Internet-Draft | Unsolicited BFD for Sessionless Applicat | November 2022 |
Chen, et al. | Expires 15 May 2023 | [Page] |
- Workgroup:
- Network Working Group
- Internet-Draft:
- draft-ietf-bfd-unsolicited-11
- Updates:
- 9314 (if approved)
- Published:
- Intended Status:
- Standards Track
- Expires:
Unsolicited BFD for Sessionless Applications
Abstract
For operational simplification of "sessionless" applications using Bidirectional Forwarding Detection (BFD), in this document we present procedures for "unsolicited BFD" that allow a BFD session to be initiated by only one side, and established without explicit per-session configuration or registration by the other side (subject to certain per-interface or global policies).¶
We also introduce a new YANG module to configure and manage "unsolicited BFD". The YANG module in this document is based on YANG 1.1 as defined in RFC 7950 and conforms to the Network Management Datastore Architecture (NMDA) as described in RFC 8342. This document updates RFC 9314.¶
Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 15 May 2023.¶
Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
1. Introduction
The current implementation and deployment practice for BFD ([RFC5880] and [RFC5881]) usually requires BFD sessions be explicitly configured or registered on both sides. This requirement is not an issue when an application like BGP [RFC4271] has the concept of a "session" that involves both sides for its establishment. However, this requirement can be operationally challenging when the prerequisite "session" does not naturally exist between two endpoints in an application. Simultaneous configuration and coordination may be required on both sides for BFD to take effect. For example:¶
- When BFD is used to keep track of the "liveness" of the nexthop of static routes. Although only one side may need the BFD functionality, currently both sides need to be involved in specific configuration and coordination and in some cases static routes are created unnecessarily just for BFD.¶
- When BFD is used to keep track of the "liveness" of the third-pary nexthop of BGP routes received from the Route Server [RFC7947] at an Internet Exchange Point (IXP). As the third-party nexthop is different from the peering address of the Route Server, for BFD to work, currently two routers peering with the Route Server need to have routes and nexthops from each other (although indirectly via the Route Server).¶
Clearly it is beneficial and desirable to reduce or eliminate unnecessary configurations and coordination in these "sessionless" applications using BFD.¶
In this document we present procedures for "unsolicited BFD" that allow a BFD session to be initiated by only one side, and established without explicit per-session configuration or registration by the other side (subject to certain per-interface or global policies).¶
Unsolicited BFD impacts only the initiation of BFD sessions. There is no change to all the other procedures specified in [RFC5880] such as, but not limited to, the Echo function and Demand mode.¶
With "unsolicited BFD" there is potential risk for excessive resource usage by BFD from "unexpected" remote systems. To mitigate such risks, several mechanisms are recommended in the Security Considerations section.¶
The procedure described in this document could be applied to BFD for Multihop paths [RFC5883]. However, because of security risks, this document applies only to BFD for single IP hops [RFC5881].¶
Compared to the "Seamless BFD" [RFC7880], this proposal involves only minor procedural enhancements to the widely deployed BFD itself. Thus we believe that this proposal is inherently simpler in the protocol itself and deployment. As an example, it does not require the exchange of BFD discriminators over an out-of-band channel before BFD session bring-up.¶
When BGP Add-Path [RFC7911] is deployed at an IXP using a Route Server, multiple BGP paths (when they exist) can be made available to the clients of the Route Server as described in [RFC7947]. The "unsolicited BFD" can be used in BGP route selection by these clients to eliminate paths with "inaccessible nexthops".¶
2. Procedures for Unsolicited BFD
With "unsolicited BFD", one side takes the "Active role" and the other side takes only the "Passive role" as described in [RFC5880], section 6.1.¶
