept: Virtues and
 Limitations, in VLDB Proceedings of the 7th International
 Conference, Cannes, France, September 1981, pp. 144-154",
 September 1981.

 [Herl19] Herlihy, M., "Blockchains From a Distributed Computing
 Perspective, Communications of the ACM, vol. 62, no. 2,
 pp. 78-85", February 2019,
 <https://doi.org/10.1145/3209623>.

 [HLP19] Hardjono, T., Lipton, A., and A. Pentland, "Towards and
 Interoperability Architecture for Blockchain Autonomous
 Systems, IEEE Transactions on Engineering Management",
 June 2019, <https://doi:10.1109/TEM.2019.2920154>.

 [HS2019] Hardjono, T. and N. Smith, "Decentralized Trusted
 Computing Base for Blockchain Infrastructure Security,
 Frontiers Journal, Special Issue on Blockchain Technology,
 Vol. 2, No. 24", December 2019,
 <https://doi.org/10.3389/fbloc.2019.00024>.

 [IDevID] Richardson, M. and J. Yang, "A Taxonomy of operational
 security of manufacturer installed keys and anchors. IETF
 draft-richardson-t2trg-idevid-considerations-01", August
 2020, <https://tools.ietf.org/html/draft-richardson-t2trg-
 idevid-considerations-01>.

Hardjono, et al. Expires 8 July 2024 [Page 22]

Internet-Draft SAT Architecture January 2024

 [SRC84] Saltzer, J., Reed, D., and D. Clark, "End-to-End Arguments
 in System Design, ACM Transactions on Computer Systems,
 vol. 2, no. 4, pp. 277-288", November 1984.

Authors’ Addresses

 Thomas Hardjono
 MIT
 Email: hardjono@mit.edu

 Martin Hargreaves
 Quant Network
 Email: martin.hargreaves@quant.network

 Ned Smith
 Intel
 Email: ned.smith@intel.com

 Venkatraman Ramakrishna
 IBM
 Email: vramakr2@in.ibm.com

Hardjono, et al. Expires 8 July 2024 [Page 23]

Internet Engineering Task Force M. Hargreaves
Internet-Draft Quant Network
Intended status: Informational T. Hardjono
Expires: 10 January 2024 MIT
 R. Belchior
 Technico Lisboa
 9 July 2023

 Secure Asset Transfer Protocol (SATP)
 draft-ietf-satp-core-02

Abstract

 This memo This memo describes the Secure Asset Transfer (SAT)
 Protocol for digital assets. SAT is a protocol operating between two
 gateways that conducts the transfer of a digital asset from one
 gateway to another. The protocol establishes a secure channel
 between the endpoints and implements a 2-phase commit to ensure the
 properties of transfer atomicity, consistency, isolation and
 durability.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 10 January 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights

Hargreaves, et al. Expires 10 January 2024 [Page 1]

Internet-Draft SATP Core July 2023

 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions used in this document 4
 3. Terminology . 5
 4. The Secure Asset Transfer Protocol 5
 4.1. Overview . 5
 4.2. SAT Model . 6
 4.3. Types of APIs . 6
 4.4. Types of Flows . 7
 4.5. Resources and Identifiers 7
 5. SATP Message Format, identifiers and Descriptors 7
 5.1. Overview . 8
 5.2. SATP Message Format 8
 5.3. Digital Asset Resource Descriptors 9
 5.3.1. Organization Identifier 9
 5.3.2. Gateway / Endpoint ID 9
 5.3.3. Network or system Identifier 9
 5.3.4. Resource . 10
 5.3.5. Examples . 10
 5.4. Digital Asset Resource Client Descriptors 10
 5.4.1. Organization Identifier 10
 5.4.2. Gateway / Endpoint ID 10
 5.4.3. Organizational Unit 11
 5.4.4. Name . 11
 5.4.5. Examples . 11
 5.5. Gateway Level Access Control 11
 5.6. Negotiation of Security Protocols and Parameters 12
 5.6.1. TLS Established 12
 5.6.2. Client offers supported credential schemes 12
 5.6.3. Server selects supported credential scheme 12
 5.6.4. Client asserts or proves identity 12
 5.6.5. Sequence numbers initialized 12
 5.6.6. Messages can now be exchanged 13
 5.7. Asset Profile Identification 13
 5.8. Application Profile Negotiation 13
 5.9. Discovery of Digital Asset Resources 14
 6. Identity and Asset Verification Flow (Stage 0) 14
 7. Transfer Initiation and Commencement Flows (Stage 1) 15
 7.1. Transfer Initialization Claims 15
 7.2. Conveyance of Network Capabilities and Parameters 16
 7.3. Transfer Proposal Message 17
 7.4. Transfer Proposal Receipt Message 18

Hargreaves, et al. Expires 10 January 2024 [Page 2]

Internet-Draft SATP Core July 2023

 7.5. Transfer Proposal Reject and Conditional Reject
 Message . 19
 7.6. Transfer Commence Message 20
 7.7. Commence Response Message (ACK-Commence) 21
 8. Lock Assertion and Receipt (Stage 2) 22
 8.1. Lock Assertion Message 23
 8.2. Lock Assertion Receipt Message 24
 9. Commitment Preparation and Finalization (Stage 3) 24
 9.1. Commit Preparation Message (Commit-Prepare) 25
 9.2. Commit Ready Message (Commit-Ready) 26
 9.3. Commit Final Assertion Message (Commit-Final) 27
 9.4. Commit-Final Acknowledgement Receipt Message
 (ACK-Final-Receipt) 28
 9.5. Transfer Complete Message 29
 10. SATP Session Resumption 29
 10.1. Primary-Backup Session Resumption 30
 10.2. Recovery Messages 31
 11. Error Messages . 32
 11.1. Closure Alerts . 32
 11.2. Error Alerts . 33
 12. Security Consideration 33
 13. IANA Consideration . 33
 14. Appendix A: Error Types 34
 14.1. Transfer Commence and Response errors 34
 14.2. Lock Assertion errors 34
 14.3. Lock Assertion Receipt errors 34
 14.4. Commit Preparation errors 35
 14.5. Commit Preparation Acknowledgement errors 35
 14.6. Commit Ready errors 35
 14.7. Commit Final Assertion errors 35
 15. References . 36
 15.1. Normative References 36
 15.2. Informative References 36
 Authors’ Addresses . 36

1. Introduction

 This memo proposes a secure asset transfer protocol (SATP) that is
 intended to be deployed between two gateway endpoints to transfer a
 digital asset from an origin network to a destination network.

 Both the origin and destination networks are assumed to be opaque in
 the sense that the interior constructs of a given network is not
 read/write accessible to unauthorized entities.

 The protocol utilizes the asset burn-and-mint paradigm whereby the
 asset to be transferred is permanently disabled or destroyed (burned)
 at the origin network and is re-generated (minted) at the destination

Hargreaves, et al. Expires 10 January 2024 [Page 3]

Internet-Draft SATP Core July 2023

 network. This is achieved through the coordinated actions of the
 peer gateways handling the unidirectional transfer at the respective
 networks.

 A gateway is assumed to be trusted to perform the tasks involved in
 the asset transfer.

