CCAMP Working Group J. Ahlberg
Internet-Draft S. Mansfield
Intended status: Standards Track Ericsson AB
Expires: 25 April 2022 M. Ye
I. Busi
Huawei Technologies
X. Li
NEC Laboratories Europe
D. Spreafico
Nokia - IT
22 October 2021
A YANG Data Model for Microwave Topology
draft-ietf-ccamp-mw-topo-yang-02
Abstract
This document defines three YANG data models to describe topologies
of microwave/millimeter radio links and bandwidth availability for a
link in general, as well as to reference interface management
information from a termination point.
RFC Ed. Note
// RFC Ed.: replace all XXXX throughout the document with actual RFC
numbers and remove this note
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 25 April 2022.
Ahlberg, et al. Expires 25 April 2022 [Page 1]
Internet-Draft Microwave Topology YANG Model October 2021
Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Simplified BSD License text
as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Terminology and Definitions . . . . . . . . . . . . . . . 4
1.2. Tree Structure . . . . . . . . . . . . . . . . . . . . . 4
2. Requirements Language . . . . . . . . . . . . . . . . . . . . 4
3. Microwave Topology YANG Data Model . . . . . . . . . . . . . 4
3.1. YANG Tree . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2. Relationship between radio links and carriers . . . . . . 5
3.3. Relationship with client topology model . . . . . . . . . 6
3.4. Applicability of the Data Model for Traffic Engineering
(TE) Topologies . . . . . . . . . . . . . . . . . . . . . 6
3.5. Model applicability to other technology . . . . . . . . . 6
3.6. Microwave Topology YANG Module . . . . . . . . . . . . . 6
4. Bandwidth Availability Topology YANG Data Model . . . . . . . 13
4.1. YANG Tree . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2. Bandwidth Availability Topology YANG Data Module . . . . 13
5. Termination Point to Interface Reference YANG Data Model . . 16
5.1. YANG Tree . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2. Termination Point to Interface Reference YANG Data
Module . . . . . . . . . . . . . . . . . . . . . . . . . 16
6. Security Considerations . . . . . . . . . . . . . . . . . . . 19
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 20
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.1. Normative References . . . . . . . . . . . . . . . . . . 20
8.2. Informative References . . . . . . . . . . . . . . . . . 22
Appendix A. Examples of the application of the Topology
Models . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.1. A tree for a complete Microwave Topology Model . . . . . 22
A.2. A topology with single microwave radio link . . . . . . . 25
Appendix B. Contributors . . . . . . . . . . . . . . . . . . . . 35
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 35
Ahlberg, et al. Expires 25 April 2022 [Page 2]
Internet-Draft Microwave Topology YANG Model October 2021
1. Introduction
This document defines three YANG data models to describe topologies
of microwave/millimeter wave (hereafter microwave is used to simplify
the text). The first YANG data model describes radio links,
supporting carrier(s) and the associated termination points. A
carrier is a description of a link providing transport capacity over
the air by a single carrier. It is typically defined by its
transmitting and receiving frequencies. A radio link is a link
providing the aggregated transport capacity of the supporting
carriers in aggregated and/or protected configurations, which can be
used to carry traffic on higher topology layers such as Ethernet and
TDM. A second YANG data model describes bandwidth availability for a
link. It is an important characteristic of a microwave radio link,
but it could also be applicable for other types of links. A third
YANG data model introduces a way to reference the information in a
YANG data model for interface management [RFC8343] from a termination
point, which is useful for microwave termination points, but which
could also be useful for other types of termination points. All
three models augment "YANG Data Model for Traffic Engineering (TE)
Topologies" defined in [RFC8795], which is based on "A YANG Data
Model for Network Topologies" defined in [RFC8345].
The microwave point-to-point radio technology provides connectivity
on L0/L1 over a radio link between two termination points, using one
or several supporting carriers in aggregated or protected
configurations. That application of microwave technology cannot be
used to perform cross-connection or switching of the traffic to
create network connectivity across multiple microwave radio links.
Instead, a payload of traffic on higher topology layers, normally L2
Ethernet, is carried over the microwave radio link and when the
microwave radio link is terminated at the endpoints, cross-connection
and switching can be performed on that higher layer creating
connectivity across multiple supporting microwave radio links.
The microwave topology, the bandwidth availability, and the interface
reference models are expected to be used between a Provisioning
Network Controller (PNC) and a Multi Domain Service Coordinator(MDSC)
[RFC8453]. Examples of use cases that can be supported are:
1. Correlation between microwave radio links and the supported links
on higher topology layers. e.g. an L2 Ethernet topology. This
information can be used to understand how changes in the
performance/status of a microwave radio link affects traffic on
higher layers.
Ahlberg, et al. Expires 25 April 2022 [Page 3]
Internet-Draft Microwave Topology YANG Model October 2021
2. Propagation of relevant characteristics of a microwave radio
link, such as bandwidth, to higher topology layers, where it e.g.
could be used as a criterion when configuring and optimizing a
path for a connection/service through the network end to end.
3. Optimization of the microwave radio link configurations on a
network level, e.g. with the purpose to minimize overall
interference and/or maximize the overall capacity provided by the
links.
4. A microwave radio link could dynamically adjust its bandwidth
according to changes in the signal conditions. [RFC8330] defines
a mechanism to report bandwidth-availability information through
OSPF-TE, but it could also be useful for a controller to access
such bandwidth-availability information as part of the topology
model when performing a path/route computation.
Different use cases require access to different attributes and in
order not to restrict what use cases can be supported, all attributes
supported by the microwave radio link interface management model is
accessible from the topology model.
1.1. Terminology and Definitions
The following acronyms are used in this document:
PNC Provisioning Network Controller
MDSC Multi Domain Service Coordinator
1.2. Tree Structure
A simplified graphical representation of the data models is used in
chapters 3.1, 4.1, and 5.1 of this document. The meaning of the
symbols in these diagrams is defined in [RFC8340].
2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
3. Microwave Topology YANG Data Model
3.1. YANG Tree
Ahlberg, et al. Expires 25 April 2022 [Page 4]
Internet-Draft Microwave Topology YANG Model October 2021
module: ietf-microwave-topology
augment /nw:networks/nw:network/nw:network-types/
tet:te-topology:
+--rw mw-topology!
augment /nw:networks/nw:network/nw:node/
nt:termination-point/tet:te:
+--rw mw-tp-choice
+--rw (mw-tp-option)?
