Internet-Draft | JSONPath | April 2023 |
Gössner, et al. | Expires 17 October 2023 | [Page] |
- Workgroup:
- JSONPath WG
- Internet-Draft:
- draft-ietf-jsonpath-base-13
- Published:
- Intended Status:
- Standards Track
- Expires:
JSONPath: Query expressions for JSON
Abstract
JSONPath defines a string syntax for selecting and extracting JSON (RFC 8259) values from a JSON value.¶
About This Document
This note is to be removed before publishing as an RFC.¶
Status information for this document may be found at https://datatracker.ietf.org/doc/draft-ietf-jsonpath-base/.¶
Discussion of this document takes place on the JSON Path Working Group mailing list (mailto:jsonpath@ietf.org), which is archived at https://mailarchive.ietf.org/arch/browse/jsonpath/. Subscribe at https://www.ietf.org/mailman/listinfo/jsonpath/.¶
Source for this draft and an issue tracker can be found at https://github.com/ietf-wg-jsonpath/draft-ietf-jsonpath-base.¶
Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 17 October 2023.¶
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
1. Introduction
JSON [RFC8259] is a popular representation format for structured data values. JSONPath defines a string syntax for selecting and extracting JSON values from a JSON value.¶
JSONPath is not intended as a replacement for, but as a more powerful companion to, JSON Pointer [RFC6901]. See Appendix B.¶
1.1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
The grammatical rules in this document are to be interpreted as ABNF,
as described in [RFC5234].
ABNF terminal values in this document define Unicode code points rather than
their UTF-8 encoding.
For example, the Unicode PLACE OF INTEREST SIGN (U+2318) would be defined
in ABNF as %x2318
.¶
Functions are referred to using the function name followed by a pair
of parentheses, as in fname()
.¶
The terminology of [RFC8259] applies except where clarified below. The terms "Primitive" and "Structured" are used to group different kinds of values as in Section 1 of [RFC8259]; JSON Objects and Arrays are structured, all other values are primitive. Definitions for "Object", "Array", "Number", and "String" remain unchanged. Importantly "object" and "array" in particular do not take on a generic meaning, such as they would in a general programming context.¶
Additional terms used in this document are defined below.¶
- Value:
-
As per [RFC8259], a structure conforming to the generic data model of JSON, i.e., composed of constituents such as structured values, namely JSON objects and arrays, and primitive data, namely numbers and text strings as well as the special values null, true, and false. [RFC8259] focuses on the textual representation of JSON values and does not fully define the value abstraction assumed here.¶
- Member:
-
A name/value pair in an object. (A member is not itself a value.)¶
- Name:
-
The name (a string) in a name/value pair constituting a member. This is also used in [RFC8259], but that specification does not formally define it. It is included here for completeness.¶
- Element:
-
A value in a JSON array.¶
- Index:
-
An integer that identifies a specific element in an array.¶
- Query:
-
Short name for a JSONPath expression.¶
- Query Argument:
-
Short name for the value a JSONPath expression is applied to. (Also used for actual parameters of function-expressions.)¶
- Location:
-
the position of a value within the query argument. This can be thought of as a sequence of names and indexes navigating to the value through the objects and arrays in the query argument, with the empty sequence indicating the query argument itself. A location can be represented as a Normalized Path (defined below).¶
- Node:
-
The pair of a value along with its location within the query argument.¶
- Root Node:
-
The unique node whose value is the entire query argument.¶
- Root Node Identifier:
-
The expression
$
which refers to the root node of the query argument.¶ - Current Node Identifier:
-
The expression
@
which refers to the current node in the context of the evaluation of a filter expression (described later).¶ - Children (of a node):
-
If the node is an array, the nodes of its elements. If the node is an object, the nodes of its member values. If the node is neither an array nor an object, it has no children.¶
- Descendants (of a node):
-
The children of the node, together with the children of its children, and so forth recursively. More formally, the descendants relation between nodes is the transitive closure of the children relation.¶
- Depth (of a descendant node within a value):
-
The number of ancestors of the node within the value. The root node of the value has depth zero, the children of the root node have depth one, their children have depth two, and so forth.¶
- Segment:
-
One of the constructs which select children (
[]
) or descendants (..[]
) of an input value.¶ - Nodelist:
-
A list of nodes. While a nodelist can be represented in JSON, e.g. as an array, this document does not require or assume any particular representation.¶
- Parameter:
-
Formal parameter (of a function) that can take a function argument (an actual parameter) in a function-expression.¶
- Normalized Path:
-
A form of JSONPath expression that identifies a node in a value by providing a query that results in exactly that node. Each node in a query argument is identified by exactly one Normalized Path (we say, the Normalized Path is "unique" for that node), and, to be a Normalized Path for a specific query argument, the Normalized Path needs to identify exactly one node. Similar to, but syntactically different from, a JSON Pointer [RFC6901].¶
- Unicode Scalar Value:
-
Any Unicode [UNICODE] code point except high-surrogate and low-surrogate code points. In other words, integers in either of the inclusive base 16 ranges 0 to D7FF and E000 to 10FFFF. JSON string values are sequences of Unicode scalar values.¶
- Singular Query:
-
A JSONPath expression built from segments each of which, regardless of the input value, produces a nodelist containing at most one node.¶
- Selector:
-
A single item within a segment that takes the input value and produces a nodelist consisting of child nodes of the input value.¶
1.1.1. JSON Values as Trees of Nodes
This document models the query argument as a tree of JSON values, each with its own node. A node is either the root node or one of its descendants.¶
This document models the result of applying a query to the query argument as a nodelist (a list of nodes).¶
Nodes are the selectable parts of the query argument. The only parts of an object that can be selected by a query are the member values. Member names and members (name/value pairs) cannot be selected. Thus, member values have nodes, but members and member names do not. Similarly, member values are children of an object, but members and member names are not.¶
1.2. History
This section is informative.¶
This document is based on Stefan Gössner's popular JSONPath proposal dated 2007-02-21 [JSONPath-orig], builds on the experience from the widespread deployment of its implementations, and provides a normative specification for it.¶
Appendix A describes how JSONPath was inspired by XML's XPath [XPath].¶
JSONPath was intended as a light-weight companion to JSON
implementations in programming languages such as PHP and JavaScript,
so instead of defining its own expression language, like XPath did,
JSONPath delegated parts of a query to the underlying
runtime, e.g., JavaScript's eval()
function.
As JSONPath was implemented in more environments, JSONPath
expressions became decreasingly portable.
For example, regular expression processing was often delegated to a
convenient regular expression engine.¶
This document aims to remove such implementation-specific dependencies and serve as a common JSONPath specification that can be used across programming languages and environments. This means that backwards compatibility is not always achieved; a design principle of this document is to go with a "consensus" between implementations even if it is rough, as long as that does not jeopardize the objective of obtaining a usable, stable JSON query language.¶
The term JSONPath was chosen because of the XPath inspiration and also because the outcome of a query consists of paths identifying nodes in the JSON query argument.¶
1.3. JSON Values
The JSON value a JSONPath query is applied to is, by definition, a valid JSON value. A JSON value is often constructed by parsing a JSON text.¶
The parsing of a JSON text into a JSON value and what happens if a JSON text does not represent valid JSON are not defined by this document. Sections 4 and 8 of [RFC8259] identify specific situations that may conform to the grammar for JSON texts but are not interoperable uses of JSON, as they may cause unpredictable behavior. This document does not attempt to define predictable behavior for JSONPath queries in these situations.¶
Specifically, the "Semantics" subsections of Sections 2.3.1, 2.3.2, 2.3.5, and 2.5.2 describe behavior that becomes unpredictable when the JSON value for one of the objects under consideration was constructed out of JSON text that exhibits multiple members for a single object that share the same member name ("duplicate names", see Section 4 of [RFC8259]). Also, selecting a child by name (Section 2.3.1) and comparing strings (Section 2.3.5.2.2 in Section 2.3.5) assume these strings are sequences of Unicode scalar values, becoming unpredictable if they are not (Section 8.2 of [RFC8259]).¶
1.4. Overview of JSONPath Expressions
This section is informative.¶
A JSONPath expression is applied to a JSON value, known as the query argument. The output is a nodelist.¶
A JSONPath expression consists of an identifier followed by a series of zero or more segments each of which contains one or more selectors.¶
1.4.1. Identifiers
The root node identifier $
refers to the root node of the query argument,
i.e., to the argument as a whole.¶
The current node identifier @
refers to the current node in the context
of the evaluation of a filter expression (Section 2.3.5).¶
1.4.2. Segments
Segments select children ([]
) or descendants (..[]
) of an input value.¶
Segments can use bracket notation, for example:¶
$['store']['book'][0]['title']¶
or the more compact dot notation, for example:¶
$.store.book[0].title¶
A JSONPath expression may use a combination of bracket and dot notations.¶