 The overall aim of the protocol is to ensure that the state of assets
 in the origin and destination networks remain consistent, and that
 asset movements into (out of) networks via gateways can be accounted
 for.

 There are several desirable technical properties of the protocol.
 The protocol must ensure that the properties of atomicity,
 consistency, isolation, and durability (ACID) are satisfied.

 The requirement of consistency implies that the asset transfer
 protocol always leaves both networks in a consistent state (that the
 asset is located in one system/network only at any time).

 Atomicity means that the protocol must guarantee that either the
 transfer commits (completes) or entirely fails, where failure is
 taken to mean there is no change to the state of the asset in the
 origin (sender) network.

 The property of isolation means that while a transfer is occurring to
 a digital asset from an origin network, no other state changes can
 occur to the asset.

 The property of durability means that once the transfer has been
 committed by both gateways, that this commitment must hold regardless
 of subsequent unavailability (e.g. crash) of the gateways
 implementing the SAT protocol.

 All messages exchanged between gateways are assumed to run over
 TLS1.2, and the endpoints at the respective gateways are associated
 with a certificate indicating the legal owner (or operator) of the
 gateway.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying significance described in RFC 2119.

Hargreaves, et al. Expires 10 January 2024 [Page 4]

Internet-Draft SATP Core July 2023

3. Terminology

 The following are some terminology used in the current document:

 Client application: This is the application employed by a user to
 interact with a gateway.

 Gateway: The computer system functionally capable of acting as a
 gateway in an asset transfer.

 Sender gateway: The gateway that initiates a unidirectional asset
 transfer.

 Recipient gateway: The gateway that is the recipient side of a
 unidirectional asset transfer.

 Claim: An assertion made by an Entity [JWT].

 Claim Type: Syntax used for representing a Claim Value [JWT].

 Gateway Claim: An assertion made by a Gateway regarding the status or
 condition of resources (e.g. assets, public keys, etc.) accessible to
 that gateway (e.g. within its network or system).

4. The Secure Asset Transfer Protocol

4.1. Overview

 The Secure Asset Transfer Protocol (SATP) is a gateway-to-gateway
 protocol used by a sender gateway with a recipient gateway to perform
 a unidirectional transfer of a digital asset.

 The protocol defines a number of API endpoints, resources and
 identifier definitions, and message flows corresponding to the asset
 transfer between the two gateways.

Hargreaves, et al. Expires 10 January 2024 [Page 5]

Internet-Draft SATP Core July 2023

 +----------+ +----------+
 | Client | | Off-net |
 | (App) | | Resource |
 +----------+ +----------+
 | |API Type-3|
 | +----------+
 | ^
 V |
 +----------+ |
 |API Type-1| |
 +------+ +----------+----+ +----+----------+ +------+
 | | | | | | | | | |
 | Net. | | Gateway |API | |API | Gateway | | Net. |
 | NW1 |---| G1 |Type|<------>|Type| G2 |---| NW2 |
 | | | | 2 | | 2 | | | |
 +------+ +----------+----+ +----+----------+ +------+

 Figure 1

4.2. SAT Model

 The model for SATP is shown in Figure 1.

 The Client (application) interacts with its local gateway (G1) over
 an interface (API Type-1) in order to provide instructions to the
 gateway with regards to actions to assets and related resources
 located in the local system or network (NW1).

 Gateways interact with each other over a gateway interface (API Type-
 2). A given gateway may be required to access resources that are not
 located in network NW1 or network NW2. Access to these types of
 resources are performed over an off-network interface (API Type-3).

4.3. Types of APIs

 The following are the types of APIs in SATP:

 * Gateway APIs for client (API Type-1): This the REST APIs that
 permit a Client (application) to interact with a local gateway,
 and issue instructions for actions pertaining to resources
 accessible to the gateway.

 * Gateway APIs for peer gateways (API Type-2): This is the REST APIs
 employed by two (2) peer gateways in performing unidirectional
 asset transfers.

Hargreaves, et al. Expires 10 January 2024 [Page 6]

Internet-Draft SATP Core July 2023

 * APIs for validation of off-network resources (API Type-3): This is
 the REST APIs made available by a resource server (resource owner)
 at which a gateway can access resources.

 The use of these APIs is dependent on the mode of access and the type
 of flow in question.

4.4. Types of Flows

 The SAT protocol defines the following three (3) flows:

 * Transfer Initiation flow: This flow deals with commencing a
 transfer from one gateway to another. Several tasks are involved,
 including (but not limited to): (i) gateway identification and
 mutual authentication; (ii) exchange of asset type (definition)
 information; (iii) verification of the asset definition, and
 others.

 * Lock-Assertion flow: This flow deals with the conveyance of signed
 assertions from the sender gateway to the receiver gateway
 regarding the locked status of an asset at the origin network.

 * Commitment Establishment flow: This flow deals with the asset
 transfer and commitment establishment between two gateways.

 These flow will be discussed below.

4.5. Resources and Identifiers

 (a) Resource addressing for systems or networks, using the URL
 syntax.

 (b) Client identification based on the URN format. These are for
 identifying clients (developers and applications) who access these
 resources, and which in some use-cases require access authorization.

 (c) Protocol message family for negotiating authentication,
 authorisation, and parameters for confidential channel establishment.

 (d) Resource discovery mechanism for developers and applications to
 discover resources hosted at a gateway. The gateway response is
 subject to the level of access granted to that developer or
 application.

5. SATP Message Format, identifiers and Descriptors

Hargreaves, et al. Expires 10 January 2024 [Page 7]

Internet-Draft SATP Core July 2023

5.1. Overview

 This section describes (i) the phases of SATP; (ii) the format of
 SATP messages; (iii) the format for resource descriptors; (iv) a
 method for gateways to implement access controls; (iv) protocol for
 negotiating security capabilities; (v) discovery and accessing
 resources and provisions for backward compatibility with existing
 systems.

5.2. SATP Message Format

 SATP messages are exchanged between applications (clients) and
 gateways (servers). They consist of protocol negotiation and
 functional messages.

 Messages are in JSON format, with protocol specific mandatory fields,
 support for several authentication and authorization schemes and
 support for a free format field for plaintext or encrypted payloads
 directed at the gateway.

 JSON format message, mandatory fields are shown below:

 * Version: SATP protocol Version (major, minor).

 * Message Type: This refers to the type of request or response to be
 conveyed in this message.

 * Session ID: unique identifier (UUIDv2) representing a session
 between two gateways handling a single unidirectional transfer.

 * Transfer-Context ID: unique optional identifier (UUIDv2)
 representing the application layer context.

 * Sequence Number: Monotonically increasing counter that uniquely
 represents a message from a session.

 * Resource URL: Location of Resource to be accessed.

 * Developer URN: Assertion of developer / application identity.

 * Action/Response: GET/POST and arguments (or Response Code)

 * Credential Profile: Specify type of auth (e.g. SAML, OAuth,
 X.509)

 * Credential Block: Credential token, certificate, string

 * Payload Profile: Asset profile and capabilities

Hargreaves, et al. Expires 10 January 2024 [Page 8]

Internet-Draft SATP Core July 2023

 * Application Profile: Vendor or Application specific profile

 * Payload: Payload for POST, responses, and local networks. The
 payload is specific to the current SAT phase.