+--:(microwave-rltp)
| +--rw microwave-rltp!
+--:(microwave-ctp)
+--rw microwave-ctp!
augment /nw:networks/nw:network/nt:link/tet:te/
tet:te-link-attributes:
+--rw mw-link-choice
+--rw (mw-link-option)?
+--:(microwave-radio-link)
| +--rw microwave-radio-link!
| +--rw mode? identityref
+--:(microwave-carrier)
+--rw microwave-carrier!
+--rw tx-frequency? uint32
+--rw rx-frequency? uint32
+--rw channel-separation? uint32
+--ro actual-tx-cm? identityref
+--ro actual-snir? decimal64
+--ro actual-transmitted-level? power
augment /nw:networks/nw:network/nt:link/tet:te/
tet:te-link-attributes/tet:max-link-bandwidth/
tet:te-bandwidth/tet:technology:
+--:(microwave)
+--ro mw-bandwidth? uint64
3.2. Relationship between radio links and carriers
A microwave radio link is always an aggregate of one or multiple
carries, in various configurations/modes. The supporting carriers
are identified by its termination points and are listed in the
container bundled-links as part of the te-link-config in the YANG
Data Model for Traffic Engineering (TE) Topologies [RFC8795] for a
radio-link. The exact configuration of the included carriers is
further specified in the leaf mode (1+0, 2+0, 1+1, etc.) for the
radio-link. Appendix A includes an JSON example of how such a
relationship can be modelled.
Ahlberg, et al. Expires 25 April 2022 [Page 5]
Internet-Draft Microwave Topology YANG Model October 2021
3.3. Relationship with client topology model
A microwave radio link carries a payload of traffic on higher
topology layers, normally L2 Ethernet. The leafs supporting-network,
supporting-node, supporting-link, and supporting-termination-point in
the generic YANG module for Network Topologies [RFC8345] are expected
to be used to model a relationship/dependency from higher topology
layers to a supporting microwave radio link topology layer.
Appendix A includes an JSON example of an L2 Ethernet link
transported over one supporting microwave link.
3.4. Applicability of the Data Model for Traffic Engineering (TE)
Topologies
Since microwave is a point-to-point radio technology providing
connectivity on L0/L1 over a radio link between two termination
points and cannot be used to perform cross-connection or switching of
the traffic to create network connectivity across multiple microwave
radio links, a majority of the leafs in the Data Model for Traffic
Engineering (TE) Topologies augmented by the microwave topology model
are not applicable. An example of which leafs are considered
applicable can be found in appendix "Examples of the application of
the Topology Models" in this document. //Add a proper reference to
the appendix
More specifically, admin-status and oper-status are recommended to be
reported for links only. Status for termination points can be used
when links are inter-domain and when the status of only one side of
link is known, but since microwave is a point-to-point technology
where both ends normally belong to the same domain it is not expected
to be applicable in normal cases. Furthermore, admin-status is not
applicable for microwave radio links. Enable and disable of a radio
link is instead done in the constituent carriers.
3.5. Model applicability to other technology
TBD
3.6. Microwave Topology YANG Module
<CODE BEGINS> file "ietf-microwave-topology@2021-10-22.yang"
module ietf-microwave-topology {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-microwave-topology";
prefix "mwtopo";
import ietf-network {
Ahlberg, et al. Expires 25 April 2022 [Page 6]
Internet-Draft Microwave Topology YANG Model October 2021
prefix "nw";
reference "RFC 8345: A YANG Data Model for Network Topologies";
}
import ietf-network-topology {
prefix "nt";
reference "RFC 8345: A YANG Data Model for Network Topologies";
}
import ietf-te-topology {
prefix "tet";
reference "RFC 8795: YANG Data Model for Traffic Engineering
(TE) Topologies";
}
import ietf-microwave-types {
prefix mw-types;
reference "RFC 8561";
}
organization
"Internet Engineering Task Force (IETF) CCAMP WG";
contact
"WG List: <mailto:ccamp@ietf.org>
//[JonasA] Who would like to be on the list of editors/contributors?
Editor: Jonas Ahlberg
<mailto:jonas.ahlberg@ericsson.com>
Editor: Scott Mansfield
<mailto:scott.mansfield@ericsson.com>
Editor: Min Ye
<mailto:amy.yemin@huawei.com>
Editor: Italo Busi
<mailto:Italo.Busi@huawei.com>
Editor: Xi Li
<mailto:Xi.Li@neclab.eu>
Editor: Daniela Spreafico
<mailto:daniela.spreafico@nokia.com>
";
// Note to RFC Editor: replace XXXX with actual RFC number and
// remove this note.
description
"This is a module for microwave topology.
Copyright (c) 2019 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
Ahlberg, et al. Expires 25 April 2022 [Page 7]
Internet-Draft Microwave Topology YANG Model October 2021
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX
(https://tools.ietf.org/html/rfcXXXX); see the RFC itself for
full legal notices.";
revision 2021-10-22 {
description
"Draft to be used as a basis for the continued microwave
team discussions";
reference "";
}
/*
* Typedefs
*/
typedef power {
type decimal64 {
fraction-digits 1;
}
description
"Type used for the power values 'selected' and
'measured'.";
}
/*
* Groupings
*/
grouping microwave-rltp-attributes {
description "Grouping used for attributes describing a microwave
radio link termination point.";
//Any attributes to be included?
}
grouping microwave-ctp-attributes {
description "Grouping used for attributes describing a microwave
carrier termination point.";
// Any attributes to be included?
}
grouping microwave-radio-link-attributes {
description "Grouping used for attributes describing a microwave
Ahlberg, et al. Expires 25 April 2022 [Page 8]
Internet-Draft Microwave Topology YANG Model October 2021
radio link.";
leaf mode {
type identityref {
base mw-types:rlt-mode;
}
description
"A description of the mode in which the radio link
is configured. The format is X plus Y.
X represents the number of bonded carriers.
Y represents the number of protecting carriers.
Related to the data node rlt-mode in RFC 8561.";
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
// Any other attributes to be included?
}
grouping microwave-carrier-attributes {
description "Grouping used for attributes describing a microwave
carrier.";
leaf tx-frequency {
type uint32;
units "kHz";
description
"Selected transmitter frequency.