Passive unsolicited BFD support MUST be disabled by default, and MUST require explicit configuration to be enabled. On the passive side, the desired BFD parameters SHOULD be configurable. The passive side MAY also choose to use the parameters that the active side uses in its BFD Control packets. The "My Discriminator", however, MUST be chosen to allow multiple unsolicited BFD sessions.¶
The active side starts sending the BFD Control packets as specified in [RFC5880]. The passive side does not send BFD Control packets initially, it sends BFD Control packets only after it has received BFD Control packets from the active side.¶
When the passive side receives a BFD Control packet from the active side with 0 as "Your Discriminator" and does not find an existing BFD session, the passive side MAY create a matching BFD session toward the active side, if permitted by local configuration and policy.¶
When the passive side receives an incoming BFD Control packet on a numbered interfaces, the source address of that packet MUST belong to the subnet of the interface on which the BFD packet is received. The source address of the BFD Control packet SHOULD be validated against expected routing protocol peer addresses on that interface.¶
The passive side MUST then start sending BFD Control packets and perform the necessary procedure for bringing up, maintaining and tearing down the BFD session. If the BFD session fails to get established within certain specified time, or if an established BFD session goes down, the passive side SHOULD stop sending BFD Control packets and MAY delete the BFD session created until BFD Control packets are initiated by the active side again.¶
When an Unsolicited BFD session goes down, an implementation MAY retain the session state for a period of time. Retaining this state can be useful for operational purposes.¶
3. State Variables
This document defines a new state variable called Role.¶
bfd.Role¶
The role of the local system during BFD session initialization, as per [RFC5880], section 6.1. Possible values are Active or Passive.¶
4. YANG Data Model
This section extends the YANG data model for BFD [RFC9314] to cover unsolicited BFD. The new module imports [RFC8349] since the "bfd" container in [RFC9314] is under "control-plane-protocol". The YANG module in this document conforms to the Network Management Datastore Architecture (NMDA) [RFC8342].¶
4.1. Unsolicited BFD Hierarchy
Configuration for unsolicited BFD parameters for IP single-hop sessions can be done at 2 levels:¶
- Globally, i.e. for all interfaces. This requires support for the "unsolicited-params-global" feature.¶
- For specific interfaces. This requires support for the "unsolicited-params-per-interface" feature.¶
For operational data, a new "unsolicited" container has been added for BFD IP single-hop sessions.¶
The tree diagram below uses the graphical representation of data models, as defined in [RFC8340].¶
module: ietf-bfd-unsolicited augment /rt:routing/rt:control-plane-protocols /rt:control-plane-protocol/bfd:bfd/bfd-ip-sh:ip-sh: +--rw unsolicited {bfd-unsol:unsolicited-params-global}? +--rw enabled? boolean +--rw local-multiplier? multiplier +--rw (interval-config-type)? +--:(tx-rx-intervals) | +--rw desired-min-tx-interval? uint32 | +--rw required-min-rx-interval? uint32 +--:(single-interval) {single-minimum-interval}? +--rw min-interval? uint32 augment /rt:routing/rt:control-plane-protocols /rt:control-plane-protocol/bfd:bfd/bfd-ip-sh:ip-sh /bfd-ip-sh:interfaces: +--rw unsolicited {bfd-unsol:unsolicited-params-per-interface}? +--rw enabled? boolean +--rw local-multiplier? multiplier +--rw (interval-config-type)? +--:(tx-rx-intervals) | +--rw desired-min-tx-interval? uint32 | +--rw required-min-rx-interval? uint32 +--:(single-interval) {single-minimum-interval}? +--rw min-interval? uint32 augment /rt:routing/rt:control-plane-protocols /rt:control-plane-protocol/bfd:bfd/bfd-ip-sh:ip-sh /bfd-ip-sh:sessions/bfd-ip-sh:session: +--ro role? bfd-unsol:role¶
4.2. Unsolicited BFD Module
