Internet-Draft Traces of EDHOC April 2023
Selander, et al. Expires 30 October 2023 [Page]
Workgroup:
LAKE Working Group
Internet-Draft:
draft-ietf-lake-traces-05
Published:
Intended Status:
Informational
Expires:
Authors:
G. Selander
Ericsson
J. Preuß Mattsson
Ericsson
M. Serafin
ASSA ABLOY
M. Tiloca
RISE

Traces of EDHOC

Abstract

This document contains some example traces of Ephemeral Diffie-Hellman Over COSE (EDHOC).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 October 2023.

1. Introduction

EDHOC [I-D.ietf-lake-edhoc] is a lightweight authenticated key exchange protocol designed for highly constrained settings. This document contains annotated traces of EDHOC protocol runs, with input, output, and intermediate processing results to simplify testing of implementations.

The document contains two traces:

  • Section 3 - Authentication with signature keys identified by the hash value of the X.509 certificates (provided in Section 3.8). The endpoints use EdDSA [RFC8032] for authentication and X25519 [RFC7748] for ephemeral-ephemeral Diffie-Hellman key exchange.
  • Section 4 - Authentication with static Diffie-Hellman keys identified by short key identifiers labelling CWT Claim Sets (CCSs) [RFC8392]. The endpoints use NIST P-256 (FIPS PUB 186-4) for both ephemeral-ephemeral and static-ephemeral Diffie-Hellman key exchange. This trace also illustrates the cipher suite negotiation, and provides an example of low protocol overhead, with messages sizes of (39, 45, 19) bytes.

The traces in this draft are valid for version -19 of [I-D.ietf-lake-edhoc].

2. Setup

EDHOC is run between an Initiator (I) and a Responder (R). The private/public key pairs and credentials of I and R required to produce the protocol messages are shown in the traces when needed for the calculations.

EDHOC messages and intermediate results are encoded in CBOR [RFC8949] and can therefore be displayed in CBOR diagnostic notation using, e.g., the CBOR playground [CborMe], which makes them easy to parse for humans.

NOTE 1. The same name is used for hexadecimal byte strings and their CBOR encodings. The traces contain both the raw byte strings and the corresponding CBOR encoded data items.

NOTE 2. If not clear from the context, remember that CBOR sequences and CBOR arrays assume CBOR encoded data items as elements.

NOTE 3. When the protocol transporting EDHOC messages does not inherently provide correlation across all messages, like CoAP, then some messages typically are prepended with connection identifiers and potentially a message_1 indicator (see Sections 3.4.1 and A.2 of [I-D.ietf-lake-edhoc]). Those bytes are not included in the traces in this document.

3. Authentication with signatures, X.509 certificates identified by 'x5t'

In this example the Initiator (I) and Responder (R) are authenticated with digital signatures (METHOD = 0). Both I and R support cipher suite 0, which determines the algorithms:

  • EDHOC AEAD algorithm = AES-CCM-16-64-128
  • EDHOC hash algorithm = SHA-256
  • EDHOC MAC length in bytes (Static DH) = 8
  • EDHOC key exchange algorithm (ECDH curve) = X25519
  • EDHOC signature algorithm = EdDSA
  • Application AEAD algorithm = AES-CCM-16-64-128
  • Application hash algorithm = SHA-256

The public keys are represented with X.509 certificates identified by the COSE header parameter 'x5t'.

3.1. message_1

Both endpoints are authenticated with signatures, i.e., METHOD = 0:

METHOD (CBOR Data Item) (1 byte)
00

I selects cipher suite 0. A single cipher suite is encoded as an int:

SUITES_I (CBOR Data Item) (1 byte)
00

I creates an ephemeral key pair for use with the EDHOC key exchange algorithm:

Initiator's ephemeral private key
X (Raw Value) (32 bytes)
89 2e c2 8e 5c b6 66 91 08 47 05 39 50 0b 70 5e 60 d0 08 d3 47 c5 81
7e e9 f3 32 7c 8a 87 bb 03
Initiator's ephemeral public key
G_X (Raw Value) (32 bytes)
31 f8 2c 7b 5b 9c bb f0 f1 94 d9 13 cc 12 ef 15 32 d3 28 ef 32 63 2a
48 81 a1 c0 70 1e 23 7f 04
Initiator's ephemeral public key
G_X (CBOR Data Item) (34 bytes)
58 20 31 f8 2c 7b 5b 9c bb f0 f1 94 d9 13 cc 12 ef 15 32 d3 28 ef 32
63 2a 48 81 a1 c0 70 1e 23 7f 04

I selects its connection identifier C_I to be the byte string 0x2d, which since it is represented by the 1-byte CBOR int -14 is encoded as 0x2d:

C_I (Raw Value) (Connection identifier chosen by I) (1 byte)
2d
C_I (CBOR Data Item) (Connection identifier chosen by I) (1 byte)
2d

No external authorization data:

EAD_1 (CBOR Sequence) (0 bytes)

I constructs message_1:

message_1 =
(
 0,
 0,
 h'31f82c7b5b9cbbf0f194d913cc12ef1532d328ef32632a48
   81a1c0701e237f04',
 -14
)
message_1 (CBOR Sequence) (37 bytes)
00 00 58 20 31 f8 2c 7b 5b 9c bb f0 f1 94 d9 13 cc 12 ef 15 32 d3 28
ef 32 63 2a 48 81 a1 c0 70 1e 23 7f 04 2d

3.2. message_2

R supports the most preferred and selected cipher suite 0, so SUITES_I is acceptable.

R creates an ephemeral key pair for use with the EDHOC key exchange algorithm:

Responder's ephemeral private key
Y (Raw Value) (32 bytes)
e6 9c 23 fb f8 1b c4 35 94 24 46 83 7f e8 27 bf 20 6c 8f a1 0a 39 db
47 44 9e 5a 81 34 21 e1 e8
Responder's ephemeral public key
G_Y (Raw Value) (32 bytes)
dc 88 d2 d5 1d a5 ed 67 fc 46 16 35 6b c8 ca 74 ef 9e be 8b 38 7e 62
3a 36 0b a4 80 b9 b2 9d 1c
Responder's ephemeral public key
G_Y (CBOR Data Item) (34 bytes)
58 20 dc 88 d2 d5 1d a5 ed 67 fc 46 16 35 6b c8 ca 74 ef 9e be 8b 38
7e 62 3a 36 0b a4 80 b9 b2 9d 1c

R selects its connection identifier C_R to be the byte string 0x18, which since it is not represented as a 1-byte CBOR int is encoded as h'18' = 0x4118:

C_R (Raw Value) (Connection identifier chosen by R) (1 byte)
18
C_R (CBOR Data Item) (Connection identifier chosen by R) (2 bytes)
41 18

The transcript hash TH_2 is calculated using the EDHOC hash algorithm:

TH_2 = H( G_Y, C_R, H(message_1) )

H(message_1) (Raw Value) (32 bytes)
c1 65 d6 a9 9d 1b ca fa ac 8d bf 2b 35 2a 6f 7d 71 a3 0b 43 9c 9d 64
d3 49 a2 38 48 03 8e d1 6b
H(message_1) (CBOR Data Item) (34 bytes)
58 20 c1 65 d6 a9 9d 1b ca fa ac 8d bf 2b 35 2a 6f 7d 71 a3 0b 43 9c
9d 64 d3 49 a2 38 48 03 8e d1 6b

The input to calculate TH_2 is the CBOR sequence:

G_Y, C_R, H(message_1)

Input to calculate TH_2 (CBOR Sequence) (70 bytes)
58 20 dc 88 d2 d5 1d a5 ed 67 fc 46 16 35 6b c8 ca 74 ef 9e be 8b 38
7e 62 3a 36 0b a4 80 b9 b2 9d 1c 41 18 58 20 c1 65 d6 a9 9d 1b ca fa
ac 8d bf 2b 35 2a 6f 7d 71 a3 0b 43 9c 9d 64 d3 49 a2 38 48 03 8e d1
6b
TH_2 (Raw Value) (32 bytes)
3a b1 17 00 84 1f ce 19 3c 32 39 11 ed b3 17 b0 46 dc f2 4b 99 50 fd
62 48 84 f7 f5 7c d9 8b 07
TH_2 (CBOR Data Item) (34 bytes)
58 20 3a b1 17 00 84 1f ce 19 3c 32 39 11 ed b3 17 b0 46 dc f2 4b 99
50 fd 62 48 84 f7 f5 7c d9 8b 07

PRK_2e is specified in Section 4.1.1.1 of [I-D.ietf-lake-edhoc].

First, the ECDH shared secret G_XY is computed from G_X and Y, or G_Y and X:

G_XY (Raw Value) (ECDH shared secret) (32 bytes)
e5 cd f3 a9 86 cd ac 5b 7b f0 46 91 e2 b0 7c 08 e7 1f 53 99 8d 8f 84
2b 7c 3f b4 d8 39 cf 7b 28

Then, PRK_2e is calculated using EDHOC_Extract() determined by the EDHOC hash algorithm:

PRK_2e = EDHOC_Extract( salt, G_XY ) =
       = HMAC-SHA-256( salt, G_XY )

where salt is TH_2:

salt (Raw Value) (32 bytes)
3a b1 17 00 84 1f ce 19 3c 32 39 11 ed b3 17 b0 46 dc f2 4b 99 50 fd
62 48 84 f7 f5 7c d9 8b 07
PRK_2e (Raw Value) (32 bytes)
2a e2 42 1d e9 a7 2a 7a e6 71 5f b5 18 f3 ed 30 05 8f d9 ca 58 b6 25
68 ca fe 7c da a1 5a 41 f7

Since METHOD = 0, R authenticates using signatures. Since the selected cipher suite is 0, the EDHOC signature algorithm is EdDSA.

R's signature key pair using EdDSA:

Responder's private authentication key
SK_R (Raw Value) (32 bytes)
ef 14 0f f9 00 b0 ab 03 f0 c0 8d 87 9c bb d4 b3 1e a7 1e 6e 7e e7 ff
cb 7e 79 55 77 7a 33 27 99
Responder's public authentication key
PK_R (Raw Value) (32 bytes)
a1 db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0 f2 c6 62
c0 0b 3a c5 5d e9 2f 93 59

PRK_3e2m is specified in Section 4.1.1.2 of [I-D.ietf-lake-edhoc].

Since R authenticates with signatures PRK_3e2m = PRK_2e.

PRK_3e2m (Raw Value) (32 bytes)
2a e2 42 1d e9 a7 2a 7a e6 71 5f b5 18 f3 ed 30 05 8f d9 ca 58 b6 25
68 ca fe 7c da a1 5a 41 f7

R constructs the remaining input needed to calculate MAC_2:

MAC_2 = EDHOC_KDF( PRK_3e2m, 2, context_2, mac_length_2 )

context_2 = << ID_CRED_R, TH_2, CRED_R, ? EAD_2 >>

CRED_R is identified by a 64-bit hash:

ID_CRED_R =
{
  34 : [-15, h'79f2a41b510c1f9b']
}

where the COSE header value 34 ('x5t') indicates a hash of an X.509 certficate, and the COSE algorithm -15 indicates the hash algorithm SHA-256 truncated to 64 bits.

ID_CRED_R (CBOR Data Item) (14 bytes) a1 18 22 82 2e 48 79 f2 a4 1b 51 0c 1f 9b

CRED_R is a CBOR byte string of the DER encoding of the X.509 certificate in Section 3.8.1:

CRED_R (Raw Value) (241 bytes)
30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e c4 30 05 06 03 2b 65
70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52 6f 6f
74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38 32 34
33 36 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31 20 30
1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 52 65 73 70 6f 6e 64 65 72
20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 a1 db 47
b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0 f2 c6 62 c0 0b 3a
c5 5d e9 2f 93 59 30 05 06 03 2b 65 70 03 41 00 b7 23 bc 01 ea b0 92
8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d 69 87 b0 32 47 8f ec fa f1 45
37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10 18 37 eb 4a bc 94 95 65 d8 6d
ce 51 cf ae 52 ab 82 c1 52 cb 02
CRED_R (CBOR Data Item) (243 bytes)
58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e c4 30 05 06 03
2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52
6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38
32 34 33 36 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31
20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 52 65 73 70 6f 6e 64
65 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 a1
db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0 f2 c6 62 c0
0b 3a c5 5d e9 2f 93 59 30 05 06 03 2b 65 70 03 41 00 b7 23 bc 01 ea
b0 92 8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d 69 87 b0 32 47 8f ec fa
f1 45 37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10 18 37 eb 4a bc 94 95 65
d8 6d ce 51 cf ae 52 ab 82 c1 52 cb 02

No external authorization data:

EAD_2 (CBOR Sequence) (0 bytes)

context_2 = << ID_CRED_R, TH_2, CRED_R, ? EAD_2 >>

context_2 (CBOR Sequence) (291 bytes)
a1 18 22 82 2e 48 79 f2 a4 1b 51 0c 1f 9b 58 20 3a b1 17 00 84 1f ce
19 3c 32 39 11 ed b3 17 b0 46 dc f2 4b 99 50 fd 62 48 84 f7 f5 7c d9
8b 07 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e c4 30 05
06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43
20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36
30 38 32 34 33 36 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30
22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 52 65 73 70 6f
6e 64 65 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21
00 a1 db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0 f2 c6
62 c0 0b 3a c5 5d e9 2f 93 59 30 05 06 03 2b 65 70 03 41 00 b7 23 bc
01 ea b0 92 8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d 69 87 b0 32 47 8f
ec fa f1 45 37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10 18 37 eb 4a bc 94
95 65 d8 6d ce 51 cf ae 52 ab 82 c1 52 cb 02
context_2 (CBOR byte string) (294 bytes)
59 01 23 a1 18 22 82 2e 48 79 f2 a4 1b 51 0c 1f 9b 58 20 3a b1 17 00
84 1f ce 19 3c 32 39 11 ed b3 17 b0 46 dc f2 4b 99 50 fd 62 48 84 f7
f5 7c d9 8b 07 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e
c4 30 05 06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44
48 4f 43 20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30
33 31 36 30 38 32 34 33 36 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30
30 5a 30 22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 52 65
73 70 6f 6e 64 65 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65
70 03 21 00 a1 db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a
a0 f2 c6 62 c0 0b 3a c5 5d e9 2f 93 59 30 05 06 03 2b 65 70 03 41 00
b7 23 bc 01 ea b0 92 8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d 69 87 b0
32 47 8f ec fa f1 45 37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10 18 37 eb
4a bc 94 95 65 d8 6d ce 51 cf ae 52 ab 82 c1 52 cb 02

