Internet-Draft | Digest Fields | July 2023 |
Polli & Pardue | Expires 11 January 2024 | [Page] |
- Workgroup:
- HTTP
- Internet-Draft:
- draft-ietf-httpbis-digest-headers-13
- Obsoletes:
- 3230 (if approved)
- Published:
- Intended Status:
- Standards Track
- Expires:
Digest Fields
Abstract
This document defines HTTP fields that support integrity digests. The Content-Digest field can be used for the integrity of HTTP message content. The Repr-Digest field can be used for the integrity of HTTP representations. Want-Content-Digest and Want-Repr-Digest can be used to indicate a sender's interest and preferences for receiving the respective Integrity fields.¶
This document obsoletes RFC 3230 and the Digest and Want-Digest HTTP fields.¶
About This Document
This note is to be removed before publishing as an RFC.¶
Status information for this document may be found at https://datatracker.ietf.org/doc/draft-ietf-httpbis-digest-headers/.¶
Discussion of this document takes place on the HTTP Working Group mailing list (mailto:ietf-http-wg@w3.org), which is archived at https://lists.w3.org/Archives/Public/ietf-http-wg/. Working Group information can be found at https://httpwg.org/.¶
Source for this draft and an issue tracker can be found at https://github.com/httpwg/http-extensions/labels/digest-headers.¶
Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 11 January 2024.¶
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
1. Introduction
HTTP does not define the means to protect the data integrity of content or representations. When HTTP messages are transferred between endpoints, lower layer features or properties such as TCP checksums or TLS records [TLS] can provide some integrity protection. However, transport-oriented integrity provides a limited utility because it is opaque to the application layer and only covers the extent of a single connection. HTTP messages often travel over a chain of separate connections. In between connections there is a possibility for data corruption. An HTTP integrity mechanism can provide the means for endpoints, or applications using HTTP, to detect data corruption and make a choice about how to act on it. An example use case is to aid fault detection and diagnosis across system boundaries.¶
This document defines two digest integrity mechanisms for HTTP. First, content integrity, which acts on conveyed content (Section 6.4 of [HTTP]). Second, representation data integrity, which acts on representation data (Section 8.1 of [HTTP]). This supports advanced use cases such as validating the integrity of a resource that was reconstructed from parts retrieved using multiple requests or connections.¶
This document obsoletes RFC 3230 and therefore the Digest and Want-Digest HTTP fields; see Section 1.3.¶
1.1. Document Structure
This document is structured as follows:¶
-
New request and response header and trailer field definitions.¶
-
Considerations specific to representation data integrity.¶
- Section 3.1 (State-changing requests),¶
- Section 3.2 (Content-Location),¶
- Appendix A contains worked examples of Representation data in message exchanges, and¶
- Appendix B and Appendix C contain worked examples of Repr-Digest and Want-Repr-Digest fields in message exchanges.¶
- Section 5 presents hash algorithm considerations and defines registration procedures for future entries.¶
1.2. Concept Overview
The HTTP fields defined in this document can be used for HTTP integrity. Senders choose a hashing algorithm and calculate a digest from an input related to the HTTP message. The algorithm identifier and digest are transmitted in an HTTP field. Receivers can validate the digest for integrity purposes. Hashing algorithms are registered in the "Hash Algorithms for HTTP Digest Fields" registry (see Section 7.2).¶
Selecting the data on which digests are calculated depends on the use case of the HTTP messages. This document provides different fields for HTTP representation data and HTTP content.¶
There are use cases where a simple digest of the HTTP content bytes is
required. The Content-Digest
request and response header and trailer field is
defined to support digests of content (Section 6.4 of [HTTP]); see
Section 2.¶
For more advanced use cases, the Repr-Digest
request and response header
and trailer field (Section 3) is defined. It contains a digest value
computed by applying a hashing algorithm to selected representation data
(Section 8.1 of [HTTP]). Basing Repr-Digest
on the selected
representation makes it straightforward to apply it to use cases where the
message content requires some sort of manipulation to be considered as
representation of the resource or content conveys a partial representation of a resource,
such as Range Requests (see Section 14 of [HTTP]).¶
Content-Digest
and Repr-Digest
support hashing algorithm agility.
The Want-Content-Digest
and Want-Repr-Digest
fields allow
endpoints to express interest in Content-Digest
and Repr-Digest
respectively, and to express algorithm preferences in either.¶
Content-Digest
and Repr-Digest
are collectively termed
Integrity fields.
Want-Content-Digest
and Want-Repr-Digest
are
collectively termed Integrity preference fields.¶
Integrity fields are tied to the Content-Encoding
and Content-Type
header fields. Therefore, a given resource may have multiple
different digest values when transferred with HTTP.¶
Integrity fields apply to HTTP message content or HTTP representations. They do not apply to HTTP messages or fields. However, they can be combined with other mechanisms that protect metadata, such as digital signatures, in order to protect the phases of an HTTP exchange in whole or in part. For example, HTTP Message Signatures [SIGNATURES] could be used to sign Integrity fields, thus providing coverage for HTTP content or representation data.¶
This specification does not define means for authentication, authorization, or privacy.¶
1.3. Obsoleting RFC 3230
[RFC3230] defined the Digest
and Want-Digest
HTTP fields for HTTP integrity.