Related to the data node tx-frequency in RFC 8561.";
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
leaf rx-frequency {
type uint32;
units "kHz";
description
"Selected receiver frequency.
Related to the data node actual-rx-frequency in RFC 8561.";
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
leaf channel-separation {
type uint32;
units "kHz";
description
"The amount of bandwidth allocated to a carrier. The
distance between adjacent channels in a radio
frequency channels arrangement.
Related to the data node channel-separation in RFC 8561.";
reference
"ETSI EN 302 217-1 and
Ahlberg, et al. Expires 25 April 2022 [Page 9]
Internet-Draft Microwave Topology YANG Model October 2021
RFC 8561: A YANG Data Model for Microwave Radio Link";
}
leaf actual-tx-cm {
type identityref {
base mw-types:coding-modulation;
}
config false;
description
"Actual coding/modulation in transmitting direction.
Related to the data node actual-tx-cm in RFC 8561.";
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
leaf actual-snir {
type decimal64 {
fraction-digits 1;
range "0..99";
}
units "dB";
config false;
description
"Actual signal to noise plus the interference ratio
(0.1 dB resolution).
Related to the data node actual-snir in RFC 8561.";
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
leaf actual-transmitted-level {
type power {
range "-99..99";
}
units "dBm";
config false;
description
"Actual transmitted power level (0.1 dBm resolution).
Related to the data node actual-transmitted-level
in RFC 8561.";
reference
"ETSI EN 301 129 and
RFC 8561: A YANG Data Model for Microwave Radio Link";
}
//Any other attributes to be included?
}
grouping microwave-bandwidth {
description "Grouping used for microwave bandwidth.";
leaf mw-bandwidth {
Ahlberg, et al. Expires 25 April 2022 [Page 10]
Internet-Draft Microwave Topology YANG Model October 2021
type uint64;
units "Kbps";
config false;
description
"Nominal microwave radio link and carrier bandwidth.";
}
}
/*
* Data nodes
*/
augment "/nw:networks/nw:network/nw:network-types/"
+ "tet:te-topology" {
description
"Augment network types to define a microwave network
topology type.";
container mw-topology {
presence "Indicates a topology type of microwave.";
description "Microwave topology type";
}
}
augment "/nw:networks/nw:network/nw:node/nt:termination-point/"
+ "tet:te" {
when '../../../nw:network-types/tet:te-topology/'
+ 'mwtopo:mw-topology' {
description
"Augmentation parameters apply only for networks with an
microwave network topology type.";
}
description
"Augmentation to add microwave technology specific
characteristics to a termination point.";
container mw-tp-choice {
description "Specification of type of termination point.";
choice mw-tp-option {
description "Selection of type of termination point.";
case microwave-rltp {
container "microwave-rltp" {
presence
"Denotes a microwave radio link termination point.
It corresponds to a microwave RLT interface as
defined in RFC 8561.";
uses microwave-rltp-attributes;
description
"Denotes and describes a microwave radio link
termination point.";
}
Ahlberg, et al. Expires 25 April 2022 [Page 11]
Internet-Draft Microwave Topology YANG Model October 2021
}
case microwave-ctp {
container "microwave-ctp" {
presence
"Denotes a microwave carrier termination point.
It corresponds to a microwave CT interface as
defined in RFC 8561.";
uses microwave-ctp-attributes;
description
"Denotes and describes a microwave carrier
termination point.";
}
}
}
}
}
augment "/nw:networks/nw:network/nt:link/tet:te/"
+ "tet:te-link-attributes" {
when '../../../nw:network-types/tet:te-topology/'
+ 'mwtopo:mw-topology' {
description
"Augmentation parameters apply only for networks with an
microwave network topology type.";
}
description
"Augmentation to add microwave technology specific
characteristics to a link.";
container mw-link-choice {
description "Specification of type of link.";
choice mw-link-option {
description "Selection of type of link.";
case microwave-radio-link {
container "microwave-radio-link" {
presence
"Denotes a microwave radio link";
uses microwave-radio-link-attributes;
description
"Denotes and describes a microwave radio link";
}
}
case microwave-carrier {
container "microwave-carrier" {
presence "Denotes a microwave carrier";
uses microwave-carrier-attributes;
description "Denotes and describes a microwave carrier";
}
}
Ahlberg, et al. Expires 25 April 2022 [Page 12]
Internet-Draft Microwave Topology YANG Model October 2021
}
}
}
augment "/nw:networks/nw:network/nt:link/tet:te/"
+ "tet:te-link-attributes/"
+ "tet:max-link-bandwidth/"
+ "tet:te-bandwidth/tet:technology" {
when '../../../../../nw:network-types/tet:te-topology/'
+ 'mwtopo:mw-topology' {
description
"Augmentation parameters apply only for networks with an
microwave network topology type.";
}
description
"Augmentation for TE bandwidth.";
case microwave {
uses microwave-bandwidth;
}
}
}
<CODE ENDS>
4. Bandwidth Availability Topology YANG Data Model
4.1. YANG Tree
module: ietf-bandwidth-availability-topology
augment /nw:networks/nw:network/nt:link/tet:te/
tet:te-link-attributes:
+--rw link-availability* [availability]
| +--rw availability decimal64
| +--rw link-bandwidth? uint64
+--ro actual-bandwidth? yang:gauge64
4.2. Bandwidth Availability Topology YANG Data Module
<CODE BEGINS>
file "ietf-bandwidth-availability-topology@2021-10-22.yang"
module ietf-bandwidth-availability-topology {
yang-version 1.1;
namespace
"urn:ietf:params:xml:ns:yang:ietf-bandwidth-availability-topology";
prefix "bwatopo";
Ahlberg, et al. Expires 25 April 2022 [Page 13]
Internet-Draft Microwave Topology YANG Model October 2021
import ietf-yang-types {
prefix yang;
reference
"RFC 6991";
}
import ietf-network {
prefix "nw";
reference "RFC 8345: A YANG Data Model for Network Topologies";
}
import ietf-network-topology {
prefix "nt";
reference "RFC 8345: A YANG Data Model for Network Topologies";
}
import ietf-te-topology {
prefix "tet";
reference "RFC 8795: YANG Data Model for Traffic Engineering
(TE) Topologies";
}
organization
"Internet Engineering Task Force (IETF) CCAMP WG";
contact
"WG List: <mailto:ccamp@ietf.org>
//[JonasA] Who would like to be on the list of editors/contributors?