This document treats the bracket notations as canonical and defines the shorthand dot notation in terms of bracket notation. Examples and descriptions use shorthands where convenient.¶
1.4.3. Selectors
A name selector, e.g. 'name'
, selects a named child of an object.¶
An index selector, e.g. 3
, selects an indexed child of an array.¶
A wildcard *
(Section 2.3.2) in the expression [*]
selects all children of a
node and in the expression ..[*]
selects all descendants of a node.¶
An array slice start:end:step
(Section 2.3.4) selects a series of
elements from an array, giving a start position, an end position, and
an optional step value that moves the position from the start to the
end.¶
Filter expressions ?<logical-expr>
select certain children of an object or array, as in:¶
$.store.book[?@.price < 10].title¶
1.4.4. Summary
Table 1 provides a brief overview of JSONPath syntax.¶
Syntax Element | Description |
---|---|
$
|
root node identifier (Section 2.2) |
@
|
current node identifier (Section 2.3.5) (valid only within filter selectors) |
[<selectors>]
|
child segment (Section 2.5.1) selects zero or more children of a node; contains one or more selectors, separated by commas |
.name
|
shorthand for ['name']
|
.*
|
shorthand for [*]
|
..[<selectors>]
|
descendant segment (Section 2.5.2): selects zero or more descendants of a node; contains one or more selectors, separated by commas |
..name
|
shorthand for ..['name']
|
..*
|
shorthand for ..[*]
|
'name'
|
name selector (Section 2.3.1): selects a named child of an object |
*
|
wildcard selector (Section 2.3.1): selects all children of a node |
3
|
index selector (Section 2.3.3): selects an indexed child of an array (from 0) |
0:100:5
|
array slice selector (Section 2.3.4): start:end:step for arrays |
?<logical-expr>
|
filter selector (Section 2.3.5): selects particular children using a logical expression |
length(@.foo)
|
function extension (Section 2.4): invokes a function in a filter expression |
1.5. JSONPath Examples
This section is informative. It provides examples of JSONPath expressions.¶
The examples are based on the simple JSON value shown in Figure 1, representing a bookstore (that also has a bicycle).¶
Table 2 shows some JSONPath queries that might be applied to this example and their intended results.¶
JSONPath | Intended result |
---|---|
$.store.book[*].author
|
the authors of all books in the store |
$..author
|
all authors |
$.store.*
|
all things in store, which are some books and a red bicycle |
$.store..price
|
the prices of everything in the store |
$..book[2]
|
the third book |
$..book[-1]
|
the last book in order |
$..book[0,1] $..book[:2]
|
the first two books |
$..book[?(@.isbn)]
|
all books with an ISBN number |
$..book[?(@.price<10)]
|
all books cheaper than 10 |
$..*
|
all member values and array elements contained in the input value |
2. JSONPath Syntax and Semantics
2.1. Overview
A JSONPath expression is a string which, when applied to a JSON value, the query argument, selects zero or more nodes of the argument and outputs these nodes as a nodelist.¶
A query MUST be encoded using UTF-8. The grammar for queries given in this document assumes that its UTF-8 form is first decoded into Unicode code points as described in [RFC3629]; implementation approaches that lead to an equivalent result are possible.¶
A string to be used as a JSONPath query needs to be well formed and valid. A string is a well-formed JSONPath query if it conforms to the ABNF syntax in this document. A well-formed JSONPath query is valid if it also fulfills all semantic requirements posed by this document, which are:¶
- Integer numbers in the JSONPath query that are relevant to the JSONPath processing (e.g., index values and steps) MUST be within the range of exact values defined in I-JSON [RFC7493], namely within the interval [-(253)+1, (253)-1].¶
- Uses of function extensions must be well typed, as described in Section 2.4.¶
A JSONPath implementation MUST raise an error for any query which is not well formed and valid. The well-formedness and the validity of JSONPath queries are independent of the JSON value the query is applied to. No further errors relating to the well-formedness and the validity of a JSONPath query can be raised during application of the query to a value.¶
Obviously, an implementation can still fail when executing a JSONPath query, e.g., because of resource depletion, but this is not modeled in this document. However, the implementation MUST NOT silently malfunction. Specifically, if a valid JSONPath query is evaluated against a structured value whose size does not fit in the range of exact values, interfering with the correct interpretation of the query, the implementation MUST provide an indication of overflow.¶
(Readers familiar with the HTTP error model may be reminded of 400 type errors when pondering well-formedness and validity, while resource depletion and related errors are comparable to 500 type errors.)¶
2.1.1. Syntax
Syntactically, a JSONPath query consists of a root identifier ($
), which
stands for a nodelist that contains the root node of the query argument,
followed by a possibly empty sequence of segments.¶
jsonpath-query = root-identifier segments segments = *(S segment)¶
The syntax and semantics of segments are defined in Section 2.5.¶
2.1.2. Semantics
In this document, the semantics of a JSONPath query define the required results and do not prescribe the internal workings of an implementation. This document may describe semantics in a procedural step-by-step fashion, but such descriptions are normative only in the sense that any implementation MUST produce an identical result, but not in the sense that implementors are required to use the same algorithms.¶
The semantics are that a valid query is executed against a value, the query argument, and produces a nodelist (i.e., a list of zero or more nodes of the value).¶
The query is a root identifier followed by a sequence of zero or more segments, each of which is applied to the result of the previous root identifier or segment and provides input to the next segment. These results and inputs take the form of nodelists.¶
The nodelist resulting from the root identifier contains a single node, the query argument. The nodelist resulting from the last segment is presented as the result of the query. Depending on the specific API, it might be presented as an array of the JSON values at the nodes, an array of Normalized Paths referencing the nodes, or both — or some other representation as desired by the implementation. Note: an empty nodelist is a valid query result.¶
A segment operates on each of the nodes in its input nodelist in turn, and the resultant nodelists are concatenated in the order of the input nodelist they were derived from to produce the result of the segment. A node may be selected more than once and appears that number of times in the nodelist. Duplicate nodes are not removed.¶
A syntactically valid segment MUST NOT produce errors when executing the query. This means that some operations that might be considered erroneous, such as using an index lying outside the range of an array, simply result in fewer nodes being selected.¶
As a consequence of this approach, if any of the segments produces an empty nodelist, then the whole query produces an empty nodelist.¶
If a query may produce a nodelist with more than one possible ordering, a particular implementation may also produce distinct orderings in successive runs of the query.¶
2.1.3. Example
Consider this example. With the query argument {"a":[{"b":0},{"b":1},{"c":2}]}
, the
query $.a[*].b
selects the following list of nodes: 0
, 1
(denoted here by their value).¶
The query consists of $
followed by three segments: .a
, [*]
, and .b
.¶
Firstly, $
produces a nodelist consisting of just the query argument.¶
Next, .a
selects from any object input node and selects the
node of any
member value of the input
node corresponding to the member name "a"
.
The result is again a list of one node: [{"b":0},{"b":1},{"c":2}]
.¶
Next, [*]
selects from any array input node all its elements
(for an object input node, it would select all its member
values, but not the member names).
The result is a list of three nodes: {"b":0}
, {"b":1}
, and {"c":2}
.¶
Finally, .b
selects from any object input node with a member name
b
and selects the node of the member value of the input node corresponding to that name.
The result is a list containing 0
, 1
.
This is the concatenation of three lists, two of length one containing
0
, 1
, respectively, and one of length zero.¶
2.2. Root Identifier
Syntax
Every JSONPath query (except those inside filter expressions, see Section 2.3.5) MUST begin with the root identifier $
.¶
root-identifier = "$"¶
2.3. Selectors
Selectors appear only inside child segments (Section 2.5.1) and descendant segments (Section 2.5.2).¶
A selector produces a nodelist consisting of zero or more children of the input value.¶
There are various kinds of selectors which produce children of objects, children of arrays, or children of either objects or arrays.¶
selector = name-selector / wildcard-selector / slice-selector / index-selector / filter-selector¶
The syntax and semantics of each kind of selector are defined below.¶
2.3.1. Name Selector
Syntax
A name selector '<name>'
selects at most one object member value.¶
In contrast to JSON, the JSONPath syntax allows strings to be enclosed in single or double quotes.¶
name-selector = string-literal string-literal = %x22 *double-quoted %x22 / ; "string" %x27 *single-quoted %x27 ; 'string' double-quoted = unescaped / %x27 / ; ' ESC %x22 / ; \" ESC escapable single-quoted = unescaped / %x22 / ; " ESC %x27 / ; \' ESC escapable ESC = %x5C ; \ backslash unescaped = %x20-21 / ; see RFC 8259 ; omit 0x22 " %x23-26 / ; omit 0x27 ' %x28-5B / ; omit 0x5C \ %x5D-10FFFF escapable = %x62 / ; b BS backspace U+0008 %x66 / ; f FF form feed U+000C %x6E / ; n LF line feed U+000A %x72 / ; r CR carriage return U+000D %x74 / ; t HT horizontal tab U+0009 "/" / ; / slash (solidus) U+002F "\" / ; \ backslash (reverse solidus) U+005C (%x75 hexchar) ; uXXXX U+XXXX hexchar = non-surrogate / (high-surrogate "\" %x75 low-surrogate) non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) / ("D" %x30-37 2HEXDIG ) high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"¶
Note: double-quoted
strings follow the JSON string syntax (Section 7 of [RFC8259]);
single-quoted
strings follow an analogous pattern (Section 2.3.3.1).