It also coined the term "instance" and "instance manipulation" in order to
explain concepts that are now more universally defined, and implemented, as HTTP
semantics such as selected representation data (Section 8.1 of [HTTP]).¶
Experience has shown that implementations of [RFC3230] have interpreted the meaning of "instance" inconsistently, leading to interoperability issues. The most common issue relates to the mistake of calculating the digest using (what we now call) message content, rather than using (what we now call) representation data as was originally intended. Interestingly, time has also shown that a digest of message content can be beneficial for some use cases. So it is difficult to detect if non-conformance to [RFC3230] is intentional or unintentional.¶
In order to address potential inconsistencies and ambiguity across
implementations of Digest
and Want-Digest
, this document obsoletes
[RFC3230]. The Integrity fields (Sections 2 and
3) and Integrity preference fields (Section 4)
defined in this document are better aligned with current HTTP semantics and
have names that more clearly articulate the intended usages.¶
1.4. Notational Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
This document uses the Augmented BNF defined in [RFC5234] and updated by [RFC7405]. This includes the rules: CR (carriage return), LF (line feed), and CRLF (CR LF).¶
This document uses the following terminology from Section 3 of [STRUCTURED-FIELDS] to specify syntax and parsing: Boolean, Byte Sequence, Dictionary, Integer, and List.¶
The definitions "representation", "selected representation", "representation data", "representation metadata", "user agent", and "content" in this document are to be interpreted as described in [HTTP].¶
This document uses the line folding strategies described in [FOLDING].¶
Hashing algorithm names respect the casing used in their definition document (e.g., SHA-1, CRC32c).¶
HTTP messages indicate hashing algorithms using an Algorithm Key (algorithms). Where the document refers to an Algorithm Key in prose, it is quoted (e.g., "sha", "crc32c").¶
The term "checksum" describes the output of the application of an algorithm to a sequence of bytes, whereas "digest" is only used in relation to the value contained in the fields.¶
Integrity fields: collective term for Content-Digest
and Repr-Digest
¶
Integrity preference fields: collective term for Want-Repr-Digest
and Want-Content-Digest
¶
2. The Content-Digest Field
The Content-Digest
HTTP field can be used in requests and responses to
communicate digests that are calculated using a hashing algorithm applied to
the actual message content (see Section 6.4 of [HTTP]). It is a
Dictionary
(see Section 3.2 of [STRUCTURED-FIELDS])
where each:¶
- key conveys the hashing algorithm (see Section 5) used to compute the digest;¶
- value is a
Byte Sequence
(Section 3.3.5 of [STRUCTURED-FIELDS]), that conveys an encoded version of the byte output produced by the digest calculation.¶
For example:¶
The Dictionary
type can be used, for example, to attach multiple digests
calculated using different hashing algorithms in order to support a population
of endpoints with different or evolving capabilities. Such an approach could
support transitions away from weaker algorithms (see Section 6.6).¶
A recipient MAY ignore any or all digests. Application-specific behavior or local policy MAY set additional constraints on the processing and validation practices of the conveyed digests. The security considerations covers some of the issues related to ignoring digests (see Section 6.6) and validating multiple digests (see Section 6.7).¶
A sender MAY send a digest without knowing whether the recipient supports a given hashing algorithm, or even knowing that the recipient will ignore it.¶
Content-Digest
can be sent in a trailer section.
In this case,
Content-Digest
MAY be merged into the header section; see Section 6.5.1 of [HTTP].¶
3. The Repr-Digest Field
The Repr-Digest
HTTP field can be used in requests and responses to
communicate digests that are calculated using a hashing algorithm applied to
the entire selected representation data (see Section 8.1 of [HTTP]).¶
Representations take into account the effect of the HTTP semantics on messages. For example, the content can be affected by Range Requests or methods such as HEAD, while the way the content is transferred "on the wire" is dependent on other transformations (e.g., transfer codings for HTTP/1.1 - see Section 6.1 of [HTTP/1.1]). To help illustrate HTTP representation concepts, several examples are provided in Appendix A.¶
When a message has no representation data it is still possible to assert that no representation data was sent by computing the digest on an empty string (see Section 6.3).¶
Repr-Digest
is a Dictionary
(see Section 3.2 of [STRUCTURED-FIELDS]) where each:¶
- key conveys the hashing algorithm (see Section 5) used to compute the digest;¶
- value is a
Byte Sequence
, that conveys an encoded version of the byte output produced by the digest calculation.¶
For example:¶
The Dictionary
type can be used, for example, to attach multiple digests
calculated using different hashing algorithms in order to support a population
of endpoints with different or evolving capabilities. Such an approach could
support transitions away from weaker algorithms (see Section 6.6).¶
A recipient MAY ignore any or all digests. Application-specific behavior or local policy MAY set additional constraints on the processing and validation practices of the conveyed digests. The security considerations covers some of the issues related to ignoring digests (see Section 6.6) and validating multiple digests (see Section 6.7).¶
A sender MAY send a digest without knowing whether the recipient supports a given hashing algorithm, or even knowing that the recipient will ignore it.¶
Repr-Digest
can be sent in a trailer section.
In this case,
Repr-Digest
MAY be merged into the header section; see Section 6.5.1 of [HTTP].¶
3.1. Using Repr-Digest in State-Changing Requests
When the representation enclosed in a state-changing request does not describe the target resource, the representation digest MUST be computed on the representation data. This is the only possible choice because representation digest requires complete representation metadata (see Section 3).¶
In responses,¶
- if the representation describes the status of the request,
Repr-Digest
MUST be computed on the enclosed representation (see Appendix B.8);¶ - if there is a referenced resource
Repr-Digest
MUST be computed on the selected representation of the referenced resource even if that is different from the target resource. That might or might not result in computingRepr-Digest
on the enclosed representation.¶
The latter case is done according to the HTTP semantics of the given
method, for example using the Content-Location
header field (see Section 8.7 of [HTTP]).
