Internet-Draft Finding and Using Geofeed Data February 2024
Bush, et al. Expires 25 August 2024 [Page]
Network Working Group
9092 (if approved)
Intended Status:
Standards Track
R. Bush
IIJ Research & Arrcus
M. Candela
W. Kumari
R. Housley
Vigil Security

Finding and Using Geofeed Data


This document specifies how to augment the Routing Policy Specification Language inetnum: class to refer specifically to geofeed comma-separated values (CSV) data files and describes an optional scheme that uses the Resource Public Key Infrastructure to authenticate the geofeed data files. This document obsoletes RFC 9092.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 August 2024.

1. Introduction

Providers of Internet content and other services may wish to customize those services based on the geographic location of the user of the service. This is often done using the source IP address used to contact the service, which may not point to a user, see [RFC6269], Section 14 in particular. Also, infrastructure and other services might wish to publish the locale of their services. [RFC8805] defines geofeed, a syntax to associate geographic locales with IP addresses, but it does not specify how to find the relevant geofeed data given an IP address.

This document specifies how to augment the Routing Policy Specification Language (RPSL) [RFC2725] inetnum: class to refer specifically to geofeed data files and how to prudently use them. In all places inetnum: is used, inet6num: should also be assumed [RFC4012].

The reader may find [INETNUM] and [INET6NUM] informative, and certainly more verbose, descriptions of the inetnum: database classes.

An optional utterly awesome but slightly complex means for authenticating geofeed data is also defined in Section 5.

This document obsoletes [RFC9092]. Changes from [RFC9092] include the following:

  • RIPE has implemented the geofeed: attribute.
  • Allow, but discourage, an inetnum: to have both a geofeed remarks: attribute and a geofeed: attribute.
  • Rewrite Authentication Section 5 to be more formal.
  • Geofeed file only UTF-8 CSV.
  • Stress that authenticating geofeed data is optional.
  • IP Address Delegation extensions must not use "inherit".
  • If geofeed data are present, ignore geographic location hints in other data.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Geofeed Files

Geofeed files are described in [RFC8805]. They provide a facility for an IP address resource "owner" to associate those IP addresses to geographic locales.

Per [RFC8805], geofeed files consist of CSVs (Comma Separated Values) in UTF-8 text format; not HTML, richtext, or other formats.

Content providers and other parties who wish to locate an IP address to a geographic locale need to find the relevant geofeed data. In Section 3, this document specifies how to find the relevant geofeed [RFC8805] file given an IP address.

Geofeed data for large providers with significant horizontal scale and high granularity can be quite large. The size of a file can be even larger if an unsigned geofeed file combines data for many prefixes, if dual IPv4/IPv6 spaces are represented, etc.

Geofeed data do have privacy considerations (see Section 7); this process makes bulk access to those data easier.

This document also suggests an optional signature to strongly authenticate the data in the geofeed files.

3. inetnum: Class

The original RPSL specifications starting with [RIPE81], [RIPE181], and a trail of subsequent documents were written by the RIPE community. The IETF standardized RPSL in [RFC2622] and [RFC4012]. Since then, it has been modified and extensively enhanced in the Regional Internet Registry (RIR) community, mostly by RIPE [RIPE-DB]. At the time of publishing this document, change control of RPSL effectively lies in the operator community.

The RPSL, and [RFC2725] and [RFC4012] used by the Regional Internet Registries (RIRs), specify the inetnum: database class. Each of these objects describes an IP address range and its attributes. The inetnum: objects form a hierarchy ordered on the address space.

Ideally, RPSL would be augmented to define a new RPSL geofeed: attribute in the inetnum: class. Absent implementation of the geofeed: attribute in a particular RIR database, this document defines the syntax of a Geofeed remarks: attribute, which contains an HTTPS URL of a geofeed file. The format of the inetnum: geofeed remarks: attribute MUST be as in this example, "remarks: Geofeed ", where the token "Geofeed " MUST be case sensitive, followed by a URL that will vary, but it MUST refer only to a single geofeed [RFC8805] file.

    inetnum: # example
    remarks: Geofeed

While we leave global agreement of RPSL modification to the relevant parties, we specify that a proper geofeed: attribute in the inetnum: class MUST be "geofeed:" and MUST be followed by a single URL that will vary, but it MUST refer only to a single geofeed [RFC8805] file.

    inetnum: # example

The URL uses HTTPS, so the WebPKI provides authentication, integrity, and confidentiality for the fetched geofeed file. However, the WebPKI can not provide authentication of IP address space assignment. In contrast, the RPKI (see [RFC6481]) can be used to authenticate IP space assignment; see optional authentication in Section 5.

Until all producers of inetnum: objects, i.e., the RIRs, state that they have migrated to supporting a geofeed: attribute, consumers looking at inetnum: objects to find geofeed URLs MUST be able to consume both the remarks: and geofeed: forms.

The migration not only implies that the RIRs support the geofeed: attribute, but that all registrants have migrated any inetnum: objects from remarks: to geofeed: attributes.

