Internet-Draft NSH-SR SFC April 2022
Guichard & Tantsura Expires 21 October 2022 [Page]
Intended Status:
Standards Track
J. Guichard, Ed.
Futurewei Technologies
J. Tantsura, Ed.

Integration of Network Service Header (NSH) and Segment Routing for Service Function Chaining (SFC)


This document describes the integration of the Network Service Header (NSH) and Segment Routing (SR), as well as encapsulation details, to support Service Function Chaining (SFC) in an efficient manner while maintaining separation of the service and transport planes as originally intended by the SFC architecture.

Combining these technologies allows SR to be used for steering packets between Service Function Forwarders (SFF) along a given Service Function Path (SFP) while NSH has the responsibility for maintaining the integrity of the service plane, the SFC instance context, and any associated metadata.

This integration demonstrates that NSH and SR can work cooperatively and provide a network operator with the flexibility to use whichever transport technology makes sense in specific areas of their network infrastructure while still maintaining an end-to-end service plane using NSH.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 October 2022.

1. Introduction

1.1. SFC Overview and Rationale

The dynamic enforcement of a service-derived and adequate forwarding policy for packets entering a network that supports advanced Service Functions (SFs) has become a key challenge for network operators. For instance, cascading SFs at the 3GPP (Third Generation Partnership Project) Gi interface (N6 interface in 5G architecture) has shown limitations such as 1) redundant classification features must be supported by many SFs to execute their function, 2) some SFs receive traffic that they are not supposed to process (e.g., TCP proxies receiving UDP traffic) which inevitably affects their dimensioning and performance, and 3) an increased design complexity related to the properly ordered invocation of several SFs.

In order to solve those problems, and to decouple the services topology from the underlying physical network while allowing for simplified service delivery, Service Function Chaining (SFC) techniques have been introduced [RFC7665].

SFC techniques are meant to rationalize the service delivery logic and master the resulting complexity while optimizing service activation time cycles for operators that need more agile service delivery procedures to better accommodate ever-demanding customer requirements. SFC allows network operators to dynamically create service planes that can be used by specific traffic flows. Each service plane is realized by invoking and chaining the relevant service functions in the right sequence. [RFC7498] provides an overview of the overall SFC problem space and [RFC7665] specifies an SFC data plane architecture. The SFC architecture does not make assumptions on how advanced features (e.g., load-balancing, loose or strict service paths) could be enabled within a domain. Various deployment options are made available to operators with the SFC architecture and this approach is fundamental to accommodate various and heterogeneous deployment contexts.

Many approaches can be considered for encoding the information required for SFC purposes (e.g., communicate a service chain pointer, encode a list of loose/explicit paths, or disseminate a service chain identifier together with a set of context information). Likewise, many approaches can also be considered for the channel to be used to carry SFC-specific information (e.g., define a new header, re-use existing packet header fields, or define an IPv6 extension header). Among all these approaches, the IETF created a transport-independent SFC encapsulation scheme: NSH [RFC8300]. This design is pragmatic as it does not require replicating the same specification effort as a function of underlying transport encapsulation. Moreover, this design approach encourages consistent SFC-based service delivery in networks enabling distinct transport protocols in various network segments or even between SFFs vs SF-SFF hops.

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. SFC within Segment Routing Networks

As described in [RFC8402], SR leverages the source routing technique. Concretely, a node steers a packet through an SR policy instantiated as an ordered list of instructions called segments. While initially designed for policy-based source routing, SR also finds its application in supporting SFC [I-D.ietf-spring-sr-service-programming].

The two SR data plane encapsulations, namely SR-MPLS [RFC8660] and SRv6 [RFC8754], can both encode an SF as a segment so that an SFC can be specified as a segment list. Nevertheless, and as discussed in [RFC7498], traffic steering is only a subset of the issues that motivated the design of the SFC architecture. Further considerations such as simplifying classification at intermediate SFs and allowing for coordinated behaviors among SFs by means of supplying context information (a.k.a. metadata) should be considered when designing an SFC data plane solution.