MAC_2 is computed through EDHOC_Expand() using the EDHOC hash algorithm, see Section 4.1.2 of [I-D.ietf-lake-edhoc]:

MAC_2 = HKDF-Expand(PRK_3e2m, info, mac_length_2), where

info = ( 2, context_2, mac_length_2 )

Since METHOD = 0, mac_length_2 is given by the EDHOC hash algorithm.

info for MAC_2 is:

info =
(
 2,
 h'a11822822e4879f2a41b510c1f9b58203ab11700841fce19
   3c323911edb317b046dcf24b9950fd624884f7f57cd98b07
   58f13081ee3081a1a003020102020462319ec4300506032b
   6570301d311b301906035504030c124544484f4320526f6f
   742045643235353139301e170d3232303331363038323433
   365a170d3239313233313233303030305a30223120301e06
   035504030c174544484f4320526573706f6e646572204564
   3235353139302a300506032b6570032100a1db47b9518485
   4ad12a0c1a354e418aace33aa0f2c662c00b3ac55de92f93
   59300506032b6570034100b723bc01eab0928e8b2b6c98de
   19cc3823d46e7d6987b032478fecfaf14537a1af14cc8be8
   29c6b73044101837eb4abc949565d86dce51cfae52ab82c1
   52cb02',
 32
)

where the last value is the output size of the EDHOC hash algorithm.

info for MAC_2 (CBOR Sequence) (297 bytes)
02 59 01 23 a1 18 22 82 2e 48 79 f2 a4 1b 51 0c 1f 9b 58 20 3a b1 17
00 84 1f ce 19 3c 32 39 11 ed b3 17 b0 46 dc f2 4b 99 50 fd 62 48 84
f7 f5 7c d9 8b 07 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31
9e c4 30 05 06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45
44 48 4f 43 20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32
30 33 31 36 30 38 32 34 33 36 5a 17 0d 32 39 31 32 33 31 32 33 30 30
30 30 5a 30 22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 52
65 73 70 6f 6e 64 65 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b
65 70 03 21 00 a1 db 47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3
3a a0 f2 c6 62 c0 0b 3a c5 5d e9 2f 93 59 30 05 06 03 2b 65 70 03 41
00 b7 23 bc 01 ea b0 92 8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d 69 87
b0 32 47 8f ec fa f1 45 37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10 18 37
eb 4a bc 94 95 65 d8 6d ce 51 cf ae 52 ab 82 c1 52 cb 02 18 20
MAC_2 (Raw Value) (32 bytes)
7a b9 61 ac 76 30 26 9a 99 5a 72 9a 0f ce ad 31 f5 cd 97 fb 51 5b c5
db 9c 11 19 83 3e 4c 3b 4a
MAC_2 (CBOR Data Item) (34 bytes)
58 20 7a b9 61 ac 76 30 26 9a 99 5a 72 9a 0f ce ad 31 f5 cd 97 fb 51
5b c5 db 9c 11 19 83 3e 4c 3b 4a

Since METHOD = 0, Signature_or_MAC_2 is the 'signature' of the COSE_Sign1 object.

R constructs the message to be signed:

[ "Signature1", << ID_CRED_R >>,
 << TH_2, CRED_R, ? EAD_2 >>, MAC_2 ] =

[
 "Signature1",
 h'a11822822e4879f2a41b510c1f9b',
 h'58203ab11700841fce193c323911edb317b046dcf24b9950
   fd624884f7f57cd98b0758f13081ee3081a1a00302010202
   0462319ec4300506032b6570301d311b301906035504030c
   124544484f4320526f6f742045643235353139301e170d32
   32303331363038323433365a170d32393132333132333030
   30305a30223120301e06035504030c174544484f43205265
   73706f6e6465722045643235353139302a300506032b6570
   032100a1db47b95184854ad12a0c1a354e418aace33aa0f2
   c662c00b3ac55de92f9359300506032b6570034100b723bc
   01eab0928e8b2b6c98de19cc3823d46e7d6987b032478fec
   faf14537a1af14cc8be829c6b73044101837eb4abc949565
   d86dce51cfae52ab82c152cb02',
 h'7ab961ac7630269a995a729a0fcead31f5cd97fb515bc5db
   9c1119833e4c3b4a'
]
Message to be signed 2 (CBOR Data Item) (341 bytes)
84 6a 53 69 67 6e 61 74 75 72 65 31 4e a1 18 22 82 2e 48 79 f2 a4 1b
51 0c 1f 9b 59 01 15 58 20 3a b1 17 00 84 1f ce 19 3c 32 39 11 ed b3
17 b0 46 dc f2 4b 99 50 fd 62 48 84 f7 f5 7c d9 8b 07 58 f1 30 81 ee
30 81 a1 a0 03 02 01 02 02 04 62 31 9e c4 30 05 06 03 2b 65 70 30 1d
31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52 6f 6f 74 20 45
64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38 32 34 33 36 5a
17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31 20 30 1e 06 03
55 04 03 0c 17 45 44 48 4f 43 20 52 65 73 70 6f 6e 64 65 72 20 45 64
32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 a1 db 47 b9 51 84
85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0 f2 c6 62 c0 0b 3a c5 5d e9
2f 93 59 30 05 06 03 2b 65 70 03 41 00 b7 23 bc 01 ea b0 92 8e 8b 2b
6c 98 de 19 cc 38 23 d4 6e 7d 69 87 b0 32 47 8f ec fa f1 45 37 a1 af
14 cc 8b e8 29 c6 b7 30 44 10 18 37 eb 4a bc 94 95 65 d8 6d ce 51 cf
ae 52 ab 82 c1 52 cb 02 58 20 7a b9 61 ac 76 30 26 9a 99 5a 72 9a 0f
ce ad 31 f5 cd 97 fb 51 5b c5 db 9c 11 19 83 3e 4c 3b 4a

R signs using the private authentication key SK_R

Signature_or_MAC_2 (Raw Value) (64 bytes)
af 73 81 f1 9a e1 fe 0f 53 89 5b 18 e5 81 8b 1f e3 e3 46 30 72 c0 2a
d3 9f 20 2d 38 28 aa 62 37 c1 0b 08 66 8f c4 76 96 41 24 03 1f ed 9f
94 4e 6a 78 79 7f 5c 08 49 58 db 0f 20 89 c2 1c 52 02
Signature_or_MAC_2 (CBOR Data Item) (66 bytes)
58 40 af 73 81 f1 9a e1 fe 0f 53 89 5b 18 e5 81 8b 1f e3 e3 46 30 72
c0 2a d3 9f 20 2d 38 28 aa 62 37 c1 0b 08 66 8f c4 76 96 41 24 03 1f
ed 9f 94 4e 6a 78 79 7f 5c 08 49 58 db 0f 20 89 c2 1c 52 02

R constructs PLAINTEXT_2:

PLAINTEXT_2 =
(
 ID_CRED_R / bstr / -24..23,
 Signature_or_MAC_2,
 ? EAD_2
)
PLAINTEXT_2 (CBOR Sequence) (80 bytes)
a1 18 22 82 2e 48 79 f2 a4 1b 51 0c 1f 9b 58 40 af 73 81 f1 9a e1 fe
0f 53 89 5b 18 e5 81 8b 1f e3 e3 46 30 72 c0 2a d3 9f 20 2d 38 28 aa
62 37 c1 0b 08 66 8f c4 76 96 41 24 03 1f ed 9f 94 4e 6a 78 79 7f 5c
08 49 58 db 0f 20 89 c2 1c 52 02

The input needed to calculate KEYSTREAM_2 is defined in Section 4.1.2 of [I-D.ietf-lake-edhoc], using EDHOC_Expand() with the EDHOC hash algorithm:

KEYSTREAM_2 = EDHOC_KDF( PRK_2e, 0, TH_2, plaintext_length ) =
            = HKDF-Expand( PRK_2e, info, plaintext_length )

where plaintext_length is the length of PLAINTEXT_2, and info for KEYSTREAM_2 is:

info =
(
 0,
 h'3ab11700841fce193c323911edb317b046dcf24b9950fd62
   4884f7f57cd98b07',
 80
)

where the last value is the length of PLAINTEXT_2.

info for KEYSTREAM_2 (CBOR Sequence) (37 bytes)
00 58 20 3a b1 17 00 84 1f ce 19 3c 32 39 11 ed b3 17 b0 46 dc f2 4b
99 50 fd 62 48 84 f7 f5 7c d9 8b 07 18 50
KEYSTREAM_2 (Raw Value) (80 bytes)
c6 a1 ed d7 c9 ff 34 20 38 c7 b7 82 43 e4 1a dc f0 84 6c 7e 80 22 05
4f 66 34 69 4c 57 ea e8 b7 b4 ca 1c cb 5d 1d 64 94 0e 14 0f 02 b4 73
fb 18 f1 64 a7 3a 04 13 57 4a 0e 96 d8 28 3e e9 2f aa 58 36 30 cf 47
ac 7d 9a 06 c3 83 cd f3 bb 4e 71

R calculates CIPHERTEXT_2 as XOR between PLAINTEXT_2 and KEYSTREAM_2:

CIPHERTEXT_2 (Raw Value) (80 bytes)
67 b9 cf 55 e7 b7 4d d2 9c dc e6 8e 5c 7f 42 9c 5f f7 ed 8f 1a c3 fb
40 35 bd 32 54 b2 6b 63 a8 57 29 5a fb 2f dd 4e 47 91 34 22 3a 9c d9
99 2f 30 6f af 5c 8b d7 21 dc 4f b2 db 37 d3 76 bb e4 32 4e 49 b0 1b
a4 34 c2 dd cc a3 44 31 a7 1c 73

R constructs message_2:

message_2 =
(
 G_Y_CIPHERTEXT_2,
 C_R
)

where G_Y_CIPHERTEXT_2 is the bstr encoding of the concatenation of the raw values of G_Y and CIPHERTEXT_2.

message_2 (CBOR Sequence) (116 bytes)
58 70 dc 88 d2 d5 1d a5 ed 67 fc 46 16 35 6b c8 ca 74 ef 9e be 8b 38
7e 62 3a 36 0b a4 80 b9 b2 9d 1c 67 b9 cf 55 e7 b7 4d d2 9c dc e6 8e
5c 7f 42 9c 5f f7 ed 8f 1a c3 fb 40 35 bd 32 54 b2 6b 63 a8 57 29 5a
fb 2f dd 4e 47 91 34 22 3a 9c d9 99 2f 30 6f af 5c 8b d7 21 dc 4f b2
db 37 d3 76 bb e4 32 4e 49 b0 1b a4 34 c2 dd cc a3 44 31 a7 1c 73 41
18

3.3. message_3

Since METHOD = 0, I authenticates using signatures. Since the selected cipher suite is 0, the EDHOC signature algorithm is EdDSA.

I's signature key pair using EdDSA:

Initiator's private authentication key
SK_I (Raw Value) (32 bytes)
4c 5b 25 87 8f 50 7c 6b 9d ae 68 fb d4 fd 3f f9 97 53 3d b0 af 00 b2
5d 32 4e a2 8e 6c 21 3b c8
Initiator's public authentication key
PK_I (Raw Value) (32 bytes)
ed 06 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e 0f
23 d8 cc 20 b7 30 85 14 1e

PRK_4e3m is specified in Section 4.1.1.3 of [I-D.ietf-lake-edhoc].

Since I authenticates with signatures PRK_4e3m = PRK_3e2m.