In contrast, the Location
header field does not affect Repr-Digest
because
it is not representation metadata.¶
For example, in PATCH
requests, the representation digest
will be computed on the patch document
because the representation metadata refers to the patch document and not
to the target resource (see Section 2 of [PATCH]).
In responses, instead, the representation digest will be computed on the selected
representation of the patched resource.¶
3.2. Repr-Digest and Content-Location in Responses
When a state-changing method returns the Content-Location
header field, the
enclosed representation refers to the resource identified by its value and
Repr-Digest
is computed accordingly.
An example is given in Appendix B.7.¶
4. Integrity preference fields
Senders can indicate their interest in Integrity fields and hashing algorithm
preferences using the
Want-Content-Digest
or Want-Repr-Digest
fields. These can be used in both
requests and responses.¶
Want-Content-Digest
indicates that the sender would like to receive a content digest
on messages associated with the request URI and representation metadata, using
the Content-Digest
field.¶
Want-Repr-Digest
indicates that the sender would like to receive a representation digest
on messages associated with the request URI and representation metadata, using
the Repr-Digest
field.¶
If Want-Content-Digest
or Want-Repr-Digest
are used in a response, it
indicates that the server would like the client to provide the respective
Integrity field on future requests.¶
Integrity preference fields are only a hint. The receiver of the field can ignore it and send an Integrity field using any algorithm or omit the field entirely, for example see Appendix C.2. It is not a protocol error if preferences are ignored. Applications that use Integrity fields and Integrity preferences can define expectations or constraints that operate in addition to this specification. Ignored preferences are an application-specific concern.¶
Want-Content-Digest
and Want-Repr-Digest
are of type Dictionary
where each:¶
- key conveys the hashing algorithm (see Section 5);¶
- value is an
Integer
(Section 3.3.1 of [STRUCTURED-FIELDS]) that conveys an ascending, relative, weighted preference. It must be in the range 0 to 10 inclusive. 1 is the least preferred, 10 is the most preferred, and a value of 0 means "not acceptable".¶
Examples:¶
5. Hash Algorithm Considerations and Registration
There are a wide variety of hashing algorithms that can be used for the purposes of integrity. The choice of algorithm depends on several factors such as the integrity use case, implementation needs or constraints, or application design and workflows.¶
An initial set of algorithms will be registered with IANA in the "Hash Algorithms for HTTP Digest Fields" registry; see Section 7.2. Additional algorithms can be registered in accordance with the policies set out in this section.¶
Each algorithm has a status field, which is intended to provide an aid to implementation selection.¶
Algorithms with a status value of "Active" are suitable for many purposes and it is RECOMMENDED that applications use these algorithms. These can be used in adversarial situations where hash functions might need to provide resistance to collision, first-preimage and second-preimage attacks. For adversarial situations, selecting which of the "Active" algorithms are acceptable will depend on the level of protection the circumstances demand. More considerations are presented in Section 6.6.¶
Algorithms with a status value of "Deprecated" either provide none of these properties, or are known to be weak (see [NO-MD5] and [NO-SHA]). These algorithms MAY be used to preserve integrity against corruption, but MUST NOT be used in a potentially adversarial setting; for example, when signing Integrity fields' values for authenticity. Permitting the use of these algorithms can help some applications, for example, those that previously used [RFC3230], are migrating to this specification (Appendix E), and have existing stored collections of computed digest values avoid undue operational overhead caused by recomputation using other more-secure algorithms. Such applications are not exempt from the requirements in this section. Furthermore, applications without such legacy or history ought to follow the guidance for using algorithms with the status value "Active".¶
Discussion of algorithm agility is presented in Section 6.6.¶
Registration requests for the "Hash Algorithms for HTTP Digest Fields" registry use the Specification Required policy (Section 4.6 of [RFC8126]). Requests should use the following template:¶
- Algorithm Key: the Structured Fields key value used in
Content-Digest
,Repr-Digest
,Want-Content-Digest
, orWant-Repr-Digest
field Dictionary member keys¶ -
Status: the status of the algorithm. The options are:¶
- Description: a short description of the algorithm¶
- Reference(s): pointer(s) to the primary document(s) defining the Algorithm Key and technical details of the algorithm¶
When reviewing registration requests, the designated expert(s) should pay attention to the requested status. The status value should reflect standardization status and the broad opinion of relevant interest groups such as the IETF or security-related SDOs. The "Active" status is not suitable for an algorithm that is known to be weak, broken, or experimental. If a registration request attempts to register such an algorithm as "Active", the designated expert(s) should suggest an alternative status of "Deprecated" or "Provisional".¶
When reviewing registration requests, the designated expert(s) cannot use a status of "Deprecated" or "Provisional" as grounds for rejection.¶