While each scheme (i.e., NSH-based SFC and SR-based SFC) can work independently, this document describes how the two can be used together in concert and complement each other through two representative application scenarios. Both application scenarios may be supported using either SR-MPLS or SRv6:

  • NSH-based SFC with SR-based transport plane: in this scenario SR-MPLS or SRv6 provides the transport encapsulation between SFFs while NSH is used to convey and trigger SFC policies.
  • SR-based SFC with integrated NSH service plane: in this scenario each service hop of the SFC is represented as a segment of the SR segment-list. SR is thus responsible for steering traffic through the necessary SFFs as part of the segment routing path while NSH is responsible for maintaining the service plane and holding the SFC instance context (including associated metadata).

It is of course possible to combine both of these two scenarios to support specific deployment requirements and use cases.

A classifier MUST use an NSH Service Path Identifier (SPI) per SR policy so that different traffic flows that use the same NSH Service Function Path (SFP) but different SR policy can coexist on the same SFP without conflict during SFF processing.

3. NSH-based SFC with SR-MPLS or SRv6 Transport Tunnel

Because of the transport-independent nature of NSH-based service function chains, it is expected that the NSH has broad applicability across different network domains (e.g., access, core). By way of illustration the various SFs involved in a service function chain may be available in a single data center, or spread throughout multiple locations (e.g., data centers, different Points of Presence (POPs)), depending upon the network operator preference and/or availability of service resources. Regardless of where the SFs are deployed it is necessary to provide traffic steering through a set of SFFs, and when NSH and SR are integrated, this is provided by SR-MPLS or SRv6.

The following three figures provide an example of an SFC established flow F that has SF instances located in different data centers, DC1 and DC2. For the purpose of illustration, let the SFC's NSH SPI be 100 and the initial Service Index (SI) be 255.

Referring to Figure 1, packets of flow F in DC1 are classified into an NSH-based SFC and encapsulated after classification as <Inner Pkt><NSH: SPI 100, SI 255><Outer-transport> and forwarded to SFF1 (which is the first SFF hop for this service function chain).

After removing the outer transport encapsulation, SFF1 uses the SPI and SI carried within the NSH encapsulation to determine that it should forward the packet to SF1. SF1 applies its service, decrements the SI by 1, and returns the packet to SFF1. SFF1 therefore has <SPI 100, SI 254> when the packet comes back from SF1. SFF1 does a lookup on <SPI 100, SI 254> which results in <next-hop: DC1-GW1> and forwards the packet to DC1-GW1.

+--------------------------- DC1 ----------------------------+
|                          +-----+                           |
|                          | SF1 |                           |
|                          +--+--+                           |
|                             |                              |
|                             |                              |
|        +------------+       |    +------------+            |
|        | N(100,255) |       |    | N(100,254) |            |
|        +------------+       |    +------------+            |
|        | F:Inner Pkt|       |    | F:Inner Pkt|            |
|        +------------+  ^    |  | +------------+            |
|                    (2) |    |  | (3)                       |
|                        |    |  v                           |
|                  (1)        |         (4)                  |
|+------------+   ---->    +--+---+    ---->     +---------+ |
||            |    NSH     |      |     NSH      |         | |
|| Classifier +------------+ SFF1 +--------------+ DC1-GW1 + |
||            |            |      |              |         | |
|+------------+            +------+              +---------+ |
|                                                            |
|             +------------+       +------------+            |
|             | N(100,255) |       | N(100,254) |            |
|             +------------+       +------------+            |
|             | F:Inner Pkt|       | F:Inner Pkt|            |
|             +------------+       +------------+            |
|                                                            |

Figure 1: SR for inter-DC SFC - Part 1

Referring now to Figure 2, DC1-GW1 performs a lookup using the information conveyed in the NSH which results in <next-hop: DC2-GW1, encapsulation: SR>. The SR encapsulation, which may be SR-MPLS or SRv6, has the SR segment-list to forward the packet across the inter-DC network to DC2.

