
Transfer dIGital cREdentialS Securely E. Rescorla
Internet-Draft Windy Hill Systems, LLC
Intended status: Informational B. Lassey
Expires: 25 March 2024 Google
 22 September 2023

 Transferring Digital Credentials with HTTP
 draft-rescorla-tigress-http-00

Abstract

 There are many systems in which people use "digital credentials" to
 control real-world systems, such as digital car keys, digital hotel
 room keys, etc. In these settings, it is common for one person to
 want to transfer their credentials to another, e.g., to share your
 hotel key. It is desirable to be able to initiate this transfer with
 a single message (e.g., SMS) which kicks off the transfer on the
 receiver side. However, in many cases the credential transfer itself
 cannot be completed over these channels, e.g., because it is too
 large or because it requires multiple round trips. However, the
 endpoints cannot speak directly to each other and may not even be
 online at the same time. This draft defines a mechanism for
 providing an appropriate asynchronous channel using HTTP as a
 dropbox.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at
 https://ekr.github.io/draft-rescorla-tigress-http/draft-rescorla-
 tigress-http.html. Status information for this document may be found
 at https://datatracker.ietf.org/doc/draft-rescorla-tigress-http/.

 Discussion of this document takes place on the Transfer dIGital
 cREdentialS Securely Working Group mailing list
 (mailto:tigress@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/tigress/. Subscribe at
 https://www.ietf.org/mailman/listinfo/tigress/.

 Source for this draft and an issue tracker can be found at
 https://github.com/ekr/draft-rescorla-tigress-http.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Rescorla & Lassey Expires 25 March 2024 [Page 1]

Internet-Draft TDCH September 2023

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 25 March 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Conventions and Definitions 3
 3. Overview of Operation . 3
 4. Architectural Model . 4
 5. Initiating Message . 5
 6. HTTP Binding . 5
 7. Message Format . 6
 8. Security Considerations 7
 9. IANA Considerations . 8
 10. References . 8
 10.1. Normative References 8
 10.2. Informative References 9
 Acknowledgments . 9
 Authors’ Addresses . 9

1. Introduction

 DISCLAIMER: This draft is work-in-progress and has not yet seen
 significant (or really any) security analysis. It should not be used
 as a basis for building production systems.

Rescorla & Lassey Expires 25 March 2024 [Page 2]

Internet-Draft TDCH September 2023

 There are many systems in which people use "digital credentials" to
 control real-world systems, such as digital car keys, digital hotel
 room keys, etc. Generally these are proprietary system-specific
 credentials are embedded in and used by a (potentially proprietary)
 mobile app. In these settings, it is common for one person to want
 to transfer their credentials to another, e.g., to share your hotel
 key with a family member.

 Although the credentials and transfer mechanisms are often
 proprietary they share a common workflow in which:

 1. The Sender initiates the transfer from their app and sends an
 invitation message over a preexisting channel such as SMS or
 e-mail.

 2. Bob receives the invitation message from Alice and hands it to
 his app (ideally this would happen automatically, e.g., by some
 URL handler).

 3. Bob uses the invitation message to contact Alice to complete the
 transfer. This may require multiple round trips between Alice
 and Bob. In addition, Alice or Bob may need to contact some
 external server, but this is out of scope for this protocol.

 The preexisting channel may not be suitable for completing the
 transfer, for instance because it has insufficient bandwidth. or
 because it requires manual intervention by the users. In addition,
 the participants may not be online simultaneously, so a "store-and-
 forward" channel is required. [I-D.ietf-tigress-requirements]
 describes the requirements in more detail. This document specifies
 how to build such a channel using a standard HTTP [RFC9110] server.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Overview of Operation

 Figure 1 provides a broad overview of the message flow:

Rescorla & Lassey Expires 25 March 2024 [Page 3]

Internet-Draft TDCH September 2023

 Alice HTTP Server Bob

 Initiating (R) -->
 PUT <L0> MSG0 ---------------->
 <-------------------- GET <L0>
 <----------------- DELETE <L0>
 <--------------- PUT <L1> MSG1
 GET <L1> --------------------->
 <------------------------- MSG1
 DELETE <MSG1> ---------------->
 ...

 Figure 1: Overview of Operation

 In order to initiate the transfer, Alice generates a random secret
 value R. She then does the following:

 1. Sends R and the address of the HTTP server to Bob over the
 preexisting channel.

 2. Generates the first protocol message MSG0 and stores it in a
 location on the HTTP server (L0) pseudorandomly generated from R.

 When Bob receives the initiating message, he uses R to determine L0,
 retrieves it from the server, and then deletes it. In order to send
 a message (MSG1) to Alice, Bob stores it at a new pseudorandom
 location L1 (again, based on R). Alice retrieves it and then deletes
 it. Any further message exchanges proceed in the same fashion.

4. Architectural Model

 The overall system has the following architecture:

 +---+
 | Credential Exchange Protocol (proprietary) |
 +---+
 | Protected Message Format (Section TODO) |
 +---+
 | HTTP Binding (Section TODO) |
 +---+

 The lowest level of operation is a binding to HTTP specifying how to
 use an HTTP server as a store-and-forward channel, specified in
 Section 6. That channel is then used to carry encrypted messages in
 the format defined in Section 7. Those messages contain an opaque
 payload that is used by the relevant proprietary credential exchange
 protocol.

Rescorla & Lassey Expires 25 March 2024 [Page 4]

Internet-Draft TDCH September 2023

5. Initiating Message

 The initiating message needs to contain at least the following three
 values:

 * A URI template. This MUST contain a single variable, named
 "tigress_location". [[TODO: Need to flesh this out some more.]]
 This template MUST be for an HTTPS URI.

 * A secret value R generated with a cryptographically secure PRNG
 [RFC4086] and containing at least 256 bits of entropy.

 * The AEAD algorithm defined using TLS 1.3 cipher suites Section 8.4
 of [RFC8446].

 In practice, it will probably contain other information such as the
 type of credential to be transferred and perhaps some human-readable
 context. These values are out of topic for this specification.

 The initiating message SHOULD be delivered over a secure channel but
 this protocol provides limited security even when that does not
 happen (see Section 8).

6. HTTP Binding

 The basic concept of the HTTP binding is very simple. In order for
 endpoint A to send a message to endpoint B, A does a PUT to a
 resource in a predefined secret location. B then does a GET to
 retrieve the resource and a DELETE to remove it. Receivers MUST
 delete messages immediately after they have retrieved them.

 [[OPEN ISSUE: Polling is bad, so we’re going to need some kind of
 notification mechanism, but this document doesn’t specify that.]]

 HTTP requests MUST not contain information from other context (e.g.,
 browser cookies). [[OPEN ISSUE: Can it contain other authentication
 information, for instance for attestation.]]

 The URL for message i is generated as follows, using the HKDF-Expand-
 Label function from TLS 1.3 [RFC8446].

 U_i = HKDF-Expand-Label(R, "Location",
 Transcript, 256)

 [[OPEN ISSUE: This construction puts some secret information (the
 nonces from the previous messages) in the transcript. Maybe we
 should instead do a combiner?]]

Rescorla & Lassey Expires 25 March 2024 [Page 5]

Internet-Draft TDCH September 2023

 Where "Transcript" is the concatenation of the plaintext of all
 previous messages and HKDF-Expand-Label uses the hash from the
 defined cipher suite.

 The URL is then generated by subsituting the URL-safe base64 encoding
 [RFC4648] for the "tigress_location" variable in the URL template.

 [[OPEN ISSUE: What is the media type of the message?]]

 HTTP servers used for this protocol MUST NOT allow enumeration of
 resources that match the URL template.

 This protocol operates in a lock-step "ping-pong" fashion. Each
 endpoint can send exactly one message and then must wait for the
 other side to reply before sending another. The sender of the
 credential speaks first.