 * Payload Hash: hash of the current message payload.

 * Message signature: Gateway EDCSA signature over the message

 Other relevant attributes may exists that need to be captured for
 logging purposes.

5.3. Digital Asset Resource Descriptors

 Resources are identified by URL [RFC 1738] as described below:

 * The type is new: application/satres

 * The access protocol is SATP.

 Data included in the URL includes the folowing:

5.3.1. Organization Identifier

 This MAY be a Legal Entity Identifier (LEI) or other identifier
 linking resource ownership to a real world entity. Any scheme for
 identifying gateway owners may be implemented (e.g. LEI directory,
 closed user group membership, SWIFT BIC, etc.).

 The developer or application MAY validate the identity with the
 issuing authority. The identifier is not a trusted identity, but MAY
 be relied on where trust has been established between the two parties
 (e.g. in a closed user group).

 The mechanisms to determine organizations identifiers is out of scope
 for the current specification.

5.3.2. Gateway / Endpoint ID

 FQDN of the SATP compliant gateway. Required to establish IP
 connectivity. This MUST resolve to a valid IP address.

5.3.3. Network or system Identifier

 Specific to the gateway behind which the target network operates.
 This field is local to the gateway and is used to direct SATP
 interactions to the correct underlying network. This value maybe
 alphanumeric or a hexadecimal value.

Hargreaves, et al. Expires 10 January 2024 [Page 9]

Internet-Draft SATP Core July 2023

 For example: "tradelens-network", "EU-supply-chain".

5.3.4. Resource

 Specifies a resource held on the underlying network. This field must
 be meaningful to the network in question but is otherwise an
 arbitrary string. The underlying object it points to may be a
 network address, data block, transaction ID, alias, etc. or a future
 object type not yet defined.

5.3.5. Examples

 satpres://quant/api.gateway1.com/swift

5.4. Digital Asset Resource Client Descriptors

 Resources are identified by URN as described below:

 * The type is new: application/satpclient

 The URN format does not imply availability of access protocol.

 Data included in the URN includes the following:

5.4.1. Organization Identifier

 Legal Entity Identifier (LEI) or other identifier linking resource
 ownership to a real-world entity. Any scheme for identifying Gateway
 owners may be implemented (e.g. LEI directory, closed user group
 membership, BIC, etc.).

 The Gateway MAY validate the identity with the issuing authority.
 The identifier is not a trusted identity, but MAY be relied on where
 trust has been established between the two parties (e.g. in a closed
 user group).

5.4.2. Gateway / Endpoint ID

 Applications which interact with multiple networks can operate in a
 mode whereby the application connects to its local gateway, which
 then forwards application traffic to local networks and to remote
 networks via other SATP gateways.

 Where this is the case, this field identifies the "home" gateway for
 this application. This may be required to carry out gateway to
 gateway handshaking and protocol negotiation, or for the server to
 look up use case specific data relating to the client.

Hargreaves, et al. Expires 10 January 2024 [Page 10]

Internet-Draft SATP Core July 2023

5.4.3. Organizational Unit

 The organization unit within the organization that the client
 (application or developer) belongs to. This assertion should be
 backed up with authentication via the negotiated protocol.

 The purpose of this field is to allow gateways to maintain access
 control mapping between applications and resources that are
 independent of the authentication and authorization schemes used,
 supporting future changes and supporting counterparties that operate
 different schemes.

5.4.4. Name

 A locally unique (within the OU) identifier, which can identify the
 application, project or individual developer responsible for this
 client connection. This is the most granular unit of access control,
 and gateways should ensure appropriate identifiers are used for the
 needs of the application or use case.

5.4.5. Examples

 satclient:quant/api.overledger.quant.com/research/luke.riley

5.5. Gateway Level Access Control

 Gateways can enforce access rules based on standard naming
 conventions using novel or existing mechanisms such as AuthZ
 protocols using the resource identifiers above, for example:

 satpclient://hsbc/api.overledger.hsbc.com/lending/eric.devloper

 can READ/WRITE

 satpres://quant/api.gateway1.com/tradelens

 AND

 satpres://quant/api.gateway1.com/ripple

 These rules would allow a client so identified to access resources
 directly, for example:

 satpres://quant/api.gateway1.com/tradelens/xxxxxADDRESSxxxxx

Hargreaves, et al. Expires 10 January 2024 [Page 11]

Internet-Draft SATP Core July 2023

 This method allows resource owners to easily grant access to
 individuals, groups and organizations. Individual gateway
 implementations may implement access controls, including subsetting
 and supersetting or applications or resources according to their own
 requirements.

5.6. Negotiation of Security Protocols and Parameters

5.6.1. TLS Established

 TLS 1.2 or higher MUST be implemented to protect gateway
 communications. TLS 1.3 or higher SHOULD be implemented where both
 gateways support TLS 1.3 or higher.

5.6.2. Client offers supported credential schemes

 Capability negotiation prior to data exchange, follows a scheme
 similar to the Session Description Protocol [RFC 5939]. Initially
 the client (application) sends a JSON block containing acceptable
 credential schemes, e.g. OAuth2.0, SAML in the "Credential Scheme"
 field of the SATP message.

5.6.3. Server selects supported credential scheme

 The server (recipient Gateway) selects one acceptable credential
 scheme from the offered schemes, returning the selection in the
 "Credential Scheme" field of the SATP message.

 If no acceptable credential scheme was offered, an HTPP 511 "Network
 Authentication Required" error is returned in the Action/Response
 field of the SATP message.

5.6.4. Client asserts or proves identity

 The details of the assertion / verification step are specific to the
 chosen credential scheme and are out of scope of this document.

5.6.5. Sequence numbers initialized

 Sequence numbers are used to allow the server to correctly order
 operations from the client, some of which may be asynchronous,
 synchronous, idempotent with duplicate requests handled in different
 ways according to the use case.

 The initial sequence number is proposed by the client (sender
 gateway) after the finalization of credential verification. The
 server (recipient gateway) MUST respond with the same sequence number
 to indicate acceptance.

Hargreaves, et al. Expires 10 January 2024 [Page 12]

Internet-Draft SATP Core July 2023

 The client (sender gateway) increments the sequence number with each
 new request. Sequence numbers can be reused for retries in the event
 of a gateway timeout.

5.6.6. Messages can now be exchanged

 Handshaking is complete at this point, and the client can send SAT
 messages to perform actions on resources, which MAY reference the SAT
 Payload field.

5.7. Asset Profile Identification

 The client and server must mutually agree as to the asset type or
 profile that is the subject to the current transfer from the client
 and server. The client must provide the server with the asset-
 identification number, or the server may provide the client with the
 asset-identification numbers for the digital asset supported by the
 server.

 Formal specification of asset identification is out of scope of this
 document. Global numbering of digital asset types or profiles is
 expected to be performed by a legally recognized entity.

5.8. Application Profile Negotiation

 Where an application relies on specific extensions for operation,
 these can be represented in an Application Profile.