                  +----------- Inter DC ----------------+
           (4)    |                (5)                  |
+------+  ---->   | +---------+   ---->     +---------+ |
|      |   NSH    | |         |     SR      |         | |
+ SFF1 +----------|-+ DC1-GW1 +-------------+ DC2-GW1 + |
|      |          | |         |             |         | |
+------+          | +---------+             +---------+ |
                  |                                     |
                  |          +------------+             |
                  |          | S(DC2-GW1) |             |
                  |          +------------+             |
                  |          | N(100,254) |             |
                  |          +------------+             |
                  |          | F:Inner Pkt|             |
                  |          +------------+             |

Figure 2: SR for inter-DC SFC - Part 2

When the packet arrives at DC2, as shown in Figure 3, the SR encapsulation is removed and DC2-GW1 performs a lookup on the NSH which results in next hop: SFF2. When SFF2 receives the packet, it performs a lookup on <NSH: SPI 100, SI 254> and determines to forward the packet to SF2. SF2 applies its service, decrements the SI by 1, and returns the packet to SFF2. SFF2 therefore has <NSH: SPI 100, SI 253> when the packet comes back from SF2. SFF2 does a lookup on <NSH: SPI 100, SI 253> which results in the end of the service function chain.

                   +------------------------ DC2 ----------------------+
                   |                         +-----+                   |
                   |                         | SF2 |                   |
                   |                         +--+--+                   |
                   |                            |                      |
                   |                            |                      |
                   |        +------------+      |    +------------+    |
                   |        | N(100,254) |      |    | N(100,253) |    |
                   |        +------------+      |    +------------+    |
                   |        | F:Inner Pkt|      |    | F:Inner Pkt|    |
                   |        +------------+  ^   |  | +------------+    |
                   |                    (7) |   |  | (8)               |
                   |                        |   |  v                   |
             (5)   |                 (6)        |     (9)              |
+---------+  --->  | +----------+   ---->    +--+---+ ---->            |
|         |   SR   | |          |    NSH     |      |  IP              |
+ DC1-GW1 +--------|-+ DC2-GW1  +------------+ SFF2 |                  |
|         |        | |          |            |      |                  |
+---------+        | +----------+            +------+                  |
                   |                                                   |
                   |           +------------+      +------------+      |
                   |           | N(100,254) |      | F:Inner Pkt|      |
                   |           +------------+      +------------+      |
                   |           | F:Inner Pkt|                          |
                   |           +------------+                          |

Figure 3: SR for inter-DC SFC - Part 3

The benefits of this scheme are listed hereafter:

  • The network operator is able to take advantage of the transport-independent nature of the NSH encapsulation, while the service is provisioned end-to-end.
  • The network operator is able to take advantage of the traffic steering (traffic engineering) capability of SR where appropriate.
  • Clear responsibility division and scope between NSH and SR.

Note that this scenario is applicable to any case where multiple segments of a service function chain are distributed across multiple domains or where traffic-engineered paths are necessary between SFFs (strict forwarding paths for example). Further note that the above example can also be implemented using end-to-end segment routing between SFF1 and SFF2. (As such DC-GW1 and DC-GW2 are forwarding the packets based on segment routing instructions and are not looking at the NSH header for forwarding.)

4. SR-based SFC with Integrated NSH Service Plane

In this scenario we assume that the SFs are NSH-aware and therefore it should not be necessary to implement an SFC proxy to achieve SFC. The operation relies upon SR-MPLS or SRv6 to perform SFF-SFF transport and NSH to provide the service plane between SFs thereby maintaining SFC context (e.g., the service plane path referenced by the SPI) and any associated metadata.

When a service function chain is established, a packet associated with that chain will first carry an NSH that will be used to maintain the end-to-end service plane through use of the SFC context. The SFC context is used by an SFF to determine the SR segment list for forwarding the packet to the next-hop SFFs. The packet is then encapsulated using the SR header and forwarded in the SR domain following normal SR operations.

When a packet has to be forwarded to an SF attached to an SFF, the SFF performs a lookup on the segment identifier (SID) associated with the SF. In the case of SR-MPLS this will be a prefix SID [RFC8402]. In the case of SRv6, the behavior described within this document is assigned the name END.NSH, and section 9.2 requests allocation of a code point by IANA. The result of this lookup allows the SFF to retrieve the next hop context between the SFF and SF (e.g., the destination MAC address in case native Ethernet encapsulation is used between SFF and SF). In addition the SFF strips the SR information from the packet, updates the SR information, and saves it to a cache indexed by the NSH Service Path Identifier (SPI) and the Service Index (SI) decremented by 1. This saved SR information is used to encapsulate and forward the packet(s) coming back from the SF.