Any particular inetnum: object SHOULD have, at most, one geofeed reference, whether a remarks: or a proper geofeed: attribute when it is implemented. As the remarks: form can not be formally checked by the RIR, this can not be formally enforced. A geofeed: attribute is preferred, of course, if the RIR supports it. If there is more than one type of attribute in the intetnum: object, the geofeed: attribute MUST be used.

For inetnum:s covering the same address range, a signed geofeed file MUST be preferred over an unsigned file. If none are signed, or more than one is signed, the (signed) inetnum: with the most recent last-modified: attribute MUST be preferred.

If a geofeed file describes multiple disjoint ranges of IP address space, there are likely to be geofeed references from multiple inetnum: objects. Files with geofeed references from multiple inetnum: objects are not compatible with the signing procedure in Section 5.

An unsigned, and only an unsigned, geofeed file MAY be referenced by multiple inetnum:s and MAY contain prefixes from more than one registry.

When fetching, the most specific inetnum: object with a geofeed reference MUST be used.

It is significant that geofeed data may have finer granularity than the inetnum: that refers to them. For example, an INETNUM object for an address range P could refer to a geofeed file in which P has been subdivided into one or more longer prefixes.

4. Fetching Geofeed Data

This document is to provides a guideline for how interested parties should fetch and read geofeed files.

Historically, before [RFC9092], this was done in varied ways, at the discretion of the implementer, often without consistent authentication, where data were mostly imported from email without formal authorisation or validation.

To minimize the load on RIRs' WHOIS [RFC3912] services, the RIR's FTP [RFC0959] services SHOULD be used for large-scale access to gather inetnum:s with geofeed references. This uses efficient bulk access instead of fetching via brute-force search through the IP space.

When reading data from an unsigned geofeed file, one MUST ignore data outside the referring inetnum: object's address range. This is to avoid importing data about ranges not under the control of the operator. Note that signed files MUST only contain prefixes within the referring inetnum:'s range as mandated in Section 5.

If geofeed files are fetched, other location information from the inetnum: MUST be ignored.

Given an address range of interest, the most specific inetnum: object with a geofeed reference MUST be used to fetch the geofeed file. For example, if the fetching party finds the following inetnum: objects:

    inetnum: # example
    remarks: Geofeed

    inetnum: # example
    remarks: Geofeed

An application looking for geofeed data for, MUST ignore data in geofeed_1 because is within the more specific inetnum: covering that address range and that inetnum: does have a geofeed reference.

Hints in inetnum:s such as country:, geoloc:, etc. tend to be administrative, and not deployment specific. Consider large, possibly global, providers with headquarters very far from most of their deployments. Therefore, if geofeed data are specified, either as a geofeed: attribute or in a geofeed remarks: attribute, other geographic hints such as country:, geoloc:, DNS geoloc RRsets, etc., for that address range MUST be ignored.

There is open-source code to traverse the RPSL data across all of the RIRs, collect all geofeed references, and process them [GEOFEED-FINDER]. It implements the steps above and of all the Operational Considerations described in Section 6, including caching. It produces a single geofeed file, merging all the geofeed files found. This open-source code can be run daily by a cronjob, and the output file can be directly used.

RIRs are converging on RDAP support which includes geofeed data, see [I-D.ietf-regext-rdap-geofeed]. This SHOULD NOT be used for bulk retrieval of geofeed data.

5. Authenticating Geofeed Data (Optional)

The question arises whether a particular geofeed [RFC8805] data set is valid, i.e., is authorized by the "owner" of the IP address space and is authoritative in some sense. The inetnum: that points to the geofeed [RFC8805] file provides some assurance. Unfortunately, the RPSL in some repositories is weakly authenticated at best. An approach where RPSL was signed per [RFC7909] would be good, except it would have to be deployed by all RPSL registries, and there is a fair number of them.

The remainder of this section specifies an optional authenticator for the geofeed data set that follows the Signed Object Template for the Resource Public Key Infrastructure (RPKI) [RFC6488].

A single optional authenticator MAY be appended to a geofeed [RFC8805] file. It is a digest of the main body of the file signed by the private key of the relevant RPKI certificate for a covering address range. The following format bundles the relevant RPKI certificate with a signature over the geofeed text.

The canonicalization procedure converts the data from their internal character representation to the UTF-8 [RFC3629] character encoding, and the <CRLF> sequence MUST be used to denote the end of each line of text. A blank line is represented solely by the <CRLF> sequence. For robustness, any non-printable characters MUST NOT be changed by canonicalization. Trailing blank lines MUST NOT appear at the end of the file. That is, the file must not end with multiple consecutive <CRLF> sequences. Any end-of-file marker used by an operating system is not considered to be part of the file content. When present, such end-of-file markers MUST NOT be covered by the digital signature.

If the authenticator is not in the canonical form described above, then, the authenticator is invalid.