PRK_4e3m (Raw Value) (32 bytes)
2a e2 42 1d e9 a7 2a 7a e6 71 5f b5 18 f3 ed 30 05 8f d9 ca 58 b6 25
68 ca fe 7c da a1 5a 41 f7

The transcript hash TH_3 is calculated using the EDHOC hash algorithm:

TH_3 = H(TH_2, PLAINTEXT_2, CRED_R)

Input to calculate TH_3 (CBOR Sequence) (357 bytes)
58 20 3a b1 17 00 84 1f ce 19 3c 32 39 11 ed b3 17 b0 46 dc f2 4b 99
50 fd 62 48 84 f7 f5 7c d9 8b 07 a1 18 22 82 2e 48 79 f2 a4 1b 51 0c
1f 9b 58 40 af 73 81 f1 9a e1 fe 0f 53 89 5b 18 e5 81 8b 1f e3 e3 46
30 72 c0 2a d3 9f 20 2d 38 28 aa 62 37 c1 0b 08 66 8f c4 76 96 41 24
03 1f ed 9f 94 4e 6a 78 79 7f 5c 08 49 58 db 0f 20 89 c2 1c 52 02 58
f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e c4 30 05 06 03 2b
65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52 6f
6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38 32
34 33 36 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31 20
30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 52 65 73 70 6f 6e 64 65
72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 a1 db
47 b9 51 84 85 4a d1 2a 0c 1a 35 4e 41 8a ac e3 3a a0 f2 c6 62 c0 0b
3a c5 5d e9 2f 93 59 30 05 06 03 2b 65 70 03 41 00 b7 23 bc 01 ea b0
92 8e 8b 2b 6c 98 de 19 cc 38 23 d4 6e 7d 69 87 b0 32 47 8f ec fa f1
45 37 a1 af 14 cc 8b e8 29 c6 b7 30 44 10 18 37 eb 4a bc 94 95 65 d8
6d ce 51 cf ae 52 ab 82 c1 52 cb 02
TH_3 (Raw Value) (32 bytes)
03 12 56 1b 73 43 ce af 65 9d f5 00 13 e0 64 e6 b4 6d cb 3f a8 40 d8
55 04 5e 33 c0 21 d7 f6 91
TH_3 (CBOR Data Item) (34 bytes)
58 20 03 12 56 1b 73 43 ce af 65 9d f5 00 13 e0 64 e6 b4 6d cb 3f a8
40 d8 55 04 5e 33 c0 21 d7 f6 91

I constructs the remaining input needed to calculate MAC_3:

MAC_3 = EDHOC_KDF( PRK_4e3m, 6, context_3, mac_length_3 )

where

context_3 = << ID_CRED_I, TH_3, CRED_I, ? EAD_3 >>

CRED_I is identified by a 64-bit hash:

ID_CRED_I =
{
 34 : [-15, h'c24ab2fd7643c79f']
}

where the COSE header value 34 ('x5t') indicates a hash of an X.509 certficate, and the COSE algorithm -15 indicates the hash algorithm SHA-256 truncated to 64 bits.

ID_CRED_I (CBOR Data Item) (14 bytes)
a1 18 22 82 2e 48 c2 4a b2 fd 76 43 c7 9f

CRED_I is a CBOR byte string of the DER encoding of the X.509 certificate in Section 3.8.2:

CRED_I (Raw Value) (241 bytes)
30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e a0 30 05 06 03 2b 65
70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52 6f 6f
74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38 32 34
30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31 20 30
1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49 6e 69 74 69 61 74 6f 72
20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 ed 06 a8
ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e 0f 23 d8 cc
20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41 00 52 12 41 d8 b3 a7 70
99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df 29 10 b3 92 75 ae 48
b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21 22 67 dd 05 ee ff 27 b9
e7 a8 13 fa 57 4b 72 a0 0b 43 0b
CRED_I (CBOR Data Item) (243 bytes)
58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e a0 30 05 06 03
2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52
6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38
32 34 30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31
20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49 6e 69 74 69 61 74
6f 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 ed
06 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e 0f 23
d8 cc 20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41 00 52 12 41 d8 b3
a7 70 99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df 29 10 b3 92 75
ae 48 b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21 22 67 dd 05 ee ff
27 b9 e7 a8 13 fa 57 4b 72 a0 0b 43 0b

No external authorization data:

EAD_3 (CBOR Sequence) (0 bytes)

context_3 = << ID_CRED_I, TH_3, CRED_I, ? EAD_3 >>

context_3 (CBOR Sequence) (291 bytes)
a1 18 22 82 2e 48 c2 4a b2 fd 76 43 c7 9f 58 20 03 12 56 1b 73 43 ce
af 65 9d f5 00 13 e0 64 e6 b4 6d cb 3f a8 40 d8 55 04 5e 33 c0 21 d7
f6 91 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e a0 30 05
06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43
20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36
30 38 32 34 30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30
22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49 6e 69 74 69
61 74 6f 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21
00 ed 06 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e
0f 23 d8 cc 20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41 00 52 12 41
d8 b3 a7 70 99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df 29 10 b3
92 75 ae 48 b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21 22 67 dd 05
ee ff 27 b9 e7 a8 13 fa 57 4b 72 a0 0b 43 0b
context_3 (CBOR byte string) (294 bytes)
59 01 23 a1 18 22 82 2e 48 c2 4a b2 fd 76 43 c7 9f 58 20 03 12 56 1b
73 43 ce af 65 9d f5 00 13 e0 64 e6 b4 6d cb 3f a8 40 d8 55 04 5e 33
c0 21 d7 f6 91 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e
a0 30 05 06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44
48 4f 43 20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30
33 31 36 30 38 32 34 30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30
30 5a 30 22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49 6e
69 74 69 61 74 6f 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65
70 03 21 00 ed 06 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3
02 f4 3e 0f 23 d8 cc 20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41 00
52 12 41 d8 b3 a7 70 99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df
29 10 b3 92 75 ae 48 b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21 22
67 dd 05 ee ff 27 b9 e7 a8 13 fa 57 4b 72 a0 0b 43 0b

MAC_3 is computed through EDHOC_Expand() using the EDHOC hash algorithm, see Section 4.1.2 of [I-D.ietf-lake-edhoc]:

MAC_3 = HKDF-Expand(PRK_4e3m, info, mac_length_3), where

info = ( 6, context_3, mac_length_3 )

where context_3 = << ID_CRED_I, TH_3, CRED_I, ? EAD_3 >>

Since METHOD = 0, mac_length_3 is given by the EDHOC hash algorithm.

info for MAC_3 is:

info =
(
 6,
 h'a11822822e48c24ab2fd7643c79f58200312561b7343ceaf
   659df50013e064e6b46dcb3fa840d855045e33c021d7f691
   58f13081ee3081a1a003020102020462319ea0300506032b
   6570301d311b301906035504030c124544484f4320526f6f
   742045643235353139301e170d3232303331363038323430
   305a170d3239313233313233303030305a30223120301e06
   035504030c174544484f4320496e69746961746f72204564
   3235353139302a300506032b6570032100ed06a8ae61a829
   ba5fa54525c9d07f48dd44a302f43e0f23d8cc20b7308514
   1e300506032b6570034100521241d8b3a770996bcfc9b9ea
   d4e7e0a1c0db353a3bdf2910b39275ae48b756015981850d
   27db6734e37f67212267dd05eeff27b9e7a813fa574b72a0
   0b430b',
 32
)

where the last value is the output size of the EDHOC hash algorithm.

info for MAC_3 (CBOR Sequence) (297 bytes)
06 59 01 23 a1 18 22 82 2e 48 c2 4a b2 fd 76 43 c7 9f 58 20 03 12 56
1b 73 43 ce af 65 9d f5 00 13 e0 64 e6 b4 6d cb 3f a8 40 d8 55 04 5e
33 c0 21 d7 f6 91 58 f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31
9e a0 30 05 06 03 2b 65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45
44 48 4f 43 20 52 6f 6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32
30 33 31 36 30 38 32 34 30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30
30 30 5a 30 22 31 20 30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49
6e 69 74 69 61 74 6f 72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b
65 70 03 21 00 ed 06 a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44
a3 02 f4 3e 0f 23 d8 cc 20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41
00 52 12 41 d8 b3 a7 70 99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b
df 29 10 b3 92 75 ae 48 b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21
22 67 dd 05 ee ff 27 b9 e7 a8 13 fa 57 4b 72 a0 0b 43 0b 18 20
MAC_3 (Raw Value) (32 bytes)
cd d2 50 7b cf 66 2b 5d 9d 9c f2 3c 4b 31 a9 b6 66 c6 a1 9a 0a 44 dc
2a 7a 9c 90 45 22 b1 eb 3e
MAC_3 (CBOR Data Item) (34 bytes)
58 20 cd d2 50 7b cf 66 2b 5d 9d 9c f2 3c 4b 31 a9 b6 66 c6 a1 9a 0a
44 dc 2a 7a 9c 90 45 22 b1 eb 3e

Since METHOD = 0, Signature_or_MAC_3 is the 'signature' of the COSE_Sign1 object.

I constructs the message to be signed:

[ "Signature1", << ID_CRED_I >>,
 << TH_3, CRED_I, ? EAD_3 >>, MAC_3 ] =

[
 "Signature1",
 h'a11822822e48c24ab2fd7643c79f',
 h'58200312561b7343ceaf659df50013e064e6b46dcb3fa840
   d855045e33c021d7f69158f13081ee3081a1a00302010202
   0462319ea0300506032b6570301d311b301906035504030c
   124544484f4320526f6f742045643235353139301e170d32
   32303331363038323430305a170d32393132333132333030
   30305a30223120301e06035504030c174544484f4320496e
   69746961746f722045643235353139302a300506032b6570
   032100ed06a8ae61a829ba5fa54525c9d07f48dd44a302f4
   3e0f23d8cc20b73085141e300506032b6570034100521241
   d8b3a770996bcfc9b9ead4e7e0a1c0db353a3bdf2910b392
   75ae48b756015981850d27db6734e37f67212267dd05eeff
   27b9e7a813fa574b72a00b430b',
 h'cdd2507bcf662b5d9d9cf23c4b31a9b666c6a19a0a44dc2a
   7a9c904522b1eb3e'
]
Message to be signed 3 (CBOR Data Item) (341 bytes)
84 6a 53 69 67 6e 61 74 75 72 65 31 4e a1 18 22 82 2e 48 c2 4a b2 fd
76 43 c7 9f 59 01 15 58 20 03 12 56 1b 73 43 ce af 65 9d f5 00 13 e0
64 e6 b4 6d cb 3f a8 40 d8 55 04 5e 33 c0 21 d7 f6 91 58 f1 30 81 ee
30 81 a1 a0 03 02 01 02 02 04 62 31 9e a0 30 05 06 03 2b 65 70 30 1d
31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52 6f 6f 74 20 45
64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38 32 34 30 30 5a
17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31 20 30 1e 06 03
55 04 03 0c 17 45 44 48 4f 43 20 49 6e 69 74 69 61 74 6f 72 20 45 64
32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 ed 06 a8 ae 61 a8
29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e 0f 23 d8 cc 20 b7 30
85 14 1e 30 05 06 03 2b 65 70 03 41 00 52 12 41 d8 b3 a7 70 99 6b cf
c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df 29 10 b3 92 75 ae 48 b7 56 01
59 81 85 0d 27 db 67 34 e3 7f 67 21 22 67 dd 05 ee ff 27 b9 e7 a8 13
fa 57 4b 72 a0 0b 43 0b 58 20 cd d2 50 7b cf 66 2b 5d 9d 9c f2 3c 4b
31 a9 b6 66 c6 a1 9a 0a 44 dc 2a 7a 9c 90 45 22 b1 eb 3e

I signs using the private authentication key SK_I:

Signature_or_MAC_3 (Raw Value) (64 bytes)
4f 99 22 77 bc be 5f ec 00 9f be 0b 31 34 91 65 2b d4 c8 02 18 07 32
75 c3 f1 66 99 af 9c d3 f4 c6 b6 61 ff 11 da 12 b3 fe 03 c5 df d2 ce
ee c0 6a dc ff 6a 76 a7 0e 31 56 a6 00 fb 61 ac d6 02
Signature_or_MAC_3 (CBOR Data Item) (66 bytes)
58 40 4f 99 22 77 bc be 5f ec 00 9f be 0b 31 34 91 65 2b d4 c8 02 18
07 32 75 c3 f1 66 99 af 9c d3 f4 c6 b6 61 ff 11 da 12 b3 fe 03 c5 df
d2 ce ee c0 6a dc ff 6a 76 a7 0e 31 56 a6 00 fb 61 ac d6 02

I constructs PLAINTEXT_3:

PLAINTEXT_3 =
(
 ID_CRED_I / bstr / -24..23,
 Signature_or_MAC_3,
 ? EAD_3
)
PLAINTEXT_3 (CBOR Sequence) (80 bytes)
a1 18 22 82 2e 48 c2 4a b2 fd 76 43 c7 9f 58 40 4f 99 22 77 bc be 5f
ec 00 9f be 0b 31 34 91 65 2b d4 c8 02 18 07 32 75 c3 f1 66 99 af 9c
d3 f4 c6 b6 61 ff 11 da 12 b3 fe 03 c5 df d2 ce ee c0 6a dc ff 6a 76
a7 0e 31 56 a6 00 fb 61 ac d6 02

I constructs the associated data for message_3:

A_3 =
[
 "Encrypt0",
 h'',
 h'0312561b7343ceaf659df50013e064e6b46dcb3fa840d855
   045e33c021d7f691'
]
A_3 (CBOR Data Item) (45 bytes)
83 68 45 6e 63 72 79 70 74 30 40 58 20 03 12 56 1b 73 43 ce af 65 9d
f5 00 13 e0 64 e6 b4 6d cb 3f a8 40 d8 55 04 5e 33 c0 21 d7 f6 91

I constructs the input needed to derive the key K_3, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash algorithm:

K_3 = EDHOC_KDF( PRK_3e2m, 3, TH_3, key_length )
    = HKDF-Expand( PRK_3e2m, info, key_length ),

where key_length is the key length of EDHOC AEAD algorithm, and info for K_3 is:

info =
(
 3,
 h'0312561b7343ceaf659df50013e064e6b46dcb3fa840d855
   045e33c021d7f691',
 16
)

where the last value is the key length of EDHOC AEAD algorithm.

info for K_3 (CBOR Sequence) (36 bytes)
03 58 20 03 12 56 1b 73 43 ce af 65 9d f5 00 13 e0 64 e6 b4 6d cb 3f
a8 40 d8 55 04 5e 33 c0 21 d7 f6 91 10
K_3 (Raw Value) (16 bytes)
50 b9 cb 0b ba 0c 75 88 0b 54 27 86 be 62 77 fa

I constructs the input needed to derive the nonce IV_3, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash algorithm:

IV_3 = EDHOC_KDF( PRK_3e2m, 4, TH_3, iv_length )
     = HKDF-Expand( PRK_3e2m, info, iv_length ),

where iv_length is the nonce length of EDHOC AEAD algorithm, and info for IV_3 is:

info =
(
 4,
 h'0312561b7343ceaf659df50013e064e6b46dcb3fa840d855
   045e33c021d7f691',
 13
)

where the last value is the nonce length of EDHOC AEAD algorithm.

info for IV_3 (CBOR Sequence) (36 bytes)
04 58 20 03 12 56 1b 73 43 ce af 65 9d f5 00 13 e0 64 e6 b4 6d cb 3f
a8 40 d8 55 04 5e 33 c0 21 d7 f6 91 0d
IV_3 (Raw Value) (13 bytes)
27 a3 b3 ba 30 14 ab 62 d9 a2 69 45 a3

I calculates CIPHERTEXT_3 as 'ciphertext' of COSE_Encrypt0 applied using the EDHOC AEAD algorithm with plaintext PLAINTEXT_3, additional data A_3, key K_3 and nonce IV_3.