 For example, a payments application tracks payments through the use
 of a cloud based API and will only interact with gateways that log
 messages to that API, a resource profile can be established:

 Application Name: TRACKER

 X-Tracker_URL: https://api.tracker.com/updates

 X-Tracking-Policy: Always

 As gateways implement this functionality, they support the TRACKER
 application profile, and the application is able to expand its reach
 by periodically polling for the availability of the profile.

 This is an intentionally generalized extension mechanism for
 application or vendor specific functionality.

Hargreaves, et al. Expires 10 January 2024 [Page 13]

Internet-Draft SATP Core July 2023

5.9. Discovery of Digital Asset Resources

 Applications located outside a network or system SHOULD be able to
 discover which resources they are authorized to access in a network
 or system.

 Resource discovery is handled by the gateway in front of the network.
 For instance using a GET request against the gateway URL with no
 resource identifier could return a list of URLs available to the
 requester. This list is subject to the access controls above.

 Gateways MAY allow applications to discover resources they do not
 have access to. This should be indicated in the free text field, and
 gateways SHOULD implement a process for applications to request
 access.

 Formal specification of supported resource discovery methods is out
 of scope of this document.

6. Identity and Asset Verification Flow (Stage 0)

 Prior to commencing the asset transfer from the sender gateway
 (client) to the recipient gateway (server), both gateways must
 perform a number of verifications steps. The types of information
 required by both the sender and recipient are use-case dependent and
 asset-type dependent.

 The verifications include, but not limited to, the following:

 * Gateway identity mutual verification: This is the identity of the
 gateway at the protocol and network layer. This may include
 validating the X509 certificates of the gateways.

 * Gateway owner verification: This is the verification of the
 identity (e.g. LEI) of the owners of the gateways.

 * Gateway device and state validation: This is the device
 attestation evidence [RATS] that a gateway must collect and convey
 to each other, where a verifier is assumed to be available to
 decode, parse and appraise the evidence.

 * Originator and beneficiary identity verification: This is the
 identity and public-key of the entity (originator) in the origin
 network seeking to transfer the asset to another entity
 (beneficiary) in the destination network.

Hargreaves, et al. Expires 10 January 2024 [Page 14]

Internet-Draft SATP Core July 2023

 These are considered out of scope in the current specifications, and
 are assumed to have been successfully completed prior to the
 commencement of the transfer initiation flow.

7. Transfer Initiation and Commencement Flows (Stage 1)

 This section describes the SATP Set-up stage, where a sender gateway
 interacts with a recipient gateway, proposing a session.

 These artifacst are contained in the Transfer Initiation Claims.

 Gateways MUST support the use of the HTTP GET and POST methods
 defined in RFC 2616 [RFC2616] for the endpoint.

 Clients (sender gateway) MAY use the HTTP GET or POST methods to send
 messages in this phase to the server (recipient gateway). If using
 the HTTP GET method, the request parameters may be serialized using
 URI Query String Serialization.

 The client and server may be required to sign certain messages in
 order to provide standalone proof (for non-repudiation) independent
 of the secure channel between the client and server. This proof may
 be required for audit verifications (e.g. post-event).

 (NOTE: Flows occur over TLS. Nonces are not shown).

7.1. Transfer Initialization Claims

 This is set of artifacts pertaining to the asset that must be agreed
 upon between the client (sender gateway) and the server (recipient
 gateway).

 The Transfer Initialization Claims consists of the following:

 * digital_asset_id: This is the globally unique identifier for the
 digital asset located in the origin network.

 * asset_profile_id: This is the globally unique identifier for the
 asset-profile definition (document) on which the digital asset was
 issued.

 * verified_originator_entity_id: This is the identity data of the
 originator entity (person or organization) in the origin network.
 This information must be verified by the sender gateway.

Hargreaves, et al. Expires 10 January 2024 [Page 15]

Internet-Draft SATP Core July 2023

 * verified_beneficiary_entity_id: This is the identity data of the
 beneficiary entity (person or organization) in the destination
 network. This information must be verified by the receiver
 gateway.

 * originator_pubkey REQUIRED. This is the public key of the asset
 owner (originator) in the origin network or system.

 * beneficiary_pubkey REQUIRED. This is the public key of the
 beneficiary in the destination network.

 * sender_gateway_network_id REQUIRED. This is the identifier of the
 origin network or system behind the client.

 * recipient_gateway_network_id REQUIRED. This is the identifier of
 the destination network or system behind the server.

 * client_identity_pubkey REQUIRED. The public key of client who
 sent this message.

 * server_identity_pubkey REQUIRED. The public key of server for
 whom this message is intended.

 * sender_gateway_owner_id: This is the identity information of the
 owner or operator of the sender gateway.

 * receiver_gateway_owner_id: This is the identity information of the
 owner or operator of the recipient gateway.

7.2. Conveyance of Network Capabilities and Parameters

 This is set of artifacts pertaining to the origin network behind the
 client (sender gateway) that MAY be communicated to the server
 (recipient gateway). A server may accept the asset-related claims
 but reject the transfer request based on parameters of the origin
 network.

 Some of these parameters maybe gateway-specific (e.g. chosen
 signature algorithm), while others are inherent in the origin network
 (e.g. lock type; average lock duration time; etc.).

 The network capabilities list is as follows:

 * sender_gateway_network_id REQUIRED. This is the identifier of the
 origin network or system behind the client.

 * signature_algorithm REQUIRED: The digital signature algorithm
 chosen by the client (sender gateway) for signing claims.

Hargreaves, et al. Expires 10 January 2024 [Page 16]

Internet-Draft SATP Core July 2023

 * supported_signature_algorithm OPTIONAL: The list of algorithm-id
 that is supported by the client from which the server MAY select.

 * Lock_type REQUIRED: faucet, timelock, hashlock, hashtimelock,
 multi-claim PC, destroy/burn (escrowed cross-claim).

 * Lock_expiration_time REQUIRED: when will the lock or escrow
 expire.

 * Permissions OPTIONAL: list of identities (public-keys or X.509
 certificates) that can perform operations on the escrow or lock on
 the asset in the origin network.

 * developer_URN OPTIONAL: Assertion of developer / application
 identity.

 * credential_profile REQUIRED: Specify type of auth (e.g. SAML,
 OAuth, X.509).

 * application_profile OPTIONAL: Vendor or Application specific
 profile.

 * logging_profile REQUIRED: contains the profile regarding the
 logging procedure. Default is local store

 * Access_control_profile REQUIRED: the profile regarding the
 confidentiality of the log entries being stored. Default is only
 the gateway that created the logs can access them.

 * Subsequent calls OPTIONAL: details possible escrow actions.

 * History OPTIONAL: provides an history of the escrow, in case it
 has previously been initialized.

7.3. Transfer Proposal Message

 The purpose of this message is for the client to initiate an asset
 Transfer and propose the set of claims related to the asset to be
 transferred. This message must be signed by the client.

 Depending on the proposal, multiple rounds of communication between
 the client and the server may occur.

 This message is sent from the client to the Transfer Initialization
 Endpoint at the server.

 The parameters of this message consists of the following:

Hargreaves, et al. Expires 10 January 2024 [Page 17]

Internet-Draft SATP Core July 2023

 * version REQUIRED: SAT protocol Version (major, minor).