7. Message Format

 All messages are encrypted using the AEAD algorithm specified by the
 cipher suite, formatted as an O-HTTP "Encapsulated Response"
 Section 4.2 of [I-D.ietf-ohai-ohttp]). The "nonce" MUST be
 pseudorandomly generated.

 The encryption key is generated as follows:

 K_i = HKDF-Expand-Label(R, "Key",
 Transcript, 256)

 The plaintext of the message is as follows (using TLS syntax):

 struct {
 opaque random<0..255>;
 uint16 message_id;
 opaque message<0..2^32-1>;
 } TigressPlaintext;

 These fields have the following values:

 random A cryptographically random field. The first message in each
 direction MUST have a random value of at least 16 octets.
 Subsequent messages MAY contain random values of at any length.

 message_id The sequence number of the message, starting from 0 and

Rescorla & Lassey Expires 25 March 2024 [Page 6]

Internet-Draft TDCH September 2023

 incrementing with each message in the exchange. This space is
 shared and so in practice even numbers are from the credential
 sender and odd numbers from the receiver. [[OPEN ISSUE: Do we
 need this? It’s basically a double check because the system
 guarantees uniqueness.]]

 message The proprietary credential exchange message.

 Upon receiving a message, an endpoint MUST first deprotect it using
 the correct key and algorithm. If AEAD deprotection fails, it MUST
 signal an error and abort the protocol run.

 Endpoints MUST check that the message_id has the expected value and
 that the random values are of the right length must signal an error
 and abort the protocol run if they are incorrect.

8. Security Considerations

 The protocol is intended to guarantee the following properties:

 1. In order to determine the location of a message, an entity must
 know both R and the plaintext of every previous message.

 2. In order to decrypt a message, an entity must know both R and the
 plaintext of every previous message.

 If R is delivered over a secure channel, then an attacker should not
 be able to read any message or inject a new one. Because the HTTP
 server sees messages when they are stored it can delete them or
 replace them with an invalid message, but because it does not have R
 it cannot generate a new valid message or replay an old one. The
 result of this attack is to cause the credential exchange to fail.
 An attacker other than the server does not know the location of the
 resource and therefore cannot even store bogus values. If the

 An attacker who learns R prior to the protocol exchange can simply
 impersonate the receiver. This is why R should be sent over a secure
 channel. If it is necessary to send R over an insecure channel then
 some other mechanism is required to prevent this attack. [[OPEN
 ISSUE: this is not great, but it seems to be the assumed setting
 based on list discussion.]]

 An attacker who learns R after the receiver has retrieved and and
 deleted the first message will not have the random value from MSG0
 and therefore will not be able to determine either the location and
 encryption key for MSG1, so cannot forge their own message to the
 sender or any future message. Note that an attacker who learns R
 after the receiver has retrieved MSG0 but before they have deleted it

Rescorla & Lassey Expires 25 March 2024 [Page 7]

Internet-Draft TDCH September 2023

 and replied can race the receiver to respond. If they win the race,
 then they will be able to complete the protocol exchange with the
 sender and the receiver will be locked out. This is why it is
 important for the receiver to delete MSG0 immediately upon retrieval.

 The reason for including the transcript of all previous messages in
 the next key and URL is that it straightforwardly includes the random
 values which each side must send in their first message. It also
 serves to bind each message to those that came before it, though this
 does not have a straightforward security rationale. Note that if any
 message is lost, then the entire exchange fails and so the HTTP
 server is assumed to be reliable. This is one reason why the delete
 is explicit rather than a side effect, thus avoiding issues where the
 retrieval of a message fails but the server thinks it succeeded and
 deletes the message.

9. IANA Considerations

 This document has no IANA actions.

10. References

10.1. Normative References

 [I-D.ietf-ohai-ohttp]
 Thomson, M. and C. A. Wood, "Oblivious HTTP", Work in
 Progress, Internet-Draft, draft-ietf-ohai-ohttp-10, 25
 August 2023, <https://datatracker.ietf.org/doc/html/draft-
 ietf-ohai-ohttp-10>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/rfc/rfc4086>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/rfc/rfc4648>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Rescorla & Lassey Expires 25 March 2024 [Page 8]

Internet-Draft TDCH September 2023

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [RFC9110] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9110>.

10.2. Informative References

 [I-D.ietf-tigress-requirements]
 Vinokurov, D., Astiz, C., Pelletier, A., Karandikar, Y.,
 and B. Lassey, "Transfer Digital Credentials Securely -
 Requirements", Work in Progress, Internet-Draft, draft-
 ietf-tigress-requirements-00, 9 August 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-tigress-
 requirements-00>.

Acknowledgments

 Thanks to Chris Wood and Martin Thomson for helpful discussions.

Authors’ Addresses

 Eric Rescorla
 Windy Hill Systems, LLC
 Email: ekr@rtfm.com

 Brad Lassey
 Google
 Email: lassey@google.com

Rescorla & Lassey Expires 25 March 2024 [Page 9]

Transfer dIGital cREdentialS Securely D. Vinokurov
Internet-Draft Y. Karandikar
Intended status: Standards Track M. Lerch
Expires: 14 July 2024 A. Pelletier
 Apple Inc
 N. Sha
 Alphabet Inc
 11 January 2024

 Transfer Digital Credentials Securely
 draft-vinokurov-tigress-http-00

Abstract

 Digital Credentials allow users to access Homes, Cars or Hotels using
 their mobile devices. Once a user has a Credential on a device,
 sharing it to others is a natural use case. Process of sharing
 credentials should be secure, privacy preserving and have a seamless
 user experience. To facilitate Credential sharing, a new transport
 is required. This document defines that new transport to meet unique
 requirements of sharing a Credential.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at
 https://datatracker.ietf.org/doc/draft-vinokurov-tigress-http/.
 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-vinokurov-tigress-http/.

 Discussion of this document takes place on the Transfer dIGital
 cREdentialS Securely Working Group mailing list
 (mailto:tigress@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/tigress/. Subscribe at
 https://www.ietf.org/mailman/listinfo/tigress/.

 Source for this draft and an issue tracker can be found at
 https://github.com/dimmyvi/tigress.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Vinokurov, et al. Expires 14 July 2024 [Page 1]

Internet-Draft Tigress January 2024

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 2. Conventions & Definitions 5
 2.1. General Terms . 5
 3. Sharing Process . 6
 3.1. Some Example Use Cases 6
 3.2. Credential Sharing Flow 6
 3.3. Relay Server Design Requirements 7
 4. Relay Server Design . 8
 4.1. Design Elements . 8
 4.2. API connection details 9
 4.3. Sharing Flow With API calls 9
 5. HTTP Headers . 13
 5.1. Mailbox-Request-ID 13
 5.2. Mailbox-Device-Claim 13
 5.3. Mailbox-Device-Attestation 13
 6. HTTP access methods . 13
 6.1. CreateMailbox . 14
 6.1.1. Endpoint . 14
 6.1.2. Request Parameters: 14
 6.1.3. Consumes . 14

Vinokurov, et al. Expires 14 July 2024 [Page 2]