Requests to update or change the fields in an existing registration are permitted. For example, this could allow for the transition of an algorithm status from "Active" to "Deprecated" as the security environment evolves.¶
6. Security Considerations
6.1. HTTP Messages Are Not Protected In Full
This document specifies a data integrity mechanism that protects HTTP representation data or content, but not HTTP header and trailer fields, from certain kinds of corruption.¶
Integrity fields are not intended to be a general protection against malicious tampering with HTTP messages. In the absence of additional security mechanisms, an on-path, malicious actor can remove or recalculate and substitute a digest value. This attack can be mitigated by combining mechanisms described in this document with other approaches such as transport-layer security or digital signatures (for example, HTTP Message Signatures [SIGNATURES]).¶
6.2. End-to-End Integrity
Integrity fields can help detect representation data or content modification due to implementation errors, undesired "transforming proxies" (see Section 7.7 of [HTTP]) or other actions as the data passes across multiple hops or system boundaries. Even a simple mechanism for end-to-end representation data integrity is valuable because a user agent can validate that resource retrieval succeeded before handing off to an HTML parser, video player, etc. for parsing.¶
Note that using these mechanisms alone does not provide end-to-end integrity of HTTP messages over multiple hops, since metadata could be manipulated at any stage. Methods to protect metadata are discussed in Section 6.3.¶
6.3. Usage in Signatures
Digital signatures are widely used together with checksums to provide the certain identification of the origin of a message [NIST800-32]. Such signatures can protect one or more HTTP fields and there are additional considerations when Integrity fields are included in this set.¶
There are no restrictions placed on the type or format of digital signature that Integrity fields can be used with. One possible approach is to combine them with HTTP Message Signatures [SIGNATURES].¶
Digests explicitly
depend on the "representation metadata" (e.g., the values of Content-Type
,
Content-Encoding
etc.). A signature that protects Integrity fields but not other
"representation metadata" can expose the communication to tampering. For
example, an actor could manipulate the Content-Type
field-value and cause a
digest validation failure at the recipient, preventing the application from
accessing the representation. Such an attack consumes the resources of both
endpoints. See also Section 3.2.¶
Signatures are likely to be deemed an adversarial setting when applying
Integrity fields; see Section 5. Repr-Digest
offers an interesting
possibility when combined with signatures. In the scenario where there is no
content to send, the digest of an empty string can be included in the message
and, if signed, can help the recipient detect if content was added either as a
result of accident or purposeful manipulation. The opposite scenario is also
supported; including an Integrity field for content, and signing it, can help a
recipient detect where the content was removed.¶
Any mangling of Integrity fields, including digests' de-duplication or combining different field values (see Section 5.2 of [HTTP]) might affect signature validation.¶
6.4. Usage in Trailer Fields
Before sending Integrity fields in a trailer section, the sender should consider that intermediaries are explicitly allowed to drop any trailer (see Section 6.5.2 of [HTTP]).¶
When Integrity fields are used in a trailer section, the field-values are received after the content. Eager processing of content before the trailer section prevents digest validation, possibly leading to processing of invalid data.¶
One of the benefits of using Integrity fields in a trailer section is that it allows hashing of bytes as they are sent. However, it is possible to design a hashing algorithm that requires processing of content in such a way that would negate these benefits. For example, Merkle Integrity Content Encoding [I-D.thomson-http-mice] requires content to be processed in reverse order. This means the complete data needs to be available, which means there is negligible processing difference in sending an Integrity field in a header or trailer section.¶
6.5. Variations Within Content Encoding
Content coding mechanisms can support different encoding parameters, meaning that the same input content can produce different outputs. For example, GZIP supports multiple compression levels. Such encoding parameters are generally not communicated as representation metadata. For instance, different compression levels would all use the same "Content-Encoding: gzip" field. Other examples include where encoding relies on nonces or timestamps, such as the aes128gcm content coding defined in [RFC8188].¶
Since it is possible for there to be variation within content coding, the checksum conveyed by the integrity fields cannot be used to provide a proof of integrity "at rest" unless the whole content is persisted.¶
6.6. Algorithm Agility
The security properties of hashing algorithms are not fixed. Algorithm Agility (see [RFC7696]) is achieved by providing implementations with flexibility to choose hashing algorithms from the IANA Hash Algorithms for HTTP Digest Fields registry; see Section 7.2.¶
Transition from weak algorithms is supported
by negotiation of hashing algorithm using Want-Content-Digest
or Want-Repr-Digest
(see Section 4)
or by sending multiple digests from which the receiver chooses.
A receiver that depends on a digest for security will be vulnerable
to attacks on the weakest algorithm it is willing to accept.