Borrowing detached signatures from [RFC5485], after file canonicalization, the Cryptographic Message Syntax (CMS) [RFC5652] is used to create a detached DER-encoded signature that is then Base64 encoded with padding (as defined in Section 4 of [RFC4648]) and line wrapped to 72 or fewer characters. The same digest algorithm MUST be used for calculating the message digest of the content being signed, which is the geofeed file, and for calculating the message digest on the SignerInfo SignedAttributes [RFC8933]. The message digest algorithm identifier MUST appear in both the CMS SignedData DigestAlgorithmIdentifiers and the SignerInfo DigestAlgorithmIdentifier [RFC5652]. The RPKI certificate covering the geofeed inetnum: object's address range is included in the CMS SignedData certificates field [RFC5652].

The address range of the signing certificate MUST cover all prefixes in the signed geofeed file. If not, the authenticator is invalid.

The signing certificate MUST NOT include the Autonomous System Identifier Delegation certificate extension [RFC3779]. If it is present, the authenticator is invalid.

As with many other RPKI signed objects, the IP Address Delegation certificate extension MUST NOT use the "inherit" capability defined in Section of [RFC3779]. If "inherit" is used, the authenticator is invalid.

An IP Address Delegation extension using "inherit" would complicate processing. The implementation would have to build the certification path from the end-entity to the trust anchor, then validate the path from the trust anchor to the end-entity, and then the parameter would have to be remembered when the validated public key was used to validate a signature on a CMS object. Having to remember things from certification path validation for use with CMS object processing would be quite complex and error prone. And, the certificates do not get that much bigger by repeating the information.

An address range A "covers" address range B if the range of B is identical to or a subset of A. "Address range" is used here because inetnum: objects and RPKI certificates need not align on Classless Inter-Domain Routing (CIDR) [RFC4632] prefix boundaries, while those of the lines in a geofeed file do align.

The Certificate Authority (CA) SHOULD sign only one geofeed file with each generated private key and SHOULD generate a new key pair for each new version of a perticular geofeed file. The CA MUST generate a new End Entity (EE) certificate for each signing of a particular geofeed file. An associated EE certificate used in this fashion is termed a "one-time-use" EE certificate (see Section 3 of [RFC6487]).

Identifying the private key associated with the certificate and getting the department that controls the private key (which might be stored in a Hardware Security Module (HSM)) to generate the CMS signature is left as an exercise for the implementor. On the other hand, verifying the signature has no similar complexity; the certificate, which is validated in the public RPKI, contains the needed public key. The RPKI trust anchors for the RIRs are expected to already be available to the party performing signature validation. Validation of the CMS signature over the geofeed file involves:

  1. Obtaining the signer's certificate from the CMS SignedData CertificateSet [RFC5652]. The certificate SubjectKeyIdentifier extension [RFC5280] MUST match the SubjectKeyIdentifier in the CMS SignerInfo SignerIdentifier [RFC5652]. If the key identifiers do not match, then validation MUST fail.
  2. Validating the signer's certificate MUST ensure that it is part of the current [RFC9286] manifest and that all resources are covered by the RPKI certificate.
  3. Constructing the certification path for the signer's certificate. All of the needed certificates are expected to be readily available in the RPKI repository. The certification path MUST be valid according to the validation algorithm in [RFC5280] and the additional checks specified in [RFC3779] associated with the IP Address Delegation certificate extension and the Autonomous System Identifier Delegation certificate extension. If certification path validation is unsuccessful, then validation MUST fail.
  4. Validating the CMS SignedData as specified in [RFC5652] using the public key from the validated signer's certificate. If the signature validation is unsuccessful, then validation MUST fail.
  5. Confirming that the eContentType object identifier (OID) is id-ct-geofeedCSVwithCRLF (1.2.840.113549. This OID MUST appear within both the eContentType in the encapContentInfo object and the ContentType signed attribute in the signerInfo object (see [RFC6488]).
  6. Verifying that the IP Address Delegation certificate extension [RFC3779] covers all of the address ranges of the geofeed file. If all of the address ranges are not covered, then validation MUST fail.

All of the above steps MUST be successful to consider the geofeed file signature as valid.

The authenticator MUST be hidden as a series of "#" comments at the end of the geofeed file. The following simple example is cryptographically incorrect:

    # RPKI Signature: -
    # IhvcNAQkQAS+gggSxMIIErTCCA5WgAwIBAgIUJ605QIPX8rW5m4Zwx3WyuW7hZu
    # imwYkXpiMxw44EZqDjl36MiWsRDLdgoijBBcGbibwyAfGeR46k5raZCGvxG+4xa
    # O8PDTxTfIYwAnBjRBKAqAZ7yX5xHfm58jUXsZJ7Ileq1S7G6Kk=
    # End Signature: -

A correct and full example is in Appendix A.

The CMS signature does not cover the signature lines.

The bracketing "# RPKI Signature:" and "# End Signature:" MUST be present as shown in the example. The RPKI Signature's IP address range MUST match that of the geofeed URL in the inetnum: that points to the geofeed file.