Editor: Jonas Ahlberg
<mailto:jonas.ahlberg@ericsson.com>
Editor: Scott Mansfield
<mailto:scott.mansfield@ericsson.com>
Editor: Min Ye
<mailto:amy.yemin@huawei.com>
Editor: Italo Busi
<mailto:Italo.Busi@huawei.com>
Editor: Xi Li
<mailto:Xi.Li@neclab.eu>
Editor: Daniela Spreafico
<mailto:daniela.spreafico@nokia.com>
";
// Note to RFC Editor: replace XXXX with actual RFC number and
// remove this note.
description
"This is a module for defining bandwidth availability matrix,
for links in a topology. It is intended to be used in
conjunction with an instance of ietf-network-topology and its
Ahlberg, et al. Expires 25 April 2022 [Page 14]
Internet-Draft Microwave Topology YANG Model October 2021
augmentations.
Example use cases include:
- Defining bandwidth availability matrix for a microwave link
- Defining bandwidth availability matrix for a LAG link
comprising of two or more member links
Copyright (c) 2020 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX
(https://tools.ietf.org/html/rfcXXXX); see the RFC itself for
full legal notices.";
revision 2021-10-22 {
description
"First rough draft.";
reference "";
}
/*
* Groupings
*/
grouping link-bw-availability-table {
description "Grouping used for bandwidth availability.";
list link-availability{
key "availability";
description
"Table describing the bandwidths available at corresponding
availability level for a link.";
leaf availability {
type decimal64 {
fraction-digits 4;
range "0..99.9999";
}
description "Availability level";
}
leaf link-bandwidth {
type uint64;
units "Kbps";
Ahlberg, et al. Expires 25 April 2022 [Page 15]
Internet-Draft Microwave Topology YANG Model October 2021
description
"The link bandwidth corresponding to the availability
level";
}
}
leaf actual-bandwidth{
type yang:gauge64;
units "bits/second";
config false;
description
"An estimate of the link's current bandwidth in bits per
second. Related to the data node speed in RFC 8343.";
reference
"RFC 8343: A YANG Data Model for Interface Management";
}
}
/*
* Data nodes
*/
augment "/nw:networks/nw:network/nt:link/tet:te/"
+ "tet:te-link-attributes" {
description
"Augmenting link with link bandwidth availability matrix.";
uses link-bw-availability-table;
}
}
<CODE ENDS>
5. Termination Point to Interface Reference YANG Data Model
5.1. YANG Tree
module: ietf-tp-interface-reference-topology
augment /nw:networks/nw:network/nw:node/
nt:termination-point/tet:te:
+--rw tp-to-interface-path?
-> /if:interfaces/if:interface/if:name
5.2. Termination Point to Interface Reference YANG Data Module
Ahlberg, et al. Expires 25 April 2022 [Page 16]
Internet-Draft Microwave Topology YANG Model October 2021
<CODE BEGINS>
file "ietf-tp-interface-reference-topology@2021-10-22.yang"
module ietf-tp-interface-reference-topology {
yang-version 1.1;
namespace
"urn:ietf:params:xml:ns:yang:ietf-tp-interface-reference-topology";
prefix "ifref";
import ietf-network {
prefix "nw";
reference "RFC 8345: A YANG Data Model for Network Topologies";
}
import ietf-network-topology {
prefix "nt";
reference "RFC 8345: A YANG Data Model for Network Topologies";
}
import ietf-te-topology {
prefix "tet";
reference "RFC 8795: YANG Data Model for Traffic Engineering
(TE) Topologies";
}
import ietf-interfaces {
prefix if;
reference
"RFC 8343";
}
organization
"Internet Engineering Task Force (IETF) CCAMP WG";
contact
"WG List: <mailto:ccamp@ietf.org>
//[JonasA] Who would like to be on the list of editors/contributors?
Editor: Jonas Ahlberg
<mailto:jonas.ahlberg@ericsson.com>
Editor: Scott Mansfield
<mailto:scott.mansfield@ericsson.com>
Editor: Min Ye
<mailto:amy.yemin@huawei.com>
Editor: Italo Busi
<mailto:Italo.Busi@huawei.com>
Editor: Xi Li
<mailto:Xi.Li@neclab.eu>
Editor: Daniela Spreafico
Ahlberg, et al. Expires 25 April 2022 [Page 17]
Internet-Draft Microwave Topology YANG Model October 2021
<mailto:daniela.spreafico@nokia.com>
";
// Note to RFC Editor: replace XXXX with actual RFC number and
// remove this note.
description
"This is a module for defining a reference from a termination
point in a te topology to a list element in interfaces
as defined in RFC 8343.
Copyright (c) 2020 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX
(https://tools.ietf.org/html/rfcXXXX); see the RFC itself for
full legal notices.";
revision 2021-10-22 {
description
"First rough draft.";
reference "";
}
/*
* Groupings
*/
grouping tp-to-interface-ref {
description
"Grouping used for reference between a termination point and
an interface.";
leaf tp-to-interface-path {
type leafref {
path '/if:interfaces/if:interface/if:name';
}
description
"Leafref expression referencing a list element, identified
by its name, in interfaces as defined in RFC 8343.";
}
}
/*
* Data nodes
Ahlberg, et al. Expires 25 April 2022 [Page 18]
Internet-Draft Microwave Topology YANG Model October 2021
*/
augment "/nw:networks/nw:network/nw:node/nt:termination-point/"
+ "tet:te" {
description
"Augmentation to add possibility to reference an element
in the list of interfaces as defined by RFC 8343.";
uses tp-to-interface-ref;
}
}
<CODE ENDS>
6. Security Considerations
The YANG modules specified in this document define schemas for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC8446].
The NETCONF access control model [RFC8341] provides the means to
restrict access for particular NETCONF or RESTCONF users to a
preconfigured subset of all available NETCONF or RESTCONF protocol
operations and content.
The YANG modules specified in this document import and augment the
ietf-network and ietf-network-topology models defined in [RFC8345].
The security considerations from [RFC8345] are applicable to the
modules in this document.