 * message_type REQUIRED: urn:ietf:satp:msgtype:init-proposal-msg.

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen by the
 client to identify the current session.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

 * transfer_init_claims: The set of artifacts and parameters as the
 basis for the current transfer.

 * transfer_init_claims_format OPTIONAL: The format of the transfer
 initialization claims.

 * network_capabilities_list REQUIRED: The set of origin network
 parameters reported by the client to the server.

 * client_identity_pubkey REQUIRED. The public key of client who
 sent this message.

 * server_identity_pubkey REQUIRED. The public key of server for
 whom this message is intended.

 * multiple_claims_allowed OPTIONAL: true/false.

 * multiple_cancels_allowed OPTIONAL: true/false.

 * client signature REQUIRED: The client’s signature over the
 message.

7.4. Transfer Proposal Receipt Message

 The purpose of this message is for the server to indicate explicit
 acceptance of the Transfer Initialization Claims in the transfer
 proposal message.

 The message must be signed by the server.

 The message is sent from the server to the Transfer Proposal Endpoint
 at the client.

 The parameters of this message consists of the following:

 * version REQUIRED: SAT protocol Version (major, minor).

 * message_type REQUIRED: urn:ietf:satp:msgtype:init-receipt-msg

Hargreaves, et al. Expires 10 January 2024 [Page 18]

Internet-Draft SATP Core July 2023

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen by the
 client to identify the current session.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

 * hash_transfer_init_claims REQUIRED: Hash of the Transfer
 Initialization Claims received in the Transfer Proposal Message.

 * Timestamp REQUIRED: timestamp referring to when the Initialization
 Request Message was received.

 Example: TBD.

7.5. Transfer Proposal Reject and Conditional Reject Message

 The purpose of this message is for the server to indicate a rejection
 or conditional rejection of the Transfer Initialization Claims. In
 the case of a conditional rejection, the server may propose a
 different set of claims (counter-proposal claims) to the client.

 If the server wishes to indicate a conditional rejection, the server
 MUST include a counter-proposal set of claims.

 If the server does not wish to proceed, the server MUST include an
 empty (blank) counter-proposal.

 Depending on the proposal and counter-proposal, multiple rounds of
 communication between the client and the server may occur.

 The message must be signed by the server.

 The message is sent from the server to the Transfer Proposal Endpoint
 at the client.

 The parameters of this message consists of the following:

 * version REQUIRED: SAT protocol Version (major, minor).

 * message_type REQUIRED: urn:ietf:satp:msgtype:init-reject-msg

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen by the
 client to identify the current session.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

Hargreaves, et al. Expires 10 January 2024 [Page 19]

Internet-Draft SATP Core July 2023

 * hash_transfer_init_claims REQUIRED: Hash of the Transfer
 Initialization Claims received in the Transfer Proposal Message.

 * transfer_init_counter_claims: The set of artifacts and parameters
 as the counter-proposal to the client.

 * Timestamp REQUIRED: timestamp referring to when the Initialization
 Request Message was received.

 Example: TBD.

7.6. Transfer Commence Message

 The purpose of this message is for the client to signal to the server
 that the client is ready to start the transfer of the digital asset.
 This message must be signed by the client.

 This message is sent by the client as a response to the Transfer
 Proposal Receipt Message previously receuved from the server.

 This message is sent by the client to the Transfer Commence Endpoint
 at the server.

 The parameters of this message consists of the following:

 * message_type REQUIRED. MUST be the value
 urn:ietf:satp:msgtype:transfer-commence-msg.

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen earlier
 by client in the Initialization Request Message.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

 * client_identity_pubkey REQUIRED. The public key of client who
 sent this message.

 * server_identity_pubkey REQUIRED. The public key of server for
 whom this message is intended.

 * hash_transfer_init_claims REQUIRED: Hash of the Transfer
 Initialization Claims received in the Transfer Proposal Message.

 * hash_prev_message REQUIRED. The hash of the last message, in this
 case the Transfer Proposal Receipt message.

Hargreaves, et al. Expires 10 January 2024 [Page 20]

Internet-Draft SATP Core July 2023

 * client_transfer_number OPTIONAL. This is the transfer
 identification number chosen by the client. This number is
 meaningful only the client.

 * client_signature REQUIRED. The digital signature of the client.

 For example, the client makes the following HTTP request using TLS
 (with extra line breaks for display purposes only):

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic awHCaGRSa3F0MzpnWDFmQmF0M2ZG
 Content-Type: application/x-www-form-urlencoded

 {
 "message_type": "urn:ietf:satp:msgtype:transfer-commence-msg",
 "session_id":"9097hkstgkjvVbNH",
 "originator_pubkey":"zGy89097hkbfgkjvVbNH",
 "beneficiary_pubkey": "mBGHJjjuijh67yghb",
 "sender_net_system": "originNETsystem",
 "recipient_net_system":"recipientNETsystem",
 "client_identity_pubkey":"fgH654tgeryuryuy",
 "server_identity_pubkey":"dFgdfgdfgt43tetr535teyrfge4t54334",
 "transfer_init_claims":"nbvcwertyhgfdsertyhgf2h3v4bd3v21",
 "hash_prev_message":"DRvfrb654vgreDerverv654nhRbvder4",
 "client_transfer_number":"ji9876543ewdfgh",
 "client_signature":"fdw34567uyhgfer45"
 }

 Figure 2

7.7. Commence Response Message (ACK-Commence)

 The purpose of this message is for the server to indicate agreement
 to proceed with the asset transfer, based on the artifacts found in
 the previous Transfer Proposal Message.

 This message is sent by the server to the Transfer Commence Endpoint
 at the client.

 The message must be signed by the server.

 The parameters of this message consists of the following:

 * message_type REQUIRED urn:ietf:satp:msgtype:ack-commence-msg

Hargreaves, et al. Expires 10 January 2024 [Page 21]

Internet-Draft SATP Core July 2023

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen earlier
 by client in the Initialization Request Message.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

 * client_identity_pubkey REQUIRED. The client for whom this message
 is intended.

 * server_identity_pubkey REQUIRED. The server who sent this
 message.

 * hash_prev_message REQUIRED. The hash of the last message, in this
 case the the Transfer Commence Message.

 * server_transfer_number OPTIONAL. This is the transfer
 identification number chosen by the server. This number is
 meaningful only to the server.

 * server_signature REQUIRED. The digital signature of the server.

 An example of a success response could be as follows: (TBD)

8. Lock Assertion and Receipt (Stage 2)

 The messages in this stage pertain to the sender gateway providing
 the recipient gateway with a signed assertion that the asset in the
 origin network has been locked or disabled and under the control of
 the sender gateway.

 In the following, the sender gateway takes the role of the client
 while the recipient gateway takes the role of the server.

 The flow follows a request-response model. The client makes a
 request (POST) to the Lock-Assertion Endpoint at the server.

 Gateways MUST support the use of the HTTP GET and POST methods
 defined in RFC 2616 [RFC2616] for the endpoint.

 Clients MAY use the HTTP GET or POST methods to send messages in this
 phase to the server. If using the HTTP GET method, the request
 parameters may be serialized using URI Query String Serialization.