<CODE BEGINS> file "ietf-bfd-unsolicited@2022-11-11.yang" module ietf-bfd-unsolicited { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-bfd-unsolicited"; prefix "bfd-unsol"; // RFC Ed.: replace occurences of YYYY with actual RFC numbers // and remove this note import ietf-bfd-types { prefix "bfd-types"; reference "RFC 9314: YANG Data Model for Bidirectional Forwarding Detection (BFD)"; } import ietf-bfd { prefix "bfd"; reference "RFC 9314: YANG Data Model for Bidirectional Forwarding Detection (BFD)"; } import ietf-bfd-ip-sh { prefix "bfd-ip-sh"; reference "RFC 9314: YANG Data Model for Bidirectional Forwarding Detection (BFD)"; } import ietf-routing { prefix "rt"; reference "RFC 8349: A YANG Data Model for Routing Management (NMDA version)"; } organization "IETF BFD Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/bfd/> WG List: <rtg-bfd@ietf.org> Editors: Enke Chen (enchen@paloaltonetworks.com), Naiming Shen (naiming@zededa.com), Robert Raszuk (robert@raszuk.net), Reshad Rahman (reshad@yahoo.com)"; description "This module contains the YANG definition for BFD unsolicited as per RFC YYYY. Copyright (c) 2021 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info). This version of this YANG module is part of RFC YYYY; see the RFC itself for full legal notices."; reference "RFC YYYY"; revision 2022-11-11 { description "Initial revision."; reference "RFC YYYY: Unsolicited BFD for Sessionless Applications."; } /* * Feature definitions */ feature unsolicited-params-global { description "This feature indicates that the server supports global parameters for unsolicited sessions."; reference "RFC YYYY: Unsolicited BFD for Sessionless Applications."; } feature unsolicited-params-per-interface { description "This feature indicates that the server supports per-interface parameters for unsolicited sessions."; reference "RFC YYYY: Unsolicited BFD for Sessionless Applications."; } /* * Type Definitions */ typedef role { type enumeration { enum active { description "Active role"; } enum passive { description "Passive role"; } } description "System role during BFD session initialization."; reference "RFC5880: Bidirectional Forwarding Detection (BFD), Section 6.1"; } /* * Augments */ augment "/rt:routing/rt:control-plane-protocols/" + "rt:control-plane-protocol/bfd:bfd/bfd-ip-sh:ip-sh" { if-feature bfd-unsol:unsolicited-params-global; description "Augmentation for BFD unsolicited parameters"; container unsolicited { description "BFD unsolicited top level container"; leaf enabled { type boolean; default false; description "BFD unsolicited enabled globally for IP single-hop."; } uses bfd-types:base-cfg-parms; } } augment "/rt:routing/rt:control-plane-protocols/" + "rt:control-plane-protocol/bfd:bfd/bfd-ip-sh:ip-sh/" + "bfd-ip-sh:interfaces" { if-feature bfd-unsol:unsolicited-params-per-interface; description "Augmentation for BFD unsolicited on IP single-hop interface"; container unsolicited { description "BFD IP single-hop interface unsolicited top level container"; leaf enabled { type boolean; default false; description "BFD unsolicited enabled on this interface."; } uses bfd-types:base-cfg-parms; } } augment "/rt:routing/rt:control-plane-protocols/" + "rt:control-plane-protocol/bfd:bfd/bfd-ip-sh:ip-sh/" + "bfd-ip-sh:sessions/bfd-ip-sh:session" { description "Augmentation for BFD unsolicited on IP single-hop session"; leaf role { type bfd-unsol:role; config false; description "Role of local system during BFD session initialization."; } } } <CODE ENDS>¶
5. IANA Considerations
This document registers the following namespace URI in the "IETF XML Registry" [RFC3688]:¶
URI: urn:ietf:params:xml:ns:yang:ietf-bfd-unsolicited¶
Registrant Contact: The IESG.¶
XML: N/A; the requested URI is an XML namespace.¶
This document registers the following YANG module in the "YANG Module Names" registry [RFC6020]:¶
Name: ietf-bfd-unsolicited¶
Namespace: urn:ietf:params:xml:ns:yang:ietf-bfd-unsolicited¶
Prefix: bfd-unsol¶
Reference: RFC YYYY¶
6. Acknowledgments
Authors would like to thank Acee Lindem, Greg Mirsky, Jeffrey Haas, Raj Chetan, Tom Petch, Henning Rogge, Mahesh Jethanandani, Gyan Mishra, John Scudder and Dan Romascanu for their review and valuable input.¶
7. Security Considerations
7.1. BFD Protocol Security Considerations
The same security considerations and protection measures as those described in [RFC5880] and [RFC5881] apply to this document. In addition, with "unsolicited BFD" there is potential risk for excessive resource usage by BFD from "unexpected" remote systems. To mitigate such risks, the following measures are mandatory:¶
- Limit the feature to specific interfaces, and to single-hop BFD with "TTL=255" [RFC5082].¶
- Apply "policy" to allow BFD packets only from certain subnets or hosts.¶
- Deploy the feature only in certain "trustworthy" environment, e.g., at an IXP, or between a provider and its customers.¶
- Use BFD authentication, see [RFC5880]. In some environments, e.g. when using an IXP, BFD authentication can not be used because of the lack of coordination into the operation of the two endpoints of the BFD session. In other environments, e.g. when BFD is used to track the next hop of static routes, it is possible to use BFD authentication: this comes with the extra cost of configuring matching key-chains at the two endpoints. If BFD authentication is used, the Meticulous Keyed SHA1 mechanism SHOULD be used.¶