6. Operational Considerations

To create the needed inetnum: objects, an operator wishing to register the location of their geofeed file needs to coordinate with their Regional Internet Registry (RIR) or National Internet Registry (NIR) and/or any provider Local Internet Registry (LIR) that has assigned address ranges to them. RIRs/NIRs provide means for assignees to create and maintain inetnum: objects. They also provide means of assigning or sub-assigning IP address resources and allowing the assignee to create WHOIS data, including inetnum: objects, thereby referring to geofeed files.

The geofeed files MUST be published via and fetched using HTTPS [RFC9110].

When using data from a geofeed file, one MUST ignore data outside the referring inetnum: object's inetnum: attribute address range.

If and only if the geofeed file is not signed per Section 5, then multiple inetnum: objects MAY refer to the same geofeed file, and the consumer MUST use only lines in the geofeed file where the prefix is covered by the address range of the inetnum: object's URL it has followed.

If the geofeed file is signed, and the signer's certificate changes, the signature in the geofeed file MUST be updated.

It is good key hygiene to use a given key for only one purpose. To dedicate a signing private key for signing a geofeed file, an RPKI Certification Authority (CA) may issue a subordinate certificate exclusively for the purpose shown in Appendix A.

Harvesting and publishing aggregated geofeed data outside of the RPSL model should be avoided as it can have the effect that more specifics from one aggregatee could undesirably affect the less specifics of a different aggregatee. Moreover, publishing aggregated geofeed data prevents the reader of the data to perform the checks described in Section 4 and Section 5.

At the time of publishing this document, geolocation providers have bulk WHOIS data access at all the RIRs. An anonymized version of such data is openly available for all RIRs except ARIN, which requires an authorization. However, for users without such authorization, the same result can be achieved with extra RDAP effort. There is open-source code to pass over such data across all RIRs, collect all geofeed references, and process them [GEOFEED-FINDER].

To prevent undue load on RPSL and geofeed servers, entity-fetching geofeed data using these mechanisms MUST NOT do frequent real-time lookups. Section 3.4 of [RFC8805] suggests use of the HTTP Expires header [RFC7234] to signal when geofeed data should be refetched. As the data change very infrequently, in the absence of such an HTTP Header signal, collectors SHOULD NOT fetch more frequently than weekly. It would be polite not to fetch at magic times such as midnight UTC, the first of the month, etc., because too many others are likely to do the same.

7. Privacy Considerations

[RFC8805] geofeed data may reveal the approximate location of an IP address, which might in turn reveal the approximate location of an individual user. Unfortunately, [RFC8805] provides no privacy guidance on avoiding or ameliorating possible damage due to this exposure of the user. In publishing pointers to geofeed files as described in this document, the operator should be aware of this exposure in geofeed data and be cautious. All the privacy considerations of Section 4 of [RFC8805] apply to this document.

Where [RFC8805] provided the ability to publish location data, this document makes bulk access to those data readily available. This is a goal, not an accident.

8. Implementation Status

At the time of publishing this document, the geofeed: attribute in inetnum objects has been implemented in the RIPE and APNIC databases.

Registrants in databases which do not yet support the geofeed: attribute are using the remarks:, or equivalent, attribute.

At the time of publishing this document, the registry data published by ARIN are not the same RPSL as that of the other registries (see [RFC7485] for a survey of the WHOIS Tower of Babel); therefore, when fetching from ARIN via FTP [RFC0959], WHOIS [RFC3912], the Registration Data Access Protocol (RDAP) [RFC9082], etc., the "NetRange" attribute/key must be treated as "inetnum", and the "Comment" attribute must be treated as "remarks".

[rpki-client] can be used to authenticate a signed geofeed file.

9. Security Considerations

It is generally prudent for a consumer of geofeed data to also use other sources to cross-validate the data. All the security considerations of [RFC8805] apply here as well.

The consumer of geofeed data SHOULD fetch and process the data themselves. Importing datasets produced and/or processed by a third-party places significant trust in the third-party.

As mentioned in Section 5, some RPSL repositories have weak, if any, authentication. This allows spoofing of inetnum: objects pointing to malicious geofeed files. Section 5 suggests an unfortunately complex method for stronger authentication based on the RPKI.

For example, if an inetnum: for a wide address range (e.g., a /16) points to an RPKI-signed geofeed file, a customer or attacker could publish an unsigned equal or narrower (e.g., a /24) inetnum: in a WHOIS registry that has weak authorization, abusing the rule that the most-specific inetnum: object with a geofeed reference MUST be used.

If signatures were mandatory, the above attack would be stymied, but of course that is not happening anytime soon.

The RPSL providers have had to throttle fetching from their servers due to too-frequent queries. Usually, they throttle by the querying IP address or block. Similar defenses will likely need to be deployed by geofeed file servers.