 (NOTE: Flows occur over TLS. Nonces are not shown).

Hargreaves, et al. Expires 10 January 2024 [Page 22]

Internet-Draft SATP Core July 2023

8.1. Lock Assertion Message

 The purpose of this message is for the client (sender gateway) to
 convey a signed claim to the server (receiver gateway) declaring that
 the asset in question has been locked or escrowed by the client in
 the origin network (e.g. to prevent double spending).

 The format of the claim is dependent on the network or system of the
 client and is outside the scope of this specification.

 This message is sent from the client to the Lock Assertion Endpoint
 at the server.

 The server must validate the claims (payload) in this message prior
 to the next step.

 The message must be signed by the client.

 The parameters of this message consists of the following:

 * message_type REQUIRED urn:ietf:satp:msgtype:lock-assert-msg.

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen earlier
 by client in the Initialization Request Message.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

 * client_identity_pubkey REQUIRED. The client who sent this
 message.

 * server_identity_pubkey REQUIRED. The server for whom this message
 is intended.

 * lock_assertion_claim REQUIRED. The lock assertion claim or
 statement by the client.

 * lock_assertion_claim_format REQUIRED. The format of the claim.

 * lock_assertion_expiration REQUIRED. The duration of time of the
 lock or escrow upon the asset.

 * hash_prev_message REQUIRED. The hash of the previous message.

 * client_transfer_number OPTIONAL. This is the transfer
 identification number chosen by the client. This number is
 meaningful only to the client.

Hargreaves, et al. Expires 10 January 2024 [Page 23]

Internet-Draft SATP Core July 2023

 * client_signature REQUIRED. The digital signature of the client.

8.2. Lock Assertion Receipt Message

 The purpose of this message is for the server (receiver gateway) to
 indicate acceptance of the claim(s) in the lock-assertion message
 delivered by the client (sender gateway) in the previous message.

 This message is sent from the server to the Assertion Receipt
 Endpoint at the client.

 The message must be signed by the server.

 The parameters of this message consists of the following:

 * message_type REQUIRED urn:ietf:satp:msgtype:assertion-receipt-msg.

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen earlier
 by client in the Initialization Request Message.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

 * client_identity_pubkey REQUIRED. The client for whom this message
 is intended.

 * server_identity_pubkey REQUIRED. The server who sent this
 message.

 * hash_prev_message REQUIRED. The hash of previous message.

 * server_transfer_number OPTIONAL. This is the transfer
 identification number chosen by the server. This number is
 meaningful only to the server.

 * server_signature REQUIRED. The digital signature of the server.

9. Commitment Preparation and Finalization (Stage 3)

 This section describes the transfer commitment agreement between the
 client (sender gateway) and the server (receiver gateway).

 This phase must be completed within the time specified in the
 lock_assertion_expiration value in the lock-assertion message.

 In the following, the sender gateway takes the role of the client
 while the recipient gateway takes the role of the server.

Hargreaves, et al. Expires 10 January 2024 [Page 24]

Internet-Draft SATP Core July 2023

 The flow follows a request-response model. The client makes a
 request (POST) to the Transfer Commitment endpoint at the server.

 Gateways MUST support the use of the HTTP GET and POST methods
 defined in RFC 2616 [RFC2616] for the endpoint.

 Clients MAY use the HTTP GET or POST methods to send messages in this
 phase to the server. If using the HTTP GET method, the request
 parameters maybe serialized using URI Query String Serialization.

 The client and server may be required to sign certain messages in
 order to provide standalone proof (for non-repudiation) independent
 of the secure channel between the client and server. This proof
 maybe required for audit verifications post-event.

 (NOTE: Flows occur over TLS. Nonces are not shown).

9.1. Commit Preparation Message (Commit-Prepare)

 The purpose of this message is for the client to indicate its
 readiness to begin the commitment of the transfer.

 This message is sent from the client to the Commit Prepare Endpoint
 at the server.

 The message must be signed by the client.

 The parameters of this message consists of the following:

 * message_type REQUIRED. It MUST be the value
 urn:ietf:satp:msgtype:commit-prepare-msg

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen earlier
 by client in the Initialization Request Message.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

 * client_identity_pubkey REQUIRED. The client who sent this
 message.

 * server_identity_pubkey REQUIRED. The server for whom this message
 is intended.

 * hash_prev_message REQUIRED. The hash of previous message.

Hargreaves, et al. Expires 10 January 2024 [Page 25]

Internet-Draft SATP Core July 2023

 * client_transfer_number OPTIONAL. This is the transfer
 identification number chosen by the client. This number is
 meaningful only the client.

 * client_signature REQUIRED. The digital signature of the client.

9.2. Commit Ready Message (Commit-Ready)

 The purpose The purpose of this message is for the server to indicate
 to the client that: (i) the server has created (minted) an equivalent
 asset in the destination network; (ii) that the newly minted asset
 has been self-assigned to the server; and (iii) that the server is
 ready to proceed to the next step.

 This message is sent from the server to the Commit Ready Endpoint at
 the client.

 The message must be signed by the server.

 The parameters of this message consists of the following:

 * message_type REQUIRED. It MUST be the value
 urn:ietf:satp:msgtype:commit-ready-msg.

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen earlier
 by client in the Initialization Request Message.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

 * client_identity_pubkey REQUIRED. The client for whom this message
 is intended.

 * server_identity_pubkey REQUIRED. The server who sent this
 message.

 * mint_assertion_claims REQUIRED. The mint assertion claim or
 statement by the server.

 * mint_assertion_format OPTIONAL. The format of the assertion
 payload.

 * hash_prev_message REQUIRED. The hash of previous message.

 * server_transfer_number OPTIONAL. This is the transfer
 identification number chosen by the server. This number is
 meaningful only the server.

Hargreaves, et al. Expires 10 January 2024 [Page 26]

Internet-Draft SATP Core July 2023

 * server_signature REQUIRED. The digital signature of the server.

9.3. Commit Final Assertion Message (Commit-Final)

 The purpose of this message is for the client to indicate to the
 server that the client (sender gateway) has completed the
 extinguishment (burn) of the asset in the origin network.

 The message must contain standalone claims related to the
 extinguishment of the asset by the client. The standalone claim must
 be signed by the client.

 This message is sent from the client to the Commit Final Assertion
 Endpoint at the server.

 The message must be signed by the server.

 The parameters of this message consists of the following:

 * message_type REQUIRED. It MUST be the value
 urn:ietf:satp:msgtype:commit-final-msg.

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen earlier
 by client in the Initialization Request Message.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

 * client_identity_pubkey REQUIRED. The client who sent this
 message.

 * server_identity_pubkey REQUIRED. The server for whom this message
 is intended.

 * burn_assertion_claim REQUIRED. The burn assertion signed claim or
 statement by the client.

 * burn_assertion_claim_format OPTIONAL. The format of the claim.

 * hash_prev_message REQUIRED. The hash of previous message.

 * client_transfer_number OPTIONAL. This is the transfer
 identification number chosen by the client. This number is
 meaningful only the client.

 * client_signature REQUIRED. The digital signature of the client.