Endpoints are advised that sending multiple values consumes resources,
which may be wasted if the receiver ignores them (see Section 3).¶
While algorithm agility allows the migration to stronger algorithms it does not prevent the use of weaker algorithms. Integrity fields do not provide any mitigations for downgrade or substitution attacks (see Section 1 of [RFC6211]) of the hashing algorithm. To protect against such attacks, endpoints could restrict their set of supported algorithms to stronger ones and protect the fields value by using TLS and/or digital signatures.¶
6.7. Resource exhaustion
Integrity fields validation consumes computational resources. In order to avoid resource exhaustion, implementations can restrict validation of the algorithm types, number of validations, or the size of content. In these cases, skipping validation entirely or ignoring validation failure of a more-preferred algorithm leaves the possibility of a downgrade attack (see Section 6.6).¶
7. IANA Considerations
7.1. HTTP Field Name Registration
IANA is asked to update the "Hypertext Transfer Protocol (HTTP) Field Name Registry" registry ([HTTP]) according to the table below:¶
Field Name | Status | Reference |
---|---|---|
Content-Digest | permanent | Section 2 of this document |
Repr-Digest | permanent | Section 3 of this document |
Want-Content-Digest | permanent | Section 4 of this document |
Want-Repr-Digest | permanent | Section 4 of this document |
Digest | obsoleted | [RFC3230], Section 1.3 of this document |
Want-Digest | obsoleted | [RFC3230], Section 1.3 of this document |
7.2. Establish the Hash Algorithms for HTTP Digest Fields Registry
IANA is requested to create the new "Hash Algorithms for HTTP Digest Fields" registry at https://www.iana.org/assignments/http-digest-hash-alg/ and populate it with the entries in Table 2. The procedure for new registrations is provided in Section 5.¶
Algorithm Key | Status | Description | Reference(s) |
---|---|---|---|
sha-512 | Active | The SHA-512 algorithm. | [RFC6234], [RFC4648], this document. |
sha-256 | Active | The SHA-256 algorithm. | [RFC6234], [RFC4648], this document. |
md5 | Deprecated | The MD5 algorithm. It is vulnerable to collision attacks; see [NO-MD5] and [CMU-836068] | [RFC1321], [RFC4648], this document. |
sha | Deprecated | The SHA-1 algorithm. It is vulnerable to collision attacks; see [NO-SHA] and [IACR-2020-014] | [RFC3174], [RFC4648], [RFC6234] this document. |
unixsum | Deprecated | The algorithm used by the UNIX "sum" command. | [RFC4648], [RFC6234], [UNIX], this document. |
unixcksum | Deprecated | The algorithm used by the UNIX "cksum" command. | [RFC4648], [RFC6234], [UNIX], this document. |
adler | Deprecated | The ADLER32 algorithm. | [RFC1950], this document. |
crc32c | Deprecated | The CRC32c algorithm. | [RFC9260] appendix A, this document. |
7.3. Deprecate the Hypertext Transfer Protocol (HTTP) Digest Algorithm Values Registry
IANA is requested to deprecate the "Hypertext Transfer Protocol (HTTP) Digest Algorithm Values" registry at https://www.iana.org/assignments/http-dig-alg/http-dig-alg.xhtml and replace the note on this registry with the following text:¶
-
"This registry is deprecated since it lists the algorithms that can be used with the Digest and Want-Digest fields defined in [RFC3230]https://www.iana.org/, which has been obsoleted by [rfc-to-be-this-document]. While registration is not closed, new registrations are encouraged to use the [Hash Algorithms for HTTP Digest Fields]https://www.iana.org/assignments/http-digest-hash-alg/ registry instead.¶
8. References
8.1. Normative References
- [FOLDING]
- Watsen, K., Auerswald, E., Farrel, A., and Q. Wu, "Handling Long Lines in Content of Internet-Drafts and RFCs", RFC 8792, DOI 10.17487/RFC8792, , <https://www.rfc-editor.org/rfc/rfc8792>.
- [HTTP]
- Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/RFC9110, , <https://www.rfc-editor.org/rfc/rfc9110>.
- [RFC1321]
- Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, DOI 10.17487/RFC1321, , <https://www.rfc-editor.org/rfc/rfc1321>.
- [RFC1950]
- Deutsch, P. and J. Gailly, "ZLIB Compressed Data Format Specification version 3.3", RFC 1950, DOI 10.17487/RFC1950, , <https://www.rfc-editor.org/rfc/rfc1950>.
- [RFC2119]
- Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/rfc/rfc2119>.
- [RFC3174]
- Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, , <https://www.rfc-editor.org/rfc/rfc3174>.
- [RFC4648]
- Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/RFC4648, , <https://www.rfc-editor.org/rfc/rfc4648>.
- [RFC5234]
- Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/RFC5234, , <https://www.rfc-editor.org/rfc/rfc5234>.
- [RFC6234]
- Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234, DOI 10.17487/RFC6234, , <https://www.rfc-editor.org/rfc/rfc6234>.
- [RFC7405]
- Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC 7405, DOI 10.17487/RFC7405, , <https://www.rfc-editor.org/rfc/rfc7405>.
- [RFC8126]
- Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, , <https://www.rfc-editor.org/rfc/rfc8126>.
- [RFC8174]
- Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/rfc/rfc8174>.
- [STRUCTURED-FIELDS]
- Nottingham, M. and P. Kamp, "Structured Field Values for HTTP", RFC 8941, DOI 10.17487/RFC8941, , <https://www.rfc-editor.org/rfc/rfc8941>.
8.2. Informative References
- [CMU-836068]
- Carnegie Mellon University, Software Engineering Institute, "MD5 Vulnerable to collision attacks", , <https://www.kb.cert.org/vuls/id/836068/>.
- [HTTP/1.1]
- Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112, , <https://www.rfc-editor.org/rfc/rfc9112>.
- [I-D.thomson-http-mice]
- Thomson, M. and J. Yasskin, "Merkle Integrity Content Encoding", Work in Progress, Internet-Draft, draft-thomson-http-mice-03, , <https://datatracker.ietf.org/doc/html/draft-thomson-http-mice-03>.
- [IACR-2020-014]
- Leurent, G. and T. Peyrin, "SHA-1 is a Shambles", , <https://eprint.iacr.org/2020/014.pdf>.
- [NIST800-32]
- National Institute of Standards and Technology, U.S. Department of Commerce, "Introduction to Public Key Technology and the Federal PKI Infrastructure", , <https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-32.pdf>.
- [NO-MD5]
- Turner, S. and L. Chen, "Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms", RFC 6151, DOI 10.17487/RFC6151, , <https://www.rfc-editor.org/rfc/rfc6151>.
- [NO-SHA]
- Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms", RFC 6194, DOI 10.17487/RFC6194, , <https://www.rfc-editor.org/rfc/rfc6194>.
- [PATCH]
- Dusseault, L. and J. Snell, "PATCH Method for HTTP", RFC 5789, DOI 10.17487/RFC5789, , <https://www.rfc-editor.org/rfc/rfc5789>.