10. IANA Considerations

In the SMI Security for S/MIME CMS Content Type (1.2.840.113549. in the Structure of Management Information (SMI) Numbers (MIB Module Registrations) registry group located at: there is an existing registration for:

        Decimal: 47
        Description: id-ct-geofeedCSVwithCRLF

On publication of this document, that reference needs to be changed to the new [ RFC-to-be ].

11. Acknowledgments

Thanks to Rob Austein for CMS and detached signature clue, George Michaelson for the first and substantial external review, and Erik Kline who was too shy to agree to coauthorship. Additionally, we express our gratitude to early implementors, including Menno Schepers; Flavio Luciani; Eric Dugas; and Kevin Pack. Also, thanks to the following geolocation providers who are consuming geofeeds with this described solution: Jonathan Kosgei (, Ben Dowling (, and Pol Nisenblat ( For an amazing number of helpful reviews, we thank Job Snijders, who also found an ASN.1 'inherit' issue; Adrian Farrel; Antonio Prado; Francesca Palombini; Jean-Michel Combes (INTDIR); John Scudder; Kyle Rose (SECDIR); Martin Duke; Mohamed Boucadair; Murray Kucherawy; Paul Kyzivat (GENART); Rob Wilton; Roman Danyliw; and Ties de Kock.

12. References

12.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <>.
Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D., Meyer, D., Bates, T., Karrenberg, D., and M. Terpstra, "Routing Policy Specification Language (RPSL)", RFC 2622, DOI 10.17487/RFC2622, , <>.
Villamizar, C., Alaettinoglu, C., Meyer, D., and S. Murphy, "Routing Policy System Security", RFC 2725, DOI 10.17487/RFC2725, , <>.
Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, , <>.
Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP Addresses and AS Identifiers", RFC 3779, DOI 10.17487/RFC3779, , <>.
Blunk, L., Damas, J., Parent, F., and A. Robachevsky, "Routing Policy Specification Language next generation (RPSLng)", RFC 4012, DOI 10.17487/RFC4012, , <>.
Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/RFC4648, , <>.
Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, , <>.
Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487/RFC5652, , <>.
Huston, G., Loomans, R., and G. Michaelson, "A Profile for Resource Certificate Repository Structure", RFC 6481, DOI 10.17487/RFC6481, , <>.
Huston, G., Michaelson, G., and R. Loomans, "A Profile for X.509 PKIX Resource Certificates", RFC 6487, DOI 10.17487/RFC6487, , <>.
Lepinski, M., Chi, A., and S. Kent, "Signed Object Template for the Resource Public Key Infrastructure (RPKI)", RFC 6488, DOI 10.17487/RFC6488, , <>.
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <>.
Kline, E., Duleba, K., Szamonek, Z., Moser, S., and W. Kumari, "A Format for Self-Published IP Geolocation Feeds", RFC 8805, DOI 10.17487/RFC8805, , <>.
Housley, R., "Update to the Cryptographic Message Syntax (CMS) for Algorithm Identifier Protection", RFC 8933, DOI 10.17487/RFC8933, , <>.
Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/RFC9110, , <>.
Austein, R., Huston, G., Kent, S., and M. Lepinski, "Manifests for the Resource Public Key Infrastructure (RPKI)", RFC 9286, DOI 10.17487/RFC9286, , <>.

12.2. Informative References

"geofeed-finder", commit 5f557a4, , <>.
Singh, J. and T. Harrison, "An RDAP Extension for Geofeed Data", Work in Progress, Internet-Draft, draft-ietf-regext-rdap-geofeed-01, , <>.
RIPE NCC, "Description of the INET6NUM Object", , <>.
RIPE NCC, "Description of the INETNUM Object", , <>.
Postel, J. and J. Reynolds, "File Transfer Protocol", STD 9, RFC 959, DOI 10.17487/RFC0959, , <>.
Daigle, L., "WHOIS Protocol Specification", RFC 3912, DOI 10.17487/RFC3912, , <>.
Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, , <>.
Housley, R., "Digital Signatures on Internet-Draft Documents", RFC 5485, DOI 10.17487/RFC5485, , <>.
Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and P. Roberts, "Issues with IP Address Sharing", RFC 6269, DOI 10.17487/RFC6269, , <>.
Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching", RFC 7234, DOI 10.17487/RFC7234, , <>.
Zhou, L., Kong, N., Shen, S., Sheng, S., and A. Servin, "Inventory and Analysis of WHOIS Registration Objects", RFC 7485, DOI 10.17487/RFC7485, , <>.
Kisteleki, R. and B. Haberman, "Securing Routing Policy Specification Language (RPSL) Objects with Resource Public Key Infrastructure (RPKI) Signatures", RFC 7909, DOI 10.17487/RFC7909, , <>.
Hollenbeck, S. and A. Newton, "Registration Data Access Protocol (RDAP) Query Format", STD 95, RFC 9082, DOI 10.17487/RFC9082, , <>.
Bush, R., Candela, M., Kumari, W., and R. Housley, "Finding and Using Geofeed Data", RFC 9092, DOI 10.17487/RFC9092, , <>.
RIPE NCC, "RIPE Database Documentation", <>.
RIPE NCC, "Representation Of IP Routing Policies In A Routing Registry", , <>.
RIPE NCC, "Representation Of IP Routing Policies In The RIPE Database", , <>.
Snijders, J., "Example on how to use rpki-client to authenticate a signed Geofeed", , <>.