No attempt was made to improve on this syntax, so if it is desired to
escape characters with
scalar values above 0xFFFF, such as U+1F914 ("🤔", THINKING FACE),
they need to be represented
by a pair of surrogate escapes ("\uD83E\uDD14"
in this case).¶
Semantics
A name-selector
string MUST be converted to a
member name M
by removing the surrounding quotes and
replacing each escape sequence with its equivalent Unicode character, as
shown in Table 4:¶
Escape Sequence | Unicode Character | Description |
---|---|---|
\b
|
U+0008 | BS backspace |
\t
|
U+0009 | HT horizontal tab |
\n
|
U+000A | LF line feed |
\f
|
U+000C | FF form feed |
\r
|
U+000D | CR carriage return |
\"
|
U+0022 | quotation mark |
\'
|
U+0027 | apostrophe |
\/
|
U+002F | slash (solidus) |
\\
|
U+005C | backslash (reverse solidus) |
\uXXXX
|
U+XXXX | unicode character |
Applying the name-selector
to an object node
selects a member value whose name equals the member name M
,
or selects nothing if there is no such member value.
Nothing is selected from a value that is not an object.¶
Note: processing the name selector requires comparing the member name string M
with member name strings in the JSON to which the selector is being applied.
Two strings MUST be considered equal if and only if they are identical
sequences of Unicode scalar values. In other words, normalization operations
MUST NOT be applied to either the member name string M
from the JSONPath or to
the member name strings in the JSON prior to comparison.¶
Examples
JSON:¶
{ "o": {"j j": {"k.k": 3}}, "'": {"@": 2} }¶
Queries:¶
The examples in Table 5 show the name selector in use by child segments:¶
Query | Result | Result Paths | Comment |
---|---|---|---|
$.o['j j']['k.k']
|
3
|
$['o']['j j']['k.k']
|
Named value in nested object |
$.o["j j"]["k.k"]
|
3
|
$['o']['j j']['k.k']
|
Named value in nested object |
$["'"]["@"]
|
2
|
$['\'']['@']
|
Unusual member names |
2.3.2. Wildcard Selector
Semantics
A wildcard selector selects the nodes of all children of an object or array. The order in which the children of an object appear in the resultant nodelist is not stipulated, since JSON objects are unordered. Children of an array appear in array order in the resultant nodelist.¶
The wildcard selector selects nothing from a primitive JSON value (that is,
a number, a string, true
, false
, or null
).¶
Examples
JSON:¶
{ "o": {"j": 1, "k": 2}, "a": [5, 3] }¶
Queries:¶
The examples in Table 6 show the wildcard selector in use by a child segment:¶
Query | Result | Result Paths | Comment |
---|---|---|---|
$[*]
|
{"j": 1, "k": 2} [5, 3]
|
$['o'] $['a']
|
Object values |
$.o[*]
|
1 2
|
$['o']['j'] $['o']['k']
|
Object values |
$.o[*]
|
2 1
|
$['o']['k'] $['o']['j']
|
Alternative result |
$.o[*, *]
|
1 2 2 1
|
$['o']['j'] $['o']['k'] $['o']['k'] $['o']['j']
|
Non-deterministic ordering |
$.a[*]
|
5 3
|
$['a'][0] $['a'][1]
|
Array members |
The example above with the query $.o[*, *]
shows that the wildcard selector may produce nodelists in distinct
orders each time it appears in the child segment, when it is applied to an object node with two or more
members (but not when it is applied to object nodes with fewer than two members or to array nodes).¶
2.3.3. Index Selector
2.3.3.1. Syntax
An index selector <index>
matches at most one array element value.¶
index-selector = int ; decimal integer int = "0" / (["-"] DIGIT1 *DIGIT) ; - optional DIGIT1 = %x31-39 ; 1-9 non-zero digit¶
Applying the numerical index-selector
selects the corresponding
element. JSONPath allows it to be negative (see Section 2.3.3.2).¶
To be valid, the index selector value MUST be in the I-JSON range of exact values, see Section 2.1.¶
Notes:¶
2.3.3.2. Semantics
A non-negative index-selector
applied to an array selects an array element using a zero-based index.
For example, the selector 0
selects the first and the selector 4
selects the fifth element of a sufficiently long array.
Nothing is selected, and it is not an error, if the index lies outside the range of the array. Nothing is selected from a value that is not an array.¶
A negative index-selector
counts from the array end.
For example, the selector -1
selects the last and the selector -2
selects the penultimate element of an array with at least two elements.
As with non-negative indexes, it is not an error if such an element does
not exist; this simply means that no element is selected.¶
2.3.4. Array Slice selector
2.3.4.1. Syntax
The array slice selector has the form <start>:<end>:<step>
.
It matches elements from arrays starting at index <start>
, ending at — but
not including — <end>
, while incrementing by step
with a default of 1
.¶
slice-selector = [start S] ":" S [end S] [":" [S step ]] start = int ; included in selection end = int ; not included in selection step = int ; default: 1 B = %x20 / ; Space %x09 / ; Horizontal tab %x0A / ; Line feed or New line %x0D ; Carriage return S = *B ; optional blank space¶
The slice selector consists of three optional decimal integers separated by colons. The second colon can be omitted when the third integer is.¶
To be valid, the integers provided MUST be in the I-JSON range of exact values, see Section 2.1.¶
2.3.4.2. Semantics
The slice selector was inspired by the slice operator of ECMAScript 4 (ES4), which was deprecated in 2014, and that of Python.¶
Informal Introduction
This section is informative.¶
Array slicing is inspired by the behavior of the Array.prototype.slice
method
of the JavaScript language as defined by the ECMA-262 standard [ECMA-262],
with the addition of the step
parameter, which is inspired by the Python slice expression.¶
The array slice expression start:end:step
selects elements at indices starting at start
,
incrementing by step
, and ending with end
(which is itself excluded).
So, for example, the expression 1:3
(where step
defaults to 1
)
selects elements with indices 1
and 2
(in that order) whereas
1:5:2
selects elements with indices 1
and 3
.¶
When step
is negative, elements are selected in reverse order. Thus,
for example, 5:1:-2
selects elements with indices 5
and 3
, in
that order and ::-1
selects all the elements of an array in
reverse order.¶
When step
is 0
, no elements are selected.
(This is the one case that differs from the behavior of Python, which
raises an error in this case.)¶
The following section specifies the behavior fully, without depending on JavaScript or Python behavior.¶
Normative Semantics
A slice expression selects a subset of the elements of the input array, in
the same order
as the array or the reverse order, depending on the sign of the step
parameter.
It selects no nodes from a node that is not an array.¶
A slice is defined by the two slice parameters, start
and end
, and
an iteration delta, step
.
Each of these parameters is
optional. In the rest of this section, len
denotes the length of the input array.¶
The default value for step
is 1
.
The default values for start
and end
depend on the sign of step
,
as shown in Table 8:¶
Condition | start | end |
---|---|---|
step >= 0 | 0 | len |
step < 0 | len - 1 | -len - 1 |
Slice expression parameters start
and end
are not directly usable
as slice bounds and must first be normalized.
Normalization for this purpose is defined as:¶
FUNCTION Normalize(i, len): IF i >= 0 THEN RETURN i ELSE RETURN len + i END IF¶
The result of the array index expression i
applied to an array
of length len
is the result of the array
slicing expression Normalize(i, len):Normalize(i, len)+1:1
.¶
Slice expression parameters start
and end
are used to derive slice bounds lower
and upper
.
The direction of the iteration, defined
by the sign of step
, determines which of the parameters is the lower bound and which
is the upper bound:¶
FUNCTION Bounds(start, end, step, len): n_start = Normalize(start, len) n_end = Normalize(end, len) IF step >= 0 THEN lower = MIN(MAX(n_start, 0), len) upper = MIN(MAX(n_end, 0), len) ELSE upper = MIN(MAX(n_start, -1), len-1) lower = MIN(MAX(n_end, -1), len-1) END IF RETURN (lower, upper)¶
The slice expression selects elements with indices between the lower and
upper bounds.
In the following pseudocode, a(i)
is the i+1
th element of the array a
(i.e., a(0)
is the first element, a(1)
the second, and so forth).¶
IF step > 0 THEN i = lower WHILE i < upper: SELECT a(i) i = i + step END WHILE ELSE if step < 0 THEN i = upper WHILE lower < i: SELECT a(i) i = i + step END WHILE END IF¶
When step = 0
, no elements are selected and the result array is empty.¶
2.3.4.3. Examples
JSON:¶
["a", "b", "c", "d", "e", "f", "g"]¶
Queries:¶
The examples in Table 9 show the array slice selector in use by a child segment:¶
Query | Result | Result Paths | Comment |
---|---|---|---|
$[1:3]
|
"b" "c"
|
$[1] $[2]
|
Slice with default step |
$[5:]
|
"f" "g"
|
$[5] $[6]
|
Slice with no end index |
$[1:5:2]
|
"b" "d"
|
$[1] $[3]
|
Slice with step 2 |
$[5:1:-2]
|
"f" "d"
|
$[5] $[3]
|
Slice with negative step |
$[::-1]
|
"g" "f" "e" "d" "c" "b" "a"
|
$[6] $[5] $[4] $[3] $[2] $[1] $[0]
|
Slice in reverse order |
2.3.5. Filter selector
Filter selectors are used to iterate over the elements or members of structured values, i.e., JSON arrays and objects. The structured values are identified in the nodelist offered by the child or descendant segment using the filter selector.¶
For each iteration (element/member), a logical expression, the filter expression, is evaluated which decides whether the node of the element/member is selected. (While a logical expression evaluates to what mathematically is a Boolean value, this specification uses the term logical to maintain a distinction from the Boolean values that JSON can represent.)¶
During the iteration process, the filter expression receives the node of each array element or object member value of the structured value being filtered; this element or member value is then known as the current node.¶
The current node can be used as the start of one or more JSONPath
queries in subexpressions of the filter expression, notated
via the current-node-identifier @
.