Internet-Draft Tigress January 2024

 6.1.4. Produces . 14
 6.1.5. Request body . 14
 6.1.6. Responses . 17
 6.2. UpdateMailbox . 17
 6.2.1. Endpoint . 18
 6.2.2. Request Parameters 18
 6.2.3. Consumes . 18
 6.2.4. Produces . 18
 6.2.5. Request body . 18
 6.2.6. Responses . 19
 6.3. DeleteMailbox . 20
 6.3.1. Endpoint . 20
 6.3.2. Request Parameters 20
 6.3.3. Responses . 21
 6.4. ReadDisplayInformationFromMailbox 21
 6.4.1. Endpoint . 21
 6.4.2. Request Parameters 21
 6.4.3. Produces . 21
 6.4.4. Responses . 21
 6.5. ReadSecureContentFromMailbox 22
 6.5.1. Endpoint . 22
 6.5.2. Request Parameters 22
 6.5.3. Produces . 23
 6.5.4. Responses . 23
 6.6. RelinquishMailbox . 24
 6.6.1. Endpoint . 24
 6.6.2. Request Parameters 24
 6.6.3. Responses . 24
 7. Provisioning Information Structure 25
 7.1. Provisioning Information Format 25
 7.2. Provisioning Information Encryption 26
 7.3. Share URL . 27
 7.3.1. Credential Vertical in Share URL 28
 8. Security Considerations 29
 8.1. Relay Server defined in this document 29
 8.1.1. Confidentiality & Integrity 29
 8.1.2. Network attacks 29
 8.1.3. Privacy Considerations 29
 8.2. Clients of Relay Server 30
 8.2.1. Confidentiality & Integrity 30
 8.2.2. Privacy Considerations 30
 8.3. Overall System . 31
 8.3.1. Initiator shares with the wrong Recipient 31
 8.3.2. Malicious Recipient forwards the share to 3rd party
 without redeeming it or the Recipient’s device is
 compromised. . 31
 8.3.3. Invitation Channel Security 31
 9. IANA Considerations . 32

Vinokurov, et al. Expires 14 July 2024 [Page 3]

Internet-Draft Tigress January 2024

 10. References . 32
 10.1. Normative References 32
 10.2. Informative References 33
 Appendix A. Contributors . 33
 Appendix B. Acknowledgments 33
 Authors’ Addresses . 34

1. Introduction

 Mobile devices with ever increasing computational power and security
 capabilities are enabling various use cases. One such category
 includes use of mobile devices to gain access to a property that a
 user owns or rents or is granted access to. The cryptographic
 material and other data required to enable this use case is termed as
 Digital Credential.

 Based on type of property, various public or proprietary standards
 govern details of Digital Credentials. These sets of standards and
 the bodies setting them are collectively termed as Verticals. The
 details include policies, mechanism and practices to create, maintain
 and use Digital Credentials. The process of getting a Digital
 Credential on a mobile device is termed as Provisioning.

 Once a user has a Digital Credential provisioned on their mobile
 device, sharing it to others is a natural use case. Sharing a
 Credential should feel like a natural extension of regular
 communication methods (like instant messaging, sms, email). The user
 experience of sharing a Credential should be intuitive, similar to
 sharing other digital assets like photos or documents. The sharing
 process should be secure and privacy preserving.

 Credentials pose two unique requirements that differ from sharing
 other digital assets. The Initiator and Recipient devices may need
 to communicate back and forth to transfer the necessary Provisioning
 Information. The Provisioning Information exchange must be limited
 to Initiator device and the first Recipient device to claim the
 information.

 To achieve these goals, a new transport is necessary. This document
 defines HTTP [RFC9110] based API to create such a transport, termed
 as Relay Server. The document also defines data in JSON standard
 [RFC8259] to enable a uniform user experience for securely sharing
 Digital Credentials of various types.

Vinokurov, et al. Expires 14 July 2024 [Page 4]

Internet-Draft Tigress January 2024

2. Conventions & Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.1. General Terms

 * Digital Credential (or simply Credential) - Cryptographic material
 and other data used to authorize User with an access point. The
 cryptographic material can also be used for mutual authentication
 between user device and access point.

 * Digital Credential Vertical (or simply Vertical) - The public or
 proprietary standards that that define details of Digital
 Credentials for type of property accessed. The details include
 policy, process and mechanism to create, maintain and use Digital
 Credentials in the given Vertical.

 * Provisioning - A Vertical defined process of adding a new Digital
 Credential to the device.

 * Provisioning Entity - An entity that facilitates creation, update
 and termination (Lifecycle Management) of the Credential. Based
 on Vertical, the role of Provisioning Entity may be played by
 various actors in various stages of Credential lifecycle.

 * Provisioning Information - data transferred from Initiator to
 Recipient that is both necessary and sufficient for the Recipient
 to Provision a Credential.

 * Initiator - User and their device initiating a transfer of
 Provisioning Information to a Recipient.

 * Recipient - User and their device that receives Provisioning
 Information and uses it to provision a new Credential.

 * Relay Server - an intermediary server that provides a standardized
 and platform-independent way of transferring Provisioning
 Information between Initiator and Recipient, acting as a temporary
 store and forward service. This is the new transport defined by
 this document.

 * Secret - a symmetric encryption key shared between an Initiator
 and Recipient device. It is used to encrypt Provisioning
 Information stored on the Relay server.

Vinokurov, et al. Expires 14 July 2024 [Page 5]

Internet-Draft Tigress January 2024

3. Sharing Process

3.1. Some Example Use Cases

 * Amit owns a car that supports Digital Credentials. Being a tech
 enthusiast, he has the Credential provisioned on his mobile
 device. Amit can now use his mobile device to lock/unlock and
 operate his car. One Monday he is out of town and realizes that
 his car needs to be moved for street cleaning. He asks his
 neighbor Bob for help via their favorite instant messaging method.
 As Bob agrees, Amit shares the Digital Credential to Bob via the
 next instant message. Bob accepts the Credential and uses his
 mobile device to unlock Amit’s car and drive it to the other side
 of street.

 * Alice booked a room at a hotel that supports Digital Credentials.
 Being a frequent traveller, she has the Digital Credential
 provisioned on her mobile device. As her flight gets delayed, she
 realizes that her partner Bakari will reach the hotel first. So
 she shares the Digital Credential with him over email. Bakari
 sees the email after his flight lands and he accepts the shared
 Credential. On his arrival to the hotel, Bakari is able to access
 common areas and their room using his mobile device.

3.2. Credential Sharing Flow

 A simplified sharing flow is shown in the sequence diagram below.
 Initiator (User) sends an invitation to share a Credential over their
 preferred communication method. Recipient (user) accepts the
 Credential share invitation. Then the two devices go back and forth
 as necessary to transfer Provisioning Information without further
 interaction by user. After the transfer is complete Recipient device
 gets the Credential Provisioned according to Vertical defined
 process.

 "
 "

 Initiator Device Relay Se
rver Recipient Device
 Initiator User
 Recipient User
 Initiate Credential Share

 >

 create a mailbox, establish Initiator clai
m
 >

Vinokurov, et al. Expires 14 July 2024 [Page 6]

Internet-Draft Tigress January 2024

 Invitation to accep
t Credential
 over IM, sms, emai
l etc
 >

 accept the Credential

 <

 establish Recipient claim

 <

 LOOP Transfer

 request Provisioning Information

 <

 Forward request

 <

 Provisioning Information response

 >

 forward response

 >

 Finish Credential Provisioning
 Initiator User Recipien
t User
 Initiator Device Relay Se

rver Recipient Device
 "
 "

3.3. Relay Server Design Requirements

 Based on the sharing flow, we can see that Relay server is an
 important component of the credential Sharing flow. Relay server
 design needs to adhere to following requirements :

 * Relay server SHALL provide confidentiality and integrity to the
 transfer of Provisioning Information.

Vinokurov, et al. Expires 14 July 2024 [Page 7]

Internet-Draft Tigress January 2024

 * Transfer of Provisioning Information MAY require several round
 trips. Relay server SHALL guarantee round trip communication
 between initiator device and first device to establish Recipient
 claim.

 * Relay Server SHALL support flow of information that MAY NOT always
 be in turn taking fashion. Same party SHALL be allowed to send
 back to back messages. E.g. a cancel message may be sent by same
 party that sent the previous message.

 * User involvement in the process needs to be minimal for a seamless
 user experience. A lay user is expected to be unaware of Relay
 Server (similar to any transport protocols like TCP/IP). So Relay
 Server SHALL be able to function without user interaction.

 * Initiator and Recipient MAY NOT be online at the same time. So
 Relay Server SHALL be able to store and forward data. It is
 RECOMMENDED to have notification mechanism for snappy user
 experience.