Appendix A. Example

This appendix provides an example, including a trust anchor, a Certificate Revocation List (CRL) signed by the trust anchor, a CA certificate subordinate to the trust anchor, a CRL signed by the CA, an end-entity certificate subordinate to the CA for signing the geofeed, and a detached signature.

The trust anchor is represented by a self-signed certificate. As usual in the RPKI, the trust anchor has authority over all IPv4 address blocks, all IPv6 address blocks, and all Autonomous Systam (AS) numbers.

   -----END CERTIFICATE-----

The CRL issued by the trust anchor.

   -----BEGIN X509 CRL-----
   -----END X509 CRL-----

The CA certificate is issued by the trust anchor. This certificate grants authority over one IPv4 address block ( and two AS numbers (64496 and 64497).

   -----END CERTIFICATE-----

The CRL issued by the CA.

   -----BEGIN X509 CRL-----
   -----END X509 CRL-----

The end-entity certificate is issued by the CA. This certificate grants signature authority for one IPv4 address block ( Signature authority for AS numbers is not needed for geofeed data signatures, so no AS numbers are included in the end-entity certificate.

   -----END CERTIFICATE-----

The end-entity certificate is displayed below in detail. For brevity, the other two certificates are not.

      0 1110: SEQUENCE {
      4  830:  SEQUENCE {
      8    3:   [0] {
     10    1:    INTEGER 2
            :     }
     13   20:   INTEGER
            :    27 AD 39 40 83 D7 F2 B5 B9 9B 86 70 C7 75 B2 B9
            :    6E E1 66 F0
     35   13:   SEQUENCE {
     37    9:    OBJECT IDENTIFIER
            :     sha256WithRSAEncryption (1 2 840 113549 1 1 11)
     48    0:    NULL
            :     }
     50   51:   SEQUENCE {
     52   49:    SET {
     54   47:     SEQUENCE {
     56    3:      OBJECT IDENTIFIER commonName (2 5 4 3)
     61   40:      PrintableString
            :       '3ACE2CEF4FB21B7D11E3E184EFC1E297B3778642'
            :       }
            :      }
            :     }
    103   30:   SEQUENCE {
    105   13:    UTCTime 23/09/2023 15:55:38 GMT
    120   13:    UTCTime 19/07/2024 15:55:38 GMT
            :     }
    135   51:   SEQUENCE {
    137   49:    SET {
    139   47:     SEQUENCE {
    141    3:      OBJECT IDENTIFIER commonName (2 5 4 3)
    146   40:      PrintableString
            :       '914652A3BD51C144260198889F5C45ABF053A187'
            :       }
            :      }
            :     }
    188  290:   SEQUENCE {
    192   13:    SEQUENCE {
    194    9:     OBJECT IDENTIFIER
            :      rsaEncryption (1 2 840 113549 1 1 1)
    205    0:     NULL
            :      }
    207  271:    BIT STRING, encapsulates {
    212  266:     SEQUENCE {
    216  257:      INTEGER
            :      00 B2 71 34 2B 39 BF EA 07 65 B7 8B 72 A2 F0 F8
            :      40 FC 31 16 CA 28 B6 4E 01 A8 F6 98 02 C0 EF 65
            :      B0 84 48 E9 96 FF 93 E6 92 89 65 8F F6 44 9C CE
            :      57 10 82 D3 C2 57 0A FA DA 14 D0 64 22 28 C0 13
            :      74 04 BD 1C 2B 4F F9 93 58 A6 25 D8 B9 A9 D3 37
            :      9E F2 AC C0 CF 02 9E 84 75 D6 F0 7C A5 01 70 AE
            :      E6 66 AF 9C 69 85 74 6F 13 E9 B3 B8 95 4B 82 ED
            :      95 D6 EA 66 05 7B 96 96 87 B2 9A E7 61 E9 65 89
            :      F8 60 E3 C0 F5 CE DD 18 97 05 E8 C1 AC E1 4D 5E
            :      16 85 2D ED 3C CB 80 CF 7E BF D2 FE D5 C9 38 19
            :      BB 43 34 29 B6 66 CF 2D 8B 46 7E 9A D8 BB 8E 65
            :      88 51 6A A8 FF 78 51 E2 E9 21 27 D7 77 7E 80 28
            :      6C EA 4C 50 9C 73 71 16 F6 5E 54 14 4D 4C 14 B9
            :      67 A0 4A 20 AA DA 0B A0 A0 01 B7 42 24 38 51 8A
            :      78 2F C4 81 E6 81 75 62 DE E3 AF 5D 74 2F 6B 41
            :      FB 79 C3 A8 3A 72 6C 46 F9 A6 03 74 81 01 DF 8C
            :      EB
    477    3:      INTEGER 65537
            :       }
            :      }
            :     }
    482  352:   [3] {
    486  348:    SEQUENCE {
    490   29:     SEQUENCE {
    492    3:      OBJECT IDENTIFIER
            :       subjectKeyIdentifier (2 5 29 14)
    497   22:      OCTET STRING, encapsulates {
    499   20:       OCTET STRING