CIPHERTEXT_3 (Raw Value) (88 bytes)
ba 5e 0e 74 5b fa 2a 87 1d 20 cb 02 c8 00 20 07 71 43 4b 6e 1a c9 89
77 ec 73 3e c9 4c 06 33 cb 3e c0 20 78 98 59 7f 2c 49 d3 a4 0f 4c 14
51 b4 3d 0b ca e4 84 7a 0d 6c d3 2d 5e 8a 35 54 f4 3f 7a 98 29 04 b0
77 c5 02 9b 3d c7 f0 5e ed ed e3 b0 21 57 c3 24 c0 db 3e

message_3 is the CBOR bstr encoding of CIPHERTEXT_3:

message_3 (CBOR Sequence) (90 bytes)
58 58 ba 5e 0e 74 5b fa 2a 87 1d 20 cb 02 c8 00 20 07 71 43 4b 6e 1a
c9 89 77 ec 73 3e c9 4c 06 33 cb 3e c0 20 78 98 59 7f 2c 49 d3 a4 0f
4c 14 51 b4 3d 0b ca e4 84 7a 0d 6c d3 2d 5e 8a 35 54 f4 3f 7a 98 29
04 b0 77 c5 02 9b 3d c7 f0 5e ed ed e3 b0 21 57 c3 24 c0 db 3e

The transcript hash TH_4 is calculated using the EDHOC hash algorithm:

TH_4 = H( TH_3, PLAINTEXT_3, CRED_I )

Input to calculate TH_4 (CBOR Sequence) (357 bytes)
58 20 03 12 56 1b 73 43 ce af 65 9d f5 00 13 e0 64 e6 b4 6d cb 3f a8
40 d8 55 04 5e 33 c0 21 d7 f6 91 a1 18 22 82 2e 48 c2 4a b2 fd 76 43
c7 9f 58 40 4f 99 22 77 bc be 5f ec 00 9f be 0b 31 34 91 65 2b d4 c8
02 18 07 32 75 c3 f1 66 99 af 9c d3 f4 c6 b6 61 ff 11 da 12 b3 fe 03
c5 df d2 ce ee c0 6a dc ff 6a 76 a7 0e 31 56 a6 00 fb 61 ac d6 02 58
f1 30 81 ee 30 81 a1 a0 03 02 01 02 02 04 62 31 9e a0 30 05 06 03 2b
65 70 30 1d 31 1b 30 19 06 03 55 04 03 0c 12 45 44 48 4f 43 20 52 6f
6f 74 20 45 64 32 35 35 31 39 30 1e 17 0d 32 32 30 33 31 36 30 38 32
34 30 30 5a 17 0d 32 39 31 32 33 31 32 33 30 30 30 30 5a 30 22 31 20
30 1e 06 03 55 04 03 0c 17 45 44 48 4f 43 20 49 6e 69 74 69 61 74 6f
72 20 45 64 32 35 35 31 39 30 2a 30 05 06 03 2b 65 70 03 21 00 ed 06
a8 ae 61 a8 29 ba 5f a5 45 25 c9 d0 7f 48 dd 44 a3 02 f4 3e 0f 23 d8
cc 20 b7 30 85 14 1e 30 05 06 03 2b 65 70 03 41 00 52 12 41 d8 b3 a7
70 99 6b cf c9 b9 ea d4 e7 e0 a1 c0 db 35 3a 3b df 29 10 b3 92 75 ae
48 b7 56 01 59 81 85 0d 27 db 67 34 e3 7f 67 21 22 67 dd 05 ee ff 27
b9 e7 a8 13 fa 57 4b 72 a0 0b 43 0b
TH_4 (Raw Value) (32 bytes)
38 e2 e6 f4 64 1e 81 4b 72 18 14 c0 5b 51 ef 0a a3 8b db 36 07 4f 98
12 39 e6 47 4d 9c cc dd c8
TH_4 (CBOR Data Item) (34 bytes)
58 20 38 e2 e6 f4 64 1e 81 4b 72 18 14 c0 5b 51 ef 0a a3 8b db 36 07
4f 98 12 39 e6 47 4d 9c cc dd c8

3.4. message_4

No external authorization data:

EAD_4 (CBOR Sequence) (0 bytes)

R constructs PLAINTEXT_4:

PLAINTEXT_4 =
(
 ? EAD_4
)
PLAINTEXT_4 (CBOR Sequence) (0 bytes)

R constructs the associated data for message_4:

A_4 =
[
 "Encrypt0",
 h'',
 h'38e2e6f4641e814b721814c05b51ef0aa38bdb36074f9812
   39e6474d9cccddc8'
]
A_4 (CBOR Data Item) (45 bytes)
83 68 45 6e 63 72 79 70 74 30 40 58 20 38 e2 e6 f4 64 1e 81 4b 72 18
14 c0 5b 51 ef 0a a3 8b db 36 07 4f 98 12 39 e6 47 4d 9c cc dd c8

R constructs the input needed to derive the EDHOC message_4 key, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash algorithm:

K_4   = EDHOC_KDF( PRK_4e3m, 8, TH_4, key_length )
      = HKDF-Expand( PRK_4x3m, info, key_length )

where key_length is the key length of the EDHOC AEAD algorithm, and info for EDHOC_K_4 is:

info =
(
 8,
 h'38e2e6f4641e814b721814c05b51ef0aa38bdb36074f9812
   39e6474d9cccddc8',
 16
)

where the last value is the key length of EDHOC AEAD algorithm.

info for K_4 (CBOR Sequence) (36 bytes)
08 58 20 38 e2 e6 f4 64 1e 81 4b 72 18 14 c0 5b 51 ef 0a a3 8b db 36
07 4f 98 12 39 e6 47 4d 9c cc dd c8 10
K_4 (Raw Value) (16 bytes)
3d e5 c1 6f 9f 7e f0 0c 46 4b e8 d7 7b de f7 30

R constructs the input needed to derive the EDHOC message_4 nonce, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash algorithm:

      IV_4 = EDHOC_KDF( PRK_4e3m, 9, TH_4, iv_length )
           = HKDF-Expand( PRK_4x3m, info, iv_length )

where length is the nonce length of EDHOC AEAD algorithm, and info for EDHOC_IV_4 is:

info =
(
 9,
 h'38e2e6f4641e814b721814c05b51ef0aa38bdb36074f9812
   39e6474d9cccddc8',
 13
)

where the last value is the nonce length of EDHOC AEAD algorithm.

info for IV_4 (CBOR Sequence) (36 bytes)
09 58 20 38 e2 e6 f4 64 1e 81 4b 72 18 14 c0 5b 51 ef 0a a3 8b db 36
07 4f 98 12 39 e6 47 4d 9c cc dd c8 0d
IV_4 (Raw Value) (13 bytes)
26 35 c2 b3 6d 2b f8 af b6 c8 9b 0f af

R calculates CIPHERTEXT_4 as 'ciphertext' of COSE_Encrypt0 applied using the EDHOC AEAD algorithm with plaintext PLAINTEXT_4, additional data A_4, key K_4 and nonce IV_4.

CIPHERTEXT_4 (8 bytes)
d5 41 7c 47 4c b4 a3 02

message_4 is the CBOR bstr encoding of CIPHERTEXT_4:

message_4 (CBOR Sequence) (9 bytes)
48 d5 41 7c 47 4c b4 a3 02

3.5. PRK_out and PRK_exporter

PRK_out is specified in Section 4.1.3 of [I-D.ietf-lake-edhoc].

PRK_out = EDHOC_KDF( PRK_4e3m, 7, TH_4, hash_length ) =
        = HKDF-Expand( PRK_4e3m, info,  hash_length )

where hash_length is the length of the output of the EDHOC hash algorithm, and info for PRK_out is:

info =
(
 7,
 h'38e2e6f4641e814b721814c05b51ef0aa38bdb36074f9812
   39e6474d9cccddc8',
 32
)

where the last value is the length of EDHOC hash algorithm.

info for PRK_out (CBOR Sequence) (37 bytes)
07 58 20 38 e2 e6 f4 64 1e 81 4b 72 18 14 c0 5b 51 ef 0a a3 8b db 36
07 4f 98 12 39 e6 47 4d 9c cc dd c8 18 20
PRK_out (Raw Value) (32 bytes)
cf aa 94 87 37 c8 c7 5f 54 2a fb 6a 07 df da 67 3e 78 a1 04 ca cb d9
3f dc a3 c2 b0 e6 63 e9 44

The OSCORE Master Secret and OSCORE Master Salt are derived with the EDHOC_Exporter as specified in 4.2.1 of [I-D.ietf-lake-edhoc].

EDHOC_Exporter( label, context, length )
= EDHOC_KDF( PRK_exporter, label, context, length )

where PRK_exporter is derived from PRK_out:

 PRK_exporter = EDHOC_KDF( PRK_out, 10, h'', hash_length ) =
              = HKDF-Expand( PRK_out, info,  hash_length )

where hash_length is the length of the output of the EDHOC hash algorithm, and info for the PRK_exporter is:

info =
(
 10,
 h'',
 32
)

where the last value is the length of EDHOC hash algorithm.

info for PRK_exporter (CBOR Sequence) (4 bytes)
0a 40 18 20
PRK_exporter (Raw Value) (32 bytes)
55 15 9b 06 37 4e 4b 2b c2 a9 f5 82 4b 56 1f e1 66 d6 26 4a a6 da e8
97 7d 2e d5 37 90 b4 2b 2f

3.6. OSCORE Parameters

The derivation of OSCORE parameters is specified in Appendix A.1 of [I-D.ietf-lake-edhoc].

The AEAD and Hash algorithms to use in OSCORE are given by the selected cipher suite:

Application AEAD Algorithm (int)
10
Application Hash Algorithm (int)
-16

The mapping from EDHOC connection identifiers to OSCORE Sender/Recipient IDs is defined in Section 3.3.3 of [I-D.ietf-lake-edhoc].

C_R is mapped to the Recipient ID of the server, i.e., the Sender ID of the client. The byte string 0x18, which as C_R is encoded as the CBOR byte string 0x4118, is converted to the server Recipient ID 0x18.

Client's OSCORE Sender ID (Raw Value) (1 byte)
18

C_I is mapped to the Recipient ID of the client, i.e., the Sender ID of the server. The byte string 0x2d, which as C_I is encoded as the CBOR integer 0x2d is converted to the client Recipient ID 0x2d.

Server's OSCORE Sender ID (Raw Value) (1 byte)
2d

The OSCORE Master Secret is computed through EDHOC_Expand() using the Application hash algorithm, see Appendix A.1 of [I-D.ietf-lake-edhoc]:

OSCORE Master Secret = EDHOC_Exporter( 0, h'', oscore_key_length )
= EDHOC_KDF( PRK_exporter, 0, h'',  oscore_key_length )
= HKDF-Expand( PRK_exporter, info,  oscore_key_length )

where oscore_key_length is by default the key length of the Application AEAD algorithm, and info for the OSCORE Master Secret is:

info =
(
 0,
 h'',
 16
)

where the last value is the key length of Application AEAD algorithm.

info for OSCORE Master Secret (CBOR Sequence) (3 bytes)
00 40 10
OSCORE Master Secret (Raw Value) (16 bytes)
09 c3 66 61 cf 68 f8 c3 ad 21 64 43 cf 62 91 e6

The OSCORE Master Salt is computed through EDHOC_Expand() using the Application hash algorithm, see Section 4.2 of [I-D.ietf-lake-edhoc]:

OSCORE Master Salt = EDHOC_Exporter( 1, h'', oscore_salt_length )
= EDHOC_KDF( PRK_exporter, 1, h'', oscore_salt_length )
= HKDF-Expand( PRK_4x3m, info, oscore_salt_length )

where oscore_salt_length is the length of the OSCORE Master Salt, and info for the OSCORE Master Salt is:

info =
(
 1,
 h'',
 8
)

where the last value is the length of the OSCORE Master Salt.

info for OSCORE Master Salt (CBOR Sequence) (3 bytes)
01 40 08
OSCORE Master Salt (Raw Value) (8 bytes)
13 82 bf 71 9e e6 5c 32

3.7. Key Update

Key update is defined in Appendix J of [I-D.ietf-lake-edhoc].

EDHOC_KeyUpdate( context ):
PRK_out = EDHOC_KDF( PRK_out, 11, context, hash_length )
        = HKDF-Expand( PRK_out, info, hash_length )

where hash_length is the length of the output of the EDHOC hash function, context for KeyUpdate is

context for KeyUpdate (Raw Value) (16 bytes)
d6 be 16 96 02 b8 bc ea a0 11 58 fd b8 20 89 0c
context for KeyUpdate (CBOR Data Item) (17 bytes)
50 d6 be 16 96 02 b8 bc ea a0 11 58 fd b8 20 89 0c

and where info for key update is:

info =
(
 11,
 h'd6be169602b8bceaa01158fdb820890c',
 32
)
PRK_out after KeyUpdate (Raw Value) (32 bytes)
2b 31 bf cf 9b 0b b2 a6 92 65 3a 08 40 02 73 59 c4 e6 7c c5 04 ff 65
7a 30 af d7 67 c5 a4 1e f9

After key update the PRK_exporter needs to be derived anew:

 PRK_exporter = EDHOC_KDF( PRK_out, 10, h'', hash_length ) =
              = HKDF-Expand( PRK_out, info,  hash_length )

where info and hash_length as unchanged as in Section 3.5.