 * To protect user privacy, Relay server SHALL NOT require any
 identifying information of the 2 parties involved in the transfer.

 * Relay Server SHALL allow encrypted data (that can not be
 deciphered by the Relay Server itself) to be stored and
 transferred.

 * Relay Server MAY host multiple mailboxes at the same time, each
 bound to various pairs of Initiator and Recipient Devices. Relay
 Server SHALL not be able to relate the devices across various
 mailboxes.

 * User preferred communication methods need to be allowed for
 invitation delivery. It’s assumed that user is familiar with them
 and trusts them to be secure enough to deliver messages to
 intended recipient. But security properties of the methods can
 not be taken for granted in the design of the Relay Server.
 Verticals can require second factor to authenticate Recipient if
 they deem it necessary. Policies and mechanisms for this second
 factor are in the realm of the Verticals and outside the scope of
 this document.

4. Relay Server Design

4.1. Design Elements

 * Mailbox - A place to store data on the Relay Server. A reader can
 also read the data from mailbox.

Vinokurov, et al. Expires 14 July 2024 [Page 8]

Internet-Draft Tigress January 2024

 * MailboxIdentifier - a unique identifier for the given mailbox,
 generated by the Relay server at the time of mailbox creation.
 The value is a UUID [RFC4122].

 * Device Claim - a unique token allowing the caller to read from /
 write data to the mailbox. Initiator Device generates a Device
 Claim and presents it to the Relay Server at time of mailbox
 creation. Relay server creates a mailbox, and binds it to
 Initiator’s Device Claim. Recipient Device generates a Device
 Claim and presents it to the Relay Server, at time of first read
 from mailbox. Relay server binds the mailbox to the Recipient’s
 Device Claim. Thus, both Initiator and Recipient devices are
 bound to the mailbox (allowed to read from / write to it). Only
 Initiator and Recipient devices that present valid Device Claims
 are allowed to send subsequent read/update/delete calls to the
 mailbox. The value SHALL be a unique UUID [RFC4122]. Initiator
 and Recipient MUST use different values for Device Claim.
 Implementation SHOULD assign unique values for new mailboxes
 (avoid re-using values).

 * Notification Token - a short or long-lived unique token stored by
 the Initiator or Recipient Device in a mailbox on the Relay
 server. This allows Relay server to send a push notification to
 the Initiator or Recipient Device, informing them of updates in
 the mailbox.

4.2. API connection details

 The Relay server API endpoint MUST be accessed over HTTP using an
 https URI [RFC2818] and SHOULD use the default https port. This
 ensures confidentiality property of the transfer process.

 Request and response bodies SHALL be formatted as either JSON or HTML
 (based on the API endpoint). The communication protocol used for all
 interfaces SHALL be HTTPs.

 All Strings SHOULD be UTF-8 encoded (Unicode Normalization Form C
 (NFC)).

 An API version SHOULD be included in the URI for all interfaces. The
 version at the time of this document’s latest update is v1. The
 version SHALL be incremented by 1 for major API changes or backward
 incompatible iterations on existing APIs.

4.3. Sharing Flow With API calls

 Sequence diagram below shows an example sharing flow with detailed
 API calls.

Vinokurov, et al. Expires 14 July 2024 [Page 9]

Internet-Draft Tigress January 2024

 * Initiator Device composes Provisioning Information and encrypts it
 with a Secret before storing it in a mailbox on Relay Server

 * Initiator Device generates a unique token - an Initiator Device
 Claim - to be sent to Relay Server. Initiator Device Claim allows
 the Initiator Device to read and write data to / from the mailbox,
 thus binding it to the mailbox.

 * Initiator Device can also create an optional notification token
 for the mailbox with the Relay Server. Relay Server can notify
 Initiator devices when other side has deposited data in mailbox
 that is ready to be read. This improves user experience over
 polling mechanism that the devices would have to use otherwise.

 * Initiator Device calls CreateMailbox API endpoint on a Relay
 server and provides Device Claim and optional Notification token.
 Relay server creates the mailbox and assigns a unique Mailbox
 Identifier generated using a good source of entropy (preferably
 hardware-based entropy).

 * A mailbox has limited lifetime configured with mandatory
 "expiration" parameter in mailboxConfiguration. When expired, the
 mailbox SHALL be deleted - refer to DeleteMailbox endpoint. Relay
 server SHALL be responsible to periodically check for mailboxes
 that are past the expiration time and delete them.

 * Relay server builds a unique URL link to a mailbox (for example,
 https://relayserver.example.com/v1/m/1234567890) and returns it
 to the Initiator Device.

 * Initiator sends this link as invitation to Recipient Device over
 communication method preferred by users.

 * Recipient Device, having obtained both the URL link and the
 Secret, is ready to read the mailbox upon user action.

 * Recipient Device generates a unique token - a Recipient Device
 Claim - to be sent to Relay Server. Recipient Device Claim allows
 the Recipient Device to read and write data to / from the mailbox,
 thus binding it to the mailbox.

 * Recipient Device can also create an optional notification token
 for the mailbox with the Relay Server for snappy user experience.

Vinokurov, et al. Expires 14 July 2024 [Page 10]

Internet-Draft Tigress January 2024

 * Recipient Device calls ReadSecureContentFromMailbox API endpoint
 on the Relay Server and provides Device Claim and optional
 Notification token. If this is the first Recipient claim, Relay
 server allows the read and binds the device to the mailbox. Thus
 establishing a connection between Initiator and Recipient devices
 facilitated by Relay Server.

 * Initiator Device or bound Recipient Device may delete the mailbox
 using the DeleteMailbox API call.

 "
 "

 Initiator Device
 Relay Server Recipient Device
 Initiator User
 Recipient User
 Share this Credential with Recipient User

 over communication method m_1

 >

 Create and encrypt Provisioning

 Info message_1 encrypted with Secret

 CreateMailbox

 (With DeviceClaim and Noti
fication token)
 >

 URL link to mai
lbox
 <

 URL link a
nd Secret
 over pref
erred communication method m_1

 >

 Accept the Credential

 <

 ReadSecureContentFromMailbox

 (With DeviceClaim)

 <

 encrypted info

 >

 Decrypt with Secret to get Provisioning Info message_1

Vinokurov, et al. Expires 14 July 2024 [Page 11]

Internet-Draft Tigress January 2024

 Generate Provision Info message_2

 encrypted with Secret

 UpdateMailbox(encrypted info)

 <

 OK

 >

 Push Notificat
ion
 <

 ReadSecureContentFro
mMailbox
 >

 encrypted inf
o
 <

 Decrypt with Secret to get Provision Info message_2

 Update with Provision Info message_3

 encrypted with Secret

 UpdateMailbox(encryp
ted info)
 >

 OK

 <

 Push Notification

 >

 ReadSecureContentFromMailbox

 <

 encrypted info

 >

 Decrypt with Secret for Provision Info message_3

 DeleteMailbox

 <

Vinokurov, et al. Expires 14 July 2024 [Page 12]

Internet-Draft Tigress January 2024

 OK

 >

 Finish Credential Provisioning
 Initiator User
 Recipient User
 Initiator Device
 Relay Server Recipient Device
 "
 "

5. HTTP Headers

5.1. Mailbox-Request-ID

 All requests to and from Relay server will have an HTTP header
 "Mailbox-Request-ID". The corresponding response to the API will
 have the same HTTP header, which SHALL echo the value in the request
 header. This is used to identify the request associated to the
 response for a particular API request and response pair. The value
 SHOULD be a UUID [RFC4122]. The request originator SHALL match the
 value of this header in the response with the one sent in the
 request. If response is not received, caller may retry sending the
 request with the same value of "Mailbox-Request-ID". Relay server
 SHOULD store the value of the last successfully processed "Mailbox-
 Request-ID" for each device based on the caller’s Device Claim. A
 key-value pair of "Device Claim" to "Mailbox-Request-ID" is suggested
 to store the last successfully processed request for each device. In
 case of receiving a request with duplicated "Mailbox-Request-ID",
 Relay SHOULD respond to the caller with status code 201, ignoring the
 duplicate request body content.