Each JSONPath query can be used either for testing existence of a
result of the query, for obtaining a specific JSON value resulting
from that query that can then be used in a comparison, or as a
function argument.¶
Filter selectors may use function extensions, which are covered in Section 2.4. Within the logical expression for a filter selector, function expressions can be used to operate on nodelists and values. The set of available functions is extensible, with a number of functions predefined, see Section 2.4, and the ability to register further functions provided by the Function Extensions sub-registry (Section 3.2). When a function is defined, it is given a unique name, and its return value and each of its parameters is given a declared type. The type system is limited in scope; its purpose is to express restrictions that, without functions, are implicit in the grammar of filter expressions. The type system also guides conversions (Section 2.4.2) that mimic the way different kinds of expressions are handled in the grammar when function expressions are not in use.¶
2.3.5.1. Syntax
The filter selector has the form ?<logical-expr>
.¶
filter-selector = "?" S logical-expr¶
As the filter expression is composed of side-effect free constituents,
the order of evaluation does not need to be (and is not) defined.
Similarly, for conjunction (&&
) and disjunction (||
) (defined later),
both a short-circuiting and a fully evaluating
implementation will lead to the same result; both implementation
strategies are therefore valid.¶
The current node is accessible via the current node identifier @
.
This identifier addresses the current node of the filter-selector that
is directly enclosing the identifier. Note: within nested
filter-selectors, there is no syntax to address the current node of
any other than the directly enclosing filter-selector (i.e., of
filter-selectors enclosing the filter-selector that is directly
enclosing the identifier).¶
Logical expressions offer the usual Boolean operators (||
for OR,
&&
for AND, and !
for NOT).
They have the normal semantics of Boolean algebra and obey its laws
(see, for example, [BOOLEAN-LAWS]).
Parentheses MAY be used within logical-expr
for grouping.¶
logical-expr = logical-or-expr logical-or-expr = logical-and-expr *(S "||" S logical-and-expr) ; disjunction ; binds less tightly than conjunction logical-and-expr = basic-expr *(S "&&" S basic-expr) ; conjunction ; binds more tightly than disjunction basic-expr = paren-expr / comparison-expr / test-expr paren-expr = [logical-not-op S] "(" S logical-expr S ")" ; parenthesized expression logical-not-op = "!" ; logical NOT operator¶
A test expression
either tests the existence of a node
designated by an embedded query (see Section 2.3.5.2.1) or tests the
result of a function expression (see Section 2.4).
In the latter case, if the function's declared result type is
LogicalType
(see Section 2.4.1), it tests whether the result
is LogicalTrue
; if the function's declared result type is
NodesType
, it tests whether the result is non-empty.
If the function's declared result type is ValueType
, its use in a
test expression is not well typed (see Section 2.4.3).¶
test-expr = [logical-not-op S] (filter-query / ; existence/non-existence function-expr) ; LogicalType or ; NodesType filter-query = rel-query / jsonpath-query rel-query = current-node-identifier segments current-node-identifier = "@"¶
Comparison expressions are available for comparisons between primitive
values (that is, numbers, strings, true
, false
, and null
).
These can be obtained via literal values; singular queries, each of
which selects at most one node the value of which is then used; or
function expressions (see Section 2.4) of type ValueType
.¶
comparison-expr = comparable S comparison-op S comparable literal = number / string-literal / true / false / null comparable = literal / singular-query / ; singular query value function-expr ; ValueType comparison-op = "==" / "!=" / "<=" / ">=" / "<" / ">" singular-query = rel-singular-query / abs-singular-query rel-singular-query = current-node-identifier singular-query-segments abs-singular-query = root-identifier singular-query-segments singular-query-segments = *(S (name-segment / index-segment)) name-segment = ("[" name-selector "]") / ("." member-name-shorthand) index-segment = "[" index-selector "]"¶
Literals can be notated in the way that is usual for JSON (with the extension that strings can use single-quote delimiters). Alphabetic characters in ABNF are case-insensitive, so within a floating point number the ABNF expression "e" can be either the value 'e' or 'E'.¶
true
, false
, and null
are lower-case only (case-sensitive).¶
number = (int / "-0") [ frac ] [ exp ] ; decimal number frac = "." 1*DIGIT ; decimal fraction exp = "e" [ "-" / "+" ] 1*DIGIT ; decimal exponent true = %x74.72.75.65 ; true false = %x66.61.6c.73.65 ; false null = %x6e.75.6c.6c ; null¶
Table 10 lists filter expression operators in order of precedence from highest (binds most tightly) to lowest (binds least tightly).¶
Precedence | Operator type | Syntax |
---|---|---|
5 | Grouping |
(...)
|
4 | Logical NOT |
!
|
3 | Relations |
== != < <= > >=
|
2 | Logical AND |
&&
|
1 | Logical OR |
||
|
2.3.5.2. Semantics
The filter selector works with arrays and objects exclusively. Its result is a list of zero, one, multiple or all of their array elements or member values, respectively. Applied to primitive values, it selects nothing.¶
In the resultant nodelist, children of an array are ordered by their position in the array. The order in which the children of an object (as opposed to an array) appear in the resultant nodelist is not stipulated, since JSON objects are unordered.¶
2.3.5.2.1. Existence Tests
A query by itself in a logical context is an existence test which yields true if the query selects at least one node and yields false if the query does not select any nodes.¶
Existence tests differ from comparisons in that:¶
- they work with arbitrary relative or absolute queries (not just singular queries).¶
- they work with queries that select structured values.¶
To examine the value of a node selected by a query, an explicit comparison is necessary.
For example, to test whether the node selected by the query @.foo
has the value null
, use @.foo == null
(see Section 2.6)
rather than the negated existence test !@.foo
(which yields false if @.foo
selects a node, regardless of the node's value).¶
2.3.5.2.2. Comparisons
The comparison operators ==
and <
are defined first and then these are used to define !=
, <=
, >
, and >=
.¶
When either side of a comparison results in an empty nodelist or Nothing
(see Section 2.4.1):¶
- a comparison using the operator
==
yields true if and only the other side also results in an empty nodelist orNothing
.¶ - a comparison using the operator
<
yields false.¶
When any query or function expression on either side of a comparison results in a nodelist consisting of a single node, that side is replaced by the value of its node and then:¶
-
a comparison using the operator
==
yields true if and only if the comparison is between:¶- numbers expected to interoperate as per Section 2.2 of I-JSON [RFC7493] that compare equal using normal mathematical equality,¶
- numbers at least one of which is not expected to interoperate as per I-JSON, where the numbers compare equal using an implementation specific equality,¶
- equal primitive values which are not numbers,¶
- equal arrays, that is arrays of the same length where each element of the first array is equal to the corresponding element of the second array, or¶
-
equal objects with no duplicate names, that is where:¶
-
a comparison using the operator
<
yields true if and only if the comparison is between values which are both numbers or both strings and which satisfy the comparison:¶- numbers expected to interoperate as per Section 2.2 of I-JSON [RFC7493] MUST compare using the normal mathematical ordering; numbers not expected to interoperate as per I-JSON MAY compare using an implementation specific ordering¶
- the empty string compares less than any non-empty string¶
- a non-empty string compares less than another non-empty string if and only if the first string starts with a lower Unicode scalar value than the second string or if both strings start with the same Unicode scalar value and the remainder of the first string compares less than the remainder of the second string.¶
!=
, <=
, >
, and >=
are defined in terms of the other comparison operators. For any a
and b
:¶
- The comparison
a != b
yields true if and only ifa == b
yields false.¶ - The comparison
a <= b
yields true if and only ifa < b
yields true ora == b
yields true.¶ - The comparison
a > b
yields true if and only ifb < a
yields true.¶ - The comparison
a >= b
yields true if and only ifb < a
yields true ora == b
yields true.¶
2.3.5.3. Examples
The first set of examples shows some comparison expressions and their result with a given JSON value as input.¶
JSON:¶
{ "obj": {"x": "y"}, "arr": [2, 3] }¶
Comparisons:¶
Comparison | Result | Comment |
---|---|---|
$.absent1 == $.absent2
|
true | Empty nodelists |
$.absent1 <= $.absent2
|
true |
== implies <=
|
$.absent == 'g'
|
false | Empty nodelist |
$.absent1 != $.absent2
|
false | Empty nodelists |
$.absent != 'g'
|
true | Empty nodelist |
1 <= 2
|
true | Numeric comparison |
1 > 2
|
false | Strict, numeric comparison |
13 == '13'
|
false | Type mismatch |
'a' <= 'b'
|
true | String comparison |
'a' > 'b'
|
false | Strict, string comparison |
$.obj == $.arr
|
false | Type mismatch |
$.obj != $.arr
|
true | Type mismatch |
$.obj == $.obj
|
true | Object comparison |
$.obj != $.obj
|
false | Object comparison |
$.arr == $.arr
|
true | Array comparison |
$.arr != $.arr
|
false | Array comparison |
$.obj == 17
|
false | Type mismatch |
$.obj != 17
|
true | Type mismatch |
$.obj <= $.arr
|
false | Objects and arrays are not ordered |