The behavior of remembering the SR segment-list occurs at the end of the regularly defined logic. The behavior of reattaching the segment-list occurs before the SR process of forwarding the packet to the next entry in the segment-list. Both behaviors are further detailed in section 5.

When the SF receives the packet, it processes it as usual. When the SF is co-resident with a classifier, the already processed packet may be re-classified. The SF sends the packet back to the SFF. Once the SFF receives this packet, it extracts the SR information using the NSH SPI and SI as the index into the cache. The SFF then pushes the retrieved SR header on top of the NSH header, and forwards the packet to the next segment in the segment-list. The lookup in the SFF cache might fail if re-classification at the SF changed the NSH SPI and/or SI to values that do not exist in the SFF cache. In such a case, the SFF must generate an error and drop the packet.

Figure 4 illustrates an example of this scenario.

                        +-----+                       +-----+
                        | SF1 |                       | SF2 |
                        +--+--+                       +--+--+
                           |                             |
                           |                             |
             +-----------+ | +-----------+ +-----------+ | +-----------+
             |N(100,255) | | |N(100,254) | |N(100,254) | | |N(100,253) |
             +-----------+ | +-----------+ +-----------+ | +-----------+
             |F:Inner Pkt| | |F:Inner Pkt| |F:Inner Pkt| | |F:Inner Pkt|
             +-----------+ | +-----------+ +-----------+ | +-----------+
                     (2) ^ | (3) |                 (5) ^ | (6) |
                         | |     |                     | |     |
                         | |     |                     | |     |
                 (1)     | |     v      (4)            | |     v (7)
+------------+   --->    +-+----+      ---->          +---+--+   -->
|            | NSHoverSR |      |    NSHoverSR        |      |    IP
| Classifier +-----------+ SFF1 +---------------------+ SFF2 |
|            |           |      |                     |      |
+------------+           +------+                     +------+

             +------------+        +------------+        +------------+
             |   S(SF1)   |        |   S(SF2)   |        | F:Inner Pkt|
             +------------+        +------------+        +------------+
             |   S(SFF2)  |        | N(100,254) |
             +------------+        +------------+
             |   S(SF2)   |        | F:Inner Pkt|
             +------------+        +------------+
             | N(100,255) |
             | F:Inner Pkt|

Figure 4: NSH over SR for SFC

The benefits of this scheme include:

  • It is economically sound for SF vendors to only support one unified SFC solution. The SF is unaware of the SR.
  • It simplifies the SFF (i.e., the SR router) by nullifying the needs for re-classification and SR proxy.
  • SR is also used for forwarding purposes including between SFFs.
  • It takes advantage of SR to eliminate the NSH forwarding state in SFFs. This applies each time strict or loose SFPs are in use.
  • It requires no interworking as would be the case if SR-MPLS based SFC and NSH-based SFC were deployed as independent mechanisms in different parts of the network.

5. Packet Processing for SR-based SFC

This section describes the End.NSH behavior (SRv6), Prefix SID behavior (SR-MPLS), and NSH processing logic.

5.1. SR-based SFC (SR-MPLS) Packet Processing

When an SFF receives a packet destined to S and S is a local prefix SID associated with an SF, the SFF strips the SR segment-list (label stack) from the packet, updates the SR information, and saves it to a cache indexed by the NSH Service Path Identifier (SPI) and the Service Index (SI) decremented by 1. This saved SR information is used to re-encapsulate and forward the packet(s) coming back from the SF.

5.2. SR-based SFC (SRv6) Packet Processing

This section describes the End.NSH behavior and NSH processing logic for SRv6. The pseudo code is shown below.

When N receives a packet destined to S and S is a local End.NSH SID, the processing is the same as that specified by [RFC8754] section, up through line S.15.