- [RFC3230]
- Mogul, J. and A. Van Hoff, "Instance Digests in HTTP", RFC 3230, DOI 10.17487/RFC3230, , <https://www.rfc-editor.org/rfc/rfc3230>.
- [RFC6211]
- Schaad, J., "Cryptographic Message Syntax (CMS) Algorithm Identifier Protection Attribute", RFC 6211, DOI 10.17487/RFC6211, , <https://www.rfc-editor.org/rfc/rfc6211>.
- [RFC7396]
- Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396, DOI 10.17487/RFC7396, , <https://www.rfc-editor.org/rfc/rfc7396>.
- [RFC7696]
- Housley, R., "Guidelines for Cryptographic Algorithm Agility and Selecting Mandatory-to-Implement Algorithms", BCP 201, RFC 7696, DOI 10.17487/RFC7696, , <https://www.rfc-editor.org/rfc/rfc7696>.
- [RFC7807]
- Nottingham, M. and E. Wilde, "Problem Details for HTTP APIs", RFC 7807, DOI 10.17487/RFC7807, , <https://www.rfc-editor.org/rfc/rfc7807>.
- [RFC8188]
- Thomson, M., "Encrypted Content-Encoding for HTTP", RFC 8188, DOI 10.17487/RFC8188, , <https://www.rfc-editor.org/rfc/rfc8188>.
- [RFC9260]
- Stewart, R., Tüxen, M., and K. Nielsen, "Stream Control Transmission Protocol", RFC 9260, DOI 10.17487/RFC9260, , <https://www.rfc-editor.org/rfc/rfc9260>.
- [SIGNATURES]
- Backman, A., Richer, J., and M. Sporny, "HTTP Message Signatures", Work in Progress, Internet-Draft, draft-ietf-httpbis-message-signatures-17, , <https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-message-signatures-17>.
- [TLS]
- Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, , <https://www.rfc-editor.org/rfc/rfc8446>.
- [UNIX]
- The Open Group, "The Single UNIX Specification, Version 2 - 6 Vol Set for UNIX 98", .
Appendix A. Resource Representation and Representation Data
This section following examples show how representation metadata, content transformations, and method impacts on the message and content. These examples a not exhaustive.¶
Unless otherwise indicated, the examples are based on the JSON object {"hello":
"world"}
followed by an LF. When the content contains non-printable characters
(e.g., when it is encoded) it is shown as a sequence of hex-encoded bytes.¶
Consider a client that wishes to upload a JSON object using the PUT method. It could do this using the application/json content type without any content coding.¶
However, the use of content coding is quite common. The client could also upload
the same data with a gzip coding (Section 8.4.1.3 of [HTTP]). Note that in
this case, the Content-Length
contains a larger value due to the coding
overheads.¶
Sending the gzip coded data without indicating it via Content-Encoding
means
that the content is malformed. In this case, the server can reply with an error.¶
A Range-Request affects the transferred message content. In this example, the
client is accessing the resource at /entries/1234
, which is the JSON object
{"hello": "world"}
followed by an LF. However, the client has indicated a
preferred content coding and a specific byte range.¶
The server satisfies the client request by responding with a partial representation (equivalent to the first 10 of the JSON object displayed in whole in Figure 2).¶
Aside from content coding or range requests, the method can also affect the transferred message content. For example, the response to a HEAD request does not carry content but in this example case does include a Content-Length; see Section 8.6 of [HTTP].¶
Finally, the semantics of a response might decouple the target URI
from the enclosed representation. In the example below, the client issues a POST
request directed to /authors/
but the response includes a Content-Location
header field that indicates the enclosed representation refers to the
resource available at /authors/123
. Note that Content-Length
is not sent
in this example.¶
Appendix B. Examples of Unsolicited Digest
The following examples demonstrate interactions where a server responds with a
Content-Digest
or Repr-Digest
fields even though the client did not solicit one using
Want-Content-Digest
or Want-Repr-Digest
.¶
Some examples include JSON objects in the content. For presentation purposes, objects that fit completely within the line-length limits are presented on a single line using compact notation with no leading space. Objects that would exceed line-length limits are presented across multiple lines (one line per key-value pair) with 2 spaces of leading indentation.¶
Checksum mechanisms defined in this document are media-type agnostic
and do not provide canonicalization algorithms for specific formats.
Examples are calculated inclusive of any space.
While examples can include both fields,
Content-Digest
and Repr-Digest
can be returned independently.¶
B.1. Server Returns Full Representation Data
In this example, the message content conveys complete representation data.
This means that in the response, Content-Digest
and Repr-Digest
are both computed over the JSON object {"hello": "world"}
followed by an LF, and thus have the same value.¶
B.2. Server Returns No Representation Data
In this example, a HEAD request is used to retrieve the checksum of a resource.¶
The response Content-Digest
field-value is computed on empty content.
Repr-Digest
is calculated over the JSON object
{"hello": "world"}
followed by an LF, which is not shown because there is no content.¶
B.3. Server Returns Partial Representation Data
In this example, the client makes a range request and the server responds with partial content.¶
In the response message above, note that the
Repr-Digest
and Content-Digests
are different.