$.obj < $.arr
|
false | Objects and arrays are not ordered |
$.obj <= $.obj
|
true |
== implies <=
|
$.arr <= $.arr
|
true |
== implies <=
|
1 <= $.arr
|
false | Arrays are not ordered |
1 >= $.arr
|
false | Arrays are not ordered |
1 > $.arr
|
false | Arrays are not ordered |
1 < $.arr
|
false | Arrays are not ordered |
true <= true
|
true |
== implies <=
|
true > true
|
false | Booleans are not ordered |
The second set of examples shows some complete JSONPath queries that make use of filter selectors, and the results of evaluating these queries on a given JSON value as input. (Note: two of the queries employ function extensions; please see Sections 2.4.6 and 2.4.7 below for details about these.)¶
JSON:¶
{ "a": [3, 5, 1, 2, 4, 6, {"b": "j"}, {"b": "k"}, {"b": {}}, {"b": "kilo"} ], "o": {"p": 1, "q": 2, "r": 3, "s": 5, "t": {"u": 6}}, "e": "f" }¶
Queries:¶
The examples in Table 12 show the filter selector in use by a child segment:¶
Query | Result | Result Paths | Comment |
---|---|---|---|
$.a[?@.b == 'kilo']
|
{"b": "kilo"}
|
$['a'][9]
|
Member value comparison |
$.a[?@>3.5]
|
5 4 6
|
$['a'][1] $['a'][4] $['a'][5]
|
Array value comparison |
$.a[?@.b]
|
{"b": "j"} {"b": "k"} {"b": {}} {"b": "kilo"}
|
$['a'][6] $['a'][7] $['a'][8] $['a'][9]
|
Array value existence |
$[?@.*]
|
[3, 5, 1, 2, 4, 6, {"b": "j"}, {"b": "k"}, {"b": {}}, {"b": "kilo"}] {"p": 1, "q": 2, "r": 3, "s": 5, "t": {"u": 6}}
|
$['a'] $['o']
|
Existence of non-singular queries |
$[?@[?@.b]]
|
[3, 5, 1, 2, 4, 6, {"b": "j"}, {"b": "k"}, {"b": {}}, {"b": "kilo"}]
|
$['a']
|
Nested filters |
$.o[?@<3, ?@<3]
|
1 2 2 1
|
$['o']['p'] $['o']['q'] $['o']['q'] $['o']['p']
|
Non-deterministic ordering |
$.a[?@<2 || @.b == "k"]
|
1 {"b": "k"}
|
$['a'][2] $['a'][7]
|
Array value logical OR |
$.a[?match(@.b, "[jk]")]
|
{"b": "j"} {"b": "k"}
|
$['a'][6] $['a'][7]
|
Array value regular expression match |
$.a[?search(@.b, "[jk]")]
|
{"b": "j"} {"b": "k"} {"b": "kilo"}
|
$['a'][6] $['a'][7] $['a'][9]
|
Array value regular expression search |
$.o[?@>1 && @<4]
|
2 3
|
$['o']['q'] $['o']['r']
|
Object value logical AND |
$.o[?@>1 && @<4]
|
3 2
|
$['o']['r'] $['o']['q']
|
Alternative result |
$.o[?@.u || @.x]
|
{"u": 6}
|
$['o']['t']
|
Object value logical OR |
$.a[?(@.b == $.x)]
|
3 5 1 2 4 6
|
$['a'][0] $['a'][1] $['a'][2] $['a'][3] $['a'][4] $['a'][5]
|
Comparison of queries with no values |
$.a[?(@ == @)]
|
3 5 1 2 4 6 {"b": "j"} {"b": "k"} {"b": {}} {"b": "kilo"}
|
$['a'][0] $['a'][1] $['a'][2] $['a'][3] $['a'][4] $['a'][5] $['a'][6] $['a'][7] $['a'][8] $['a'][9]
|
Comparisons of primitive and of structured values |
The example above with the query $.o[?@<3, ?@<3]
shows that a filter selector may produce nodelists in distinct
orders each time it appears in the child segment.¶
2.4. Function Extensions
Beyond the filter expression functionality defined in the preceding subsections, JSONPath defines an extension point that can be used to add filter expression functionality: "Function Extensions".¶
This section defines the extension point as well as some function extensions that use this extension point. While these mechanisms are designed to use the extension point, they are an integral part of the JSONPath specification and are expected to be implemented like any other integral part of this specification.¶
A function extension defines a registered name (see Section 3.2) that can be applied to a sequence of zero or more arguments, producing a result. Each registered function name is unique.¶
A function extension MUST be defined such that its evaluation is side-effect free, i.e., all possible orders of evaluation and choices of short-circuiting or full evaluation of an expression containing it must lead to the same result. (Note: memoization or logging are not side effects in this sense as they are visible at the implementation level only — they do not influence the result of the evaluation.)¶
function-name = function-name-first *function-name-char function-name-first = LCALPHA function-name-char = function-name-first / "_" / DIGIT LCALPHA = %x61-7A ; "a".."z" function-expr = function-name "(" S [function-argument *(S "," S function-argument)] S ")" function-argument = literal / filter-query / ; (includes singular-query) logical-expr / function-expr¶
Any function expressions in a query must be well formed (by conforming to the above ABNF) and well typed, otherwise the JSONPath implementation MUST raise an error (see Section 2.1). To define which function expressions are well typed, a type system is first introduced.¶
2.4.1. Type System for Function Expressions
Each parameter as well as the result of a function extension must have a declared type.¶
Declared types enable checking a JSONPath query for well-typedness independent of any query argument the JSONPath query is applied to.¶
Table 13 defines the available types in terms of the instances they contain.¶
Type | Instances |
---|---|
ValueType
|
JSON values or Nothing
|
LogicalType
|
LogicalTrue or LogicalFalse
|
NodesType
|
Nodelists |
Notes:¶
- The only instances that can be directly represented in JSONPath syntax are certain JSON values
in
ValueType
expressed as literals (which, in JSONPath, are limited to primitive values).¶ -
Nothing
represents the absence of a JSON value and is distinct from any JSON value, includingnull
.¶ -
LogicalTrue
andLogicalFalse
are unrelated to the JSON values expressed by the literalstrue
andfalse
.¶
2.4.2. Type Conversion
Just as queries can be used in logical expressions by testing for the
existence of at least one node (Section 2.3.5.2.1), a function expression of
declared type NodesType
can be used as a function argument for a
parameter of declared type LogicalType
, with the equivalent conversion rule:¶
- If the nodelist contains one or more nodes, the conversion result is
LogicalTrue
.¶ - If the nodelist is empty, the conversion result is
LogicalFalse
.¶
Notes:¶
- Extraction of a value from a nodelist can be performed in several
ways, so an implicit conversion from
NodesType
toValueType
may be surprising and has therefore not been defined.¶ - A function expression with a declared type of
NodesType
can indirectly be used as an argument for a parameter of declared typeValueType
by wrapping the expression in a call to a function extension, such asvalue()
(see Section 2.4.8), that takes a parameter of typeNodesType
and returns a result of typeValueType
.¶
The well-typedness of function expressions can now be defined in terms of this type system.¶
2.4.3. Well-Typedness of Function Expressions
For a function expression to be well typed:¶
- its declared type must be well typed in the context in which it occurs, and¶
- its arguments must be well typed for the declared type of the corresponding parameters.¶
(1) As per the grammar, a function expression can occur in three different immediate contexts, which lead to the following conditions for well-typedness:¶
- As a
test-expr
in a logical expression: -
The function's declared result type is
LogicalType
, or (giving rise to conversion as per Section 2.4.2)NodesType
.¶ - As a
comparable
in a comparison: -
The function's declared result type is
ValueType
.¶ - As a
function-argument
in another function expression: -
The function's declared result type fulfills the following rules for the corresponding parameter of the enclosing function.¶
(2) The arguments of the function expression are well typed when each argument of the function can be used for the declared type of the corresponding parameter, according to one of the following conditions:¶
- When the argument is a function expression with declared result type the same as the declared type of the parameter.¶
-
When the declared type of the parameter is
LogicalType
and the argument is one of the following:¶- A function expression with declared result type
NodesType
. In this case the argument is converted to LogicalType as per Section 2.4.2.¶ - A
logical-expr
that is not a function expression.¶
- A function expression with declared result type
- When the declared type of the parameter is
NodesType
and the argument is a query (which includes singular query).¶ -
When the declared type of the parameter is
ValueType
and the argument is one of the following:¶
2.4.4. length()
Function Extension
The length()
function extension provides a way to compute the length
of a value and make that available for further processing in the
filter expression:¶
$[?length(@.authors) >= 5]¶
Its only argument is an instance of ValueType
(possibly taken from a
singular query, as in the example above). The result also is an
instance of ValueType
: an unsigned integer or Nothing
.¶
- If the argument value is a string, the result is the number of Unicode scalar values in the string.¶
- If the argument value is an array, the result is the number of elements in the array.¶
- If the argument value is an object, the result is the number of members in the object.¶
- For any other argument value, the result is
Nothing
.¶
2.4.5. count()
Function Extension
The count()
function extension provides a way to obtain the number of
nodes in a nodelist and make that available for further processing in
the filter expression:¶
$[?count(@.*.author) >= 5]¶
Its only argument is a nodelist. The result is a value, an unsigned integer, that gives the number of nodes in the nodelist. Note: there is no deduplication of the nodelist.¶
2.4.6. match()
Function Extension
- Parameters:
-
-
ValueType
(string)¶ -
ValueType
(string conforming to [I-D.draft-ietf-jsonpath-iregexp])¶
-
- Result:
-
LogicalType
¶
The match()
function extension provides a way to check whether (the
entirety of, see Section 2.4.7 below) a given
string matches a given regular expression, which is in [I-D.draft-ietf-jsonpath-iregexp] form.¶
$[?match(@.date, "1974-05-..")]¶
Its arguments are instances of ValueType
(possibly taken from a
singular query, as for the first argument in the example above).