            :      91 46 52 A3 BD 51 C1 44 26 01 98 88 9F 5C 45 AB
            :      F0 53 A1 87
            :        }
            :       }
    521   31:     SEQUENCE {
    523    3:      OBJECT IDENTIFIER
            :       authorityKeyIdentifier (2 5 29 35)
    528   24:      OCTET STRING, encapsulates {
    530   22:       SEQUENCE {
    532   20:        [0]
            :      3A CE 2C EF 4F B2 1B 7D 11 E3 E1 84 EF C1 E2 97
            :      B3 77 86 42
            :         }
            :        }
            :       }
    554   14:     SEQUENCE {
    556    3:      OBJECT IDENTIFIER keyUsage (2 5 29 15)
    561    1:      BOOLEAN TRUE
    564    4:      OCTET STRING, encapsulates {
    566    2:       BIT STRING 7 unused bits
            :        '1'B (bit 0)
            :        }
            :       }
    570   24:     SEQUENCE {
    572    3:      OBJECT IDENTIFIER certificatePolicies (2 5 29 32)
    577    1:      BOOLEAN TRUE
    580   14:      OCTET STRING, encapsulates {
    582   12:       SEQUENCE {
    584   10:        SEQUENCE {
    586    8:         OBJECT IDENTIFIER
            :          resourceCertificatePolicy (1 3 6 1 5 5 7 14 2)
            :          }
            :         }
            :        }
            :       }
    596   97:     SEQUENCE {
    598    3:      OBJECT IDENTIFIER
            :       cRLDistributionPoints (2 5 29 31)
    603   90:      OCTET STRING, encapsulates {
    605   88:       SEQUENCE {
    607   86:        SEQUENCE {
    609   84:         [0] {
    611   82:          [0] {
    613   80:           [6]
            :          'rsync://'
            :          '2CEF4FB21B7D11E3E184EFC1E297B3778642.crl'
            :            }
            :           }
            :          }
            :         }
            :        }
            :       }
    695  108:     SEQUENCE {
    697    8:      OBJECT IDENTIFIER
            :       authorityInfoAccess (1 3 6 1 5 5 7 1 1)
    707   96:      OCTET STRING, encapsulates {
    709   94:       SEQUENCE {
    711   92:        SEQUENCE {
    713    8:         OBJECT IDENTIFIER
            :          caIssuers (1 3 6 1 5 5 7 48 2)
    723   80:         [6]
            :          'rsync://'
            :          '2CEF4FB21B7D11E3E184EFC1E297B3778642.cer'
            :          }
            :         }
            :        }
            :       }
    805   31:     SEQUENCE {
    807    8:      OBJECT IDENTIFIER
            :       ipAddrBlocks (1 3 6 1 5 5 7 1 7)
    817    1:      BOOLEAN TRUE
    820   16:      OCTET STRING, encapsulates {
    822   14:       SEQUENCE {
    824   12:        SEQUENCE {
    826    2:         OCTET STRING 00 01
    830    6:         SEQUENCE {
    832    4:          BIT STRING
            :           '010000000000000000000011'B
            :           }
            :          }
            :         }
            :        }
            :       }
            :      }
            :     }
            :    }
    838   13:  SEQUENCE {
    840    9:   OBJECT IDENTIFIER
            :    sha256WithRSAEncryption (1 2 840 113549 1 1 11)
    851    0:   NULL
            :    }
    853  257:  BIT STRING
            :   97 1B 76 E4 55 1E 7B 4F AE 0A 27 53 1F EE 29 EC
            :   0B 77 BB 69 DC 80 77 06 4E C6 A0 DD 47 28 3E 37
            :   04 FC 8D 49 81 02 51 BB D4 E2 33 88 8D 07 50 BB
            :   2D B7 5D D7 7D 60 31 D9 62 2F 91 90 DC FE 10 7C
            :   A9 DF 92 E3 D1 E9 2D 55 F2 CB AA E9 94 F5 29 04
            :   72 2C 9C 7E 10 F8 03 37 6A DB FE 28 E2 D1 33 8A
            :   E9 12 8F 34 17 46 95 75 4B 8E D8 78 C7 FB AE D4
            :   EE 15 E7 81 8B 12 10 C0 3D 00 BC 21 49 B9 8A 7B
            :   4B FC 7C 75 33 5C 76 A6 D3 7F FA 3E 47 0F 75 D4
            :   5D DD F1 D7 7C A2 B3 AB BB E7 C9 DB 03 B3 43 E3
            :   42 4D 84 61 B9 24 D1 90 80 37 21 2F 82 10 CC 88
            :   72 94 C3 42 F9 B2 94 8B 2C 8C 1F 3D CC AA 85 40
            :   92 52 01 F3 A2 16 51 CB FB D8 C7 A4 AB E8 B8 E9
            :   3F F0 DD 19 DA 1A 7E 31 ED 10 09 72 D5 49 5B 0D
            :   DE E5 83 2B 16 74 1C BA E6 86 3A CD 10 72 8C 56
            :   EC 18 B8 5B B1 20 F1 F2 B5 7D DF DF E9 F8 D9 F7
            :   }