5.2. Mailbox-Device-Claim

 All requests to CreateMailbox, ReadSecureContentFromMailbox and
 UpdateMailbox endpoints MUST contain this header. The value
 represents "Device Claim" (refer to Terminology)

5.3. Mailbox-Device-Attestation

 Request to CreateMailbox MAY contain this header. The value
 represents a Device Attestation (String, Optional) - optional remote
 OEM device proprietary attestation data

6. HTTP access methods

Vinokurov, et al. Expires 14 July 2024 [Page 13]

Internet-Draft Tigress January 2024

6.1. CreateMailbox

 An application running on a remote device can invoke this API on
 Relay Server to create a mailbox and store secure data content to it
 (encrypted data specific to a provisioning partner).
 MailboxIdentifier is created by the Relay server as an UUID
 [RFC4122], using cryptographic entropy. A URL to the created mailbox
 to be returned to the caller in the response.

6.1.1. Endpoint

 POST /{version}/m

6.1.2. Request Parameters:

 Path parameters

 * version (String, Required) - the version of the API. At the time
 of writing this document, v1.

 Header parameters

 * Mailbox-Device-Attestation (String, Optional) - optional remote
 OEM device proprietary attestation data.

 * Mailbox-Device-Claim (String, UUID, Required) - Device Claim
 (refer to Terminology).

 * Mailbox-Request-ID (String, UUID, Required) - Unique request
 identifier.

6.1.3. Consumes

 This API call consumes the following media types via the Content-Type
 request header: application/json

6.1.4. Produces

 This API call produces the following media types via the Content-Type
 response header: application/json

6.1.5. Request body

 Request body is a complex structure, including the following fields:

Vinokurov, et al. Expires 14 July 2024 [Page 14]

Internet-Draft Tigress January 2024

 * payload (Object, Required) - for the purposes of Tigress API, this
 is a data structure, describing Provisioning Information specific
 to Credential Provider. It consists of the following 2 key-value
 pairs:

 1. "type": "AEAD_AES_128_GCM" (refer to Encryption Format
 section).

 2. "data": BASE64-encoded binary value of ciphertext.

 * displayInformation (Object, Required) - for the purposes of the
 Tigress API, this is a data structure. It allows an application
 running on a receiving device to build a visual representation of
 the credential to show to user. The data structure contains the
 following fields:

 1. title (String, Required) - the title of the credential (e.g.
 "Car Key")

 2. description (String, Required) - a brief description of the
 credential (e.g. "a key to my personal car")

 3. imageURL (String, Required) - a link to a picture representing
 the credential visually.

 * notificationToken (Object, Optional) - optional notification token
 used to notify an appropriate remote device that the mailbox data
 has been updated. Data structure includes the following (if
 notificationToken is provided it should include both fields):

 1. type (String, Required) - notification token name. Used to
 define which Push Notification System to be used to notify
 appropriate remote device of a mailbox data update. (E.g.
 "com.apple.apns" for APNS)

 2. tokenData (String, Required) - notification token data (data
 encoded based on specific device OEM notification service
 rules - e.g. HEX-encoded or Base64-encoded) - application-
 specific - refer to appropriate Push Notification System
 specification.

 * mailboxConfiguration (Object, Optional) - optional mailbox
 configuration, defines access rights to the mailbox, mailbox
 expiration time. Required at the time of the mailbox creation.
 OEM device may provide this data in the request, Relay server
 shall define a default configuration, if it is not provided in the
 incoming request. Data structure includes the following:

Vinokurov, et al. Expires 14 July 2024 [Page 15]

Internet-Draft Tigress January 2024

 1. accessRights (String, Optional) - optional access rights to
 the mailbox for Initiator and Recipient devices. Default
 access to the mailbox is Read and Delete. Value is defined as
 a combination of the following values: "R" - for read access,
 "W" - for write access, "D" - for delete access. Example"
 "RD" - allows to read from the mailbox and delete it.

 2. expiration (String, Required) - Mailbox expiration time in
 "YYYY-MM-DDThh:mm:ssZ" format (UTC time zone) [RFC3339].
 Mailbox has limited lifetime. Once expired, it SHALL be
 deleted - refer to DeleteMailbox endpoint. Relay server
 SHOULD periodically check for expired mailboxes and delete
 them.

 {
 "notificationToken": {
 "type":"com.apple.apns",
 "tokenData":"APNS1234...QW"
 }
 }

 Figure 1: Apple Push Token Example

 {
 "displayInformation" : {
 "title" : "Hotel Pass",
 "description" : "Some Hotel Pass",
 "imageURL" : "https://example.com/sharingImage"
 },
 "payload" : {
 "type": "AEAD_AES_128_GCM",
 "data": "FDEC...987654321"
 },
 "notificationToken" : {
 "type" : "com.apple.apns",
 "tokenData" : APNS...1234"
 },
 "mailboxConfiguration" : {
 "accessRights" : "RWD",
 "expiration" : "2022-02-08T14:57:22Z"
 }
 }

 Figure 2: Create Mailbox Request Example

Vinokurov, et al. Expires 14 July 2024 [Page 16]

Internet-Draft Tigress January 2024

6.1.6. Responses

 200 Status: 200 (OK)

 ResponseBody:

 * urlLink (String, Required) - a full URL link to the mailbox
 including fully qualified domain name and mailbox Identifier.
 Refer to "Share URL" section for details.

 * isPushNotificationSupported (boolean, Required) - indicates
 whether push notification is supported or not. The device uses
 this field to decide whether it should listen on the push topic or
 do long-polling.

 {
 "urlLink":"https://relayserver.example.com/m/12345678-9...A-BCD",
 "isPushNotificationSupported":true
 }

 Figure 3: Create Mailbox Response Example

 201 Status: 201 (Created) - response to a duplicated request
 (duplicated "Mailbox-Request-ID"). Relay server SHALL respond to
 duplicated requests with 201 without creating a new mailbox.
 "Mailbox-Request-ID" passed in the first CreateMailbox request’s
 header SHOULD be stored by the Relay server and compared to the same
 value in the subsequent requests to identify duplicated requests. If
 duplicate is found, Relay SHALL not create a new mailbox, but respond
 with 201 instead. The value of "Mailbox-Request-ID" of the last
 successfully completed request SHOULD be stored based on the Device
 Claim passed by the caller.

 400 Bad Request - invalid request has been passed (can not parse or
 required fields missing).

 401 Unauthorized - calling device is not authorized to create a
 mailbox. E.g. a device presented an invalid device claim or device
 attestation.

6.2. UpdateMailbox

 An application running on a remote device can invoke this API on
 Relay Server to update secure data content in an existing mailbox
 (encrypted data specific to a Provisioning Partner). The update
 effectively overwrites the secure payload previously stored in the
 mailbox.

Vinokurov, et al. Expires 14 July 2024 [Page 17]

Internet-Draft Tigress January 2024

6.2.1. Endpoint

 PUT /{version}/m/{mailboxIdentifier}

6.2.2. Request Parameters

 Path parameters:

 * version (String, Required) - the version of the API. At the time
 of writing this document, v1.

 * mailboxIdentifier(String, Required) - MailboxIdentifier (refer to
 Terminology).

 Header parameters:

 * Mailbox-Device-Attestation (String, Optional) - optional remote
 OEM device proprietary attestation data.

 * Mailbox-Device-Claim (String, UUID, Required) - Device Claim
 (refer to Terminology).

 * Mailbox-Request-ID (String, UUID, Required) - Unique request
 identifier.