There are a several data nodes defined in these YANG modules that are
writable/creatable/deletable (i.e., config true, which is the
default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config)
to these data nodes without proper protection can have a negative
effect on network operations. These are the subtrees and data nodes
and their sensitivity/vulnerability:
In the "ietf-microwave-topology" module:
* rlt-interface-path: A malicious client could set an arbitrary
xpath that could allow a client to retrieve incorrect information.
Troubleshooting would be difficult because the bad path would not
be detectable until the client tries to use the leaf to identify
to radio link terminal.
Ahlberg, et al. Expires 25 April 2022 [Page 19]
Internet-Draft Microwave Topology YANG Model October 2021
In the "ietf-bandwidth-availability-topology" module:
* availability: A malicious client could attempt to modify the
availability level which could modify the intended behavior.
* link-bandwidth: A malicious client could attempt to modify the
link bandwidth which could either provide more or less link
bandwidth at the indicated availability level, changing the
resource allocation in unintended ways.
7. IANA Considerations
IANA is asked to assign a new URI from the "IETF XML Registry"
[RFC3688] as follows:
URI: urn:ietf:params:xml:ns:yang:ietf-microwave-topology
Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf-bandwidth-availability-topology
Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace.
It is proposed that IANA should record YANG module names in the "YANG
Module Names" registry [RFC6020] as follows:
Name: ietf-microwave-topology
Maintained by IANA?: N
Namespace: urn:ietf:params:xml:ns:yang:ietf-microwave-topology
Prefix: mwtopo
Reference: RFC XXXX
Name: ietf-bandwidth-availability-topology
Maintained by IANA?: N
Namespace:
urn:ietf:params:xml:ns:yang:ietf-bandwidth-availability-topology
Prefix: bwavtopo
Reference: RFC XXXX
8. References
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
Ahlberg, et al. Expires 25 April 2022 [Page 20]
Internet-Draft Microwave Topology YANG Model October 2021
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface
Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
<https://www.rfc-editor.org/info/rfc8343>.
[RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
2018, <https://www.rfc-editor.org/info/rfc8345>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
Ahlberg, et al. Expires 25 April 2022 [Page 21]
Internet-Draft Microwave Topology YANG Model October 2021
[RFC8795] Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
O. Gonzalez de Dios, "YANG Data Model for Traffic
Engineering (TE) Topologies", RFC 8795,
DOI 10.17487/RFC8795, August 2020,
<https://www.rfc-editor.org/info/rfc8795>.
8.2. Informative References
[RFC8330] Long, H., Ye, M., Mirsky, G., D'Alessandro, A., and H.
Shah, "OSPF Traffic Engineering (OSPF-TE) Link
Availability Extension for Links with Variable Discrete
Bandwidth", RFC 8330, DOI 10.17487/RFC8330, February 2018,
<https://www.rfc-editor.org/info/rfc8330>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for
Abstraction and Control of TE Networks (ACTN)", RFC 8453,
DOI 10.17487/RFC8453, August 2018,
<https://www.rfc-editor.org/info/rfc8453>.
[RFC8561] Ahlberg, J., Ye, M., Li, X., Spreafico, D., and M.
Vaupotic, "A YANG Data Model for Microwave Radio Link",
RFC 8561, DOI 10.17487/RFC8561, June 2019,
<https://www.rfc-editor.org/info/rfc8561>.
[RFC8944] Dong, J., Wei, X., Wu, Q., Boucadair, M., and A. Liu, "A
YANG Data Model for Layer 2 Network Topologies", RFC 8944,
DOI 10.17487/RFC8944, November 2020,
<https://www.rfc-editor.org/info/rfc8944>.
Appendix A. Examples of the application of the Topology Models
This appendix provides some examples and illustrations of how the
Microwave Topology Model and the Bandwidth Availability Topology
Model can be used. There is one extended tree to illustrate the
complete Microwave Topology Model and a JSON based instantiation of
the Microwave Topology Model for a small network example.
A.1. A tree for a complete Microwave Topology Model
The tree below shows the leafs for a complete Microwave Topology
Model including the augmented Network Topology Model defined in
[RFC8345], Traffic Engineering (TE) Topologies model defined in
[RFC8795] and the associated Bandwidth Availability Model.
Ahlberg, et al. Expires 25 April 2022 [Page 22]
Internet-Draft Microwave Topology YANG Model October 2021
module: ietf-network
+--rw networks
+--rw network* [network-id]
+--rw network-id network-id
+--rw network-types
| +--rw tet:te-topology!
| +--rw mwtopo:mw-topology!
+--rw supporting-network* [network-ref]
| +--rw network-ref -> /networks/network/network-id
+--rw node* [node-id]
| +--rw node-id node-id
| +--rw supporting-node* [network-ref node-ref]
| | +--rw network-ref
| | | -> ../../../supporting-network/network-ref
| | +--rw node-ref -> /networks/network/node/node-id
| +--rw nt:termination-point* [tp-id]
| +--rw nt:tp-id tp-id
| +--rw nt:supporting-termination-point*
| | | [network-ref node-ref tp-ref]
| | +--rw nt:network-ref
| | | -> ../../../nw:supporting-node/network-ref
| | +--rw nt:node-ref
| | | -> ../../../nw:supporting-node/node-ref
| | +--rw nt:tp-ref
| | -> /nw:networks/network[nw:network-id=current()
| | /../network-ref]/node[nw:node-id=current()
| | /../node-ref]/termination-point/tp-id
| +--rw tet:te!
| +--rw tet:name? string
| +--ro tet:geolocation
| | +--ro tet:altitude? int64
| | +--ro tet:latitude? geographic-coordinate-degree
| | +--ro tet:longitude? geographic-coordinate-degree
| +--rw ifref:tp-to-interface-path?
| | -> /if:interfaces/if:interface/if:name
| +--rw mwtopo:mw-tp-choice
| +--rw (mwtopo:mw-tp-option)?
| +--:(mwtopo:microwave-rltp)
| | +--rw mwtopo:microwave-rltp!
| +--:(mwtopo:microwave-ctp)
| +--rw mwtopo:microwave-ctp!