PRK_exporter (Raw Value) (32 bytes)
2c 62 c4 ac 76 c8 e1 e8 48 38 5b 07 fe 2a 58 ad 2a f7 4c ee 38 70 d5
2b 4d a1 ec 63 39 3d 0f ec

The OSCORE Master Secret is derived with the updated PRK_exporter:

OSCORE Master Secret =
= HKDF-Expand(PRK_exporter, info, oscore_key_length)

where info and key_length are unchanged as in Section 3.6.

OSCORE Master Secret after KeyUpdate (Raw Value) (16 bytes)
f0 05 28 0c 94 8a 64 c4 6e 33 e9 ea 8d e9 31 15

The OSCORE Master Salt is derived with the updated PRK_exporter:

OSCORE Master Salt = HKDF-Expand(PRK_exporter, info, salt_length)

where info and salt_length are unchanged as in Section 3.6.

OSCORE Master Salt after KeyUpdate (Raw Value) (8 bytes)
0b 0a f3 2a a4 9b 3c e3

3.8. Certificates

3.8.1. Responder Certificate

        Version: 3 (0x2)
        Serial Number: 1647419076 (0x62319ec4)
        Signature Algorithm: ED25519
        Issuer: CN = EDHOC Root Ed25519
        Validity
            Not After : Dec 31 23:00:00 2029 GMT
        Subject: CN = EDHOC Responder Ed25519
        Subject Public Key Info:
            Public Key Algorithm: ED25519
                ED25519 Public-Key:
                pub:
                    a1:db:47:b9:51:84:85:4a:d1:2a:0c:1a:35:4e:41:
                    8a:ac:e3:3a:a0:f2:c6:62:c0:0b:3a:c5:5d:e9:2f:
                    93:59
    Signature Algorithm: ED25519
    Signature Value:
        b7:23:bc:01:ea:b0:92:8e:8b:2b:6c:98:de:19:cc:38:23:d4:
        6e:7d:69:87:b0:32:47:8f:ec:fa:f1:45:37:a1:af:14:cc:8b:
        e8:29:c6:b7:30:44:10:18:37:eb:4a:bc:94:95:65:d8:6d:ce:
        51:cf:ae:52:ab:82:c1:52:cb:02

3.8.2. Initiator Certificate

        Version: 3 (0x2)
        Serial Number: 1647419040 (0x62319ea0)
        Signature Algorithm: ED25519
        Issuer: CN = EDHOC Root Ed25519
        Validity
            Not Before: Mar 16 08:24:00 2022 GMT
            Not After : Dec 31 23:00:00 2029 GMT
        Subject: CN = EDHOC Initiator Ed25519
        Subject Public Key Info:
            Public Key Algorithm: ED25519
                ED25519 Public-Key:
                pub:
                    ed:06:a8:ae:61:a8:29:ba:5f:a5:45:25:c9:d0:7f:
                    48:dd:44:a3:02:f4:3e:0f:23:d8:cc:20:b7:30:85:
                    14:1e
    Signature Algorithm: ED25519
    Signature Value:
        52:12:41:d8:b3:a7:70:99:6b:cf:c9:b9:ea:d4:e7:e0:a1:c0:
        db:35:3a:3b:df:29:10:b3:92:75:ae:48:b7:56:01:59:81:85:
        0d:27:db:67:34:e3:7f:67:21:22:67:dd:05:ee:ff:27:b9:e7:
        a8:13:fa:57:4b:72:a0:0b:43:0b

3.8.3. Common Root Certificate

        Version: 3 (0x2)
        Serial Number: 1647418996 (0x62319e74)
        Signature Algorithm: ED25519
        Issuer: CN = EDHOC Root Ed25519
        Validity
            Not Before: Mar 16 08:23:16 2022 GMT
            Not After : Dec 31 23:00:00 2029 GMT
        Subject: CN = EDHOC Root Ed25519
        Subject Public Key Info:
            Public Key Algorithm: ED25519
                ED25519 Public-Key:
                pub:
                    2b:7b:3e:80:57:c8:64:29:44:d0:6a:fe:7a:71:d1:
                    c9:bf:96:1b:62:92:ba:c4:b0:4f:91:66:9b:bb:71:
                    3b:e4
    Signature Algorithm: ED25519
    Signature Value:
        4b:b5:2b:bf:15:39:b7:1a:4a:af:42:97:78:f2:9e:da:7e:81:
        46:80:69:8f:16:c4:8f:2a:6f:a4:db:e8:25:41:c5:82:07:ba:
        1b:c9:cd:b0:c2:fa:94:7f:fb:f0:f0:ec:0e:e9:1a:7f:f3:7a:
        94:d9:25:1f:a5:cd:f1:e6:7a:0f

4. Authentication with static DH, CCS identified by 'kid'

In this example I and R are authenticated with ephemeral-static Diffie-Hellman (METHOD = 3). I supports cipher suites 6 and 2 (in order of preference) and R only supports cipher suite 2. After an initial negotiation message exchange cipher suite 2 is used, which determines the algorithms:

  • EDHOC AEAD algorithm = AES-CCM-16-64-128
  • EDHOC hash algorithm = SHA-256
  • EDHOC MAC length in bytes (Static DH) = 8
  • EDHOC key exchange algorithm (ECDH curve) = P-256
  • EDHOC signature algorithm = ES256
  • Application AEAD algorithm = AES-CCM-16-64-128
  • Application hash algorithm = SHA-256

The public keys are represented as raw public keys (RPK), encoded in a CWT Claims Set (CCS) and identified by the COSE header parameter 'kid'.

4.1. message_1 (first time)

Both endpoints are authenticated with static DH, i.e., METHOD = 3:

METHOD (CBOR Data Item) (1 byte)
03

I selects its preferred cipher suite 6. A single cipher suite is encoded as an int:

SUITES_I (CBOR Data Item) (1 byte)
06

I creates an ephemeral key pair for use with the EDHOC key exchange algorithm:

Initiator's ephemeral private key
X (Raw Value) (32 bytes)
5c 41 72 ac a8 b8 2b 5a 62 e6 6f 72 22 16 f5 a1 0f 72 aa 69 f4 2c 1d
1c d3 cc d7 bf d2 9c a4 e9
Initiator's ephemeral public key, 'x'-coordinate
G_X (Raw Value) (32 bytes)
74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b ea 5b 3d 8f 65 f3 26
20 b7 49 be e8 d2 78 ef a9
Initiator's ephemeral public key, 'x'-coordinate
G_X (CBOR Data Item) (34 bytes)
58 20 74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b ea 5b 3d 8f 65
f3 26 20 b7 49 be e8 d2 78 ef a9

I selects its connection identifier C_I to be the byte string 0x0e, which since it is represented by the 1-byte CBOR int 14 is encoded as 0x0e:

C_I (Raw Value) (Connection identifier chosen by I) (1 byte)
0e
C_I (CBOR Data Item) (Connection identifier chosen by I) (1 byte)
0e

No external authorization data:

EAD_1 (CBOR Sequence) (0 bytes)

I constructs message_1:

message_1 =
(
 3,
 6,
 h'741a13d7ba048fbb615e94386aa3b61bea5b3d8f65f32620
   b749bee8d278efa9',
 14
)
message_1 (CBOR Sequence) (37 bytes)
03 06 58 20 74 1a 13 d7 ba 04 8f bb 61 5e 94 38 6a a3 b6 1b ea 5b 3d
8f 65 f3 26 20 b7 49 be e8 d2 78 ef a9 0e

4.2. error

R does not support cipher suite 6 and sends an error with ERR_CODE 2 containing SUITES_R as ERR_INFO. R proposes cipher suite 2, a single cipher suite thus encoded as an int.

SUITES_R
02
error (CBOR Sequence) (2 bytes)
02 02

4.3. message_1 (second time)

Same steps are performed as message_1 first time, Section 4.1, but with updated SUITES_I.

Both endpoints are authenticated with static DH, i.e., METHOD = 3:

METHOD (CBOR Data Item) (1 byte)
03

I selects cipher suite 2 and indicates the more preferred cipher suite(s), in this case 6, all encoded as the array [6, 2]:

SUITES_I (CBOR Data Item) (3 bytes)
82 06 02

I creates an ephemeral key pair for use with the EDHOC key exchange algorithm:

Initiator's ephemeral private key
X (Raw Value) (32 bytes)
36 8e c1 f6 9a eb 65 9b a3 7d 5a 8d 45 b2 1b dc 02 99 dc ea a8 ef 23
5f 3c a4 2c e3 53 0f 95 25
Initiator's ephemeral public key, 'x'-coordinate
G_X (Raw Value) (32 bytes)
8a f6 f4 30 eb e1 8d 34 18 40 17 a9 a1 1b f5 11 c8 df f8 f8 34 73 0b
96 c1 b7 c8 db ca 2f c3 b6
Initiator's ephemeral public key, one 'y'-coordinate
(Raw Value) (32 bytes)
51 e8 af 6c 6e db 78 16 01 ad 1d 9c 5f a8 bf 7a a1 57 16 c7 c0 6a 5d
03 85 03 c6 14 ff 80 c9 b3
Initiator's ephemeral public key, 'x'-coordinate
G_X (CBOR Data Item) (34 bytes)
58 20 8a f6 f4 30 eb e1 8d 34 18 40 17 a9 a1 1b f5 11 c8 df f8 f8 34
73 0b 96 c1 b7 c8 db ca 2f c3 b6

I selects its connection identifier C_I to be the byte string 0x37, which since it is represented by the 1-byte CBOR int -24 is encoded as 0x37:

C_I (Raw Value) (Connection identifier chosen by I) (1 byte)
37
C_I (CBOR Data Item) (Connection identifier chosen by I) (1 byte)
37

No external authorization data:

EAD_1 (CBOR Sequence) (0 bytes)

I constructs message_1:

message_1 =
(
 3,
 [6, 2],
 h'8af6f430ebe18d34184017a9a11bf511c8dff8f834730b96
   c1b7c8dbca2fc3b6',
 -24
)
message_1 (CBOR Sequence) (39 bytes)
03 82 06 02 58 20 8a f6 f4 30 eb e1 8d 34 18 40 17 a9 a1 1b f5 11 c8
df f8 f8 34 73 0b 96 c1 b7 c8 db ca 2f c3 b6 37

4.4. message_2

R supports the selected cipher suite 2 and not the by I more preferred cipher suite(s) 6, so SUITES_I is acceptable.

R creates an ephemeral key pair for use with the EDHOC key exchange algorithm:

Responder's ephemeral private key
Y (Raw Value) (32 bytes)
e2 f4 12 67 77 20 5e 85 3b 43 7d 6e ac a1 e1 f7 53 cd cc 3e 2c 69 fa
88 4b 0a 1a 64 09 77 e4 18
Responder's ephemeral public key, 'x'-coordinate
G_Y (Raw Value) (32 bytes)
41 97 01 d7 f0 0a 26 c2 dc 58 7a 36 dd 75 25 49 f3 37 63 c8 93 42 2c
8e a0 f9 55 a1 3a 4f f5 d5
Responder's ephemeral public key, one 'y'-coordinate
(Raw Value) (32 bytes)
5e 4f 0d d8 a3 da 0b aa 16 b9 d3 ad 56 a0 c1 86 0a 94 0a f8 59 14 91
5e 25 01 9b 40 24 17 e9 9d
Responder's ephemeral public key, 'x'-coordinate
G_Y (CBOR Data Item) (34 bytes)
58 20 41 97 01 d7 f0 0a 26 c2 dc 58 7a 36 dd 75 25 49 f3 37 63 c8 93
42 2c 8e a0 f9 55 a1 3a 4f f5 d5

R selects its connection identifier C_R to be the byte string 0x27, which since it is represented by the 1-byte CBOR int -8 is encoded as 0x27:

C_R (raw value) (Connection identifier chosen by R) (1 byte)
27
C_R (CBOR Data Item) (Connection identifier chosen by R) (1 byte)
27

The transcript hash TH_2 is calculated using the EDHOC hash algorithm:

TH_2 = H( G_Y, C_R, H(message_1) )

H(message_1) (Raw Value) (32 bytes)
ca 02 ca bd a5 a8 90 27 49 b4 2f 71 10 50 bb 4d bd 52 15 3e 87 52 75
94 b3 9f 50 cd f0 19 88 8c
H(message_1) (CBOR Data Item) (34 bytes)
58 20 ca 02 ca bd a5 a8 90 27 49 b4 2f 71 10 50 bb 4d bd 52 15 3e 87
52 75 94 b3 9f 50 cd f0 19 88 8c

The input to calculate TH_2 is the CBOR sequence:

G_Y, C_R, H(message_1)

Input to calculate TH_2 (CBOR Sequence) (69 bytes)
58 20 41 97 01 d7 f0 0a 26 c2 dc 58 7a 36 dd 75 25 49 f3 37 63 c8 93
42 2c 8e a0 f9 55 a1 3a 4f f5 d5 27 58 20 ca 02 ca bd a5 a8 90 27 49
b4 2f 71 10 50 bb 4d bd 52 15 3e 87 52 75 94 b3 9f 50 cd f0 19 88 8c
TH_2 (Raw Value) (32 bytes)
9d 2a f3 a3 d3 fc 06 ae a8 11 0f 14 ba 12 ad 0b 4f b7 e5 cd f5 9c 7d
f1 cf 2d fe 9c 20 24 43 9c
TH_2 (CBOR Data Item) (34 bytes)
58 20 9d 2a f3 a3 d3 fc 06 ae a8 11 0f 14 ba 12 ad 0b 4f b7 e5 cd f5
9c 7d f1 cf 2d fe 9c 20 24 43 9c

PRK_2e is specified in Section 4.1.1.1 of [I-D.ietf-lake-edhoc].