After S.15, if S is a local End.NSH SID, then:

S15.1. Remove and store IPv6 and SRH headers in local cache indexed by <NSH: service-path-id, service-index -1>

S15.2. Submit the packet to the NSH FIB lookup and transmit to the destination associated with <NSH: service-path-id, service-index>

Note: The End.NSH behavior interrupts the normal SRH packet processing as described in [RFC8754] section, which does not continue to S16 at this time.

When a packet is returned to the SFF from the SF, reattach the cached IPv6 and SRH headers based on the <NSH: service-path-id, service-index> from the NSH header. Then resume processing from [RFC8754] section with line S.16.

6. Encapsulation

6.1. NSH using SR-MPLS Transport

SR-MPLS instantiates Segment IDs (SIDs) as MPLS labels and therefore the segment routing header is a stack of MPLS labels.

When carrying NSH within an SR-MPLS transport, the full encapsulation headers are as illustrated in Figure 5.

                       ~   MPLS-SR Labels ~
                       |   NSH Base Hdr   |
                       | Service Path Hdr |
                       ~     Metadata     ~

Figure 5: NSH using SR-MPLS Transport

As described in [RFC8402], the IGP signaling extension for IGP-Prefix segment includes a flag to indicate whether directly connected neighbors of the node on which the prefix is attached should perform the NEXT operation or the CONTINUE operation when processing the SID. When NSH is carried beneath SR-MPLS it is necessary to terminate the NSH-based SFC at the tail-end node of the SR-MPLS label stack. This can be achieved using either the NEXT or CONTINUE operation.

If the NEXT operation is to be used, then at the end of the SR-MPLS path it is necessary to provide an indication to the tail-end that NSH follows the SR-MPLS label stack as described by [RFC8596].

If the CONTINUE operation is to be used, this is the equivalent of MPLS Ultimate Hop Popping (UHP) and therefore it is necessary to ensure that the penultimate hop node does not pop the top label of the SR-MPLS label stack and thereby expose NSH to the wrong SFF. This is realized by setting No-PHP flag in Prefix-SID Sub-TLV [RFC8667], [RFC8665]. It is RECOMMENDED that a specific prefix-SID be allocated at each node for use by the SFC application for this purpose.

6.2. NSH using SRv6 Transport

When carrying NSH within an SRv6 transport the full encapsulation is as illustrated in Figure 6.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    | Next Header   |  Hdr Ext Len  | Routing Type  | Segments Left |
    |  Last Entry   |     Flags     |              Tag              | S
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ e
    |                                                               | g
    |            Segment List[0] (128 bits IPv6 address)            | m
    |                                                               | e
    |                                                               | n
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ t
    |                                                               |
    |                                                               | R
    ~                              ...                              ~ o
    |                                                               | u
    |                                                               | t
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ i
    |                                                               | n
    |            Segment List[n] (128 bits IPv6 address)            | g
    |                                                               |
    |                                                               | S
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ R
    //                                                             // H
    //         Optional Type Length Value objects (variable)       //
    //                                                             //
    |Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| Next Protocol |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ N
    |          Service Path Identifier              | Service Index | S
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ H
    |                                                               |
    ~              Variable-Length Context Headers  (opt.)          ~
    |                                                               |

Figure 6: NSH using SRv6 Transport

Encapsulation of NSH following SRv6 is indicated by the IP protocol number for NSH in the Next Header of the SRH.

7. Security Considerations

Generic SFC-related security considerations are discussed in [RFC7665].

NSH-specific security considerations are discussed in [RFC8300].

Generic segment routing related security considerations are discussed in section 7 of [RFC8754] and section 5 of [RFC8663].

8. Backwards Compatibility

For SRv6/IPv6, if a processing node does not recognize NSH it should follow the procedures described in section 4 of [RFC8200]. For SR-MPLS, if a processing node does not recognize NSH it should follow the procedures laid out in section 3.18 of [RFC3031].

9. Caching Considerations

The cache mechanism must remove cached entries at an appropriate time determined by the implementation. Further, an implementation MAY allow network operators to set the said time value. In the case a packet arriving from an SF does not have a matching cached entry, the SFF SHOULD log this event.