+--rw nt:link* [link-id]
+--rw nt:link-id link-id
+--rw nt:source
| +--rw nt:source-node? -> ../../../nw:node/node-id
| +--rw nt:source-tp?
| -> ../../../nw:node[nw:node-id=current()
| /../source-node]/termination-point/tp-id
Ahlberg, et al. Expires 25 April 2022 [Page 23]
Internet-Draft Microwave Topology YANG Model October 2021
+--rw nt:destination
| +--rw nt:dest-node? -> ../../../nw:node/node-id
| +--rw nt:dest-tp?
| -> ../../../nw:node[nw:node-id=current()
| /../dest-node]/termination-point/tp-id
+--rw tet:te!
+--rw (tet:bundle-stack-level)?
| +--:(tet:bundle)
| +--rw tet:bundled-links
| +--rw tet:bundled-link* [sequence]
| +--rw tet:sequence uint32
| +--rw tet:src-tp-ref? -> ../../../../../
| | nw:node[nw:node-id current()/../../..
| | /../nt:source/source-node]/
| | termination-point/tp-id
| +--rw tet:des-tp-ref? -> ../../../../../
| nw:node[nw:node-id = current()/../../
| ../../nt:destination/dest-node]/
| termination-point/tp-id
+--rw tet:te-link-attributes
| +--rw tet:name? string
| +--rw tet:admin-status? te-types:te-admin-status
| +--rw tet:max-link-bandwidth
| | +--rw tet:te-bandwidth
| | +--rw (tet:technology)?
| | +--:(mwtopo:microwave)
| | +--ro mwtopo:mw-bandwidth? uint64
| +--rw mwtopo:mw-link-choice
| | +--rw (mwtopo:mw-link-option)?
| | +--:(mwtopo:microwave-radio-link)
| | | +--rw mwtopo:microwave-radio-link!
| | | +--rw mwtopo:mode? identityref
| | +--:(mwtopo:microwave-carrier)
| | +--rw mwtopo:microwave-carrier!
| | +--rw mwtopo:tx-frequency? uint32
| | +--rw mwtopo:rx-frequency? uint32
| | +--rw mwtopo:channel-separation? uint32
| | +--ro actual-tx-cm? identityref
| | +--ro actual-snir? decimal64
| | +--ro actual-transmitted-level? power
| +--rw bwatopo:link-availability* [availability]
| | +--rw bwatopo:availability decimal64
| | +--rw bwatopo:link-bandwidth? uint64
| +--ro bwatopo:actual-bandwidth? yang:gauge64
+--ro tet:oper-status? te-types:te-oper-status
Ahlberg, et al. Expires 25 April 2022 [Page 24]
Internet-Draft Microwave Topology YANG Model October 2021
A.2. A topology with single microwave radio link
Microwave is a transport technology which can be used to transport
client services, such as L2 Ethernet links. When an L2 link is
transported over a single supporting microwave radio link, the
topologies could be as shown in Figure 3 below. Note that the figure
just shows an example, there might be other possibilities to
demonstrate such a topology. The example of the instantiation
encoded in JSON is using only a selected subset of the leafs from the
L2 topology model [RFC8944] and the Microwave Interface Management
Model [RFC8561].
Node N1 Node N2
+--------------+ +--------------+
| +----------+ | | +----------+ | L2-network
| | L2-N1- | | L2-N1-N2 | | L2-N2-| | -L2 topology
| | TP1 o---------------------o TP2 | |
| +----------+ | ' | +----------+ | Supporting
| : | ' | : | ' mw link
| : | ' | : | : TPs
| +----------+ | ' | +----------+ |
| |mw-N1- | | mwrl-N1-N2 | | mw-N2-| | MW-network
| |RLTP1 o---------------------o RLTP2 | | -MW topology
| +----------+ | * | +----------+ |
| :: | *************** | :: |
| :: |** **| :: | Supporting
| +-------:--+ * * * * +--:-------+ | : TPs
| |mw-N1- : |*| * mwc-N1-N2-A * |*| : mw-N1-| | * carriers as
| |CTP1 : o---------------------o : CTP2 | | bundled links
| +-------:--+ | * * | +--:-------+ |
| : |* *| : |
| +----------+ * * +----------+ |
| |mw-N1- |*| mwc-N1-N2-B |*| mw-N1-| |
| |CTP3 o---------------------o CTP4 | |
| +----------+ | | +----------+ |
+--------------+ +--------------+
Figure 3: L2 transported over a (2+0) microwave radio link
Node N1 Interfaces
+---------------+ +----------------+
| +-----------+ |tp-to-interface-path| +------------+ |
| | L2-N1-TP1 |************************|L2Interface1| |
| +-----------+ | | +------------+ |
| | | |
| +-----------+ |tp-to-interface-path| +------------+ |
| |mw-N1-RLTP1|************************| RLT-1 | |
| +-----------+ | | +------------+ |
| | | |
Ahlberg, et al. Expires 25 April 2022 [Page 25]
Internet-Draft Microwave Topology YANG Model October 2021
| +-----------+ |tp-to-interface-path| +------------+ |
| |mw-N1-CTP1 |************************| CT-1 | |
| +-----------+ | | +------------+ |
| | | |
| +-----------+ |tp-to-interface-path| +------------+ |
| |mw-N1-CTP3 |************************| CT-3 | |
| +-----------+ | | +------------+ |
+---------------+ +----------------+
Figure 4: References from the topology model information to
the associated interface management model information
The example above, a L2 network with a supporting microwave
network, including microwave-topology (MW) and
bandwidth-availability-topology (BWA) models as well as
the reference to the associated interface management
information, is encoded in JSON as follows:
<CODE BEGINS> file "example.json"
{
"ietf-network:networks": {
"network": [
{
"network-id": "L2-network",
"network-types": {
"ietf-l2-topology:l2-topology": {
}
},
"supporting-network": [
{
"network-ref": "mw-network"
}
],
"node": [
{
"node-id": "L2-N1",
"supporting-node": [
{
"network-ref": "mw-network",