First, the ECDH shared secret G_XY is computed from G_X and Y, or G_Y and X:

G_XY (Raw Value) (ECDH shared secret) (32 bytes)
2f 0c b7 e8 60 ba 53 8f bf 5c 8b de d0 09 f6 25 9b 4b 62 8f e1 eb 7d
be 93 78 e5 ec f7 a8 24 ba

Then, PRK_2e is calculated using EDHOC_Extract() determined by the EDHOC hash algorithm:

PRK_2e = EDHOC_Extract( salt, G_XY ) =
       = HMAC-SHA-256( salt, G_XY )

where salt is TH_2:

salt (Raw Value) (32 bytes)
9d 2a f3 a3 d3 fc 06 ae a8 11 0f 14 ba 12 ad 0b 4f b7 e5 cd f5 9c 7d
f1 cf 2d fe 9c 20 24 43 9c
PRK_2e (Raw Value) (32 bytes)
e0 1f a1 4d d5 6e 30 82 67 a1 a8 12 a9 d0 b9 53 41 e3 94 ab c7 c5 c3
9d d7 18 85 f7 d4 cd 5b f3

Since METHOD = 3, R authenticates using static DH. The EDHOC key exchange algorithm is based on the same curve as for the ephemeral keys, which is P-256, since the selected cipher suite is 2.

R's static Diffie-Hellman P-256 key pair:

Responder's private authentication key
SK_R (Raw Value) (32 bytes)
72 cc 47 61 db d4 c7 8f 75 89 31 aa 58 9d 34 8d 1e f8 74 a7 e3 03 ed
e2 f1 40 dc f3 e6 aa 4a ac
Responder's public authentication key, 'x'-coordinate
(Raw Value) (32 bytes)
bb c3 49 60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2 17 91 a1 2a fb
cb ac 93 62 20 46 dd 44 f0
Responder's public authentication key, 'y'-coordinate
(Raw Value) (32 bytes)
45 19 e2 57 23 6b 2a 0c e2 02 3f 09 31 f1 f3 86 ca 7a fd a6 4f cd e0
10 8c 22 4c 51 ea bf 60 72

Since R authenticates with static DH (METHOD = 3), PRK_3e2m is derived from SALT_3e2m and G_RX.

The input needed to calculate SALT_3e2m is defined in Section 4.1.2 of [I-D.ietf-lake-edhoc], using EDHOC_Expand() with the EDHOC hash algorithm:

SALT_3e2m  = EDHOC_KDF( PRK_2e, 1, TH_2, hash_length ) =
           = HKDF-Expand( PRK_2e, info, hash_length )

where hash_length is the length of the output of the EDHOC hash algorithm, and info for SALT_3e2m is:

info =
(
 1,
 h'9d2af3a3d3fc06aea8110f14ba12ad0b4fb7e5cdf59c7df1
   cf2dfe9c2024439c',
 32
)
info for SALT_3e2m (CBOR Sequence) (37 bytes)
01 58 20 9d 2a f3 a3 d3 fc 06 ae a8 11 0f 14 ba 12 ad 0b 4f b7 e5 cd
f5 9c 7d f1 cf 2d fe 9c 20 24 43 9c 18 20
SALT_3e2m (Raw Value) (32 bytes)
a4 f7 67 b3 46 9a 6e 6a e5 fc bf 27 38 39 fa 87 c4 1f 46 2b 03 ad 1c
a7 ce 8f 37 c9 53 66 d8 d1

PRK_3e2m is specified in Section 4.1.1.2 of [I-D.ietf-lake-edhoc].

PRK_3e2m is derived from G_RX using EDHOC_Extract() with the EDHOC hash algorithm:

PRK_3e2m = EDHOC_Extract( SALT_3e2m, G_RX ) =
         = HMAC-SHA-256( SALT_3e2m, G_RX )

where G_RX is the ECDH shared secret calculated from G_X and R, or G_R and X.

G_RX (Raw Value) (ECDH shared secret) (32 bytes)
f2 b6 ee a0 22 20 b9 5e ee 5a 0b c7 01 f0 74 e0 0a 84 3e a0 24 22 f6
08 25 fb 26 9b 3e 16 14 23
PRK_3e2m (Raw Value) (32 bytes)
41 2d 60 cd f9 9d c7 49 07 54 c9 69 ad 4c 46 b1 35 0b 90 84 33 eb f3
fe 06 3b e8 62 7f b3 5b 3b

R constructs the remaining input needed to calculate MAC_2:

MAC_2 = EDHOC_KDF( PRK_3e2m, 2, context_2, mac_length_2 )

context_2 = << ID_CRED_R, TH_2, CRED_R, ? EAD_2 >>

CRED_R is identified by a 'kid' with byte string value 0x32:

ID_CRED_R =
{
 4 : h'32'
}
ID_CRED_R (CBOR Data Item) (4 bytes)
a1 04 41 32

CRED_R is an RPK encoded as a CCS:

{                                              /CCS/
  2 : "example.edu",                           /sub/
  8 : {                                        /cnf/
    1 : {                                      /COSE_Key/
      1 : 2,                                   /kty/
      2 : h'32',                               /kid/
     -1 : 1,                                   /crv/
     -2 : h'BBC34960526EA4D32E940CAD2A234148
            DDC21791A12AFBCBAC93622046DD44F0', /x/
     -3 : h'4519E257236B2A0CE2023F0931F1F386
            CA7AFDA64FCDE0108C224C51EABF6072'  /y/
    }
  }
}
CRED_R (CBOR Data Item) (95 bytes)
a2 02 6b 65 78 61 6d 70 6c 65 2e 65 64 75 08 a1 01 a5 01 02 02 41 32
20 01 21 58 20 bb c3 49 60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2
17 91 a1 2a fb cb ac 93 62 20 46 dd 44 f0 22 58 20 45 19 e2 57 23 6b
2a 0c e2 02 3f 09 31 f1 f3 86 ca 7a fd a6 4f cd e0 10 8c 22 4c 51 ea
bf 60 72

No external authorization data:

EAD_2 (CBOR Sequence) (0 bytes)

context_2 = << ID_CRED_R, TH_2, CRED_R, ? EAD_2 >>

context_2 (CBOR Sequence) (133 bytes)
a1 04 41 32 58 20 9d 2a f3 a3 d3 fc 06 ae a8 11 0f 14 ba 12 ad 0b 4f
b7 e5 cd f5 9c 7d f1 cf 2d fe 9c 20 24 43 9c a2 02 6b 65 78 61 6d 70
6c 65 2e 65 64 75 08 a1 01 a5 01 02 02 41 32 20 01 21 58 20 bb c3 49
60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2 17 91 a1 2a fb cb ac 93
62 20 46 dd 44 f0 22 58 20 45 19 e2 57 23 6b 2a 0c e2 02 3f 09 31 f1
f3 86 ca 7a fd a6 4f cd e0 10 8c 22 4c 51 ea bf 60 72
context_2 (CBOR byte string) (135 bytes)
58 85 a1 04 41 32 58 20 9d 2a f3 a3 d3 fc 06 ae a8 11 0f 14 ba 12 ad
0b 4f b7 e5 cd f5 9c 7d f1 cf 2d fe 9c 20 24 43 9c a2 02 6b 65 78 61
6d 70 6c 65 2e 65 64 75 08 a1 01 a5 01 02 02 41 32 20 01 21 58 20 bb
c3 49 60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2 17 91 a1 2a fb cb
ac 93 62 20 46 dd 44 f0 22 58 20 45 19 e2 57 23 6b 2a 0c e2 02 3f 09
31 f1 f3 86 ca 7a fd a6 4f cd e0 10 8c 22 4c 51 ea bf 60 72

MAC_2 is computed through EDHOC_Expand() using the EDHOC hash algorithm, see Section 4.1.2 of [I-D.ietf-lake-edhoc]:

MAC_2 = HKDF-Expand(PRK_3e2m, info, mac_length_2), where

info = ( 2, context_2, mac_length_2 )

Since METHOD = 3, mac_length_2 is given by the EDHOC MAC length.

info for MAC_2 is:

info =
(
 2,
 h'a104413258209d2af3a3d3fc06aea8110f14ba12ad0b4fb7
   e5cdf59c7df1cf2dfe9c2024439ca2026b6578616d706c65
   2e65647508a101a501020241322001215820bbc34960526e
   a4d32e940cad2a234148ddc21791a12afbcbac93622046dd
   44f02258204519e257236b2a0ce2023f0931f1f386ca7afd
   a64fcde0108c224c51eabf6072',
 8
)

where the last value is the EDHOC MAC length.

info for MAC_2 (CBOR Sequence) (137 bytes)
02 58 85 a1 04 41 32 58 20 9d 2a f3 a3 d3 fc 06 ae a8 11 0f 14 ba 12
ad 0b 4f b7 e5 cd f5 9c 7d f1 cf 2d fe 9c 20 24 43 9c a2 02 6b 65 78
61 6d 70 6c 65 2e 65 64 75 08 a1 01 a5 01 02 02 41 32 20 01 21 58 20
bb c3 49 60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2 17 91 a1 2a fb
cb ac 93 62 20 46 dd 44 f0 22 58 20 45 19 e2 57 23 6b 2a 0c e2 02 3f
09 31 f1 f3 86 ca 7a fd a6 4f cd e0 10 8c 22 4c 51 ea bf 60 72 08
MAC_2 (Raw Value) (8 bytes)
d0 d1 a5 94 79 7d 0a af
MAC_2 (CBOR Data Item) (9 bytes)
48 d0 d1 a5 94 79 7d 0a af

Since METHOD = 3, Signature_or_MAC_2 is MAC_2:

Signature_or_MAC_2 (Raw Value) (8 bytes)
d0 d1 a5 94 79 7d 0a af
Signature_or_MAC_2 (CBOR Data Item) (9 bytes)
48 d0 d1 a5 94 79 7d 0a af

R constructs PLAINTEXT_2:

PLAINTEXT_2 =
(
 ID_CRED_R / bstr / -24..23,
 Signature_or_MAC_2,
 ? EAD_2
)

Since ID_CRED_R contains a single 'kid' parameter, only the byte string value is included in the plaintext, represented as described in Section 3.3.2 of [I-D.ietf-lake-edhoc]. The CBOR map { 4 : h'32' } is thus replaced, not by the CBOR byte string 0x4132, but by the CBOR int 0x32, since that is a one byte encoding of a CBOR integer (-19).

PLAINTEXT_2 (CBOR Sequence) (10 bytes)
32 48 d0 d1 a5 94 79 7d 0a af

The input needed to calculate KEYSTREAM_2 is defined in Section 4.1.2 of [I-D.ietf-lake-edhoc], using EDHOC_Expand() with the EDHOC hash algorithm:

KEYSTREAM_2 = EDHOC_KDF( PRK_2e, 0, TH_2, plaintext_length ) =
            = HKDF-Expand( PRK_2e, info, plaintext_length )

where plaintext_length is the length of PLAINTEXT_2, and info for KEYSTREAM_2 is:

info =
(
 0,
 h'9d2af3a3d3fc06aea8110f14ba12ad0b4fb7e5cdf59c7df1
   cf2dfe9c2024439c',
 10
)

where the last value is the length of PLAINTEXT_2.

info for KEYSTREAM_2 (CBOR Sequence) (36 bytes)
00 58 20 9d 2a f3 a3 d3 fc 06 ae a8 11 0f 14 ba 12 ad 0b 4f b7 e5 cd
f5 9c 7d f1 cf 2d fe 9c 20 24 43 9c 0a
KEYSTREAM_2 (Raw Value) (10 bytes)
36 6c 89 33 7f f8 0c 69 35 9a

R calculates CIPHERTEXT_2 as XOR between PLAINTEXT_2 and KEYSTREAM_2:

CIPHERTEXT_2 (Raw Value) (10 bytes)
04 24 59 e2 da 6c 75 14 3f 35

R constructs message_2:

message_2 =
(
 G_Y_CIPHERTEXT_2,
 C_R
)

where G_Y_CIPHERTEXT_2 is the bstr encoding of the concatenation of the raw values of G_Y and CIPHERTEXT_2.

message_2 (CBOR Sequence) (45 bytes)
58 2a 41 97 01 d7 f0 0a 26 c2 dc 58 7a 36 dd 75 25 49 f3 37 63 c8 93
42 2c 8e a0 f9 55 a1 3a 4f f5 d5 04 24 59 e2 da 6c 75 14 3f 35 27

4.5. message_3

The transcript hash TH_3 is calculated using the EDHOC hash algorithm:

TH_3 = H( TH_2, PLAINTEXT_2, CRED_R )

Input to calculate TH_3 (CBOR Sequence) (139 bytes)
58 20 9d 2a f3 a3 d3 fc 06 ae a8 11 0f 14 ba 12 ad 0b 4f b7 e5 cd f5
9c 7d f1 cf 2d fe 9c 20 24 43 9c 32 48 d0 d1 a5 94 79 7d 0a af a2 02
6b 65 78 61 6d 70 6c 65 2e 65 64 75 08 a1 01 a5 01 02 02 41 32 20 01
21 58 20 bb c3 49 60 52 6e a4 d3 2e 94 0c ad 2a 23 41 48 dd c2 17 91
a1 2a fb cb ac 93 62 20 46 dd 44 f0 22 58 20 45 19 e2 57 23 6b 2a 0c
e2 02 3f 09 31 f1 f3 86 ca 7a fd a6 4f cd e0 10 8c 22 4c 51 ea bf 60
72
TH_3 (Raw Value) (32 bytes)
b7 78 f6 02 33 1f f6 8a c4 02 a6 51 1b 9d e2 85 be df 6e ab 3e 9e d1
2d fe 22 a5 3e ed a7 de 48
TH_3 (CBOR Data Item) (34 bytes)
58 20 b7 78 f6 02 33 1f f6 8a c4 02 a6 51 1b 9d e2 85 be df 6e ab 3e
9e d1 2d fe 22 a5 3e ed a7 de 48

Since METHOD = 3, I authenticates using static DH. The EDHOC key exchange algorithm is based on the same curve as for the ephemeral keys, which is P-256, since the selected cipher suite is 2.