6.2.3. Consumes

 This API call consumes the following media types via the Content-Type
 request header: application/json

6.2.4. Produces

 This API call produces following media types via the Content-Type
 request header: application/json

6.2.5. Request body

 Request body is a complex structure, including the following fields:

 * payload (Object, Required) - for the purposes of Tigress API, this
 is a data structure, describing Provisioning Information specific
 to Credential Provider. It consists of the following 2 key-value
 pairs:

 1. "type": "AEAD_AES_128_GCM" (refer to Encryption Format
 section).

 2. "data": BASE64-encoded binary value of ciphertext.

Vinokurov, et al. Expires 14 July 2024 [Page 18]

Internet-Draft Tigress January 2024

 * notificationToken (Object, Optional) - optional notification token
 used to notify an appropriate remote device that the mailbox data
 has been updated. Data structure includes the following (if
 notificationToken is provided it should include both fields):

 1. type (String, Required) - notification token name. Used to
 define which Push Notification System to be used to notify
 appropriate remote device of a mailbox data update. (E.g.
 "com.apple.apns" for APNS)

 2. tokenData (String, Required) - notification token data (data
 encoded based on specific device OEM notification service
 rules - e.g. HEX-encoded or Base64-encoded) - application-
 specific - refer to appropriate Push Notification System
 specification.

 {
 "payload" : {
 "type": "AEAD_AES_128_GCM",
 "data": "FDEC...987654321"
 },
 "notificationToken":{
 "type" : "com.apple.apns",
 "tokenData" : APNS...1234"
 }
 }

 Figure 4: Update Mailbox Request Example

6.2.6. Responses

 ResponseBody:

 * isPushNotificationSupported (boolean, Required) - indicates
 whether push notification is supported or not. The device uses
 this field to decide whether it should listen on the push topic or
 do long-polling.

 {
 "isPushNotificationSupported":true
 }

 Figure 5: Update Mailbox Response Example

 200 Status: 200 (OK)

Vinokurov, et al. Expires 14 July 2024 [Page 19]

Internet-Draft Tigress January 2024

 201 Status: 201 (Created) - response to a duplicate request
 (duplicate "Mailbox-Request-ID"). Relay server SHALL respond to
 duplicate requests with 201 without performing mailbox update.
 "Mailbox-Request-ID" passed in the first UpdateMailbox request’s
 header SHALL be stored by the Relay server and compared to the same
 value in the subsequent requests to identify duplicate requests. If
 duplicate is found, Relay SHALL not perform mailbox update, but
 respond with 201 instead. The value of "Mailbox-Request-ID" of the
 last successfully completed request SHALL be stored based on the
 Device Claim passed by the caller.

 400 Bad Request - invalid request has been passed (can not parse or
 required fields missing).

 401 Unauthorized - calling device is not authorized to update the
 mailbox. E.g. a device presented the incorrect Device Claim.

 404 Not Found - mailbox with provided mailboxIdentifier not found.

6.3. DeleteMailbox

 An application running on a remote device can invoke this API on
 Relay Server to close the existing mailbox after it served its
 purpose. Recipient or Initiator Device needs to present a Device
 Claim in order to close the mailbox.

6.3.1. Endpoint

 DELETE /{version}/m/{mailboxIdentifier}

6.3.2. Request Parameters

 Path parameters:

 * version (String, Required) - the version of the API. At the time
 of writing this document, v1.

 * mailboxIdentifier(String, Required) - MailboxIdentifier (refer to
 Terminology).

 Header parameters:

 * Mailbox-Device-Claim (String, UUID, Required) - Device Claim
 (refer to Terminology).

 * Mailbox-Request-ID (String, UUID, Required) - Unique request
 identifier.

Vinokurov, et al. Expires 14 July 2024 [Page 20]

Internet-Draft Tigress January 2024

6.3.3. Responses

 200 Status: 200 (OK)

 401 Unauthorized - calling device is not authorized to delete a
 mailbox. E.g. a device presented the incorrect Device Claim.

 404 Not Found - mailbox with provided mailboxIdentifier not found.
 Relay server may respond with 404 if the Mailbox Identifier passed by
 the caller is invalid or mailbox has already been deleted (as a
 result of duplicate DeleteMailbox request).

6.4. ReadDisplayInformationFromMailbox

 An application running on a remote device can invoke this API on
 Relay Server to retrieve public display information content from a
 mailbox. Display Information shall be returned in OpenGraph format
 (please refer to https://ogp.me for details). OpenGraph-formatted
 display information is required to display a preview of credential in
 a messaging application, e.g. iMessage or WhatsApp.

6.4.1. Endpoint

 GET /{version}/m/{mailboxIdentifier}

6.4.2. Request Parameters

 Path parameters:

 * version (String, Required)- the version of the API. At the time
 of writing this document, v1.

 * mailboxIdentifier(String, Required) - MailboxIdentifier (refer to
 Terminology).

6.4.3. Produces

 This API call produces the following media types via the Content-Type
 response header: text/html

6.4.4. Responses

 200 Status: 200 (OK)

 ResponseBody :

Vinokurov, et al. Expires 14 July 2024 [Page 21]

Internet-Draft Tigress January 2024

 * displayInformation (Object, Required) - visual representation of
 digital credential in OpenGraph format (please refer to
 https://ogp.me for details).

 "<html prefix="og: https://ogp.me/ns#">
 <head>
 <title>Hotel Pass</title>
 <meta property="og:title" content="Hotel Pass" />
 <meta property="og:type" content="image/jpeg" />
 <meta property="og:description" content="Some Hotel Pass" />
 <meta property="og:url" content="share://" />
 <meta property="og:image" content="https://example.com/photos/photo.jpg" />
 <meta property="og:image:width" content="612" />
 <meta property="og:image:height" content="408" /></head>
 </html>"

 Figure 6: Read Display Information Response Example

 404 Not Found - mailbox with provided mailboxIdentifier not found.

6.5. ReadSecureContentFromMailbox

 An application running on a remote device can invoke this API on
 Relay Server to retrieve secure payload content from a mailbox
 (encrypted data specific to a Provisioning Information Provider).

6.5.1. Endpoint

 POST /{version}/m/{mailboxIdentifier}

6.5.2. Request Parameters

 Path parameters:

 * version (String, Required) - the version of the API. At the time
 of writing this document, v1.

 * mailboxIdentifier(String, Required) - MailboxIdentifier (refer to
 Terminology).

 Header parameters:

 * Mailbox-Device-Claim (String, UUID, Required) - Device Claim
 (refer to Terminology).

Vinokurov, et al. Expires 14 July 2024 [Page 22]

Internet-Draft Tigress January 2024

6.5.3. Produces

 This API call produces the following media types via the Content-Type
 response header: application/json

6.5.4. Responses

 200 Status: 200 (OK)

 ResponseBody :

 * payload (String, Required) - for the purposes of Tigress API, this
 is a JSON metadata blob, describing Provisioning Information
 specific to Credential Provider.

 * displayInformation (Object, Required) - for the purposes of the
 Tigress API, this is a JSON data blob. It allows an application
 running on a receiving device to build a visual representation of
 the credential to show to user. Specific to Credential Provider.

 * expiration (String, Required) - the date that the mailbox will
 expire. The mailbox expiration time is set during mailbox
 creation. Expiration time should be a complete [RFC3339] date
 string in "YYYY-MM-DDThh:mm:ssZ" format (UTC time zone), and can
 be used to allow receiving clients to show when a share will
 expire.

 {
 displayInformation" : {
 "title" : "Hotel Pass",
 "description" : "Some Hotel Pass",
 "imageURL" : "https://example.com/sharingImage"
 },
 "payload" : {
 "type": "AEAD_AES_128_GCM",
 "data": "FDEC...987654321"
 },
 "expiration": "2021-11-03T20:32:34Z"
 }

 Figure 7: Read Secure Content Response Example

 401 Unauthorized - calling device is not authorized to read the
 secure content of the mailbox. E.g. a device presented the incorrect
 Device Claim.