The Repr-Digest
field-value is calculated across the entire JSON object
{"hello": "world"}
followed by an LF, and the field is¶
However, since the message content is constrained to bytes 10-18,
the Content-Digest
field-value is calculated over the
sequence "world"}
followed by an LF, thus resulting in¶
B.4. Client and Server Provide Full Representation Data
The request contains a Repr-Digest
field-value calculated on the enclosed
representation. It also includes an Accept-Encoding: br
header field that advertises the
client supports Brotli encoding.¶
The response includes a Content-Encoding: br
that indicates the selected
representation is Brotli-encoded. The Repr-Digest
field-value is therefore
different compared to the request.¶
For presentation purposes, the response body is displayed as a sequence of hex-encoded bytes because it contains non-printable characters.¶
B.5. Client Provides Full Representation Data, Server Provides No Representation Data
The request Repr-Digest
field-value is calculated on the enclosed content, which
is the JSON object {"hello": "world"}
followed by an LF¶
The response Repr-Digest
field-value
depends on the representation metadata header fields, including
Content-Encoding: br
even when the response does not contain content.¶
B.6. Client and Server Provide Full Representation Data
The response contains two digest values using different algorithms.¶
For presentation purposes, the response body is displayed as a sequence of hex-encoded bytes because it contains non-printable characters.¶
B.7. POST Response does not Reference the Request URI
The request Repr-Digest
field-value is computed on the enclosed representation
(see Section 3.1), which is the JSON object {"title": "New
Title"}
followed by an LF.¶
The representation enclosed in the response is a multiline JSON object followed by an LF.
It refers to the resource identified by
Content-Location
(see Section 6.4.2 of [HTTP]);
an application can thus use Repr-Digest
in association with the resource
referenced by Content-Location
.¶
B.8. POST Response Describes the Request Status
The request Repr-Digest
field-value is computed on the enclosed representation (see
Section 3.1), which is the JSON object {"title": "New
Title"}
followed by an LF.¶
The representation enclosed in the response describes the status of the request,
so Repr-Digest
is computed on that enclosed representation. It is a multiline
JSON object followed by an LF.¶
Response Repr-Digest
has no explicit relation with the resource referenced by
Location
.¶
B.9. Digest with PATCH
This case is analogous to a POST request where the target resource reflects the target URI.¶
The PATCH request uses the application/merge-patch+json
media type defined in
[RFC7396]. Repr-Digest
is calculated on the content, which corresponds to the
patch document and is the JSON object {"title": "New Title"}
followed by an
LF.¶
The response Repr-Digest
field-value is computed on the complete representation of the patched
resource. It is a multiline JSON object followed by an LF.¶
Note that a 204 No Content
response without content but with the same
Repr-Digest
field-value would have been legitimate too.
In that case, Content-Digest
would have been computed on an empty content.¶
B.10. Error responses
In error responses, the representation data does not necessarily refer to the target resource. Instead, it refers to the representation of the error.¶
In the following example, a client sends the same request from Figure 26 to patch the resource located at /books/123. However, the resource does not exist and the server generates a 404 response with a body that describes the error in accordance with [RFC7807].¶
The response Repr-Digest
field-value is computed on this enclosed representation.
It is a multiline JSON object followed by an LF.¶
B.11. Use with Trailer Fields and Transfer Coding
An origin server sends Repr-Digest
as trailer field, so it can calculate digest-value
while streaming content and thus mitigate resource consumption.
The Repr-Digest
field-value is the same as in Appendix B.1 because Repr-Digest
is designed to
be independent of the use of one or more transfer codings (see Section 3).¶
In the response content below, the string "\r\n" represent the bytes CRLF.¶
Appendix C. Examples of Want-Repr-Digest Solicited Digest
The following examples demonstrate interactions where a client solicits a
Repr-Digest
using Want-Repr-Digest
.
The behavior of Content-Digest
and Want-Content-Digest
is identical.¶
Some examples include JSON objects in the content. For presentation purposes, objects that fit completely within the line-length limits are presented on a single line using compact notation with no leading space. Objects that would exceed line-length limits are presented across multiple lines (one line per key-value pair) with 2 spaces of leading indentation.¶
Checksum mechanisms described in this document are media-type agnostic and do not provide canonicalization algorithms for specific formats. Examples are calculated inclusive of any space.¶
C.1. Server Selects Client's Least Preferred Algorithm
The client requests a digest, preferring "sha". The server is free to reply with "sha-256" anyway.¶
C.2. Server Selects Algorithm Unsupported by Client
The client requests a "sha" digest because that is the only algorithm it supports. The server is not obliged to produce a response containing a "sha" digest, it instead uses a different algorithm.¶
C.3. Server Does Not Support Client Algorithm and Returns an Error
Appendix C.2 is an example where a server ignores the client's preferred digest algorithm. Alternatively a server can also reject the request and return a response with error status code such as 4xx or 5xx. This specification does not prescribe any requirement on status code selection; the follow example illustrates one possible option.¶
In this example, the client requests a "sha" Repr-Digest
, and the server returns an
error with problem details [RFC7807] contained in the content. The problem
details contain a list of the hashing algorithms that the server supports. This
is purely an example, this specification does not define any format or
requirements for such content.¶
Appendix D. Sample Digest Values
This section shows examples of digest values for different hashing algorithms.