I's static Diffie-Hellman P-256 key pair:

Initiator's private authentication key
SK_I (Raw Value) (32 bytes)
fb 13 ad eb 65 18 ce e5 f8 84 17 66 08 41 14 2e 83 0a 81 fe 33 43 80
a9 53 40 6a 13 05 e8 70 6b
Initiator's public authentication key, 'x'-coordinate
(Raw Value) (32 bytes)
ac 75 e9 ec e3 e5 0b fc 8e d6 03 99 88 95 22 40 5c 47 bf 16 df 96 66
0a 41 29 8c b4 30 7f 7e b6
Initiator's public authentication key, 'y'-coordinate
(Raw Value) (32 bytes)
6e 5d e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52 a3 87 d2 57 e6 db
3c 2a 93 df 21 ff 3a ff c8

Since I authenticates with static DH (METHOD = 3), PRK_4e3m is derived from SALT_4e3m and G_IY.

The input needed to calculate SALT_4e3m is defined in Section 4.1.2 of [I-D.ietf-lake-edhoc], using EDHOC_Expand() with the EDHOC hash algorithm:

SALT_4e3m  = EDHOC_KDF( PRK_3e2m, 5, TH_3, hash_length ) =
           = HKDF-Expand( PRK_3e2m, info, hash_length )

where hash_length is the length of the output of the EDHOC hash algorithm, and info for SALT_4e3m is:

info =
(
 5,
 h'b778f602331ff68ac402a6511b9de285bedf6eab3e9ed12d
   fe22a53eeda7de48',
 32
)
info for SALT_4e3m (CBOR Sequence) (37 bytes)
05 58 20 b7 78 f6 02 33 1f f6 8a c4 02 a6 51 1b 9d e2 85 be df 6e ab
3e 9e d1 2d fe 22 a5 3e ed a7 de 48 18 20
SALT_4e3m (Raw Value) (32 bytes)
8c 60 d4 35 7f ba 5f 69 4a 81 48 2c 4d 38 a1 00 0b c3 e3 e2 a2 94 06
d1 81 53 ff c3 59 5c 17 ba

PRK_4e3m is specified in Section 4.1.1.3 of [I-D.ietf-lake-edhoc].

Since I authenticates with static DH (METHOD = 3), PRK_4e3m is derived from G_IY using EDHOC_Extract() with the EDHOC hash algorithm:

PRK_4e3m = EDHOC_Extract(SALT_4e3m, G_IY) =
         = HMAC-SHA-256(SALT_4e3m, G_IY)

where G_IY is the ECDH shared secret calculated from G_I and Y, or G_Y and I.

G_IY (Raw Value) (ECDH shared secret) (32 bytes)
08 0f 42 50 85 bc 62 49 08 9e ac 8f 10 8e a6 23 26 85 7e 12 ab 07 d7
20 28 ca 1b 5f 36 e0 04 b3
PRK_4e3m (Raw Value) (32 bytes)
7d 01 59 bb e4 54 73 c9 40 2e 0d 42 db ce b4 5d ca 05 b7 44 ca e1 e0
83 e5 83 15 b8 aa 47 ce ec

I constructs the remaining input needed to calculate MAC_3:

MAC_3 = EDHOC_KDF( PRK_4e3m, 6, context_3, mac_length_3 )

context_3 = << ID_CRED_I, TH_3, CRED_I, ? EAD_3 >>

CRED_I is identified by a 'kid' with byte string value 0x2b:

ID_CRED_I =
{
 4 : h'2b'
}
ID_CRED_I (CBOR Data Item) (4 bytes)
a1 04 41 2b

CRED_I is an RPK encoded as a CCS:

{                                              /CCS/
  2 : "42-50-31-FF-EF-37-32-39",               /sub/
  8 : {                                        /cnf/
    1 : {                                      /COSE_Key/
      1 : 2,                                   /kty/
      2 : h'2b',                               /kid/
     -1 : 1,                                   /crv/
     -2 : h'AC75E9ECE3E50BFC8ED6039988952240
            5C47BF16DF96660A41298CB4307F7EB6'  /x/
     -3 : h'6E5DE611388A4B8A8211334AC7D37ECB
            52A387D257E6DB3C2A93DF21FF3AFFC8'  /y/
    }
  }
}
CRED_I (CBOR Data Item) (107 bytes)
a2 02 77 34 32 2d 35 30 2d 33 31 2d 46 46 2d 45 46 2d 33 37 2d 33 32
2d 33 39 08 a1 01 a5 01 02 02 41 2b 20 01 21 58 20 ac 75 e9 ec e3 e5
0b fc 8e d6 03 99 88 95 22 40 5c 47 bf 16 df 96 66 0a 41 29 8c b4 30
7f 7e b6 22 58 20 6e 5d e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52
a3 87 d2 57 e6 db 3c 2a 93 df 21 ff 3a ff c8

No external authorization data:

EAD_3 (CBOR Sequence) (0 bytes)

context_3 = << ID_CRED_I, TH_3, CRED_I, ? EAD_3 >>

context_3 (CBOR Sequence) (145 bytes)
a1 04 41 2b 58 20 b7 78 f6 02 33 1f f6 8a c4 02 a6 51 1b 9d e2 85 be
df 6e ab 3e 9e d1 2d fe 22 a5 3e ed a7 de 48 a2 02 77 34 32 2d 35 30
2d 33 31 2d 46 46 2d 45 46 2d 33 37 2d 33 32 2d 33 39 08 a1 01 a5 01
02 02 41 2b 20 01 21 58 20 ac 75 e9 ec e3 e5 0b fc 8e d6 03 99 88 95
22 40 5c 47 bf 16 df 96 66 0a 41 29 8c b4 30 7f 7e b6 22 58 20 6e 5d
e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52 a3 87 d2 57 e6 db 3c 2a
93 df 21 ff 3a ff c8
context_3 (CBOR byte string) (147 bytes)
58 91 a1 04 41 2b 58 20 b7 78 f6 02 33 1f f6 8a c4 02 a6 51 1b 9d e2
85 be df 6e ab 3e 9e d1 2d fe 22 a5 3e ed a7 de 48 a2 02 77 34 32 2d
35 30 2d 33 31 2d 46 46 2d 45 46 2d 33 37 2d 33 32 2d 33 39 08 a1 01
a5 01 02 02 41 2b 20 01 21 58 20 ac 75 e9 ec e3 e5 0b fc 8e d6 03 99
88 95 22 40 5c 47 bf 16 df 96 66 0a 41 29 8c b4 30 7f 7e b6 22 58 20
6e 5d e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52 a3 87 d2 57 e6 db
3c 2a 93 df 21 ff 3a ff c8

MAC_3 is computed through EDHOC_Expand() using the EDHOC hash algorithm, see Section 4.1.2 of [I-D.ietf-lake-edhoc]:

MAC_3 = HKDF-Expand(PRK_4e3m, info, mac_length_3), where

info = ( 6, context_3, mac_length_3 )

Since METHOD = 3, mac_length_3 is given by the EDHOC MAC length.

info for MAC_3 is:

info =
(
 6,
 h'a104412b5820b778f602331ff68ac402a6511b9de285bedf
   6eab3e9ed12dfe22a53eeda7de48a2027734322d35302d33
   312d46462d45462d33372d33322d333908a101a501020241
   2b2001215820ac75e9ece3e50bfc8ed60399889522405c47
   bf16df96660a41298cb4307f7eb62258206e5de611388a4b
   8a8211334ac7d37ecb52a387d257e6db3c2a93df21ff3aff
   c8',
 8
)

where the last value is the EDHOC MAC length.

info for MAC_3 (CBOR Sequence) (149 bytes)
06 58 91 a1 04 41 2b 58 20 b7 78 f6 02 33 1f f6 8a c4 02 a6 51 1b 9d
e2 85 be df 6e ab 3e 9e d1 2d fe 22 a5 3e ed a7 de 48 a2 02 77 34 32
2d 35 30 2d 33 31 2d 46 46 2d 45 46 2d 33 37 2d 33 32 2d 33 39 08 a1
01 a5 01 02 02 41 2b 20 01 21 58 20 ac 75 e9 ec e3 e5 0b fc 8e d6 03
99 88 95 22 40 5c 47 bf 16 df 96 66 0a 41 29 8c b4 30 7f 7e b6 22 58
20 6e 5d e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52 a3 87 d2 57 e6
db 3c 2a 93 df 21 ff 3a ff c8 08
MAC_3 (Raw Value) (8 bytes)
dd f1 06 b8 6f d2 2f e4
MAC_3 (CBOR Data Item) (9 bytes)
48 dd f1 06 b8 6f d2 2f e4

Since METHOD = 3, Signature_or_MAC_3 is MAC_3:

Signature_or_MAC_3 (Raw Value) (8 bytes)
dd f1 06 b8 6f d2 2f e4
Signature_or_MAC_3 (CBOR Data Item) (9 bytes)
48 dd f1 06 b8 6f d2 2f e4

I constructs PLAINTEXT_3:

PLAINTEXT_3 =
(
 ID_CRED_I / bstr / -24..23,
 Signature_or_MAC_3,
 ? EAD_3
)

Since ID_CRED_I contains a single 'kid' parameter, only the byte string value is included in the plaintext, represented as described in Section 3.3.2 of [I-D.ietf-lake-edhoc]. The CBOR map { 4 : h'2b' } is thus replaced, not by the CBOR byte string 0x412b, but by the CBOR int 0x2b, since that is a one byte encoding of a CBOR integer (-12).

PLAINTEXT_3 (CBOR Sequence) (10 bytes)
2b 48 dd f1 06 b8 6f d2 2f e4

I constructs the associated data for message_3:

A_3 =
[
 "Encrypt0",
 h'',
 h'b778f602331ff68ac402a6511b9de285bedf6eab3e9ed12d
   fe22a53eeda7de48'
]
A_3 (CBOR Data Item) (45 bytes)
83 68 45 6e 63 72 79 70 74 30 40 58 20 b7 78 f6 02 33 1f f6 8a c4 02
a6 51 1b 9d e2 85 be df 6e ab 3e 9e d1 2d fe 22 a5 3e ed a7 de 48

I constructs the input needed to derive the key K_3, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash algorithm:

K_3 = EDHOC_KDF( PRK_3e2m, 3, TH_3, key_length )
    = HKDF-Expand( PRK_3e2m, info, key_length ),

where key_length is the key length of EDHOC AEAD algorithm, and info for K_3 is:

info =
(
 3,
 h'b778f602331ff68ac402a6511b9de285bedf6eab3e9ed12d
   fe22a53eeda7de48',
 16
)

where the last value is the key length of EDHOC AEAD algorithm.

info for K_3 (CBOR Sequence) (36 bytes)
03 58 20 b7 78 f6 02 33 1f f6 8a c4 02 a6 51 1b 9d e2 85 be df 6e ab
3e 9e d1 2d fe 22 a5 3e ed a7 de 48 10
K_3 (Raw Value) (16 bytes)
2f 10 8b ef ff 80 6f 5f c8 1b f0 a2 d5 f4 24 1f

I constructs the input needed to derive the nonce IV_3, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash algorithm:

IV_3 = EDHOC_KDF( PRK_3e2m, 4, TH_3, iv_length )
     = HKDF-Expand( PRK_3e2m, info, iv_length ),

where iv_length is the nonce length of EDHOC AEAD algorithm, and info for IV_3 is:

info =
(
 4,
 h'b778f602331ff68ac402a6511b9de285bedf6eab3e9ed12d
   fe22a53eeda7de48',
 13
)

where the last value is the nonce length of EDHOC AEAD algorithm.

info for IV_3 (CBOR Sequence) (36 bytes)
04 58 20 b7 78 f6 02 33 1f f6 8a c4 02 a6 51 1b 9d e2 85 be df 6e ab
3e 9e d1 2d fe 22 a5 3e ed a7 de 48 0d
IV_3 (Raw Value) (13 bytes)
e3 ff 26 46 33 25 8e 49 46 2d 35 56 6d

I calculates CIPHERTEXT_3 as 'ciphertext' of COSE_Encrypt0 applied using the EDHOC AEAD algorithm with plaintext PLAINTEXT_3, additional data A_3, key K_3 and nonce IV_3.