If the first argument is not a string or the second argument is not a
string conforming to [I-D.draft-ietf-jsonpath-iregexp], the result is LogicalFalse
.
Otherwise, the string that is the first argument is matched against
the iregexp contained in the string that is the second argument;
the result is LogicalTrue
if the string matches the iregexp and
LogicalFalse
otherwise.¶
2.4.7. search()
Function Extension
- Parameters:
-
-
ValueType
(string)¶ -
ValueType
(string conforming to [I-D.draft-ietf-jsonpath-iregexp])¶
-
- Result:
-
LogicalType
¶
The search()
function extension provides a way to check whether a
given string contains a substring that matches a given regular
expression, which is in [I-D.draft-ietf-jsonpath-iregexp] form.¶
$[?search(@.author, "[BR]ob")]¶
Its arguments are instances of ValueType
(possibly taken from a
singular query, as for the first argument in the example above).
If the first argument is not a string or the second argument is not a
string conforming to [I-D.draft-ietf-jsonpath-iregexp], the result is LogicalFalse
.
Otherwise, the string that is the first argument is searched for at
least one substring that matches the iregexp contained in the string
that is the second argument; the result is LogicalTrue
if such a
substring exists and LogicalFalse
otherwise.¶
2.4.8. value()
Function Extension
The value()
function extension provides a way to convert an instance of NodesType
to a value and
make that available for further processing in the filter expression:¶
$[?value(@..color) == "red"]¶
Its only argument is an instance of NodesType
(possibly taken from a
filter-query
, as in the example above). The result is an
instance of ValueType
.¶
- If the argument contains a single node, the result is the value of the node.¶
- If the argument is
Nothing
or contains multiple nodes, the result isNothing
.¶
Note: a singular query may be used anywhere where a ValueType is expected,
so there is no need to use the value()
function extension with a singular query.¶
2.4.9. Examples
Query | Comment |
---|---|
$[?length(@) < 3]
|
well typed |
$[?length(@.*) < 3]
|
not well typed since @.* is a non-singular query |
$[?count(@.*) == 1]
|
well typed |
$[?count(1) == 1]
|
not well typed since 1 is not a query or function expression |
$[?count(foo(@.*)) == 1]
|
well typed, where foo() is a function extension with a parameter of type NodesType and result type NodesType
|
$[?match(@.timezone, 'Europe/.*')]
|
well typed |
$[?match(@.timezone, 'Europe/.*') == true]
|
not well typed as LogicalType may not be used in comparisons |
$[?value(@..color) == "red"]
|
well typed |
$[?value(@..color)]
|
not well typed as ValueType may not be used in a test expression |
$[?bar(@.a)]
|
well typed for any function bar() with a parameter of any declared type and result type LogicalType
|
$[?bnl(@.*)]
|
well typed for any function bnl() with a parameter of declared type NodesType or LogicalType and result type LogicalType
|
$[?blt(1==1)]
|
well typed, where blt() is a function with a parameter of declared type LogicalType and result type LogicalType
|
$[?blt(1)]
|
not well typed for the same function blt() , as 1 is not a query, logical-expr , or function expression |
$[?bal(1)]
|
well typed, where bal() is a function with a parameter of declared type ValueType and result type LogicalType
|
2.5. Segments
For each node in an input nodelist, segments apply one or more selectors to the node and concatenate the results of each selector into per-input-node nodelists, which are then concatenated in the order of the input nodelist to form a single segment result nodelist.¶
It turns out that the more segments there are in a query, the greater the depth in the input value of the nodes of the resultant nodelist:¶
- A query with N segments, where N >= 0, produces a nodelist consisting of nodes at depth in the input value of N or greater.¶
- A query with N segments, where N >= 0, all of which are child segments (Section 2.5.1), produces a nodelist consisting of nodes precisely at depth N in the input value.¶
There are two kinds of segment: child segments and descendant segments.¶
segment = child-segment / descendant-segment¶
The syntax and semantics of each kind of segment are defined below.¶
2.5.1. Child Segment
Syntax
The child segment consists of a non-empty, comma-separated sequence of selectors enclosed in square brackets.¶
Shorthand notations are also provided for when there is a single wildcard or name selector.¶
child-segment = bracketed-selection / ("." (wildcard-selector / member-name-shorthand)) bracketed-selection = "[" S selector *(S "," S selector) S "]" member-name-shorthand = name-first *name-char name-first = ALPHA / "_" / %x80-10FFFF ; any non-ASCII Unicode character name-char = DIGIT / name-first DIGIT = %x30-39 ; 0-9 ALPHA = %x41-5A / %x61-7A ; A-Z / a-z¶
.*
, a child-segment
directly built from a wildcard-selector
, is
shorthand for [*]
.¶
.<member-name>
, a child-segment
built from a
member-name-shorthand
, is shorthand for ['<member-name>']
.
Note: this can only be used with member names that are composed of certain
characters, as specified in the ABNF rule member-name-shorthand
.
Thus, for example, $.foo.bar
is shorthand for $['foo']['bar']
(but not for $['foo.bar']
).¶
Semantics
A child segment contains a sequence of selectors, each of which selects zero or more children of the input value.¶
Selectors of different kinds may be combined within a single child segment.¶
For each node in the input nodelist, the resulting nodelist of a child segment is the concatenation of the nodelists from each of its selectors in the order that the selectors appear in the list. Note: any node matched by more than one selector is kept as many times in the nodelist.¶
Where a selector can produce a nodelist in more than one possible order, each occurrence of the selector in the child segment may evaluate to produce a nodelist in a distinct order.¶
So a child segment drills down one more level into the structure of the input value.¶
2.5.2. Descendant Segment
Syntax
The descendant segment consists of a double dot ..
followed by a child segment (using bracket notation).¶
Shortand notations are also provided that correspond to the shorthand forms of the child segment.¶
descendant-segment = ".." (bracketed-selection / wildcard-selector / member-name-shorthand)¶
..*
, the descendant-segment
directly built from a
wildcard-selector
, is shorthand for ..[*]
.¶
..<member-name>
, a descendant-segment
built from a
member-name-shorthand
, is shorthand for ..['<member-name>']
.
Note: as with the similar shorthand of a child-segment
, this can
only be used with member names that are composed of certain
characters, as specified in the ABNF rule member-name-shorthand
.¶
Note: ..
on its own is not a valid segment.¶
Semantics
A descendant segment produces zero or more descendants of an input value.¶
For each node in the input nodelist, a descendant selector visits the input node and each of its descendants such that:¶
The order in which the children of an object are visited is not stipulated, since JSON objects are unordered.¶
Suppose the descendant segment is of the form ..[<selectors>]
(after converting any shorthand
form to bracket notation)
and the nodes, in the order visited, are D1
, ..., Dn
(where n >= 1
).
Note: D1
is the input value.¶
For each i
such that 1 <= i <= n
, the nodelist Ri
is defined to be a result of applying
the child segment [<selectors>]
to the node Di
.¶
For each node in the input nodelist,
the result of the descendant segment is the concatenation of R1
,
..., Rn
(in that order).