The input value is the JSON object {"hello": "world"}
. The digest values are
each produced by running the relevant hashing algorithm over the input and
running the output bytes through Byte Sequence
serialization; see Section 4.1.8 of [STRUCTURED-FIELDS].¶
NOTE: '\' line wrapping per RFC 8792 sha-512 - :WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+TaPm+\ AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==: sha-256 - :X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=: md5 - :Sd/dVLAcvNLSq16eXua5uQ==: sha - :07CavjDP4u3/TungoUHJO/Wzr4c=: unixsum - :GQU=: unixcksum - :7zsHAA==: adler - :OZkGFw==: crc32c - :Q3lHIA==:¶
Appendix E. Migrating from RFC 3230
HTTP digests are computed by applying a hashing algorithm to input data. RFC 3230 defined the input data as an "instance", a term it also defined. The concept of instance has since been superseded by the HTTP semantic term "representation". It is understood that some implementations of RFC 3230 mistook "instance" to mean HTTP content. Using content for the Digest field is an error that leads to interoperability problems between peers that implement RFC 3230.¶
RFC 3230 was only ever intended to use what HTTP now defines as selected representation data. The semantic concept of digest and representation are explained alongside the definition of the Repr-Digest field (Section 3).¶
While the syntax of Digest and Repr-Digest are different, the considerations and examples this document gives for Repr-Digest apply equally to Digest because they operate on the same input data; see Sections 3.1, 6 and 6.3.¶
RFC 3230 could never communicate the digest of HTTP message content in the Digest field; Content-Digest now provides that capability.¶
RFC 3230 allowed algorithms to define their output encoding format for use with the Digest field. This resulted in a mix of formats such as base64, hex or decimal. By virtue of using Structured fields, Content-Digest and Repr-Digest use only a single encoding format. Further explanation and examples are provided in Appendix D.¶
Acknowledgements
This document is based on ideas from [RFC3230], so thanks to Jeff Mogul and Arthur Van Hoff for their great work. The original idea of refreshing RFC3230 arose from an interesting discussion with Mark Nottingham, Jeffrey Yasskin, and Martin Thomson when reviewing the MICE content coding.¶
Thanks to Julian Reschke for his valuable contributions to this document, and to the following contributors that have helped improve this specification by reporting bugs, asking smart questions, drafting or reviewing text, and evaluating open issues: Mike Bishop, Brian Campbell, Matthew Kerwin, James Manger, Tommy Pauly, Sean Turner, Justin Richer, and Erik Wilde.¶
Code Samples
This section is to be removed before publishing as an RFC.¶
How can I generate and validate the digest values, computed over the JSON object
{"hello": "world"}
followed by an LF, shown in the examples throughout this
document?¶
The following python3 code can be used to generate digests for JSON objects using SHA algorithms for a range of encodings. Note that these are formatted as base64. This function could be adapted to other algorithms and should take into account their specific formatting rules.¶
import base64, json, hashlib, brotli, logging log = logging.getLogger() def digest_bytes(bytes_, algorithm=hashlib.sha256): checksum_bytes = algorithm(bytes_).digest() log.warning("Log bytes: \n[%r]", bytes_) return base64.encodebytes(checksum_bytes).strip() def digest(bytes_, encoding=lambda x: x, algorithm=hashlib.sha256): content_encoded = encoding(bytes_) return digest_bytes(content_encoded, algorithm) bytes_ = b'{"hello": "world"}\n' print("Encoding | hashing algorithm | digest-value") print("Identity | sha256 |", digest(bytes_)) # Encoding | hashing algorithm | digest-value # Identity | sha256 | RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg= print("Encoding | hashing algorithm | digest-value") print("Brotli | sha256 |", digest(bytes_, encoding=brotli.compress)) # Encoding | hashing algorithm | digest-value # Brotli | sha256 | d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk= print("Encoding | hashing algorithm | digest-value") print("Identity | sha512 |", digest(bytes_, algorithm=hashlib.sha512)) print("Brotli | sha512 |", digest(bytes_, algorithm=hashlib.sha512, encoding=brotli.compress)) # Encoding | hashing algorithm | digest-value # Identity | sha512 |b'YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP' # '+pgk4vf2aCsyRZOtw8MjkM7iw7yZ/WkppmM44T3qg==' # Brotli | sha512 | b'db7fdBbgZMgX1Wb2MjA8zZj+rSNgfmDCEEXM8qLWfpfoNY' # '0sCpHAzZbj09X1/7HAb7Od5Qfto4QpuBsFbUO3dQ=='¶
Changes
This section is to be removed before publishing as an RFC.¶
Since draft-ietf-httpbis-digest-headers-11
- Editorial or minor changes¶
Since draft-ietf-httpbis-digest-headers-10
- Editorial or minor changes¶
Since draft-ietf-httpbis-digest-headers-09
- Editorial or minor changes¶
Since draft-ietf-httpbis-digest-headers-06
- Remove id-sha-256 and id-sha-512 from the list of supported algorithms #855¶
Since draft-ietf-httpbis-digest-headers-02
- Deprecate SHA-1 #1154¶
- Avoid id-* with encrypted content¶
- Digest is independent of MESSAGING and HTTP/1.1 is not normative #1215¶
- Identity is not a valid field value for content-encoding #1223¶
- Mention trailers #1157¶
- Reference httpbis-semantics #1156¶
- Add contentMD5 as an obsoleted digest-algorithm #1249¶
- Use lowercase digest-algorithms names in the doc and in the digest-algorithm IANA table.¶
Since draft-ietf-httpbis-digest-headers-00
- Align title with document name¶
- Add id-sha-* algorithm examples #880¶
- Reference [RFC6234] and [RFC3174] instead of FIPS-1¶
- Deprecate MD5¶
- Obsolete ADLER-32 but don't forbid it #828¶
- Update CRC32C value in IANA table #828¶
- Use when acting on resources (POST, PATCH) #853¶
- Added Relationship with SRI, draft Use Cases #868, #971¶
- Warn about the implications of
Content-Location
¶