"node-ref": "mw-N1"
}
],
"ietf-network-topology:termination-point": [
{
"tp-id": "L2-N1-TP1",
"supporting-termination-point": [
{
"network-ref": "mw-network",
"node-ref": "mw-N1",
Ahlberg, et al. Expires 25 April 2022 [Page 26]
Internet-Draft Microwave Topology YANG Model October 2021
"tp-ref": "mw-N1-RLTP1"
}
]
}
]
},
{
"node-id": "L2-N2",
"supporting-node": [
{
"network-ref": "mw-network",
"node-ref": "mw-N2"
}
],
"ietf-network-topology:termination-point": [
{
"tp-id": "L2-N2-TP2",
"supporting-termination-point": [
{
"network-ref": "mw-network",
"node-ref": "mw-N2",
"tp-ref": "mw-N2-RLTP2"
}
]
}
]
}
],
"ietf-network-topology:link": [
{
"link-id": "L2-N1-N2",
"source": {
"source-node": "L2-N1",
"source-tp": "L2-N1-TP1"
},
"destination": {
"dest-node": "L2-N2",
"dest-tp": "L2-N2-TP2"
},
"supporting-link": [
{
"network-ref": "mw-network",
"link-ref": "mwrl-N1-N2"
}
]
}
]
},
Ahlberg, et al. Expires 25 April 2022 [Page 27]
Internet-Draft Microwave Topology YANG Model October 2021
{
"network-id": "mw-network",
"network-types": {
"ietf-te-topology:te-topology": {
"ietf-microwave-topology:mw-topology": {
}
}
},
"node": [
{
"node-id": "mw-N1",
"ietf-network-topology:termination-point": [
{
"tp-id": "mw-N1-RLTP1",
"supporting-termination-point": [
{
"network-ref": "mw-network",
"node-ref": "mw-N1",
"tp-ref": "mw-N1-CTP1"
},
{
"network-ref": "mw-network",
"node-ref": "mw-N1",
"tp-ref": "mw-N1-CTP3"
}
],
"ietf-te-topology:te-tp-id": "10.10.10.1",
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp-choice": {
"microwave-rltp": {}
},
"ietf-tp-interface-reference-topology:
tp-to-interface-path":"RLT-1"
}
},
{
"tp-id": "mw-N1-CTP1",
"ietf-te-topology:te-tp-id": 1,
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp-choice": {
"microwave-ctp": {}
},
"ietf-tp-interface-reference-topology:
tp-to-interface-path":"CT-1"
}
},
{
"tp-id": "mw-N1-CTP3",
Ahlberg, et al. Expires 25 April 2022 [Page 28]
Internet-Draft Microwave Topology YANG Model October 2021
"ietf-te-topology:te-tp-id": 2,
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp-choice": {
"microwave-ctp": {}
},
"ietf-tp-interface-reference-topology:
tp-to-interface-path":"CT-3"
}
}
]
},
{
"node-id": "mw-N2",
"ietf-network-topology:termination-point": [
{
"tp-id": "mw-N2-RLTP2",
"supporting-termination-point": [
{
"network-ref": "mw-network",
"node-ref": "mw-N2",
"tp-ref": "mw-N2-CTP2"
},
{
"network-ref": "mw-network",
"node-ref": "mw-N2",
"tp-ref": "mw-N2-CTP4"
}
],
"ietf-te-topology:te-tp-id": "10.10.10.1",
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp-choice": {
"microwave-rltp": {}
},
"ietf-tp-interface-reference-topology:
tp-to-interface-path":"RLT-2"
}
},
{
"tp-id": "mw-N2-CTP2",
"ietf-te-topology:te-tp-id": 1,
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp-choice": {
"microwave-ctp": {}
},
"ietf-tp-interface-reference-topology:
tp-to-interface-path":"CT-2"
}
},
Ahlberg, et al. Expires 25 April 2022 [Page 29]
Internet-Draft Microwave Topology YANG Model October 2021
{
"tp-id": "mw-N2-CTP4",
"ietf-te-topology:te-tp-id": 2,
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp-choice": {
"microwave-ctp": {}
},
"ietf-tp-interface-reference-topology:
tp-to-interface-path":"CT-4"
}
}
]
}
],
"ietf-network-topology:link": [
{
"link-id": "mwrl-N1-N2",
"source": {
"source-node": "mw-N1",
"source-tp": "mw-N1-RLTP1"
},
"destination": {
"dest-node": "mw-N2",
"dest-tp": "mw-N2-RLTP2"
},
"ietf-te-topology:te": {
"bundled-links": {
"bundled-link": [
{
"sequence": 1,
"src-tp-ref": "mw-N1-CTP1",
"des-tp-ref": "mw-N2-CTP2"
},
{
"sequence": 2,
"src-tp-ref": "mw-N1-CTP3",
"des-tp-ref": "mw-N2-CTP4"
}
]
},
"te-link-attributes": {
"ietf-bandwidth-availability-topology:
link-availability": [
{
"availability": "0.999",
"link-bandwidth": "1572864"
},
{
Ahlberg, et al. Expires 25 April 2022 [Page 30]
Internet-Draft Microwave Topology YANG Model October 2021
"availability": "0.95",
"link-bandwidth": "2097152"
}
],
"ietf-bandwidth-availability-topology:
"actual-bandwidth": "2097152",
"ietf-microwave-topology:mw-link-choice": {
"microwave-radio-link": {
"mode": "ietf-microwave-types:two-plus-zero"
}
}
}
}
},
{
"link-id": "mwc-N1-N2-A",
"source": {
"source-node": "mw-N1",
"source-tp": "mw-N1-CTP1"
},
"destination": {
"dest-node": "mw-N2",
"dest-tp": "mw-N2-CTP2"
},
"ietf-te-topology:te": {
"te-link-attributes": {
"ietf-bandwidth-availability-topology:
link-availability": [
{
"availability": "0.99",
"link-bandwidth": "1048576"
}
],
"ietf-bandwidth-availability-topology:
"actual-bandwidth": "1048576",
"ietf-microwave-topology:mw-link-choice": {
"microwave-carrier": {
"tx-frequency": 10728000,
"rx-frequency": 10615000,
"channel-separation": 28000,
"actual-tx-cm": "ietf-microwave-types:qam-512",
"actual-snir": "46.2",
"actual-transmitted-level": "20.0"
}
}
}
}
},
Ahlberg, et al. Expires 25 April 2022 [Page 31]
Internet-Draft Microwave Topology YANG Model October 2021
{
"link-id": "mwc-N1-N2-B",
"source": {
"source-node": "mw-N1",
"source-tp": "mw-N1-CTP3"
},
"destination": {
"dest-node": "mw-N2",