7.2. YANG Module Security Considerations
The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].¶
The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.¶
There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:¶
/routing/control-plane-protocols/control-plane-protocol/bfd/ip-sh /unsolicited:¶
- data node "enabled" enables creation of unsolicited BFD IP single-hop sessions globally, i.e. on all interfaces. See Section 7.1.¶
- data nodes local-multiplier, desired-min-tx-interval, required-min-rx-interval and min-interval all impact the parameters of the unsolicited BFD IP single-hop sessions.¶
/routing/control-plane-protocols/control-plane-protocol/bfd/ip-sh /interfaces/interface/unsolicited:¶
- data node "enabled" enables creation of unsolicited BFD IP single-hop sessions on a specific interface. See Section 7.1.¶
- data nodes local-multiplier, desired-min-tx-interval, required-min-rx-interval and min-interval all impact the parameters of the unsolicited BFD IP single-hop sessions on the interface.¶
Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:¶
/routing/control-plane-protocols/control-plane-protocol/bfd/ip-sh /sessions/session/role: access to this information discloses the role of the local system in the creation of the unsolicited BFD session.¶
8. References
8.1. Normative References
- [RFC2119]
- Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
- [RFC3688]
- Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, , <https://www.rfc-editor.org/info/rfc3688>.
- [RFC5082]
- Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C. Pignataro, "The Generalized TTL Security Mechanism (GTSM)", RFC 5082, DOI 10.17487/RFC5082, , <https://www.rfc-editor.org/info/rfc5082>.
- [RFC5880]
- Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, DOI 10.17487/RFC5880, , <https://www.rfc-editor.org/info/rfc5880>.
- [RFC5881]
- Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop)", RFC 5881, DOI 10.17487/RFC5881, , <https://www.rfc-editor.org/info/rfc5881>.
- [RFC6020]
- Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, , <https://www.rfc-editor.org/info/rfc6020>.
- [RFC6241]
- Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, , <https://www.rfc-editor.org/info/rfc6241>.
- [RFC6242]
- Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, , <https://www.rfc-editor.org/info/rfc6242>.
- [RFC8040]
- Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, , <https://www.rfc-editor.org/info/rfc8040>.
- [RFC8174]
- Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/info/rfc8174>.
- [RFC8340]
- Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, , <https://www.rfc-editor.org/info/rfc8340>.
- [RFC8341]
- Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, , <https://www.rfc-editor.org/info/rfc8341>.
- [RFC8349]
- Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for Routing Management (NMDA Version)", RFC 8349, DOI 10.17487/RFC8349, , <https://www.rfc-editor.org/info/rfc8349>.
- [RFC8446]
- Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, , <https://www.rfc-editor.org/info/rfc8446>.
- [RFC9314]
- Jethanandani, M., Ed., Rahman, R., Ed., Zheng, L., Ed., Pallagatti, S., and G. Mirsky, "YANG Data Model for Bidirectional Forwarding Detection (BFD)", RFC 9314, DOI 10.17487/RFC9314, , <https://www.rfc-editor.org/info/rfc9314>.
8.2. Informative References
- [RFC4271]
- Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, , <https://www.rfc-editor.org/info/rfc4271>.
- [RFC5883]
- Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD) for Multihop Paths", RFC 5883, DOI 10.17487/RFC5883, , <https://www.rfc-editor.org/info/rfc5883>.
- [RFC7880]
- Pignataro, C., Ward, D., Akiya, N., Bhatia, M., and S. Pallagatti, "Seamless Bidirectional Forwarding Detection (S-BFD)", RFC 7880, DOI 10.17487/RFC7880, , <https://www.rfc-editor.org/info/rfc7880>.
- [RFC7911]
- Walton, D., Retana, A., Chen, E., and J. Scudder, "Advertisement of Multiple Paths in BGP", RFC 7911, DOI 10.17487/RFC7911, , <https://www.rfc-editor.org/info/rfc7911>.
- [RFC7947]
- Jasinska, E., Hilliard, N., Raszuk, R., and N. Bakker, "Internet Exchange BGP Route Server", RFC 7947, DOI 10.17487/RFC7947, , <https://www.rfc-editor.org/info/rfc7947>.
- [RFC8342]
- Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, , <https://www.rfc-editor.org/info/rfc8342>.