Hargreaves, et al. Expires 10 January 2024 [Page 27]

Internet-Draft SATP Core July 2023

9.4. Commit-Final Acknowledgement Receipt Message (ACK-Final-Receipt)

 The purpose of this message is to indicate to the client that the
 server has completed the assignment of the newly minted asset to the
 intended beneficiary at the destination network.

 This message is sent from the server to the Commit Final Receipt
 Endpoint at the client.

 The message must be signed by the server.

 The parameters of this message consists of the following:

 * message_type REQUIRED. It MUST be the value
 urn:ietf:satp:msgtype:ack-commit-final-msg.

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen earlier
 by client in the Initialization Request Message.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

 * client_identity_pubkey REQUIRED. The client for whom this message
 is intended..

 * server_identity_pubkey REQUIRED. The server who sent this
 message.

 * assignment_assertion_claim REQUIRED. The claim or statement by
 the server that the asset has been assigned by the server to the
 intended beneficiary.

 * assignment_assertion_claim_format OPTIONAL. The format of the
 claim.

 * hash_prev_message REQUIRED. The hash of previous message.

 * server_transfer_number OPTIONAL. This is the transfer
 identification number chosen by the server. This number is
 meaningful only the server.

 * server_signature REQUIRED. The digital signature of the server.

Hargreaves, et al. Expires 10 January 2024 [Page 28]

Internet-Draft SATP Core July 2023

9.5. Transfer Complete Message

 The purpose of this message is for the client to indicate to the
 server that the asset transer session (identified by session_id) has
 been completed and that no further messages are to be expected from
 the client in regards to this transfer instance.

 The message closes the first message of Stage 2 (Transfer Commence
 Message).

 This message is sent from the client to the Transfer Complete
 Endpoint at the server.

 The message must be signed by the client.

 The parameters of this message consists of the following:

 * message_type REQUIRED. It MUST be the value
 urn:ietf:satp:msgtype:commit-transfer-complete-msg.

 * session_id REQUIRED: A unique identifier (UUIDv2) chosen earlier
 by client in the Initialization Request Message.

 * transferContext_id OPTIONAL: An optional identifier (UUIDv2) used
 to identify the current transfer session at the application layer.

 * client_identity_pubkey REQUIRED. The client who sent this
 message.

 * server_identity_pubkey REQUIRED. The server for whom this message
 is intended.

 * hash_prev_message REQUIRED. The hash of previous message.

 * hash_transfer_commence REQUIRED. The hash of the Transfer
 Commence message at the start of Stage 2.

 * client_transfer_number OPTIONAL. This is the transfer
 identification number chosen by the client. This number is
 meaningful only the client.

 * client_signature REQUIRED. The digital signature of the client.

10. SATP Session Resumption

 This section answers the question how can a backup gateway build
 trust with the counter party gateway to resume the execution of the
 protocol, in the presence of errors and crashes?

Hargreaves, et al. Expires 10 January 2024 [Page 29]

Internet-Draft SATP Core July 2023

 Gateways may enter faulty state at any time while execution the
 protocol. The faulty state can manifest itself by incorrect
 behaviour, leading to gateways emitting alerts and errors.

 In some instances, gateways may crash. We employ either the primary-
 backup or self-healing paradigm, meaning that the crashed gateway
 will eventually be replaced by a functioning one, or recover,
 respectively.

 When a crash occurs, we initiate a recovery procedure by the backup
 gateway or the recovered gateway, as defined in the crash recovery
 draft [draft-belchior-gateway-recovery-05]. In either case, if the
 recovery happens within a time period d efined as max_timeout (in
 Stage 2), the recovered gateway triggers a session resumption. The
 schema and order of the recovered messages is specified in the crash
 recovery draft.

 In the case where there is no answer from the gateway within the
 specified max_timeout, the counter-party gateway rollbacks the
 process until that stage. Upon recovery, the crashed gateway learns
 that the counterparty gateway has initated a rollback, and it
 proceeds accordingly (by also initating a rollback). Note that
 rollbacks can also happen in case of unresolved errors.

 The non-crashed gateway that conducts the rollback tries to
 communicate with the crashed gateway from time to time (self healing)
 or to contact the backup gateways (primary-backup). In any case, and
 upon the completion of a rollback, the non-crashed gateway sends a
 ROLLBACK message to the recovered gateway to notify that a rollback
 happened. The recovered gateway should answer with ROLLBACK-ACK.

 Since the self-healing recovery process does not require changes to
 the protocol (since from the counterparty gateway perspective, the
 sender gateway is just taking longer than normal; there are no new
 actions done or logs recorded), we focus on the primary-backup
 paradigm.

10.1. Primary-Backup Session Resumption

 Upon a gateway recovering using primary-backup, a new gateway
 (recovered gateway) takes over the crashed gateway. The counter-
 party gateway assures that the recovered gateway is legitimate
 (according to the crash recovery specification).

 After the recovery, the gateways exchange information about their
 current view of the protocol, since the crashed gateway may have been
 in the middle of executing the protocol when it crashed.

Hargreaves, et al. Expires 10 January 2024 [Page 30]

Internet-Draft SATP Core July 2023

 After that, the gateways agree on the current state of the protocol.

10.2. Recovery Messages

 We have omitted the logging procedure (only focusing the different
 messages). As defined in the crash recovery draft [draft-belchior-
 gateway-recovery-05], there are a set of messages that are exchanged
 between the recovered gateway and counterparty gateway:

 * RECOVER: when a gateway crashes and recovers, it sends a RECOVER
 message to the counterparty gateway, informing them of its most
 recent state. The message contains various parameters such as the
 session ID, message type, SATP phase, sequence number, a flag
 indicating if the sender is a backup gateway, the new public key
 if the sender is a backup, the timestamp of the last known log
 entry, and the sender’s digital signature.

 * RECOVER-UPDATE: Upon receiving the RECOVER message, the
 counterparty gateway sends a RECOVER-UPDATE message. This message
 carries the difference between the log entry corresponding to the
 received sequence number from the recovered gateway and the latest
 sequence number (corresponding to the latest log entry). The
 message includes parameters such as the session ID, message type,
 the hash of the previous message, the list of log messages that
 the recovered gateway needs to update, and the sender’s digital
 signature.

 * RECOVER-SUCCESS: The recovered gateway responds with a RECOVER-
 SUCCESS message if its logs have been successfully updated. If
 there are inconsistencies detected, the recovered gateway
 initiates a dispute with a RECOVER-DISPUTE message. The message
 parameters include session ID, message type, the hash of the
 previous message, a boolean indicating success, a list of hashes
 of log entries that were appended to the recovered gateway log,
 and the sender’s digital signature.

 In case the recovery procedure has failed and a rollback process is
 needed, the following messages are used:

 * ROLLBACK: A gateway that initiates a rollback sends a ROLLBACK
 message. The message parameters include session ID, message type,
 a boolean indicating success, a list of actions performed to
 rollback a state (e.g., UNLOCK, BURN), a list of proofs specific
 to the DLT [SATP], and the sender’s digital signature.

Hargreaves, et al. Expires 10 January 2024 [Page 31]

Internet-Draft SATP Core July 2023

 * ROLLBACK-ACK: Upon successful rollback, the counterparty gateway
 sends a ROLLBACK-ACK message to the recovered gateway
 acknowledging that the rollback has been performed successfully.
 The message parameters are similar to those of the ROLLBACK
 message.