 404 Not Found - mailbox with provided mailboxIdentifier not found.

Vinokurov, et al. Expires 14 July 2024 [Page 23]

Internet-Draft Tigress January 2024

6.6. RelinquishMailbox

 An application running on a remote device can invoke this API on
 Relay Server to relinquish their ownership of the mailbox. Recipient
 Device needs to present the currently established Recipient Device
 Claim in order to relinquish their ownership of the mailbox. Once
 relinquished, the mailbox can be bound to a different Recipient
 Device that presents its Device Claim in a
 ReadSecureContentFromMailbox call.

6.6.1. Endpoint

 PATCH /{version}/m/{mailboxIdentifier}

6.6.2. Request Parameters

 Path parameters:

 * version (String, Required) - the version of the API. At the time
 of writing this document, v1.

 * mailboxIdentifier(String, Required) - MailboxIdentifier (refer to
 Terminology).

 Header parameters:

 * Mailbox-Device-Claim (String, UUID, Required) - Device Claim
 (refer to Terminology).

 * Mailbox-Request-ID (String, UUID, Required) - Unique request
 identifier.

6.6.3. Responses

 200 Status: 200 (OK)

 201 Status: 201 (Created) - response to a duplicate request
 (duplicate "Mailbox-Request-ID"). Relay server SHALL respond to
 duplicate requests with 201 without performing mailbox relinquish.
 "Mailbox-Request-ID" passed in the first RelinquishMailbox request’s
 header SHALL be stored by the Relay server and compared to the same
 value in the subsequent requests to identify duplicate requests. If
 duplicate is found, Relay SHALL not perform mailbox relinquish, but
 respond with 201 instead. The value of "Mailbox-Request-ID" of the
 last successfully completed request SHALL be stored based on the
 Device Claim passed by the caller.

Vinokurov, et al. Expires 14 July 2024 [Page 24]

Internet-Draft Tigress January 2024

 401 Unauthorized - calling device is not authorized to relinquish a
 mailbox. E.g. a device presented the incorrect Device Claim, or the
 device is not bound to the mailbox.

 404 Not Found - mailbox with provided mailboxIdentifier not found.
 Relay server may respond with 404 if the Mailbox Identifier passed by
 the caller is invalid.

7. Provisioning Information Structure

 The Provisioning Information is the data transferred via the Relay
 Server between the Initiator Device and Recipient Device. Each use
 case defines its own specialized Provisioning Information format, but
 all formats must at least adhere to the following structure. Formats
 are free to define new top level keys, so clients shouldn’t be
 surprised if a message of an unexpected format has specialized top
 level keys.

 +=========+============+==========+==============================+
 | Key | Type | Required | Description |
 +=========+============+==========+==============================+
 | format | String | Yes | The Provisioning Information |
 | | | | format that the message |
 | | | | follows. This is used by |
 | | | | the Initiator Device and |
 | | | | Recipient Device to know how |
 | | | | to parse the message. |
 +---------+------------+----------+------------------------------+
 | content | Dictionary | Yes | A dictionary of content to |
 | | | | be used for the credential |
 | | | | transfer. See each format’s |
 | | | | specification for exact |
 | | | | fields. |
 +---------+------------+----------+------------------------------+

 Table 1

7.1. Provisioning Information Format

 Each Provisioning Information format must have the message structure
 defined in an external specification.

Vinokurov, et al. Expires 14 July 2024 [Page 25]

Internet-Draft Tigress January 2024

 +==+====================+==============+
 |Format Type |Spec Link |Description |
 +==+====================+==============+
digitalwallet.carkey.ccc	[CCC-Digital-Key-30]	A digital
		wallet
		Provisioning
		Information
		for sharing a
		car key that
		follows the
		Car
		Connectivity
		Consortium
		specification.
+--+--------------------+--------------+		
digitalwallet.generic.authorizationToken	[ISO-18013-5]	A digital
		wallet
		Provisioning
		Information
		for sharing a
		generic pass
		that relies
		solely on an
		authorization
		token.
 +--+--------------------+--------------+

 Table 2

 {
 "format" : "digitalwallet.carkey.ccc",
 "content": {
 // Format specific fields
 }
 }

 Figure 8: Provisioning Information format

7.2. Provisioning Information Encryption

 Provisioning Information will be stored on the Relay Server
 encrypted. The Secret used to encrypt the Provisioning Information
 should be given to the Recipient Device via a "Share URL" (a URL link
 to a mailbox). The encrypted payload should be a data structure
 having the following key-value pairs:

 * "type" (String, Required) - the encryption algorithm and mode
 used.

Vinokurov, et al. Expires 14 July 2024 [Page 26]

Internet-Draft Tigress January 2024

 * "data" (String, Required) - Base64 encoded binary value of the
 encrypted Provisioning Information, aka the ciphertext.

 Please refer to [RFC5116] for the details of the encryption
 algorithm.

 The following algorithms and modes are mandatory to implement:

 * "AEAD_AES_128_GCM": AES symmetric encryption algorithm with key
 length 128 bits, in GCM mode with no padding. Initialization
 Vector (IV) has the length of 96 bits randomly generated and tag
 length of 128 bits.

 * "AEAD_AES_256_GCM": AES symmetric encryption algorithm with key
 length 256 bits, in GCM mode with no padding. Initialization
 Vector (IV) has the length of 96 bits randomly generated and tag
 length of 128 bits.

 {
 "type" : "AEAD_AES_128_GCM",
 "data" : "IV ciphertext tag"
 }

 Figure 9: Secure Payload Format example

7.3. Share URL

 A "Share URL" is the url a Initiator Device sends to the Recipient
 Device allowing it to retrieve the Provisioning Information stored on
 the Relay Server. A Share URL is made up of the following fields:

https://{RelayServerHost}/v{ApiVersion}/m/{MailboxIdentifier}?v={CredentialVertic
al}#{Secret}

 Figure 10: Share URL example

Vinokurov, et al. Expires 14 July 2024 [Page 27]

Internet-Draft Tigress January 2024

 +====================+====================+==========+
 | Field | Location | Required |
 +====================+====================+==========+
 | RelayServerHost | URL Host | Yes |
 +--------------------+--------------------+----------+
 | ApiVersion | URI Path Parameter | Yes |
 +--------------------+--------------------+----------+
 | MailboxIdentifier | URI Path Parameter | Yes |
 +--------------------+--------------------+----------+
 | CredentialVertical | Query Parameter | No |
 +--------------------+--------------------+----------+
 | Secret | Fragment | No |
 +--------------------+--------------------+----------+

 Table 3

7.3.1. Credential Vertical in Share URL

 When a user interacts with a share URL on a Recipient Device it can
 be helpful to know what Credential Vertical this share is for. This
 is particularly important if the Recipient Device has multiple
 applications that can handle a share URL. For example, a Recipient
 Device might want to handle a general access share in their wallet
 app, but handle car key shares in a specific car application.

 To properly route a share URL, the Initiator can include the
 Credential Vertical in the share URL as a query parameter. The
 Credential Vertical can’t be included in the encrypted payload
 because the Recipient Device might need to open the right application
 before retrieving the secure payload. The Credential Vertical query
 parameter uses the "v" key and supports the below types. If no
 Credential Vertical is provided it will be assumed that this is a
 general access share URL.

 +================+=============+
 | Vertical | Value |
 +================+=============+
 | General Access | a or _None_ |
 +----------------+-------------+
 | Home Key | h |
 +----------------+-------------+
 | Car Key | c |
 +----------------+-------------+

 Table 4

https://relayserver.example.com/v1/m/2bba630e-519b-11ec-bf63-0242ac130002?v=c#hXl
r6aRC7KgJpOLTNZaLsw==

Vinokurov, et al. Expires 14 July 2024 [Page 28]

Internet-Draft Tigress January 2024

 Figure 11: Car Key Share URL example

 The Credential Vertical query parameter can be added to the share URL
 by the Initiator Device when constructing the full share URL that is
 going to be sent to the Recipient Device.