CIPHERTEXT_3 (Raw Value) (18 bytes)
c2 b6 28 35 dc 9b 1f 53 41 9c 1d 3a 22 61 ee ed 35 05

message_3 is the CBOR bstr encoding of CIPHERTEXT_3:

message_3 (CBOR Sequence) (19 bytes)
52 c2 b6 28 35 dc 9b 1f 53 41 9c 1d 3a 22 61 ee ed 35 05

The transcript hash TH_4 is calculated using the EDHOC hash algorithm:

TH_4 = H( TH_3, PLAINTEXT_3, CRED_I )

Input to calculate TH_4 (CBOR Sequence) (151 bytes)
58 20 b7 78 f6 02 33 1f f6 8a c4 02 a6 51 1b 9d e2 85 be df 6e ab 3e
9e d1 2d fe 22 a5 3e ed a7 de 48 2b 48 dd f1 06 b8 6f d2 2f e4 a2 02
77 34 32 2d 35 30 2d 33 31 2d 46 46 2d 45 46 2d 33 37 2d 33 32 2d 33
39 08 a1 01 a5 01 02 02 41 2b 20 01 21 58 20 ac 75 e9 ec e3 e5 0b fc
8e d6 03 99 88 95 22 40 5c 47 bf 16 df 96 66 0a 41 29 8c b4 30 7f 7e
b6 22 58 20 6e 5d e6 11 38 8a 4b 8a 82 11 33 4a c7 d3 7e cb 52 a3 87
d2 57 e6 db 3c 2a 93 df 21 ff 3a ff c8
TH_4 (Raw Value) (32 bytes)
1f 57 da bf 8f 26 da 06 57 d9 84 0c 9b 10 77 c1 d4 c4 7d b2 43 a8 b4
13 60 a9 8e c4 cb 70 6b 70
TH_4 (CBOR Data Item) (34 bytes)
58 20 1f 57 da bf 8f 26 da 06 57 d9 84 0c 9b 10 77 c1 d4 c4 7d b2 43
a8 b4 13 60 a9 8e c4 cb 70 6b 70

4.6. message_4

No external authorization data:

EAD_4 (CBOR Sequence) (0 bytes)

R constructs PLAINTEXT_4:

PLAINTEXT_4 =
(
 ? EAD_4
)

PLAINTEXT_4 (CBOR Sequence) (0 bytes)

R constructs the associated data for message_4:

A_4 =
[
 "Encrypt0",
 h'',
 h'1f57dabf8f26da0657d9840c9b1077c1d4c47db243a8b413
   60a98ec4cb706b70'
]
A_4 (CBOR Data Item) (45 bytes)
83 68 45 6e 63 72 79 70 74 30 40 58 20 1f 57 da bf 8f 26 da 06 57 d9
84 0c 9b 10 77 c1 d4 c4 7d b2 43 a8 b4 13 60 a9 8e c4 cb 70 6b 70

R constructs the input needed to derive the EDHOC message_4 key, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash algorithm:

K_4   = EDHOC_KDF( PRK_4e3m, 8, TH_4, key_length )
      = HKDF-Expand( PRK_4e3m, info, key_length )

where key_length is the key length of the EDHOC AEAD algorithm, and info for EDHOC_K_4 is:

info =
(
 8,
 h'1f57dabf8f26da0657d9840c9b1077c1d4c47db243a8b413
   60a98ec4cb706b70',
 16
)

where the last value is the key length of EDHOC AEAD algorithm.

info for K_4 (CBOR Sequence) (36 bytes)
08 58 20 1f 57 da bf 8f 26 da 06 57 d9 84 0c 9b 10 77 c1 d4 c4 7d b2
43 a8 b4 13 60 a9 8e c4 cb 70 6b 70 10
K_4 (Raw Value) (16 bytes)
de 02 dc 03 6c b6 81 cd 53 80 d7 83 e8 53 14 2f

R constructs the input needed to derive the EDHOC message_4 nonce, see Section 4.1.2 of [I-D.ietf-lake-edhoc], using the EDHOC hash algorithm:

      IV_4 = EDHOC_KDF( PRK_4e3m, 9, TH_4, iv_length )
           = HKDF-Expand( PRK_4e3m, info, iv_length )

where iv_length is the nonce length of EDHOC AEAD algorithm, and info for EDHOC_IV_4 is:

info =
(
 9,
 h'1f57dabf8f26da0657d9840c9b1077c1d4c47db243a8b413
   60a98ec4cb706b70',
 13
)

where the last value is the nonce length of EDHOC AEAD algorithm.

info for IV_4 (CBOR Sequence) (36 bytes)
09 58 20 1f 57 da bf 8f 26 da 06 57 d9 84 0c 9b 10 77 c1 d4 c4 7d b2
43 a8 b4 13 60 a9 8e c4 cb 70 6b 70 0d
IV_4 (Raw Value) (13 bytes)
c2 93 2c 74 55 f5 6c 82 57 59 23 39 59

R calculates CIPHERTEXT_4 as 'ciphertext' of COSE_Encrypt0 applied using the EDHOC AEAD algorithm with plaintext PLAINTEXT_4, additional data A_4, key K_4 and nonce IV_4.

CIPHERTEXT_4 (8 bytes)
63 59 ad 21 f0 77 a9 d1

message_4 is the CBOR bstr encoding of CIPHERTEXT_4:

message_4 (CBOR Sequence) (9 bytes)
48 63 59 ad 21 f0 77 a9 d1

4.7. PRK_out and PRK_exporter

PRK_out is specified in Section 4.1.3 of [I-D.ietf-lake-edhoc].

PRK_out = EDHOC_KDF( PRK_4e3m, 7, TH_4, hash_length ) =
        = HKDF-Expand( PRK_4e3m, info,  hash_length )

where hash_length is the length of the output of the EDHOC hash algorithm, and info for PRK_out is:

info =
(
 7,
 h'1f57dabf8f26da0657d9840c9b1077c1d4c47db243a8b413
   60a98ec4cb706b70',
 32
)

where the last value is the length of EDHOC hash algorithm.

info for PRK_out (CBOR Sequence) (37 bytes)
07 58 20 1f 57 da bf 8f 26 da 06 57 d9 84 0c 9b 10 77 c1 d4 c4 7d b2
43 a8 b4 13 60 a9 8e c4 cb 70 6b 70 18 20
PRK_out (Raw Value) (32 bytes)
7d 0a 64 61 d8 38 48 ed d5 23 4c 5f 97 f4 b7 7c 1d 24 a7 12 09 29 29
20 cb 49 74 e5 59 f5 41 3d

The OSCORE Master Secret and OSCORE Master Salt are derived with the EDHOC_Exporter as specified in 4.2.1 of [I-D.ietf-lake-edhoc].

EDHOC_Exporter( label, context, length )
= EDHOC_KDF( PRK_exporter, label, context, length )

where PRK_exporter is derived from PRK_out:

 PRK_exporter = EDHOC_KDF( PRK_out, 10, h'', hash_length ) =
              = HKDF-Expand( PRK_out, info,  hash_length )

where hash_length is the length of the output of the EDHOC hash algorithm, and info for the PRK_exporter is:

info =
(
 10,
 h'',
 32
)

where the last value is the length of EDHOC hash algorithm.

info for PRK_exporter (CBOR Sequence) (4 bytes)
0a 40 18 20
PRK_exporter (Raw Value) (32 bytes)
52 d1 2a 79 52 00 96 b6 c4 be 60 cf a9 9e ad 2f d6 2a ba 58 aa fb 5c
c2 df 2e 04 52 ef 6c 0d d9

4.8. OSCORE Parameters

The derivation of OSCORE parameters is specified in Appendix A.1 of [I-D.ietf-lake-edhoc].

The AEAD and Hash algorithms to use in OSCORE are given by the selected cipher suite:

Application AEAD Algorithm (int)
10
Application Hash Algorithm (int)
-16

The mapping from EDHOC connection identifiers to OSCORE Sender/Recipient IDs is defined in Section 3.3.3 of [I-D.ietf-lake-edhoc].

C_R is mapped to the Recipient ID of the server, i.e., the Sender ID of the client. The byte string 0x27, which as C_R is encoded as the CBOR integer 0x27, is converted to the server Recipient ID 0x27.

Client's OSCORE Sender ID (Raw Value) (1 byte)
27

C_I is mapped to the Recipient ID of the client, i.e., the Sender ID of the server. The byte string 0x37, which as C_I is encoded as the CBOR integer 0x0e is converted to the client Recipient ID 0x37.

Server's OSCORE Sender ID (Raw Value) (1 byte)
37

The OSCORE Master Secret is computed through EDHOC_Expand() using the Application hash algorithm, see Appendix A.1 of [I-D.ietf-lake-edhoc]:

OSCORE Master Secret = EDHOC_Exporter( 0, h'', oscore_key_length )
= EDHOC_KDF( PRK_exporter, 0, h'',  oscore_key_length )
= HKDF-Expand( PRK_exporter, info,  oscore_key_length )

where oscore_key_length is by default the key length of the Application AEAD algorithm, and info for the OSCORE Master Secret is:

info =
(
 0,
 h'',
 16
)

where the last value is the key length of Application AEAD algorithm.

info for OSCORE Master Secret (CBOR Sequence) (3 bytes)
00 40 10
OSCORE Master Secret (Raw Value) (16 bytes)
07 ce 22 f2 63 8f ca 40 4d de d7 2a 25 fa 45 f4

The OSCORE Master Salt is computed through EDHOC_Expand() using the Application hash algorithm, see Section 4.2 of [I-D.ietf-lake-edhoc]:

OSCORE Master Salt = EDHOC_Exporter( 1, h'', oscore_salt_length )
= EDHOC_KDF( PRK_exporter, 1, h'', oscore_salt_length )
= HKDF-Expand( PRK_4x3m, info, oscore_salt_length )

where oscore_salt_length is the length of the OSCORE Master Salt, and info for the OSCORE Master Salt is:

info =
(
 1,
 h'',
 8
)

where the last value is the length of the OSCORE Master Salt.

info for OSCORE Master Salt (CBOR Sequence) (3 bytes)
01 40 08
OSCORE Master Salt (Raw Value) (8 bytes)
5b e3 82 5f 5a 52 84 b7

4.9. Key Update

Key update is defined in Appendix J of [I-D.ietf-lake-edhoc].

EDHOC_KeyUpdate( context ):
PRK_out = EDHOC_KDF( PRK_out, 11, context, hash_length )
        = HKDF-Expand( PRK_out, info, hash_length )

where hash_length is the length of the output of the EDHOC hash function, context for KeyUpdate is

context for KeyUpdate (Raw Value) (16 bytes)
a0 11 58 fd b8 20 89 0c d6 be 16 96 02 b8 bc ea
context for KeyUpdate (CBOR Data Item) (17 bytes)
50 a0 11 58 fd b8 20 89 0c d6 be 16 96 02 b8 bc ea

and where info for key update is:

info =
(
 11,
 h'a01158fdb820890cd6be169602b8bcea',
 32
)
PRK_out after KeyUpdate (Raw Value) (32 bytes)
cb ae fc 6c fe 8c 9d 65 09 0c 34 2e 4e 4f cd d6 07 98 19 85 db 6f 57
67 e9 06 55 14 0e 3a 09 b1

After key update the PRK_exporter needs to be derived anew:

 PRK_exporter = EDHOC_KDF( PRK_out, 10, h'', hash_length ) =
              = HKDF-Expand( PRK_out, info,  hash_length )

where info and hash_length as unchanged as in Section 4.7.

PRK_exporter (Raw Value) (32 bytes)
10 c3 69 11 e0 8a e5 25 13 b9 a8 a2 84 85 bf 3c eb 79 18 e4 c8 4e 5b
ca ad 7a 21 1c 42 f0 13 3a

The OSCORE Master Secret is derived with the updated PRK_exporter:

OSCORE Master Secret =
= HKDF-Expand(PRK_exporter, info, oscore_key_length)

where info and key_length are unchanged as in Section 3.6.

OSCORE Master Secret after KeyUpdate (Raw Value) (16 bytes)
4c 75 69 6c ba 17 9c a9 f6 87  07 ee dc de 76 e0

The OSCORE Master Salt is derived with the updated PRK_exporter:

OSCORE Master Salt = HKDF-Expand(PRK_exporter, info, salt_length)

where info and salt_length are unchanged as in Section 3.6.

OSCORE Master Salt after KeyUpdate (Raw Value) (8 bytes)
9d 95 4f c2 e7 ab b4 d0

5. Security Considerations

This document contains examples of EDHOC [I-D.ietf-lake-edhoc] whose security considerations apply. The keys printed in these examples cannot be considered secret and must not be used.

6. IANA Considerations

There are no IANA considerations.

7. Informative References

[CborMe]
Bormann, C., "CBOR Playground", , <http://cbor.me/>.
[I-D.ietf-lake-edhoc]
Selander, G., Mattsson, J. P., and F. Palombini, "Ephemeral Diffie-Hellman Over COSE (EDHOC)", Work in Progress, Internet-Draft, draft-ietf-lake-edhoc-19, , <https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19>.
[RFC7748]
Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves for Security", RFC 7748, DOI 10.17487/RFC7748, , <https://www.rfc-editor.org/rfc/rfc7748>.
[RFC8032]
Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/RFC8032, , <https://www.rfc-editor.org/rfc/rfc8032>.
[RFC8392]
Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig, "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392, , <https://www.rfc-editor.org/rfc/rfc8392>.
[RFC8949]
Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/RFC8949, , <https://www.rfc-editor.org/rfc/rfc8949>.

Acknowledgments

The authors want to thank all people verifying EDHOC test vectors and/or contributing to the interoperability testing including: Christian Amsüss, Timothy Claeys, Stefan Hristozov, Rikard Höglund, Christos Koulamas, Francesca Palombini, Lidia Pocero, Peter van der Stok, Michel Veillette and Mališa Vučinić.

Authors' Addresses

Göran Selander
Ericsson
SE-164 40 Stockholm
Sweden
John Preuß Mattsson
Ericsson
SE-164 40 Stockholm
Sweden
Marek Serafin
ASSA ABLOY
32-080 Zabierzów
Poland
Marco Tiloca
RISE
SE-164 40 Stockholm
Sweden