These results are then concatenated in input nodelist order to form
the result of the segment.¶
So a descendant segment drills down one or more levels into the structure of each input value.¶
Examples
JSON:¶
{ "o": {"j": 1, "k": 2}, "a": [5, 3, [{"j": 4}, {"k": 6}]] }¶
Queries:¶
Query | Result | Result Paths | Comment |
---|---|---|---|
$..j
|
1 4
|
$['o']['j'] $['a'][2][0]['j']
|
Object values |
$..j
|
4 1
|
$['a'][2][0]['j'] $['o']['j']
|
Alternative result |
$..[0]
|
5 {"j": 4}
|
$['a'][0] $['a'][2][0]
|
Array values |
$..[*] $..*
|
{"j": 1, "k" : 2} [5, 3, [{"j": 4}, {"k": 6}]] 1 2 5 3 [{"j": 4}, {"k": 6}] {"j": 4} {"k": 6} 4 6
|
$['o'] $['a'] $['o']['j'] $['o']['k'] $['a'][0] $['a'][1] $['a'][2] $['a'][2][0] $['a'][2][1] $['a'][2][0]['j'] $['a'][2][1]['k']
|
All values |
$..o
|
{"j": 1, "k": 2}
|
$['o']
|
Input value is visited |
$.o..[*, *]
|
1 2 2 1
|
$['o']['j'] $['o']['k'] $['o']['k'] $['o']['j']
|
Non-deterministic ordering |
$.a..[0, 1]
|
5 3 {"j": 4} {"k": 6}
|
$['a'][0] $['a'][1] $['a'][2][0] $['a'][2][1]
|
Multiple segments |
Note: the ordering of the results for the $..[*]
and $..*
examples above is not guaranteed, except that:¶
-
{"j": 1, "k": 2}
must appear before1
and2
,¶ -
[5, 3, [{"j": 4}, {"k": 6}]]
must appear before5
,3
, and[{"j": 4}, {"k": 6}]
,¶ -
5
must appear before3
which must appear before[{"j": 4}, {"k": 6}]
,¶ -
5
and3
must appear before{"j": 4}
,4
,, {"k": 6}
, and6
,¶ -
[{"j": 4}, {"k": 6}]
must appear before{"j": 4}
and{"k": 6}
,¶ -
{"j": 4}
must appear before{"k": 6}
,¶ -
{"k": 6}
must appear before4
, and¶ -
4
must appear before6
.¶
The example above with the query $.o..[*, *]
shows that a selector may produce nodelists in distinct orders
each time it appears in the descendant segment.¶
The example above with the query $.a..[0, 1]
shows that the child segment [0, 1]
is applied to each node
in turn (rather than the nodes being visited once per selector, which is the case for some JSONPath implementations
that do not conform to this specification).¶
2.6. Semantics of null
Note: JSON null
is treated the same as any other JSON value: it is not taken to mean "undefined" or "missing".¶
Examples
JSON:¶
{"a": null, "b": [null], "c": [{}], "null": 1}¶
Queries:¶
Query | Result | Result Paths | Comment |
---|---|---|---|
$.a
|
null
|
$['a']
|
Object value |
$.a[0]
|
null used as array |
||
$.a.d
|
null used as object |
||
$.b[0]
|
null
|
$['b'][0]
|
Array value |
$.b[*]
|
null
|
$['b'][0]
|
Array value |
$.b[?@]
|
null
|
$['b'][0]
|
Existence |
$.b[?@==null]
|
null
|
$['b'][0]
|
Comparison |
$.c[?(@.d==null)]
|
Comparison with "missing" value | ||
$.null
|
1
|
$['null']
|
Not JSON null at all, just a member name string |
2.7. Normalized Paths
A Normalized Path is a unique representation of the location of a node in a value which
uniquely identifies the node in the value.
Specifically, a Normalized Path is a JSONPath query with restricted syntax (defined below),
e.g., $['book'][3]
, which when applied to the value results in a nodelist consisting
of just the node identified by the Normalized Path.
Note: a Normalized Path represents the identity of a node in a specific value.
There is precisely one Normalized Path identifying any particular node in a value.¶
A nodelist may be represented compactly in JSON as an array of strings, where the strings are Normalized Paths.¶
Normalized Paths provide a predictable format that simplifies testing and post-processing of nodelists, e.g., to remove duplicate nodes. Normalized Paths are used in this document as result paths in examples.¶
Normalized Paths use the canonical bracket notation, rather than dot notation.¶
Single quotes are used in Normalized Paths to delimit string member names. This reduces the number of characters that need escaping when Normalized Paths appear in double quote-delimited strings, e.g., in JSON texts.¶
Certain characters are escaped in Normalized Paths, in one and only one way; all other characters are unescaped.¶
Note: Normalized Paths are singular queries, but not all singular queries are Normalized Paths.
For example, $[-3]
is a singular query, but is not a Normalized Path.
The Normalized Path equivalent to $[-3]
would have an index equal to the array length minus 3
.
(The array length must be at least 3
if $[-3]
is to identify a node.)¶
normalized-path = root-identifier *(normal-index-segment) normal-index-segment = "[" normal-selector "]" normal-selector = normal-name-selector / normal-index-selector normal-name-selector = %x27 *normal-single-quoted %x27 ; 'string' normal-single-quoted = normal-unescaped / ESC normal-escapable normal-unescaped = ; omit %x0-1F control codes %x20-26 / ; omit 0x27 ' %x28-5B / ; omit 0x5C \ %x5D-10FFFF normal-escapable = %x62 / ; b BS backspace U+0008 %x66 / ; f FF form feed U+000C %x6E / ; n LF line feed U+000A %x72 / ; r CR carriage return U+000D %x74 / ; t HT horizontal tab U+0009 "'" / ; ' apostrophe U+0027 "\" / ; \ backslash (reverse solidus) U+005C (%x75 normal-hexchar) ; certain values u00xx U+00XX normal-hexchar = "0" "0" ( ("0" %x30-37) / ; "00"-"07" ; omit U+0008-U+000A BS HT LF ("0" %x62) / ; "0b" ; omit U+000C-U+000D FF CR ("0" %x65-66) / ; "0e"-"0f" ("1" normal-HEXDIG) ) normal-HEXDIG = DIGIT / %x61-66 ; "0"-"9", "a"-"f" normal-index-selector = "0" / (DIGIT1 *DIGIT) ; non-negative decimal integer¶
Since there can only be one Normalized Path identifying a given node, the syntax
stipulates which characters are escaped and which are not.
So the definition of normal-hexchar
is designed for hex escaping of characters
which are not straightforwardly-printable, for example U+000B LINE TABULATION, but
for which no standard JSON escape, such as \n
, is available.¶
Examples
Path | Normalized Path | Comment |
---|---|---|
$.a
|
$['a']
|
Object value |
$[1]
|
$[1]
|
Array index |
$[-3]
|
$[2]
|
Negative array index for an array of length 5 |
$.a.b[1:2]
|
$['a']['b'][1]
|
Nested structure |
$["\u000B"]
|
$['\u000b']
|
Unicode escape |
$["\u0061"]
|
$['a']
|
Unicode character |
3. IANA Considerations
3.1. Registration of Media Type application/jsonpath
IANA is requested to register the following media type [RFC6838]:¶
- Type name:
-
application¶
- Subtype name:
-
jsonpath¶
- Required parameters:
-
N/A¶
- Optional parameters:
-
N/A¶
- Encoding considerations:
-
binary (UTF-8)¶
- Security considerations:
-
See the Security Considerations section of RFCXXXX.¶
- Interoperability considerations:
-
N/A¶
- Published specification:
-
RFCXXXX¶
- Applications that use this media type:
-
Applications that need to convey queries in JSON data¶
- Fragment identifier considerations:
-
N/A¶
- Additional information:
Person & email address to contact for further information: iesg@ietf.org¶
3.2. Function Extensions
This specification defines a new "Function Extensions sub-registry" in a new "JSONPath Parameters registry", with the policy "expert review" (Section 4.5 of [BCP26]).¶
The experts are instructed to be frugal in the allocation of function extension names that are suggestive of generally applicable semantics, keeping them in reserve for functions that are likely to enjoy wide use and can make good use of their conciseness. The expert is also instructed to direct the registrant to provide a specification (Section 4.6 of [BCP26]), but can make exceptions, for instance when a specification is not available at the time of registration but is likely forthcoming. If the expert becomes aware of function extensions that are deployed and in use, they may also initiate a registration on their own if they deem such a registration can avert potential future collisions.¶
Each entry in the sub-registry must include:¶
- Function Name:
-
a lower case ASCII [STD80] string that starts with a letter and can contain letters, digits and underscore characters afterwards (
[a-z][_a-z0-9]*
). No other entry in the sub-registry can have the same function name.¶ - Brief description:
-
a brief description¶
- Parameters:
-
A comma-separated list of zero or more declared types, one for each of the arguments expected for this function extension¶
- Result:
-
The declared type of the result for this function extension¶
- Change Controller:
-
(see Section 2.3 of [BCP26])¶
- Reference:
-
a reference document that provides a description of the function extension¶
Initial entries in this sub-registry are as listed in Table 19; the Column "Change Controller" always has the value "IESG" and the column "Reference" always has the value "Section 2.4 of RFCthis":¶
Function Name | Brief description | Parameters | Result |
---|---|---|---|
length | length of string, array, object |
ValueType
|
ValueType
|
count | size of nodelist |
NodesType
|
ValueType
|
match | regular expression full match |
ValueType , ValueType
|
LogicalType
|
search | regular expression substring match |
ValueType , ValueType
|
LogicalType
|
value | value of single node in nodelist |
NodesType
|
ValueType
|
4. Security Considerations
Security considerations for JSONPath can stem from¶
- attack vectors on JSONPath implementations,¶
- attack vectors on how JSONPath queries are formed, and¶
- the way JSONPath is used in security-relevant mechanisms.¶
4.1. Attack Vectors on JSONPath Implementations
Historically, JSONPath has often been implemented by feeding parts of
the query to an underlying programming language engine, e.g.,
JavaScript's eval()
function.
This approach is well known to lead to injection attacks and would
require perfect input validation to prevent these attacks (see
Section 12 of [RFC8259] for similar considerations for JSON itself).
Instead, JSONPath implementations need to implement the entire syntax
of the query without relying on the parsers of programming language
engines.¶
Attacks on availability may attempt to trigger unusually expensive runtime performance exhibited by certain implementations in certain cases. (See Section 10 of [RFC8949] for issues in hash-table implementations, and Section 8 of [I-D.draft-ietf-jsonpath-iregexp] for performance issues in regular expression implementations.) Implementers need to be aware that good average performance is not sufficient as long as an attacker can choose to submit specially crafted JSONPath queries or query arguments that trigger surprisingly high, possibly exponential, CPU usage or, for example via a naive recursive implementation of the descendant segment, stack overflow. Implementations need to have appropriate resource management to mitigate these attacks.¶
4.2. Attack Vectors on How JSONPath Queries are Formed
JSONPath queries are often not static, but formed from variables that
provide index values, member names, or values to compare with in a
filter expression.