To allow reproduction of the signature results, the end-entity private key is provided. For brevity, the other two private keys are not.

   -----END RSA PRIVATE KEY-----

Signing of ",US,WA,Seattle," (terminated by CR and LF), yields the following detached CMS signature.

   # RPKI Signature:
   # IhvcNAQkQAS+gggRaMIIEVjCCAz6gAwIBAgIUJ605QIPX8rW5m4Zwx3WyuW7hZv
   # QrOb/qB2W3i3Ki8PhA/DEWyii2TgGo9pgCwO9lsIRI6Zb/k+aSiWWP9kSczlcQg
   # tPCVwr62hTQZCIowBN0BL0cK0/5k1imJdi5qdM3nvKswM8CnoR11vB8pQFwruZm
   # r5xphXRvE+mzuJVLgu2V1upmBXuWloeymudh6WWJ+GDjwPXO3RiXBejBrOFNXha
   # FLe08y4DPfr/S/tXJOBm7QzQptmbPLYtGfprYu45liFFqqP94UeLpISfXd36AKG
   # zqTFCcc3EW9l5UFE1MFLlnoEogqtoLoKABt0IkOFGKeC/EgeaBdWLe469ddC9rQ
   # ft5w6g6cmxG+aYDdIEB34zrAgMBAAGjggFgMIIBXDAdBgNVHQ4EFgQUkUZSo71R
   # wUQmAZiIn1xFq/BToYcwHwYDVR0jBBgwFoAUOs4s70+yG30R4+GE78Hil7N3hkI
   # 0fBFowWDBWoFSgUoZQcnN5bmM6Ly9ycGtpLmV4YW1wbGUubmV0L3JlcG9zaXRvc
   # jANBgkqhkiG9w0BAQsFAAOCAQEAlxt25FUee0+uCidTH+4p7At3u2ncgHcGTsag
   # 3UcoPjcE/I1JgQJRu9TiM4iNB1C7Lbdd131gMdliL5GQ3P4QfKnfkuPR6S1V8su
   # q6ZT1KQRyLJx+EPgDN2rb/iji0TOK6RKPNBdGlXVLjth4x/uu1O4V54GLEhDAPQ
   # C8IUm5intL/Hx1M1x2ptN/+j5HD3XUXd3x13yis6u758nbA7ND40JNhGG5JNGQg
   # DchL4IQzIhylMNC+bKUiyyMHz3MqoVAklIB86IWUcv72Mekq+i46T/w3RnaGn4x
   # 7RAJctVJWw3e5YMrFnQcuuaGOs0QcoxW7Bi4W7Eg8fK1fd/f6fjZ9zGCAaowggG
   # mAgEDgBSRRlKjvVHBRCYBmIifXEWr8FOhhzALBglghkgBZQMEAgGgazAaBgkqhk
   # TUzOFowLwYJKoZIhvcNAQkEMSIEICvi8p5S8ckg2wTRhDBQzGijjyqs5T6I+4Vt
   # 0WULMc+o6gRJFt3wmKNW2nYPrDbocJ+Q/rDMGxbp4QetJ0MQtn1+AYAS8v5jPDO
   # 4a63U4/mJ2D3wSnQsDP0lUVknqRzfnS66HgHqiOVdHB0U+OnMEJuqHNTLx0dknb
   # L3zwxyDJTHdo+dMB0U9xdcjwpsPM3xqg57EXj5EIQK5JbardXCjrsysAnEdktUY
   # oyayGNbbQelANYJcOmuHhSXArR+qqzvNP2MDRqqKEcpd65YW6FSnqlVMIBH2M3P
   # D2F0p3sdm4IeGAZWaERVB4AXO1PUFDNdhamr4XpIwqIoAig7xiLm7j8qu5Oc=
   # End Signature:

Authors' Addresses

Randy Bush
IIJ Research & Arrcus
5147 Crystal Springs
Bainbridge Island, Washington 98110
United States of America
Massimo Candela
Veemweg 23
3771 MT Barneveld
Warren Kumari
1600 Amphitheatre Parkway
Mountain View, CA 94043
United States of America
Russ Housley
Vigil Security, LLC
516 Dranesville Road
Herndon, VA 20170
United States of America