"dest-tp": "mw-N2-CTP4"
},
"ietf-te-topology:te": {
"te-link-attributes": {
"ietf-bandwidth-availability-topology:
link-availability": [
{
"availability": "0.99",
"link-bandwidth": "1048576"
}
],
"ietf-bandwidth-availability-topology:
"actual-bandwidth": "1048576",
"ietf-microwave-topology:mw-link-choice": {
"microwave-carrier": {
"tx-frequency": 10528000,
"rx-frequency": 10415000,
"channel-separation": 28000,
"actual-tx-cm": "ietf-microwave-types:qam-512",
"actual-snir": "46.4",
"actual-transmitted-level": "20.0"
}
}
}
}
}
]
}
]
},
"ietf-interfaces:interfaces": {
"interface": [
{
"name": "L2Interface1",
"description": "'Ethernet Interface 1'",
"type": "iana-if-type:ethernetCsmacd",
"admin-status": "up",
"oper-status": "up",
"if-index": 1,
"statistics": {
Ahlberg, et al. Expires 25 April 2022 [Page 32]
Internet-Draft Microwave Topology YANG Model October 2021
"discontinuity-time": "2021-10-22T06:47:00-08:00"
}
},
{
"name": "L2Interface2",
"description": "'Ethernet Interface 2'",
"type": "iana-if-type:ethernetCsmacd",
"admin-status": "up",
"oper-status": "up",
"if-index": 1,
"statistics": {
"discontinuity-time": "2021-10-22T06:47:00-08:00"
}
},
{
"name": "RLT-1",
"description": "'Radio Link Terminal 1'",
"type": "iana-if-type:microwaveRadioLinkTerminal",
"admin-status": "up",
"oper-status": "up",
"if-index": 1,
"statistics": {
"discontinuity-time": "2021-10-22T06:47:00-08:00"
},
"ietf-microwave-radio-link:mode":
"ietf-microwave-types:one-plus-zero",
"ietf-microwave-radio-link:carrier-terminations": [
"CT-1",
"CT-3"
]
},
{
"name": "RLT-2",
"description": "'Radio Link Terminal 2'",
"type": "iana-if-type:microwaveRadioLinkTerminal",
"admin-status": "up",
"oper-status": "up",
"if-index": 1,
"statistics": {
"discontinuity-time": "2021-10-22T06:47:00-08:00"
},
"ietf-microwave-radio-link:mode":
"ietf-microwave-types:one-plus-zero",
"ietf-microwave-radio-link:carrier-terminations": [
"CT-2",
"CT-4"
]
},
Ahlberg, et al. Expires 25 April 2022 [Page 33]
Internet-Draft Microwave Topology YANG Model October 2021
{
"name": "CT-1",
"description": "'Carrier Termination 1'",
"type": "iana-if-type:microwaveCarrierTermination",
"admin-status": "up",
"oper-status": "up",
"if-index": 1,
"statistics": {
"discontinuity-time": "2021-10-22T06:47:00-08:00"
},
"ietf-microwave-radio-link:tx-frequency": 10728000,
"ietf-microwave-radio-link:duplex-distance": 644000,
"ietf-microwave-radio-link:channel-separation": 28000,
"ietf-microwave-radio-link:rtpc": {
"maximum-nominal-power": "20.0"
},
"ietf-microwave-radio-link:single": {
"selected-cm": "ietf-microwave-types:qam-512"
}
},
{
"name": "CT-3",
"description": "'Carrier Termination 3'",
"type": "iana-if-type:microwaveCarrierTermination",
"admin-status": "up",
"oper-status": "up",
"if-index": 1,
"statistics": {
"discontinuity-time": "2021-10-22T06:47:00-08:00"
},
"ietf-microwave-radio-link:tx-frequency": 10528000,
"ietf-microwave-radio-link:duplex-distance": 644000,
"ietf-microwave-radio-link:channel-separation": 28000,
"ietf-microwave-radio-link:rtpc": {
"maximum-nominal-power": "20.0"
},
"ietf-microwave-radio-link:single": {
"selected-cm": "ietf-microwave-types:qam-512"
}
},
{
"name": "CT-2",
"description": "'Carrier Termination 2'",
"type": "iana-if-type:microwaveCarrierTermination",
"admin-status": "up",
"oper-status": "up",
"if-index": 1,
"statistics": {
Ahlberg, et al. Expires 25 April 2022 [Page 34]
Internet-Draft Microwave Topology YANG Model October 2021
"discontinuity-time": "2021-10-22T06:47:00-08:00"
},
"ietf-microwave-radio-link:tx-frequency": 10615000,
"ietf-microwave-radio-link:duplex-distance": 644000,
"ietf-microwave-radio-link:channel-separation": 28000,
"ietf-microwave-radio-link:rtpc": {
"maximum-nominal-power": "20.0"
},
"ietf-microwave-radio-link:single": {
"selected-cm": "ietf-microwave-types:qam-512"
}
},
{
"name": "CT-4",
"description": "'Carrier Termination 4'",
"type": "iana-if-type:microwaveCarrierTermination",
"admin-status": "up",
"oper-status": "up",
"if-index": 1,
"statistics": {
"discontinuity-time": "2021-10-22T06:47:00-08:00"
},
"ietf-microwave-radio-link:tx-frequency": 10415000,
"ietf-microwave-radio-link:duplex-distance": 644000,
"ietf-microwave-radio-link:channel-separation": 28000,
"ietf-microwave-radio-link:rtpc": {
"maximum-nominal-power": "20.0"
},
"ietf-microwave-radio-link:single": {
"selected-cm": "ietf-microwave-types:qam-512"
}
}
]
}
}
<CODE ENDS>
Note that the example above just shows one particular link
(unidirectional) and not a complete network topology.
Appendix B. Contributors
TBD
Authors' Addresses
Ahlberg, et al. Expires 25 April 2022 [Page 35]
Internet-Draft Microwave Topology YANG Model October 2021
Jonas Ahlberg
Ericsson AB
Email: jonas.ahlberg@ericsson.com
Scott Mansfield
Ericsson AB
Email: scott.mansfield@ericsson.com
Min Ye
Huawei Technologies
Email: amy.yemin@huawei.com
Italo Busi
Huawei Technologies
Email: Italo.Busi@huawei.com
Xi Li
NEC Laboratories Europe
Email: Xi.Li@neclab.eu
Daniela Spreafico
Nokia - IT
Email: daniela.spreafico@nokia.com
Ahlberg, et al. Expires 25 April 2022 [Page 36]