8. Security Considerations

8.1. Relay Server defined in this document

8.1.1. Confidentiality & Integrity

 * Relay Server SHALL only allow TLS connections to thwart
 eavesdropping or disruption of communication between Relay Server
 and Initiator/Recipient.

 * Relay Server SHALL use Device Claim to bind Initiator and exactly
 one Recipient device to a mailbox. The binding prevents
 eavesdropping or disruption of communication between Initiator and
 Recipient via mailbox.

8.1.2. Network attacks

 * An attacker may attempt to guess the MailboxIdentifier to
 eavesdrop or disrupt communication. Using version 4 UUID
 [RFC4122] for MailboxIdentifier SHOULD contain 122-bits of
 cryptographic entropy. That makes brute-force guessing attacks
 impractical. Also Relay Server generating MailboxIdentifiers
 removes any chance of collision.

 * It is possible to hosting malicious or untrusted scripts by relay
 server preview page (ReadDisplayInformationFromMailbox). That can
 be mitigated by not hosting a third party JavaScripts on a preview
 page. Another approach is with a policy and tools to maintain the
 trust of such scripts (e.g. force client to verify the script
 against a good known hash of it).

 * Relay server SHALL periodically check and delete expired mailboxes
 (refer to expiration parameter in the CreateMailbox request).
 This prevents un-authorized data leaks in future in addition to
 general cleanup.

8.1.3. Privacy Considerations

 * Relay Server SHALL not look into data exchanged over mailbox.
 This is achieved by encrypting that data and making sure the
 Secret doesn’t land on Relay Server.

Vinokurov, et al. Expires 14 July 2024 [Page 29]

Internet-Draft Tigress January 2024

 * At no time Relay server SHALL store or track the identities of
 Initiator and Recipient. This is achieved by letting clients pick
 Device Claims and Notification Tokens.

 * Relay Server SHALL NOT be able to identify different mailboxes
 that same device is interacting with. This is achieved by letting
 clients pick Device Claims and Notification Tokens.

8.2. Clients of Relay Server

8.2.1. Confidentiality & Integrity

 * Clients SHALL encrypt contents of the mailbox to protect it from
 getting revealed to the Relay Server.

 * Clients SHALL check cryptographic checksum of the content to
 verify integrity of data. It’s in the realm of Verticals to
 define the details and out of scope of this document.

 * It is recommended that URL and secret are send separately. But if
 the Initiator sends both URL and the Secret as a single URL,
 Secret MUST be appended as URI fragment [RFC3986]. Recipient
 Device, upon receipt of such URL, MUST remove the Fragment
 (Secret) before calling the Relay server API. This ensures that
 Relay Server never ends up with the Secret to decode data.

 https://relayserver.example.com/v1/m/{mailboxIdentifier}#{Secret}

 Figure 12: Example of URL with Secret as URI Fragment

8.2.2. Privacy Considerations

 * Notification Token SHALL NOT not contain identifying information.
 It SHOULD also be different for every new share to prevent the
 Relay server from correlating different shares.

 * Notification token SHOULD only inform the corresponding device
 that there is an update available on the corresponding mailbox.
 Each device SHOULD keep track of all mailboxes associated with it
 and make read calls to appropriate mailboxes.

 * The value of Mailbox-Device-Attestation header parameter SHALL not
 contain identifying information. It SHOULD also be different for
 every new share to prevent the Relay server from correlating
 different shares.

 * Display Information is not encrypted, therefore, it SHOULD not
 contain any identifying information.

Vinokurov, et al. Expires 14 July 2024 [Page 30]

Internet-Draft Tigress January 2024

8.3. Overall System

 The overall system security considerations are in the realm of
 Verticals. They are mentioned here for getting a better picture.
 But these are not in scope of this document as Relay Server is a
 piece of the overall System.

8.3.1. Initiator shares with the wrong Recipient

 * Verticals allow Initiator to cancel in-flight shares and delete
 completed shares.

8.3.2. Malicious Recipient forwards the share to 3rd party without
 redeeming it or the Recipient’s device is compromised.

 * No mitigation, the Initiator SHOULD only share with receivers they
 trust.

8.3.3. Invitation Channel Security

 * For better user experience, the sharing flow SHOULD allow user
 preferred channels. Users are familiar with these channels and
 use them frequently for communication. Users typically consider
 these channels as secure enough and trust them to deliver messages
 to intended recipient. Some of these channels are end to end
 encrypted and hence very secure and some are not. So depending on
 channel used it’s possible that the invitation is leaked to
 determined attackers.

 * Verticals can deploy various mitigations for this scenario.

 - Verticals SHALL ensure that the Provisioning Information of a
 share can only be redeemed exactly once. Relay Server helps in
 this by guaranteeing that only one Recipient device gets the
 Provisioning Information.

 - Verticals can use second factor to authenticate the Recipient.
 Verticals can use PIN codes, presence of Initiator Credential
 or other mechanisms as second factor. The second factor
 introduces friction to the smooth user experience during the
 Provisioning process or at time of use of Credential. Details
 of the second factor and policies around use of the second
 factor are out of scope of this document.

Vinokurov, et al. Expires 14 July 2024 [Page 31]

Internet-Draft Tigress January 2024

9. IANA Considerations

 This document registers new headers, "Mailbox-Request-ID", "Mailbox-
 Device-Claim" and "Mailbox-Device-Attestation" in the "Permanent
 Message Header Field Names" <https://www.iana.org/assignments/
 message-headers>.

 +----------------------------+----------+--------+---------------+
 | Header Field Name | Protocol | Status | Reference |
 +----------------------------+----------+--------+---------------+
 | Mailbox-Request-ID | http | std | This document |
 | Mailbox-Device-Claim | http | std | This document |
 | Mailbox-Device-Attestation | http | std | This document |
 +----------------------------+----------+--------+---------------+

 Figure 13: Registered HTTP Header

10. References

10.1. Normative References

 [CCC-Digital-Key-30]
 Car Connectivity Consortium, "Digital Key Release 3", July
 2022, <https://carconnectivity.org/download-digital-key-
 3-specification/>.

 [ISO-18013-5]
 Cards and security devices for personal identification,
 "Personal identification ISO-compliant driving license
 Part 5: Mobile driving license (mDL) application",
 September 2021, <https://www.iso.org/standard/69084.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/rfc/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

Vinokurov, et al. Expires 14 July 2024 [Page 32]

Internet-Draft Tigress January 2024

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/rfc/rfc4122>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/rfc/rfc5116>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

10.2. Informative References

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/rfc/rfc2818>.

Appendix A. Contributors

 The following people provided substantive contributions to this
 document:

 * Casey Astiz

 * Adam Bar-Niv

 * Alexey Bulgakov

 * Matt Byington

 * Ben Chester

 * Igor Gariev

 * Manuel Gerster

 * Jean-Luc Giraud

 * Tommy Pauly

 * Crystal Qin

Appendix B. Acknowledgments

 TODO acknowledge.

Vinokurov, et al. Expires 14 July 2024 [Page 33]

Internet-Draft Tigress January 2024

Authors’ Addresses

 Dmitry Vinokurov
 Apple Inc
 Email: dvinokurov@apple.com

 Yogesh Karandikar
 Apple Inc
 Email: ykarandikar@apple.com

 Matthias Lerch
 Apple Inc
 Email: mlerch@apple.com

 Alex Pelletier
 Apple Inc
 Email: a_pelletier@apple.com

 Nick Sha
 Alphabet Inc
 Email: nicksha@google.com

Vinokurov, et al. Expires 14 July 2024 [Page 34]

	draft-rescorla-tigress-http-00
	draft-vinokurov-tigress-http-00