11. Error Messages

 SATP SATP distinguishes between application driven closures
 (terminations) and those caused by errors at the SATP protocol level.

 The list of errors and desciption can be found in the Appendix.

 enum { session_closure(1), nonfatal_error (2) fatal_error(3), (255) } AlertLeve
l;

 enum {
 close_notify(0),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 TBD
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

 Figure 3

11.1. Closure Alerts

 The SATP client and server (gateways) must share knowledge that the
 transfer connection is ending in order to avoid third party attacks.

 (a) close_notify: This alert notifies the recipient that the sender
 gateway will not send any more messages on this transfer connection.
 Any data received after a closure alert has been received MUST be
 ignored.

Hargreaves, et al. Expires 10 January 2024 [Page 32]

Internet-Draft SATP Core July 2023

 (b) user_canceled: This alert notifies the recipient that the sender
 gateway is canceling the transfer connection for some reason
 unrelated to a protocol failure.

11.2. Error Alerts

 When an error is detected by a SATP gateway, the detecting gateway
 sends a message to its peer.

 Upon transmission or receipt of a fatal alert message, both gateways
 MUST immediately close the connection. Whenever a SATP
 implementation encounters a fatal error condition, it SHOULD send an
 appropriate fatal alert and MUST close the connection without sending
 or receiving any additional data.

 The following error alerts are defined:

 * connection_error: There is an error in the TLS session
 establishment (TLS error codes should be reported-up to gateway
 level)

 * bad_certificate: The gateway certificate was corrupt, contained
 signatures, that did not verify correctly, etc. (Some common TLS
 level errors: unsupported_certificate, certificate_revoked,
 certificate_expired, certificate_unknown, unknown_ca).

 * protocol_version_error: The SATP protocol version the peer has
 attempted to negotiate is recognized but not supported.

 * (Others TBD)

12. Security Consideration

 Gateways are of particular interest to attackers because they are a
 kind of end-to-end pipeline that enable the transferral of digital
 assets to external networks or systems. Thus, attacking a gateway
 may be attractive to attackers instead of the network behind a
 gateway.

 As such, hardware hardening technologies and tamper-resistant crypto-
 processors (e.g. TPM, Secure Enclaves, SGX) should be considered for
 implementations of gateways.

13. IANA Consideration

 (TBD)

Hargreaves, et al. Expires 10 January 2024 [Page 33]

Internet-Draft SATP Core July 2023

14. Appendix A: Error Types

 The following lists the error associated with each message in SATP.

 (Note: these have been laid out for convenience, and may be grouped
 together more efficiently later).

14.1. Transfer Commence and Response errors

 The following are the list of errors related to Transfer Commence and
 Response:

 * [err_2.1] Badly formed message.

 * [err_2.2] Incorrect parameter.

 * [err_2.3] ACK mismatch.

14.2. Lock Assertion errors

 The following are the list of errors related to Lock Assertion:

 * [err_2.4.1] Badly formed message: badly formed Claim.

 * [err_2.4.2] Badly formed message: bad signature.

 * [err_2.4.3] Badly formed message: wrong transaction ID.

 * [err_2.4.4] Badly formed message: Mismatch hash values.

 * [err_2.4.5] Expired signing-key certificate.

 * [err_2.4.6] Expired Claim.

14.3. Lock Assertion Receipt errors

 The following are the list of errors related to Lock Assertion
 Receipt:

 * [err_2.6.1] Badly formed message: badly formed Claim.

 * [err_2.6.2] Badly formed message: bad signature.

 * [err_2.6.3] Badly formed message: wrong transaction ID.

 * [err_2.6.4] Badly formed message: Mismatch hash values.

 * [err_2.6.5] Expired signing-key certificate.

Hargreaves, et al. Expires 10 January 2024 [Page 34]

Internet-Draft SATP Core July 2023

 * [err_2.6.6] Expired Claim.

14.4. Commit Preparation errors

 The following are the list of errors related to Commit Preparation:

 * [err_3.1.1] Badly formed message: wrong transaction ID.

 * [err_3.1.2] Badly formed message: mismatch hash value (i.e. from
 msg 2.6).

 * [err_3.1.3] Incorrect parameter.

 * [err_3.1.4] Message out of sequence.

14.5. Commit Preparation Acknowledgement errors

 The following are the list of errors related to Commit Preparation
 Acknowledgement:

 * [err_3.2.1] Badly formed message: wrong transaction ID.

 * [err_3.2.2] Badly formed message: mismatch hash value.

 * [err_3.2.3] Incorrect parameter.

 * [err_3.2.4] Message out of sequence.

14.6. Commit Ready errors

 The following are the list of errors related to Commit Ready:

 * [err_3.4.1] Badly formed message: wrong transaction ID.

 * [err_3.4.2] Badly formed message: mismatch hash value.

 * [err_3.4.3] Incorrect parameter.

 * [err_3.4.4] Message out of sequence (ACK mismatch).

14.7. Commit Final Assertion errors

 The following are the list of errors related to Commit Final
 Assertion:

 * [err_3.6.1] Badly formed message: badly formed Claim.

 * [err_3.6.2] Badly formed message: bad signature.

Hargreaves, et al. Expires 10 January 2024 [Page 35]

Internet-Draft SATP Core July 2023

 * [err_3.6.3] Badly formed message: wrong transaction ID.

 * [err_3.6.4] Badly formed message: Mismatch hash values.

 * [err_3.6.5] Expired signing-key certificate.

 * [err_3.6.6] Expired Claim.

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, DOI 10.17487/RFC2234,
 November 1997, <https://www.rfc-editor.org/info/rfc2234>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

15.2. Informative References

 [draft-belchior-gateway-recovery-05]
 Belchior, R., Correia, M., Augusto, A., and T. Hardjono,
 "DLT Gateway Crash Recovery Mechanism", Work in Progress,
 Internet-Draft, draft-belchior-gateway-recovery-05, 19
 April 2023, <https://datatracker.ietf.org/doc/html/draft-
 belchior-gateway-recovery-05>.

 [NIST] Yaga, D., Mell, P., Roby, N., and K. Scarfone, "NIST
 Blockchain Technology Overview (NISTR-8202)", October
 2018, <https://doi.org/10.6028/NIST.IR.8202>.

 [RFC5939] Andreasen, F., "Session Description Protocol (SDP)
 Capability Negotiation", RFC 5939, DOI 10.17487/RFC5939,
 September 2010, <https://www.rfc-editor.org/info/rfc5939>.

Authors’ Addresses

 Martin Hargreaves
 Quant Network
 Email: martin.hargreaves@quant.network

Hargreaves, et al. Expires 10 January 2024 [Page 36]

Internet-Draft SATP Core July 2023

 Thomas Hardjono
 MIT
 Email: hardjono@mit.edu

 Rafael Belchior
 Technico Lisboa
 Email: rafael.belchior@tecnico.ulisboa.pt

Hargreaves, et al. Expires 10 January 2024 [Page 37]

	draft-ietf-satp-architecture-02
	draft-ietf-satp-core-02