These variables need to be translated into the form they take in a
JSONPath query, e.g., by escaping string delimiters, or by only
allowing specific constructs such as .name
to be formed when the
given values allow that.
Failure to perform these translations correctly can lead to unexpected
failures, which can lead to Availability, Confidentiality, and
Integrity breaches, in particular if an adversary has control over the
values (e.g., by entering them into a Web form).
The resulting class of attacks, injections (e.g., SQL injections),
is consistently found among the top causes of application security
vulnerabilities and requires particular attention.¶
4.3. Attacks on Security Mechanisms that Employ JSONPath
Where JSONPath is used as a part of a security mechanism, attackers can attempt to provoke unexpected or unpredictable behavior, or take advantage of differences in behavior between JSONPath implementations.¶
Unexpected or unpredictable behavior can arise from a query argument with certain constructs described as unpredictable by [RFC8259]. Predictable behavior can be expected, except in relation to the ordering of objects, for any query argument conforming with [RFC7493].¶
Other attacks can target the behavior of underlying technologies such as UTF-8 (see Section 10 of [RFC3629]) and the Unicode character set.¶
5. References
5.1. Normative References
- [BCP26]
- Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, , <https://www.rfc-editor.org/rfc/rfc8126>.
- [I-D.draft-ietf-jsonpath-iregexp]
- Bormann, C. and T. Bray, "I-Regexp: An Interoperable Regexp Format", Work in Progress, Internet-Draft, draft-ietf-jsonpath-iregexp-04, , <https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-iregexp-04>.
- [RFC2119]
- Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/rfc/rfc2119>.
- [RFC3629]
- Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, , <https://www.rfc-editor.org/rfc/rfc3629>.
- [RFC5234]
- Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/RFC5234, , <https://www.rfc-editor.org/rfc/rfc5234>.
- [RFC6838]
- Freed, N., Klensin, J., and T. Hansen, "Media Type Specifications and Registration Procedures", BCP 13, RFC 6838, DOI 10.17487/RFC6838, , <https://www.rfc-editor.org/rfc/rfc6838>.
- [RFC7493]
- Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI 10.17487/RFC7493, , <https://www.rfc-editor.org/rfc/rfc7493>.
- [RFC8174]
- Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/rfc/rfc8174>.
- [RFC8259]
- Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/RFC8259, , <https://www.rfc-editor.org/rfc/rfc8259>.
- [STD80]
- Cerf, V., "ASCII format for network interchange", STD 80, RFC 20, DOI 10.17487/RFC0020, , <https://www.rfc-editor.org/rfc/rfc20>.
- [UNICODE]
- The Unicode Consortium, "The Unicode® Standard: Version 14.0 - Core Specification", , <https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf>.
5.2. Informative References
- [BOOLEAN-LAWS]
- "Boolean algebra laws", n.d., <https://en.wikipedia.org/wiki/Boolean_algebra#Laws>.
- [E4X]
- ISO, "Information technology — ECMAScript for XML (E4X) specification", ISO/IEC 22537:2006 , .
- [ECMA-262]
- Ecma International, "ECMAScript Language Specification, Standard ECMA-262, Third Edition", , <http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf>.
- [JSONPath-orig]
- Gössner, S., "JSONPath — XPath for JSON", , <https://goessner.net/articles/JsonPath/>.
- [RFC6901]
- Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed., "JavaScript Object Notation (JSON) Pointer", RFC 6901, DOI 10.17487/RFC6901, , <https://www.rfc-editor.org/rfc/rfc6901>.
- [RFC8949]
- Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/RFC8949, , <https://www.rfc-editor.org/rfc/rfc8949>.
- [SLICE]
- "Slice notation", n.d., <https://github.com/tc39/proposal-slice-notation>.
- [XPath]
- Berglund, A., Ed., Chamberlin, D., Ed., Simeon, J., Ed., Robie, J., Ed., Fernandez, M., Ed., Kay, M., Ed., and S. Boag, Ed., "XML Path Language (XPath) 2.0 (Second Edition)", W3C REC REC-xpath20-20101214, W3C REC-xpath20-20101214, , <https://www.w3.org/TR/2010/REC-xpath20-20101214/>.
Appendix A. Inspired by XPath
This appendix is informative.¶
At the time JSONPath was invented, XML was noted for the availability of powerful tools to analyze, transform and selectively extract data from XML documents. [XPath] is one of these tools.¶
In 2007, the need for something solving the same class of problems for the emerging JSON community became apparent, specifically for:¶
- Finding data interactively and extracting them out of [RFC8259] JSON values without special scripting.¶
- Specifying the relevant parts of the JSON data in a request by a client, so the server can reduce the amount of data in its response, minimizing bandwidth usage.¶
(Note: XPath has evolved since 2007, and recent versions even nominally support operating inside JSON values. This appendix only discusses the more widely used version of XPath that was available in 2007.)¶
JSONPath picks up the overall feeling of XPath, but maps the concepts to syntax (and partially semantics) that would be familiar to someone using JSON in a dynamic language.¶
E.g., in popular dynamic programming languages such as JavaScript, Python and PHP, the semantics of the XPath expression¶
/store/book[1]/title¶
can be realized in the expression¶
x.store.book[0].title¶
or, in bracket notation,¶
x['store']['book'][0]['title']¶
with the variable x holding the query argument.¶
The JSONPath language was designed to:¶
- be naturally based on those language characteristics;¶
- cover only the most essential parts of XPath 1.0;¶
- be lightweight in code size and memory consumption;¶
- be runtime efficient.¶
A.1. JSONPath and XPath
JSONPath expressions apply to JSON values in the same way
as XPath expressions are used in combination with an XML document.
JSONPath uses $
to refer to the root node of the query argument, similar
to XPath's /
at the front.¶
JSONPath expressions move further down the hierarchy using dot notation
($.store.book[0].title
)
or the bracket notation
($['store']['book'][0]['title']
), a lightweight/limited, and a more
heavyweight syntax replacing XPath's /
within query expressions.¶
Both JSONPath and XPath use *
for a wildcard.
The descendant operators, starting with ..
, borrowed from [E4X], are similar to XPath's //
.
The array slicing construct [start:end:step]
is unique to JSONPath,
inspired by [SLICE] from ECMASCRIPT 4.¶
Filter expressions are supported via the syntax ?<logical-expr>
as in¶
$.store.book[?@.price < 10].title¶
Table 20 extends Table 1 by providing a comparison with similar XPath concepts.¶
XPath | JSONPath | Description |
---|---|---|
/
|
$
|
the root XML element |
.
|
@
|
the current XML element |
/
|
. or []
|
child operator |
..
|
n/a | parent operator |
//
|
..name , ..[index] , ..* , or ..[*]
|
descendants (JSONPath borrows this syntax from E4X) |
*
|
*
|
wildcard: All XML elements regardless of their names |
@
|
n/a | attribute access: JSON values do not have attributes |
[]
|
[]
|
subscript operator used to iterate over XML element collections and for predicates |
|
|
[,]
|
Union operator (results in a combination of node sets); called list operator in JSONPath, allows combining member names, array indices, and slices |
n/a |
[start:end:step]
|
array slice operator borrowed from ES4 |
[]
|
?
|
applies a filter (script) expression |
seamless | n/a | expression engine |
()
|
n/a | grouping |
For further illustration, Table 21 shows some XPath expressions and their JSONPath equivalents.¶
XPath | JSONPath | Result |
---|---|---|
/store/book/author
|
$.store.book[*].author
|
the authors of all books in the store |
//author
|
$..author
|
all authors |
/store/*
|
$.store.*
|
all things in store, which are some books and a red bicycle |
/store//price
|
$.store..price
|
the prices of everything in the store |
//book[3]
|
$..book[2]
|
the third book |
//book[last()]
|
$..book[-1]
|
the last book in order |
//book[position()<3]
|
$..book[0,1] $..book[:2]
|
the first two books |
//book[isbn]
|
$..book[?@.isbn]
|
filter all books with isbn number |
//book[price<10]
|
$..book[?@.price<10]
|
filter all books cheaper than 10 |
//*
|
$..*
|
all elements in XML document; all member values and array elements contained in input value |
XPath has a lot more functionality (location paths in unabbreviated syntax, operators and functions) than listed in this comparison. Moreover, there are significant differences in how the subscript operator works in XPath and JSONPath:¶
Appendix B. JSON Pointer
This appendix is informative.¶
JSONPath is not intended as a replacement for, but as a more powerful companion to, JSON Pointer [RFC6901]. The purposes of the two standards are different.¶
JSON Pointer is for identifying a single value within a JSON value whose structure is known.¶
JSONPath can identify a single value within a JSON value, for example by using a Normalized Path. But JSONPath is also a query syntax that can be used to search for and extract multiple values from JSON values whose structure is known only in a general way.¶
A Normalized JSONPath can be converted into a JSON Pointer by converting the syntax, without knowledge of any JSON value. The inverse is not generally true: a numeric reference token (path component) in a JSON Pointer may identify a member value of an object or an element of an array. For conversion to a JSONPath query, knowledge of the structure of the JSON value is needed to distinguish these cases.¶
Acknowledgements
This document is based on Stefan Gössner's original online article defining JSONPath [JSONPath-orig].¶
The books example was taken from http://coli.lili.uni-bielefeld.de/~andreas/Seminare/sommer02/books.xml — a dead link now.¶