10. MTU Considerations

Aligned with Section 5 of [RFC8300] and Section 5.3 of [RFC8754], it is RECOMMENDED for network operators to increase the underlying MTU so that SR/NSH traffic is forwarded within an SR domain without fragmentation.

11. IANA Considerations

11.1. Protocol Number for NSH

IANA is requested to assign a protocol number TBA1 for the NSH from the
"Assigned Internet Protocol Numbers" registry available at

   | Decimal | Keyword |   Protocol   |      IPv6     |   Reference    |
   |         |         |              |   Extension   |                |
   |         |         |              |     Header    |                |
   |   TBA1  |   NSH   |   Network    |       N       | [This Document]|
   |         |         |   Service    |               |                |
   |         |         |    Header    |               |                |

11.2. SRv6 Endpoint Behavior for NSH

This I-D requests IANA to allocate, within the "SRv6 Endpoint Behaviors"
sub-registry belonging to the top-level "Segment-routing with IPv6 data
plane (SRv6) Parameters" registry, the following allocations:

      Value      Description                               Reference
      TBA2       End.NSH  - NSH Segment                    [This.ID]

12. Contributing Authors

The following co-authors, along with their respective affiliations at
the time of publication, provided valuable inputs and text contributions
to this document.

Mohamed Boucadair

Joel Halpern

Syed Hassan
Cisco System, inc.

Wim Henderickx

Haoyu Song
Futurewei Technologies

13. References

13.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <>.
Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol Label Switching Architecture", RFC 3031, DOI 10.17487/RFC3031, , <>.
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <>.
Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/RFC8200, , <>.
Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed., "Network Service Header (NSH)", RFC 8300, DOI 10.17487/RFC8300, , <>.
Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L., Decraene, B., Litkowski, S., and R. Shakir, "Segment Routing Architecture", RFC 8402, DOI 10.17487/RFC8402, , <>.
Bashandy, A., Ed., Filsfils, C., Ed., Previdi, S., Decraene, B., Litkowski, S., and R. Shakir, "Segment Routing with the MPLS Data Plane", RFC 8660, DOI 10.17487/RFC8660, , <>.
Xu, X., Bryant, S., Farrel, A., Hassan, S., Henderickx, W., and Z. Li, "MPLS Segment Routing over IP", RFC 8663, DOI 10.17487/RFC8663, , <>.
Psenak, P., Ed., Previdi, S., Ed., Filsfils, C., Gredler, H., Shakir, R., Henderickx, W., and J. Tantsura, "OSPF Extensions for Segment Routing", RFC 8665, DOI 10.17487/RFC8665, , <>.
Previdi, S., Ed., Ginsberg, L., Ed., Filsfils, C., Bashandy, A., Gredler, H., and B. Decraene, "IS-IS Extensions for Segment Routing", RFC 8667, DOI 10.17487/RFC8667, , <>.
Filsfils, C., Ed., Dukes, D., Ed., Previdi, S., Leddy, J., Matsushima, S., and D. Voyer, "IPv6 Segment Routing Header (SRH)", RFC 8754, DOI 10.17487/RFC8754, , <>.

13.2. Informative References

Clad, F., Xu, X., Filsfils, C., Bernier, D., Li, C., Decraene, B., Ma, S., Yadlapalli, C., Henderickx, W., and S. Salsano, "Service Programming with Segment Routing", Work in Progress, Internet-Draft, draft-ietf-spring-sr-service-programming-05, , <>.
Quinn, P., Ed. and T. Nadeau, Ed., "Problem Statement for Service Function Chaining", RFC 7498, DOI 10.17487/RFC7498, , <>.
Halpern, J., Ed. and C. Pignataro, Ed., "Service Function Chaining (SFC) Architecture", RFC 7665, DOI 10.17487/RFC7665, , <>.
Malis, A., Bryant, S., Halpern, J., and W. Henderickx, "MPLS Transport Encapsulation for the Service Function Chaining (SFC) Network Service Header (NSH)", RFC 8596, DOI 10.17487/RFC8596, , <>.

Authors' Addresses

James N Guichard (editor)
Futurewei Technologies
2330 Central Express Way
Santa Clara,
United States of America
Jeff Tantsura (editor)
United States of America